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On semiconic idempotent commutative
residuated lattices
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Abstract. In this paper, we study semiconic idempotent commutative
residuated lattices. An algebra of this kind is a semiconic generalized
Sugihara monoid if it is generated by the lower bounds of the monoid
identity. We establish a category equivalence between semiconic general-
ized Sugihara monoids and Brouwerian algebras with a strong nucleus.
As an application, we show that central semiconic generalized Sugihara
monoids are strongly amalgamable.
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1. Introduction

Idempotent commutative residuated lattices form a useful tool both in alge-
bra and logic, see e.g., [5] for details. Among them, both integral ones and
non-integral ones play important roles, since they include several important
algebraic counterparts of substructural logics, e.g., Brouwerian algebras, i.e.
the algebras of positive intuitionistic logic, and positive Sugihara monoids
(see [17]); these algebras model the positive fragment of the system R-mingle.
In general, integral residuated lattices are better understood than their non-
integral counterparts, so the establishment of a category equivalence between
a non-integral and an integral class can increase our comprehension of the
former.

A commutative residuated lattice is integral if each of its elements lies
below the monoid identity; is conic if each of its elements lies above or below
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the monoid identity; is semilinear if it is a subdirect product of totally or-
dered commutative residuated lattices; is semiconic if it is a subdirect product
of conic commutative residuated lattices; is involutive if it possesses a compat-
ible involution ¬ (see [7]); is idempotent if its monoid operation is idempotent.
A semilinear idempotent commutative residuated lattice is called a Sugihara
monoid if it is involutive; is called a relative Stone algebra if it is integral; is
called a generalized Sugihara monoid if it is generated by the lower bounds of
the monoid identity. A Sugihara monoid is called odd if its monoid identity
e satisfies ¬e = e. A semiconic idempotent commutative residuated lattice is
called a Brouwerian algebra if it is integral; is called a semiconic generalized
Sugihara monoid if it is generated by the lower bounds of the monoid iden-
tity. In [7], the authors proved that the variety of odd Sugihara monoids and
the variety of relative Stone algebras are categorically equivalent. However, a
semiconic idempotent involutive commutative residuated lattice is a Sugihara
monoid (see [12]). In [8], the authors established a category equivalence be-
tween generalized Sugihara monoids and relative Stone algebras with a nucleus.
In this paper, we will show that semiconic generalized Sugihara monoids and
Brouwerian algebras with a strong nucleus are categorically equivalent, which
generalizes the main result of [8].

We proceed as follows: in Section 2, we recall some definitions and ba-
sic facts needed in later proofs. In Section 3, we discuss some properties of
semiconic idempotent commutative residuated lattices. In Section 4, we study
strong nuclear Brouwerian algebras and obtain some properties of such al-
gebras. Section 5 is devoted to establishing a category equivalence between
semiconic generalized Sugihara monoids and strong nuclear Brouwerian alge-
bras, which generalizes [8, Theorem 8.7]. In Section 6, we use this category
equivalence to prove that the variety of central semiconic generalized Sugihara
monoids is strongly amalgamable, which generalizes [8, Theorem 13.3].

2. Preliminaries

In this section, we will recall some basic definitions and facts on commutative
residuated lattices.

A po-monoid is defined as a monoid (M, ·, e) which is also a poset (M,≤),
and in which ≤ is compatible with ·, in the sense that (∀a, b, c ∈ M) a ≤ b =⇒
ca ≤ cb, ac ≤ bc. Here and subsequently, xy abbreviates x · y. By a lattice-
ordered monoid, we mean a po-monoid (M, ·, e,≤) in which the poset (M,≤)
is a lattice. Moreover, a lattice-ordered monoid (M, ·, e,≤) is called idempotent
if for all a ∈ M , aa = a; is called commutative if the monoid reduct (M, ·, e)
is a commutative monoid; is called conic, if for all a ∈ M , a ≤ e or a ≥ e.
For detailed information on lattice-ordered monoids, the reader is referred to
reference [2].

We need the following lemma.

Lemma 2.1 [20]. Let (M, ·, e,≤) be an idempotent lattice-ordered monoid with
identity e, and a, b ∈ M .
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(1) a ∧ b ≤ ab ≤ a ∨ b.
(2) If a, b ≥ e, then ab = a ∨ b.
(3) If a, b ≤ e, then ab = a ∧ b.
(4) If a ≤ e ≤ ab, then ab = b.
(5) If ab ≤ e ≤ a, then ab = b.

Now, let (P,≤) be a poset. A (binary) commutative operation · is called
residuated if there exists a (binary) operation → on P such that

(∀x, y, z ∈ P ) xy ≤ z ⇐⇒ y ≤ x → z.

In this case, the operation → is called a residual of the operation ·. It is well
known that a commutative operation · on the poset (P,≤) is residuated if and
only if ≤ is compatible with · and for all a, b ∈ P, {p ∈ P : ap ≤ b} contains
a greatest element (denoted by a → b). A commutative residuated lattice is
defined as an algebra L = (L,∧,∨, ·,→, e) satisfying the following conditions:
(RL1) (L,∧,∨) is a lattice;
(RL2) (L, ·, e) is a commutative monoid with identity e; and
(RL3) the operation → is a residual of the operation ·.

In this case, we call the lattice (L,∧,∨) and the monoid (L, ·, e) the
lattice reduct and the monoid reduct of L, respectively, and we denote the
lattice order by ≤. Commutative residuated lattices are exactly commutative
lattice-ordered monoids L such that for all a, b ∈ L, {c ∈ L : ac ≤ b} contains
a greatest element. Sometimes, commutative residuated lattices are also called
commutative residuated lattice-ordered monoids and abbreviated by CRLs.

A CRL L is said to be idempotent if for all a ∈ L, aa = a; is said to be
integral if for all a ∈ L, a ≤ e; is said to be totally ordered if the lattice reduct
is a chain, i.e., for all a, b ∈ L, a ≤ b or a ≥ b; is said to be semilinear if it
is a subdirect product of totally ordered CRLs (see [18]); is said to be conic
if for all a ∈ L, a ≤ e or a ≥ e (see [4,6,12]). As in [12], a CRL L is said to
be semiconic if it is a subdirect product of conic CRLs and the class of all
semiconic CRLs is a variety. The variety of semiconic CRLs is axiomatized,
relative to CRLs, by the identity (x ∧ e) ∨ ((x → e) ∧ e) = e. More details on
semiconic residuated lattices can be found in [3,11,12].

The following well-known properties of CRLs will be needed (see [5,13]).

Lemma 2.2. Let L = (L,∧,∨, ·,→, e) be a CRL and x, y, z ∈ L.
(1) x(y ∨ z) = xy ∨ xz.
(2) x → (y ∧ z) = (x → y) ∧ (x → z).
(3) (y ∨ z) → x = (y → x) ∧ (z → x).
(4) y(y → x) ≤ x.
(5) e ≤ x → x.
(6) ((x → y) → y) → y = x → y.
(7) x → (y → z) = (xy) → z

From now on, we denote a → e and (a → e) → e by a∗ and a∗∗, respec-
tively. Next, we shall list some known results on conic idempotent CRLs used
in the sequel.
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Lemma 2.3 [12]. Let L be a conic idempotent CRL, and a, b ∈ L.
(1) If a and b are incomparable, then a∗ = b∗.
(2) The elements a and b∗ are comparable.
(3) a � b if and only if a → b < e.
(4) If a ≤ e, then a∗ = a → a.
(5) {a∗ : a ∈ L} is a chain in (L,∧,∨).
(6) If a ≤ b, then ab = a or ab=b.

3. Some properties

Let L = (L,∧,∨, ·,→, e) be a conic idempotent CRL. For a, b ∈ L, a ‖ b means
that a and b are incomparable under ≤.

Proposition 3.1. Let L be a conic idempotent CRL. The following statements
are true for a, b ∈ L:
(1) If a < e, then a∗ ≥ e and aa∗ = a.
(2) If a > e, then a∗ < e and aa∗ = a∗.
(3) If a, b < e and a ‖ b, then a∗ = b∗ = (a ∧ b)∗ = (a ∨ b)∗.
(4) If a ∈ L, then (a ∧ e)∗ → (a ∧ e) = a ∧ e.
(5) If a, a′ ∈ L such that a ∨ a′ = e and a′∗∗ = a′, then a = e or a′ = e.

Proof. (1) Let a ∈ L such that a < e. Then ae = a < e and so a < e ≤ a →
e = a∗. Since aa∗ = a(a → e) ≤ e by Lemma 2.2(4), aa∗ = a by Lemma 2.1(5).

(2) Let a ∈ L such that a > e. Then by Lemma 2.3(3), a∗ = a → e < e.
Since aa∗ = a(a → e) ≤ e by Lemma 2.2(4), aa∗ = a∗ by Lemma 2.1(5).

(3) Let a, b ∈ L such that a, b < e and a ‖ b. Then by Lemma 2.3(1),
a∗ = b∗, and so by Lemma 2.2(3), (a ∨ b)∗ = (a ∨ b) → e = (a → e) ∧ (b →
e) = a∗ ∧ b∗ = a∗ = b∗.

Next, we shall prove that (a ∧ b)∗ = a∗. As a ∧ b ≤ a, we have a →
e ≤ (a ∧ b) → e, i.e., a∗ ≤ (a ∧ b)∗. Also, as a, b < e, we have a ∧ b = ab,
so by Lemma 2.2(7), (a ∧ b)∗ = (ab) → e = a → b∗, so it suffices to show
that a → b∗ ≤ a → e, or equivalently, that a(a → b∗) ≤ e. Now a(a → b∗) =
a2(a → b∗) ≤ ab∗ = aa∗ ≤ e, as required.

(4) Let a ∈ L. If a ≥ e, then (a∧e)∗ → (a∧e) = e∗ → e = e → e = e = a∧
e. If a < e, then by (1), a∗ ≥ e and aa∗ = a, so a ≤ a∗ → a. On the other hand,
since a∗ ≥ e > a, a∗ → a < e by Lemma 2.3(3) and so a∗(a∗ → a) ∈ {a∗, a∗ →
a} by Lemma 2.3(6), which together with a∗(a∗ → a) ≤ a < e, derives that
a∗ → a = a∗(a∗ → a) ≤ a. Thus (a ∧ e)∗ → (a ∧ e) = a∗ → a = a = a ∧ e.

(5) By assumption, a′ = a′∗∗ ∦ a by Lemma 2.3(2). Then a′ ≤ a or a ≤ a′.
Because a ∨ a′ = e, a = a ∨ a′ = e or a′ = a ∨ a′ = e. �

Proposition 3.2 [3]. Let L be a conic idempotent CRL, and let a, b ∈ L such
that a ≤ e. If b < a or a ‖ b, then a → b = b or a → b ‖ a.

Let L be a conic idempotent CRL and A ⊆ L. The subalgebra SgLA of
L generated by A is defined as the intersection of all subalgebras B of L such
that A ⊆ B, but it is well known that SgLA is also the set of all tL(a1, . . . , an)
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such that n ∈ ω and t is an n-ary term in the signature ·,→,∧,∨, e and
a1, . . . , an ∈ A. Let L+ = {a ∈ L : a ≥ e} and L− = {b ∈ L : b ≤ e}.

Theorem 3.3. Let L be a conic idempotent CRL. If a ∈ SgLL− such that
a ≥ e, then a = b∗ for some b ∈ L−.

Proof. In L, the product of two comparable factors is always one of the factors,
by Lemma 2.3 (6). Also, {x∗ : x ∈ L} is a chain , by Lemma 2.3(5), so
x∗y∗, x∗∧y∗, x∗∨y∗ ∈ {x∗, y∗} for all x, y ∈ L. (These facts are used repeatedly
without comment below.)

Now a = tL(a1, . . . , an) for suitable n ∈ ω, �a = a1, . . . , an ∈ L− and
a term t in the signature ·,→,∧,∨, e. We prove the desired conclusion by
induction on the complexity of t.

If t is e or a variable, then since ai ≤ e ≤ a for all i, we have a = e = e∗.
Now assume that t is neither e nor a variable, and that, whenever e ≤

sL(�c) for a less complex term s than t and some �c ∈ L−, then sL(�c) = b∗ for
some b ∈ L−. This is the induction hypothesis (IH). We may assume that
e < a, again because e = e∗.

Now t is r � s for some � ∈ {·,→,∧,∨} and some terms r, s in ·,→
,∧,∨, e, both of which are therefore less complex than t.

Suppose first that � is ·, so a = rL(�a)sL(�a). As a > e and L is conic, at
least one of rL(�a), sL(�a) belongs to L+. If both belong to L+, then by the IH,
a = b∗c∗ ∈ {b∗, c∗} for some b, c ∈ L−. In the opposite case, we may assume (by
symmetry) that rL(�a) < e ≤ sL(�a), so a ∈ {rL(�a), sL(�a)}, but rL(�a) < e < a,
so a = sL(�a) = b∗ for some b ∈ L−, by the IH.

Next, suppose � is →. Since e < a = rL(�a) → sL(�a), we have rL(�a) ≤
sL(�a). Every idempotent CRL satisfies e ≤ x ≤ y =⇒ x → y = y, so if e ≤
rL(�a) then a = sL(�a) = b∗ for some b ∈ L−, by the IH. Also, every idempotent
CRL satisfies x ≤ y ≤ e =⇒ x → y = x∗, so if sL(�a) ≤ e then a = rL(�a)∗

(with rL(�a) ∈ L−). We may therefore assume that rL(�a) < e < sL(�a), as L is
conic. Every conic idempotent CRL satisfies x ≤ e ≤ y =⇒ x → y = x∗y, by
[12, Lemma 2.7(iv)], so a = rL(�a)∗sL(�a) = b∗c∗ ∈ {b∗, c∗} for b:=rL(�a) ∈ L−

and some c ∈ L−, by the IH.
If � is ∧, then since e < a = rL(�a) ∧ sL(�a), we have rL(�a), sL(�a) ∈ L+, so

by the IH, a = b∗ ∧ c∗ ∈ {b∗, c∗} for some b∗, c∗ ∈ L−.
Finally, suppose � is ∨. As L is conic and e < a = rL(�a) ∨ sL(�a), at least

one of rL(�a), sL(�a) belongs to L+. If both belong to L+, then a = b∗ ∨ c∗ ∈
{b∗, c∗} for some b, c ∈ L−, by the IH. In the opposite case, we may assume (by
symmetry) that rL(�a) < e ≤ sL(�a), whence a = sL(�a) = b∗ for some b ∈ L−,
by the IH. �
Definition 3.4. The variety SGSM of semiconic generalized Sugihara monoids
consists of the semiconic idempotent CRLs that satisfy (x ∨ e)∗∗ = x ∨ e.

Finally, we obtain some properties of semiconic generalized Sugihara
monoids.

Lemma 3.5. Let L be a semiconic generalized Sugihara monoid. Then L satis-
fies x = (x ∧ e)(x∗ ∧ e)∗.
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Proof. Because L is semiconic, it suffices to prove this under the assumption
that L is conic.

Let a ∈ L. If a ≤ e, then by Proposition 3.1(1), a∗ ≥ e, so (a∗ ∧ e)∗ =
e∗ = e. Hence a = a ∧ e = (a ∧ e)e = (a ∧ e)(a∗ ∧ e)∗. If a > e, then a∗ < e
by Proposition 3.1(2). Since L is a semiconic generalized Sugihara monoid,
a = a∨e = (a∨e)∗∗ = a∗∗ = (a∗)∗ = (a∗ ∧e)∗. Hence a = ea = (a∧e)(a∗ ∧e)∗.

�

An element a of a CRL will be called negative if a ≤ e. We have the
following results.

Corollary 3.6. A semiconic idempotent CRL L is a semiconic generalized Sug-
ihara monoid if and only if it is generated by its negative elements.

Proof. The forward implication follows from Lemma 3.5. In the implication
from right to left, L can be assumed conic, because of three facts: (1) L is
semiconic; (2) a surjective homomorphism always maps a generating set onto
a generating set; (3) a homomorphism h from L onto a conic algebra M sends
L− onto M−. In (3), h[L−] ⊆ M−, because h is isotone and preserves e.
Conversely, if m ∈ M−, then m = h(�) for some � ∈ L, in which case �∧e ∈ L−

and h(�∧e) = m∧e = m. Let L be a conic idempotent CRL which is generated
by its negative elements. Let a ∈ L such that a ≥ e. Then by Theorem 3.3,
there exists c ∈ L− such that a = c∗, so by Lemma 2.2(6), a = c∗ = c∗∗∗ = a∗∗.
It follows that for all b ∈ L, (b∨e)∗∗ = b∨e, which implies that L is a semiconic
generalized Sugihara monoid. �

Corollary 3.7. Let L be a conic idempotent CRL that is generated by its neg-
ative elements. Then L+ is a chain in L.

Proof. By the previous corollary, L satisfies x∨e = (x∨e)∗∗, so L+ is contained
in {a∗ : a ∈ L}, which is a chain. �

Lemma 3.8. Let L be a semiconic generalized Sugihara monoid. Then L satis-
fies (x ∧ y)∗ = x∗ ∨ y∗.

Proof. Because L is semiconic, it suffices to prove this under the assumption
that L is conic.

Let a, b ∈ L. If a ≤ b, then b∗ = b → e ≤ a → e = a∗ by Lemma 2.2(3)
and so (a ∧ b)∗ = a∗ = a∗ ∨ b∗. Similarly, if b ≤ a, then (a ∧ b)∗ = a∗ ∨ b∗.
If a ‖ b, then by Corollary 3.7, a, b > e is impossible, so a, b < e, whence
(a ∧ b)∗ = a∗ ∨ b∗ by Proposition 3.1(3). �

4. Strong nuclei

A nucleus of a CRL L is a function N : L −→ L such that, for all a, b ∈ L,
(N1) a ≤ Na = NNa,
(N2) N(a ∧ b) ≤ Na,
(N3) NaNb ≤ N(ab).
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A nuclear CRL is the expansion of a CRL L by a nucleus N . For detailed
information on nuclear CRLs, the reader is referred to references [5,8].

For our purpose, we introduce the following concept.

Definition 4.1. Let L be a CRL and let ♦ be a nucleus of L. ♦ is a strong
nucleus if it satisfies the following conditions: for all a, b ∈ L,
(SN1) ♦(a ∨ b) = ♦a ∨ ♦b,
(SN2) e ≤ (♦a → b) ∨ (b → ♦a).

The expansion of a CRL by a strong nucleus ♦ is called a strong nuclear
CRL.

Since a strong nuclear CRL L is nuclear, by [8, Theorem 7.1], we have
the following result.

Theorem 4.2. A strong nuclear CRL B and its CRL-reduct A always have
the same congruences. In particular, B is [finitely ] subdirectly irreducible if
and only if A is.

Notation 4.3. For a class C of CRLs, we use SNC to denote the class of all
strong nuclear CRLs (A,♦) such that A ∈ C.

Because the definition of a strong nucleus can be made purely equational,
we have:

Theorem 4.4. If V is a variety of CRLs, then SNV is also a variety.

Theorem 4.5. Let L be a semilinear CRL. If (L,♦) is nuclear, then (L,♦) is
strong nuclear.

Proof. Assume (L,♦) is nuclear. Then (N1 − 3) hold. Because L is semilinear,
it suffices to prove (SN1 − 2) under the assumption that L is a chain. Let
a, b ∈ L. If a ≤ b, then by (N2), ♦a ≤ ♦b, so ♦(a ∨ b) = ♦b = ♦a ∨ ♦b.
Similarly, if b ≤ a, then ♦(a ∨ b) = ♦a ∨ ♦b. Thus (SN1) holds. Since L is a
chain, ♦a ≤ b or b < ♦a. Then e ≤ ♦a → b or e ≤ b → ♦a, which implies that
(SN2) holds. �

A Brouwerian algebra is an integral idempotent CRL, i.e., a CRL in
which ab = a ∧ b for all elements a, b. The variety of Brouwerian algebras is
denoted by BrA. A relative Stone algebra is a semilinear Brouwerian algebra,
i.e., a subdirect product of totally ordered Brouwerian algebras. The variety
of relative Stone algebras is denoted by RSA.

Notation 4.6. From now on, SNBrA shall denote the variety of strong nuclear
Brouwerian algebras, and SNRSA the variety of strong nuclear relative Stone
algebras.

Definition 4.7. Let L be a strong nuclear CRL. L is called a ♦-chain if for all
a, b ∈ L, ♦a ∦ b.

It is well known that a CRL L is finitely subdirectly irreducible if and
only if its identity element e is join-irreducible in the lattice reduct (L,∨,∧)
and an idempotent CRL L is subdirectly irreducible if and only if the set
{a ∈ L : a < e} has a greatest element (see [8]).
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Proposition 4.8. Let L ∈ SNBrA.
(1) If L is finitely subdirectly irreducible, then L is a ♦-chain.
(2) If L is subdirectly irreducible, then L is a ♦-chain in which the set {a ∈

L : a < e} has a greatest element.

Proof. (1) If L is finitely subdirectly irreducible, then by Theorem 4.2, the
CRL-reduct of L is finitely subdirectly irreducible, so e is join-irreducible. Let
a, b ∈ L. Since L is integral, by (SN2), e = (♦a → b)∨(b → ♦a), so ♦a → b = e
or b → ♦a = e. It follows that ♦a ≤ b or b ≤ ♦a. Thus ♦a ∦ b, which implies
that L is a ♦-chain.

(2) If L is subdirectly irreducible, then by Theorem 4.2, the CRL-reduct
of L is subdirectly irreducible, so the set {a ∈ L : a < e} has a greatest
element, which implies that e is join-irreducible. Thus L is finitely subdirectly
irreducible. By (1), L is a ♦-chain. �
Corollary 4.9. If B ∈ SNBrA, then B is a subdirect product of strong nuclear
Brouwerian algebras that are ♦-chains.
Definition 4.10. For every CRL L, the negative cone of (L,∧,∨, ·,→, e) is the
algebra L− = (L−,∧,∨, ·,→−, e), where L− = {x ∈ L : x ≤ e}, and x →− y =
(x → y) ∧ e for x, y ∈ L−. If a ∈ L−, then a∗∗ ∈ L−. When L is semiconic and
idempotent, then L− ∈ BrA and a strong nucleus of L− is defined by ♦a = a∗∗

(i.e., ♦a = (a →L e) →L e for all a ∈ L−). We use L−
♦ to denote the resulting

algebra (L−,♦) ∈ SNBrA, which we call the strong nuclear negative cone of
L.

Example 4.11. Let L = {a1, e, b1, b2, b3, b4, b5}. We define an order relation ≤
on L by b5 < b4, b3 < b2 < b1 < e < a1 and b4 ‖ b3, see Figure 1. We can
define a multiplication operation on L by xy = x∧ y for all x, y ∈ L−\{e} and
ce = c for all c ∈ L. We define a binary operation on L by a → b = max{p ∈
L : ap ≤ b} for all a, b ∈ L. It is clear that L = (L,∧,∨, ·,→, e) ∈ SGSM
and L− ∈ BrA. Since the set {a ∈ L : a < e} has a greatest element, L is
subdirectly irreducible. So L− /∈ RSA. We can define a strong nucleus on L−

by ♦b1 = ♦b2 = ♦b3 = ♦b4 = ♦b5 = b1 and ♦e = e. Then (L−,♦) ∈ SNBrA.
But (L−,♦) /∈ SNRSA.

5. A functor from SNBrA To SGSM

Recall that two categories C and D are said to be equivalent if there exist
functors F : C −→ D and G : D −→ C such that G ◦F ∼= 1C and F ◦G ∼= 1D,
where ∼= denotes the natural isomorphism of functors. In the concrete category
associated with a class of similar algebras, the objects are the members of the
class, and the morphisms are all the algebraic homomorphisms between pairs
of objects. We denote the set of homomorphisms of L into M by Hom(L,M).
Two isomorphically-closed classes of similar algebras, C and D, are said to be
categorically equivalent if the corresponding concrete categories are equivalent.
For this, it is sufficient (and necessary) that some functor F : C −→ D should
have the following properties:
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(i) for each U ∈ D, there exists L ∈ C with F (L) ∼= U, and
(ii) the map h �→ F (h) from Hom(L,M) to Hom(F (L), F (M)) is bijective, for

all L,M ∈ C.

In this case, F and some functor G from D to C witness the equivalence of
these concrete categories. We call G a reverse functor for F , and vice versa.
Note that C and D are not assumed to have the same algebraic similarity type.

In this section we will prove that SGSM and SNBrA are categorically
equivalent. Definition 4.10 gives us a way to associate a strong nuclear Brouw-
erian algebra L−

♦ with a given semiconic generalized Sugihara monoid L. The
construction becomes a functor from SGSM to SNBrA if we also restrict
SGSM-morphisms to the negative cones of their domains. We call this the
strong nuclear negative cone functor. Next we will construct a reverse functor
from SNBrA To SGSM.

To begin with, we introduce some concepts.
Let L = (L,∧,∨, ·,→, e,♦) be a strong nuclear Brouwerian algebra,

where, as usual, ≤ denotes the lattice order of L. We define S(L) = {(a, a′) ∈
L × L : a ∨ a′ = e and ♦a′ = a′}.

Define an order ≤ on S(L) as follows: for (a, a′), (b, b′) ∈ S(L),

(a, a′) ≤ (b, b′) if and only if both a ≤ b and b′ ≤ a′.

Lemma 5.1. (S(L),≤) is a lattice.

Proof. Since L is a lattice, we have (a, a′)∨ (b, b′) = (a∨ b, a′ ∧ b′) and (a, a′)∧
(b, b′) = (a∧b, a′ ∨b′). We only need to prove that (a∨b, a′ ∧b′), (a∧b, a′ ∨b′) ∈
S(L). Since L is a Brouwerian algebra, (L,∧,∨) is a distributive lattice. We
have (a∨b)∨(a′ ∧b′) = (a∨b∨a′)∧(a∨b∨b′) = (e∨b)∧(e∨a) = e∧e = e and
(a∧b)∨(a′∨b′) = (a∨a′∨b′)∧(b∨a′∨b′) = (e∨b′)∧(e∨a′) = e∧e = e. By (N2),
we have ♦(a′∧b′) ≤ ♦a′ and ♦(a′∧b′) ≤ ♦b′, which imply ♦(a′∧b′) ≤ ♦a′∧♦b′.
On the other hand, by (N3), ♦a′ ∧ ♦b′ = ♦a′♦b′ ≤ ♦(a′b′) = ♦(a′ ∧ b′). Thus
♦(a′∧b′) = ♦a′∧♦b′ = a′∧b′. By (SN1), we have ♦(a′∨b′) = ♦a′∨♦b′ = a′∨b′.
This implies that (a ∨ b, a′ ∧ b′), (a ∧ b, a′ ∨ b′) ∈ S(L). �

Lemma 5.2. Let L ∈ SNBrA such that L is a ♦-chain and (a, a′) ∈ S(L).
Then
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(1) a = e or a′ = e;
(2) a → a′ = a′ and a′ → a = a;
(3) ♦a = ♦b = ♦(a ∧ b) = ♦(a ∨ b) for all b ∈ L such that b ‖ a;
(4) ♦a < b ∧ c for all b, c ∈ L such that ♦a < b and ♦a < c;
(5) b → ♦a = ♦a for all b ∈ L such that b > ♦a.

Proof. (1) If a ‖ a′, then since (a, a′) ∈ S(L), ♦a′ = a′ ‖ a. But since L is a
♦-chain, ♦a′ ∦ a, a contradiction. Thus a ∦ a′. We have

e = a ∨ a′ =

{
a if a′ ≤ a;
a′ if a′ > a.

This implies that a = e or a′ = e.
(2) Let (a, a′) ∈ S(L). By (1), a = e or a′ = e. If a = e, then a → a′ = e →

a′ = a′ and a′ → a = a′ → e = e = a. If a′ = e, then a → a′ = a → e = e = a′

and a′ → a = e → a = a.
(3) Let b ∈ L such that b ‖ a. Since L is a ♦-chain, a ∦ ♦b. Because a ‖ b

and b ≤ ♦b by (N1), a ≤ ♦b. This implies that ♦a ≤ ♦(♦b) = ♦b by (N1 − 2).
Similarly, ♦b ≤ ♦a. Thus ♦a = ♦b. It follows that ♦(a ∧ b) = ♦a ∧ ♦b = ♦a by
(N2 − 3) and ♦(a ∨ b) = ♦a ∨ ♦b = ♦a by (SN1).

(4) Let b, c ∈ L such that ♦a < b and ♦a < c. Suppose that ♦a = b ∧ c.
Then by (N2 − 3), ♦a = ♦♦a = ♦(b ∧ c) = ♦b ∧ ♦c. Since L is a ♦-chain,
♦b ∧ ♦c = ♦b or ♦b ∧ ♦c = ♦c. Hence ♦a = ♦b or ♦a = ♦c. But ♦a < b ≤ ♦b
and ♦a < c ≤ ♦c by (N1), a contradiction. Consequently, ♦a < b ∧ c.

(5) Let b ∈ L such that b > ♦a. Then b → ♦a = ♦a or b → ♦a ‖ b by
Proposition 3.2. Suppose that b → ♦a ‖ b. Then we have b♦a = b ∧ ♦a =
♦a =⇒ ♦a ≤ b → ♦a =⇒ ♦a = b♦a ≤ b(b → ♦a) ≤ ♦a =⇒ b(b → ♦a) = ♦a.
Thus by (N1) and (3), we have ♦a = ♦♦a = ♦(b(b → ♦a)) = ♦(b ∧ (b →
♦a)) = ♦b ≥ b > ♦a, a contradiction. Consequently, b → ♦a = ♦a. �

We define a multiplication ◦ on S(L) in the following way: for (a, a′),
(b, b′) ∈ S(L),

(a, a′) ◦ (b, b′) = (((a → b′) ∧ (b → a′)) → (a ∧ b), (a → b′) ∧ (b → a′)).

Lemma 5.3. (S(L), ◦, (e, e)) is an idempotent commutative monoid with an
identity (e, e).

Proof. Let (a, a′), (b, b′) ∈ S(L). We need to prove that (a, a′) ◦ (b, b′) ∈ S(L).
Let m = (a → b′) ∧ (b → a′) and so (a, a′) ◦ (b, b′) = (m → (a ∧ b),m). We
need to show that ♦m = m and (m → (a ∧ b)) ∨ m = e. By Corollary 4.9, L is
a subdirect product of strong nuclear Brouwerian algebras that are ♦-chains,
so it suffices to prove the equalities under the assumption that L is a ♦-chain.
Then by Lemma 5.2(1), we have a = e or a′ = e and b = e or b′ = e.

We consider the following cases:

• If a = e and b = e, then m = (e → b′) ∧ (e → a′) = b′ ∧ a′. Thus
by (N2 − 3), ♦m = ♦(b′ ∧ a′) = ♦b′ ∧ ♦a′ = b′ ∧ a′ = m and (m →
(a ∧ b)) ∨ m = ((m → e) ∨ m = e ∨ m = e.
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• If a′ = e and b′ = e, then m = (a → e) ∧ (b → e) = e. Thus ♦m = ♦e =
e = m and (m → (a ∧ b)) ∨ m = (e → (a ∧ b)) ∨ e = e.

• If a = e and b′ = e, then m = (e → e) ∧ (b → a′) = b → a′. Since L
is a ♦-chain, a′ ∦ b. This implies that b ≤ a′ or a′ < b. If b ≤ a′, then
m = b → a′ = e. Thus ♦m = ♦e = e and (m → (a ∧ b)) ∨ m = (e →
(a ∧ b)) ∨ e = e. If a′ < b, then by Lemma 5.2(5), m = b → a′ = a′. Thus
♦m = ♦a′ = a′ = m and (m → (a ∧ b)) ∨ m = (a′ → (e ∧ b)) ∨ a′ = (a′ →
b) ∨ a′ = e ∨ a′ = e.

• If a′ = e and b = e, then the result follows from the previous case, by
symmetry.

Thus, S(L) is closed under ◦.
By symmetry, (a, a′) ◦ (b, b′) = (b, b′) ◦ (a, a′) for (a, a′), (b, b′) ∈ S(L). We

will show that for all (a, a′) ∈ S(L), (a, a′)◦(a, a′) = (a, a′) and (e, e)◦(a, a′) =
(a, a′). By the subdirect decomposition, it suffices to prove that (a, a′)◦(a, a′) =
(a, a′) and (e, e) ◦ (a, a′) = (a, a′) under the assumption that L is a ♦-chain.
By definition of ◦ and Lemma 5.2(2), (a, a′) ◦ (a, a′) = (((a → a′) ∧ (a →
a′)) → (a ∧ a), (a → a′) ∧ (a → a′)) = (a, a′) and (e, e) ◦ (a, a′) = (((e →
a′) ∧ (a → e)) → (e ∧ a), (e → a′) ∧ (a → e)) = (a′ → a, a′) = (a, a′), for any
(a, a′) ∈ S(L). Now, it remains to show that ◦ satisfies the associative law. Let
(a, a′), (b, b′), (c, c′) ∈ S(L). We only need to show that ((a, a′)◦(b, b′))◦(c, c′) =
(a, a′) ◦ ((b, b′) ◦ (c, c′)) under the assumption that L is a ♦-chain. Because ◦ is
commutative, we only need to consider the following cases:

• If a = e, b = e, c = e, then

((e, a′) ◦ (e, b′)) ◦ (e, c′) = (((e → b′) ∧ (e → a′)) → (e ∧ e),

(e → b′) ∧ (e → a′)) ◦ (e, c′)

= ((a′ ∧ b′) → e, a′ ∧ b′) ◦ (e, c′)

= (e, a′ ∧ b′) ◦ (e, c′)

= (e, (e → c′) ∧ (e → (a′ ∧ b′)))

= (e, c′ ∧ (a′ ∧ b′))

= (e, a′ ∧ b′ ∧ c′)

and

(e, a′) ◦ ((e, b′) ◦ (e, c′)) = (e, a′) ◦ (e, b′ ∧ c′)

= (e, (b′ ∧ c′) ∧ a′)

= (e, a′ ∧ b′ ∧ c′).

Thus ((a, a′) ◦ (b, b′)) ◦ (c, c′) = (a, a′) ◦ ((b, b′) ◦ (c, c′)).
• If a = e, b = e, c′ = e, then

((e, a′) ◦ (e, b′)) ◦ (c, e) = (e, a′ ∧ b′) ◦ (c, e)

= ((c → (a′ ∧ b′)) → c, c → (a′ ∧ b′))
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=

⎧⎨
⎩

(c, e) if c ≤ a′, b′,
(e, a′ ∧ b′) if c > a′or c > b′ (by

Lemma 5.2(5));

and

(e, a′) ◦ ((e, b′) ◦ (c, e)) = (e, a′) ◦ ((c → b′) → c, c → b′)

= (((c → b′) ∧ (((c → b′) → c) → a′)) →
((c → b′) → c), (c → b′) ∧ (((c → b′) → c) → a′))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(c, e) if c ≤ a′, b′,
(e, a′ ∧ b′) if c > b′ (by

Lemma 5.2(5)),
(e, a′) = (e, a′ ∧ b′) if a′ < c ≤ b′ (by

Lemma 5.2(5));

=
{

(c, e) if c ≤ a′, b′,
(e, a′ ∧ b′) if c > a′ or c > b′.

It follows that ((a, a′) ◦ (b, b′)) ◦ (c, c′) = (a, a′) ◦ ((b, b′) ◦ (c, c′)).
• If a = e, b′ = e, c′ = e, then

((e, a′) ◦ (b, e)) ◦ (c, e) = ((b → a′) → b, b → a′) ◦ (c, e)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b, e) ◦ (c, e) = (b ∧ c, e) if b ≤ a′,
(e, a′) ◦ (c, e) = (c, e) if c ≤ a′ < b (by

Lemma 5.2(5)),
(e, a′) ◦ (c, e) = (e, a′) if a′ < b, c (by

Lemma 5.2(5));

and

(e, a′) ◦ ((b, e) ◦ (c, e)) = (e, a′) ◦ (e → (b ∧ c), e)

= (e, a′) ◦ (b ∧ c, e)

= (((b ∧ c) → a′) → (b ∧ c), (b ∧ c) → a′)

=

⎧⎪⎪⎨
⎪⎪⎩

(b ∧ c, e) if b ≤ a′,
((c → a′) → c, c → a′) = (c, e) if c ≤ a′ < b,
(a′ → (b ∧ c), a′) = (e, a′) if a′ < b, c (by

Lemma 5.2(4,5)).

However, ((a, a′) ◦ (b, b′)) ◦ (c, c′) = (a, a′) ◦ ((b, b′) ◦ (c, c′)).
• If a′ = e, b′ = e, c′ = e, then ((a, e) ◦ (b, e)) ◦ (c, e) = (a ∧ b, e) ◦ (c, e) =

(a ∧ b ∧ c, e) and (a, e) ◦ ((b, e) ◦ (c, e)) = (a, e) ◦ (b ∧ c, e) = (a ∧ b ∧ c, e).
Hence ((a, a′) ◦ (b, b′)) ◦ (c, c′) = (a, a′) ◦ ((b, b′) ◦ (c, c′)).

�

Moreover, we may prove the following result.

Lemma 5.4. Let L be a strong nuclear Brouwerian algebra. Then (S(L), ◦,
(e, e),≤) is an idempotent commutative lattice-ordered monoid.
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Proof. Let (a, a′), (b, b′) ∈ S(L) such that (a, a′) ≤ (b, b′). We only need to
prove that (a, a′) ◦ (c, c′) ≤ (b, b′) ◦ (c, c′) for every (c, c′) ∈ S(L).

Since (a, a′) ≤ (b, b′), a ≤ b and b′ ≤ a′. Then by Lemma 2.2(2,3),
b → c′ ≤ a → c′ and c → b′ ≤ c → a′. Thus we have (b → c′) ∧ (c → b′) ≤
(a → c′)∧ (c → a′) =⇒ ((b → c′)∧ (c → b′))(((a → c′)∧ (c → a′)) → (a∧ c)) ≤
((a → c′) ∧ (c → a′))(((a → c′) ∧ (c → a′)) → (a ∧ c)) ≤ a ∧ c ≤ b ∧ c, whence
((a → c′)∧ (c → a′)) → (a∧ c) ≤ ((b → c′)∧ (c → b′)) → (b∧ c). Consequently,
(a, a′) ◦ (c, c′) = (((a → c′)∧ (c → a′)) → (a∧ c), (a → c′)∧ (c → a′)) ≤ (((b →
c′) ∧ (c → b′)) → (b ∧ c), (b → c′) ∧ (c → b′)) = (b, b′) ◦ (c, c′). �

We may define a binary operation → on S(L) in the following way: for
(a, a′), (b, b′) ∈ S(L),

(a, a′) → (b, b′) = ((a → b) ∧ (b′ → a′), ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)).

Theorem 5.5. Let L = (L,∧,∨, ◦,→, e) be a strong nuclear Brouwerian alge-
bra. Then S(L) = (S(L),∧,∨, ◦,→, (e, e)) is a semiconic generalized Sugihara
monoid.

Proof. Firstly, we shall prove that (a, a′) → (b, b′) ∈ S(L) for all (a, a′), (b, b′) ∈
S(L). We need to verify that (((a → b)∧ (b′ → a′)))∨ (((a → b)∧ (b′ → a′)) →
♦(a ∧ b ∧ b′)) = e and ♦(((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = ((a →
b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′). We may assume without loss of generality that
L is a ♦-chain. We consider the following cases:

Case 1 a = e, b = e. We only need to check the following subcases:
(1) If b′ ≤ a′, then ((a → b) ∧ (b′ → a′)) ∨ (((a → b) ∧ (b′ → a′)) →

♦(a ∧ b ∧ b′)) = (b′ → a′) ∨ ((b′ → a′) → ♦b′) = e ∨ (e → b′) = e and
♦(((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = ♦(e → ♦b′) = ♦♦b′ =
b′ = ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).

(2) If b′ > a′, then by Lemma 5.2(5), ((a → b) ∧ (b′ → a′)) ∨ (((a →
b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = (b′ → a′) ∨ ((b′ → a′) → ♦b′) =
a′ ∨ (a′ → b′) = a′ ∨ e = e and ♦(((a → b) ∧ (b′ → a′)) → ♦(a ∧
b ∧ b′)) = ♦(a′ → ♦b′) = ♦(a′ → b′) = ♦e = e = ((a → b) ∧ (b′ →
a′)) → ♦(a ∧ b ∧ b′).

Case2 a = e, b′ = e. Then ((a → b) ∧ (b′ → a′)) ∨ ((a → b) ∧ (b′ → a′)) →
♦(a ∧ b ∧ b′) = (b ∧ a′) ∨ ((b ∧ a′) → ♦b) = (b ∧ a′) ∨ e = e and
♦(((a → b)∧ (b′ → a′)) → ♦(a∧ b∧ b′)) = ♦((b∧ a′) → ♦b) = ♦e = e =
((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).

Case3 a′ = e, b = e. Then ((a → b) ∧ (b′ → a′)) ∨ (((a → b) ∧ (b′ → a′)) →
♦(a ∧ b ∧ b′)) = e ∨ (e → ♦(a ∧ b′)) = e and ♦(((a → b) ∧ (b′ → a′)) →
♦(a ∧ b ∧ b′)) = ♦(e → ♦(a ∧ b′)) = ♦♦(a ∧ b′) = ♦(a ∧ b′) = ((a →
b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).

Case4 a′ = e, b′ = e. We only need to check the following subcases:
(1) If a ≤ b, then ((a → b) ∧ (b′ → a′)) ∨ ((a → b) ∧ (b′ → a′)) →

♦(a ∧ b ∧ b′) = e ∨ ((a → b) → ♦(a ∧ b)) = e and ♦(((a → b) ∧ (b′ →
a′)) → ♦(a ∧ b ∧ b′)) = ♦((a → b) → ♦(a ∧ b)) = ♦(e → ♦a) =
♦♦a = ♦a = ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).
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(2) If a > b, then by Proposition 3.2, a → b = b or a → b ‖ a. If
a → b = b, then ((a → b) ∧ (b′ → a′)) ∨ (((a → b) ∧ (b′ → a′)) →
♦(a∧b∧b′)) = b∨(b → ♦b) = b∨e = e and ♦(((a → b)∧(b′ → a′)) →
♦(a ∧ b ∧ b′)) = ♦e = e = ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′). If
a → b ‖ a, then ♦a = ♦(a → b) = ♦(a ∧ (a → b)) by Lemma 5.2(3).
Since ab = a∧b = b, b ≤ a → b, and so b = ab ≤ a(a → b) ≤ b, which
implies that a(a → b) = b. Thus a → b ≤ ♦(a → b) = ♦(a ∧ (a →
b)) = ♦(a(a → b)) = ♦b, whence ((a → b) ∧ (b′ → a′)) ∨ (((a →
b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = (a → b) ∨ ((a → b) → ♦b) = (a →
b) ∨ e = e and ♦(((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = ♦e = e =
((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).

(3) If a ‖ b, then ♦a = ♦b = ♦(a ∧ b) by Lemma 5.2(3) and a → b = b
or a → b ‖ a by Proposition 3.2. If a → b = b, then ((a → b)∧ (b′ →
a′)) ∨ (((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) = b ∨ (b → ♦(a ∧ b)) =
b∨(b → ♦b) = b∨e = e and ♦(((a → b)∧(b′ → a′)) → ♦(a∧b∧b′)) =
♦e = e = ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′). If a → b ‖ a,
then ♦(a → b) = ♦a = ♦b = ♦(a ∧ b) by Lemma 5.2(3). Hence
((a → b) ∧ (b′ → a′)) ∨ (((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′)) =
(a → b) ∨ ((a → b) → ♦(a ∧ b)) = (a → b) ∨ ((a → b) → ♦(a →
b)) = (a → b)∨ e = e and ♦(((a → b)∧ (b′ → a′)) → ♦(a∧ b∧ b′)) =
♦e = e = ((a → b) ∧ (b′ → a′)) → ♦(a ∧ b ∧ b′).

Secondly, we establish the residuation axiom

(c, c′) ≤ (a, a′) → (b, b′) ⇐⇒ (a, a′) ◦ (c, c′) ≤ (b, b′).

We need to verify (a, a′) → (b, b′) = max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤
(b, b′)} for all (a, a′), (b, b′) ∈ S(L). Once again, we may assume without loss
of generality that L is a ♦-chain.

Let (a, a′), (b, b′), (c, c′) ∈ S(L) such that (a, a′) ◦ (c, c′) ≤ (b, b′). Then
(((a → c′) ∧ (c → a′)) → (a ∧ c), ((a → c′) ∧ (c → a′))) ≤ (b, b′). So ((a →
c′) ∧ (c → a′)) → (a ∧ c) ≤ b and b′ ≤ (a → c′) ∧ (c → a′). To show that
(a, a′) → (b, b′) = max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤ (b, b′)}, we need to
consider the following cases:
Case1 a = e, b = e. We only need to check the following subcases:

(1) If b′ ≤ a′, then by the definition of →, (a, a′) → (b, b′) = (e, a′) →
(e, b′) = ((e → e) ∧ (b′ → a′), ((e → e) ∧ (b′ → a′)) → ♦(e ∧
b′)) = (b′ → a′, (b′ → a′) → ♦b′) = (e, e → b′) = (e, b′). So by
the definition of ◦, (a, a′) ◦ ((a, a′) → (b, b′)) = (e, a′) ◦ (e, b′) =
(e, a′∧b′) = (e, b′) ≤ (b, b′). On the other hand, since (a, a′)◦(c, c′) =
(e, a′) ◦ (c, c′) ≤ (b, b′) = (e, b′), ((c′ ∧ (c → a′)) → c, c′ ∧ (c →
a′)) ≤ (e, b′). It follows that b′ ≤ c′ ∧ (c → a′) ≤ c′. This implies
that (c, c′) ≤ (e, b′) = (a, a′) → (b, b′). Thus (a, a′) → (b, b′) =
max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤ (b, b′)}.

(2) If b′ > a′, then by the definition of → and Lemma 5.2(5), (a, a′) →
(b, b′) = (e, a′) → (e, b′) = ((e → e) ∧ (b′ → a′), ((e → e) ∧ (b′ →
a′)) → ♦(e ∧ b′)) = (b′ → a′, (b′ → a′) → ♦b′) = (a′, a′ → b′) =
(a′, e). So by the definition of ◦, (a, a′) ◦ ((a, a′) → (b, b′)) = (e, a′) ◦
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(a′, e) = (a′, e) ≤ (b, b′). On the other hand, since (a, a′) ◦ (c, c′) =
(e, a′) ◦ (c, c′) ≤ (b, b′) = (e, b′), ((c′ ∧ (c → a′)) → c, c′ ∧ (c →
a′)) ≤ (e, b′). Thus b′ ≤ c′ ∧ (c → a′). Suppose that c > a′. Then by
Lemma 5.2(5), b′ ≤ c′ ∧ (c → a′) = c′ ∧ a′ ≤ a′, which is contrary
to b > a′. Thus c ≤ a′ < b′ ≤ e, whence c′ = e. It follows that
(c, c′) = (c, e) ≤ (a′, e) = (a, a′) → (b, b′) and so (a, a′) → (b, b′) =
max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤ (b, b′)}.

Case2 a = e, b′ = e. Then by the definition of →, (a, a′) → (b, b′) = (e, a′) →
(b, e) = (b ∧ a′, (b ∧ a′) → ♦b) = (b ∧ a′, e). So by the definition of ◦,
(a, a′) ◦ ((a, a′) → (b, b′)) = (e, a′) ◦ (b ∧ a′, e) = (((b ∧ a′) → a′) →
(b ∧ a′), (b ∧ a′) → a′) = (b ∧ a′, e) ≤ (b, e) = (b, b′). On the other
hand, since (a, a′) ◦ (c, c′) = (e, a′) ◦ (c, c′) ≤ (b, b′) = (b, e), ((c′ ∧ (c →
a′)) → c, c′ ∧ (c → a′)) ≤ (b, e). Thus (c′ ∧ (c → a′)) → c ≤ b and
c′ ∧ (c → a′) = e. The latter formula derives c′ = e and c → a′ = e.
Since a′ = ♦a′ and L is a ♦-chain, a′ ∦ c. Then c ≤ a′ or c > a′. Suppose
that c > a′. Then by Lemma 5.2(5), c → a′ = a′, which derives that a′ =
c → a′ = e. But e ≥ c > a′, a contradiction. Consequently, c ≤ a′. Thus
(c′ ∧(c → a′)) → c = (e∧e) → c = c ≤ b, which together c ≤ a′, derives
c ≤ b ∧ a′. It follows that (c, c′) = (c, e) ≤ (b ∧ a′, e) = (a, a′) → (b, b′),
whence (a, a′) → (b, b′) = max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤ (b, b′)}.

Case3 a′ = e, b = e. Then by the definition of →, (a, a′) → (b, b′) = (a, e) →
(e, b′) = (e,♦(a ∧ b′)). So by the definition of ◦, (a, a′) ◦ ((a, a′) →
(b, b′)) = (a, e) ◦ (e,♦(a ∧ b′)) = ((a → ♦(a ∧ b′)) → a, a → ♦(a ∧ b′)).
Since ab′ = a∧b′ ≤ ♦(a∧b′), b′ ≤ a → ♦(a∧b′) and so (a, a′)◦((a, a′) →
(b, b′)) = ((a → ♦(a ∧ b′)) → a, a → ♦(a ∧ b′)) ≤ (e, b′) = (b, b′). On the
other hand, we have (a, e)◦ (c, c′) = (a, a′)◦ (c, c′) ≤ (b, b′) = (e, b′) =⇒
((a → c′) → (a∧c), a → c′) ≤ (e, b′). Thus b′ ≤ a → c′ =⇒ a∧b′ = ab′ ≤
c′ =⇒ ♦(a ∧ b′) ≤ ♦c′ = c′ =⇒ (c, c′) ≤ (e,♦(a ∧ b′)) = (a, a′) → (b, b′).
Consequently, (a, a′) → (b, b′) = max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤
(b, b′)}.

Case4 a′ = e, b′ = e. Then by the definition of →, (a, a′) → (b, b′) = (a, e) →
(b, e) = (a → b, (a → b) → ♦(a ∧ b)). So by the definition of ◦, (a, a′) ◦
((a, a′) → (b, b′)) = (a, e) ◦ (a → b, (a → b) → ♦(a ∧ b)) = ((a →
((a → b) → ♦(a ∧ b))) → (a ∧ (a → b)), a → ((a → b) → ♦(a ∧ b))).
Since a(a → b) ≤ b and a(a → b) = a ∧ (a → b) ≤ a, we have
a(a → b) ≤ a ∧ b =⇒ a ≤ (a → b) → (a ∧ b) ≤ (a → b) → ♦(a ∧ b) =⇒
a → ((a → b) → ♦(a ∧ b)) = e. Thus (a, a′) ◦ ((a, a′) → (b, b′)) = ((a →
((a → b) → ♦(a ∧ b))) → (a ∧ (a → b)), a → ((a → b) → ♦(a ∧ b))) =
(e → (a∧(a → b)), e) = (a∧(a → b), e) = (a(a → b), e) ≤ (b, e) = (b, b′).
On the other hand, we have (a, e) ◦ (c, c′) = (a, a′) ◦ (c, c′) ≤ (b, b′) =
(b, e) =⇒ ((a → c′) → (a ∧ c), a → c′) ≤ (b, e). Hence (a → c′) →
(a ∧ c) ≤ b and a → c′ = e. So ac = a ∧ c = e → (a ∧ c) = (a → c′) →
(a ∧ c) ≤ b and a = ae = a(a → c′) ≤ c′. It follows that c ≤ a → b
and ♦a ≤ ♦c′ = c′. Thus we have ♦(a ∧ b) ≤ ♦a =⇒ (a → b) →
♦(a ∧ b) ≤ (a → b) → ♦a ≤ (a → b) → c′ ≤ c → c′ = c′. Therefore
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(c, c′) ≤ (a → b, (a → b) → ♦(a ∧ b)) = (a, a′) → (b, b′). Consequently,
(a, a′) → (b, b′) = max{(c, c′) ∈ S(L) : (a, a′) ◦ (c, c′) ≤ (b, b′)}.

We conclude that S(L) = (S(L),∧,∨, ◦,→, (e, e)) is an idempotent CRL.
Finally, we will show that S(L) is a semiconic generalized Sugihara monoid. We
only need to prove that ((a, a′)∧(e, e))∨(((a, a′) → (e, e))∧(e, e)) = (e, e) and
((a, a′)∨ (e, e))∗∗ = (a, a′)∨ (e, e) for all (a, a′) ∈ S(L). Again, we may assume
that L is a ♦-chain. Let (a, a′) ∈ S(L). Then we have ((a, a′)∧(e, e))∨(((a, a′) →
(e, e)) ∧ (e, e)) = (a, e) ∨ ((a′, a′ → ♦a) ∧ (e, e)) = (a, e) ∨ (a′, e) = (a ∨ a′, e) =
(e, e) and ((a, a′) ∨ (e, e))∗∗ = (((a, a′) ∨ (e, e)) → (e, e)) → (e, e) = ((e, a′) →
(e, e)) → (e, e) = (a′, a′ → ♦e) → (e, e) = (a′, e) → (e, e) = (e, e → ♦a′) =
(e,♦a′) = (e, a′) = (a, a′) ∨ (e, e). �

Theorem 5.6. If L = (L,∧,∨, ·,→, e,♦) is a strong nuclear Brouwerian alge-
bra, then L ∼= S(L)

−
♦ .

Proof. We can define a mapping θ as follows:

θ : L −→ S(L)
−
♦ ; a �→ (a, e).

Obviously, θ is a bijection, which preserves ∧,∨ and e. It remains to show that
θ preservers → and ♦. Let a, b ∈ L. Then θ(a → b) = (a → b, e) = ((a →
b) ∧ e, ((a → b) → ♦(a ∧ b)) ∨ e) = (a → b, (a → b) → ♦(a ∧ b)) ∧ (e, e) =
((a, e) → (b, e)) ∧ (e, e) = (a, e) →− (b, e) = θ(a) →− θ(b) and ♦θ(a) =
♦(a, e) = ((a, e) → (e, e)) → (e, e)) = (e,♦a) → (e, e) = (♦a, e) = θ(♦a). �

We shall prove that any semiconic generalized Sugihara monoid L is iso-
morphic to S(L−

♦ ).

Theorem 5.7. If L = (L,∧,∨, ·,→, e) is a semiconic generalized Sugihara
monoid, then L ∼= S(L−

♦ ).

Proof. We can define a mapping h as follows:

h : L −→ S(L−
♦ ); a �→ (a ∧ e, a∗ ∧ e).

Let a ∈ L. Then by Lemma 2.2(6), a∗∗∗ = ((a → e) → e) → e = a → e = a∗.
Since L is a semiconic generalized Sugihara monoid, (a ∧ e) ∨ (a∗ ∧ e) = (a ∧
e) ∨ ((a → e) ∧ e) = e and ♦(a∗ ∧ e) = (a∗ ∧ e)∗∗ = (a∗∗ ∨ e∗)∗ = (a∗∗ ∨ e)∗ =
a∗∗∗ ∧e∗ = a∗ ∧e by Lemmas 3.8 and 2.2(3). So h(a) = (a∧e, a∗ ∧e) ∈ S(L−

♦ ).
This implies that the definition of h is logical.

It follows from Lemma 3.5 that h is one-to-one. To see that it is onto, let
(a, a′) ∈ S(L−

♦ ), so a, a′ ≤ e in L, a ∨ a′ = e and a′∗∗ = ♦a′ = a′ by Definition
4.10. Let b = (a → a′) → a. We claim that h(b) = (a, a′), i.e., that

(((a → a′) → a) ∧ e, ((a → a′) → a)∗ ∧ e) = (a, a′).

Because L is semiconic, it suffices to prove this under the assumption
that L is conic. Since a′∗∗ = ♦a′ = a′, by Proposition 3.1(5), a = e or a′ = e.
If a = e, then since a′ ≤ e, we have b = (a → a′) → a = (e → a′) → e = a′ →
e = (a′)∗ ≥ e by Proposition 3.1(1), and b∗ = (a′)∗∗ = ♦a′ = a′. Hence h(b) =
(b ∧ e, b∗ ∧ e) = ((a′)∗ ∧ e, a′ ∧ e) = (e, a′) = (a, a′). If a′ = e > a, then a∗ ≥ e,
whence a∗ > a, so by Proposition 3.1(4), b = (a → a′) → a = (a → e) → a =
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a∗ → a = a. In this case, h(b) = (b∧e, b∗ ∧e) = (a∧e, a∗ ∧e) = (a, e) = (a, a′).
This implies that h is onto.

Obviously, h(e) = (e, e). By Lemmas 2.2(3) and 3.8, h preserves ∨ and ∧.
Next, we show that h preserves ·. Let a, b ∈ L. The desired result h(a) ◦

h(b) = h(ab) boils down to

(u →− (a ∧ b ∧ e), u) = ((ab) ∧ e, (ab)∗ ∧ e),

where u = (((a ∧ e) →− (b∗ ∧ e)) ∧ ((b ∧ e) →− (a∗ ∧ e)) = ((a ∧ e) →
(b∗ ∧ e)) ∧ ((b ∧ e) → (a∗ ∧ e)) ∧ e.

Again we may assume that L is conic. We consider the following cases:
Case1 a ≤ e, b ≤ e. Then by Lemma 2.1(3), ab = a∧ b ≤ e and by Proposition

3.1(1), a∗ ≥ e, b∗ ≥ e, (ab)∗ ≥ e. So u = (a → e) ∧ (b → e) ∧ e =
a∗ ∧ b∗ ∧ e = e. Hence h(a) ◦ h(b) = (e →− (a ∧ b ∧ e), e) = ((e →
(a ∧ b)) ∧ e, e) = (a ∧ b, e) = ((ab) ∧ e, (ab)∗ ∧ e) = h(ab).

Case2 a ≥ e, b ≥ e. Then by Lemma 2.1(2), ab = a∨ b ≥ e and by Proposition
3.1(2), a∗ ≤ e, b∗ ≤ e, (a∨ b)∗ ≤ e. So (a∨ b)∗∗ = a∨ b by the definition
of semiconic generalized Sugihara monoid and u = (e → b∗) ∧ (e →
a∗) ∧ e = b∗ ∧ a∗ ∧ e = a∗ ∧ b∗ = (a ∨ b)∗ ≤ e by Lemma 2.2(3).
Hence h(a) ◦ h(b) = ((a∗ ∧ b∗) →− (a ∧ b ∧ e), a∗ ∧ b∗) = ((a∗ ∧ b∗) →
e) ∧ e, a∗ ∧ b∗) = ((a∗ ∧ b∗)∗ ∧ e, (a ∨ b)∗) = ((a ∨ b)∗∗ ∧ e, (a ∨ b)∗) =
((a ∨ b) ∧ e, (a ∨ b)∗ ∧ e) = ((ab) ∧ e, (ab)∗ ∧ e) = h(ab).

Case3 a < e < b. Then b∗ < e ≤ a∗ by Proposition 3.1(1,2). We only need to
check the following subcases:
(1) If ab = a, then ab < e =⇒ ae = a ≤ b → e = b∗ =⇒ e ≤ a → b∗.

Hence u = (a → b∗) ∧ (e → e) ∧ e = e, whence h(a) ◦ h(b) = ((e →
(a∧b∧e))∧e, e) = (a, e) = (a∧e, a∗∧e) = ((ab)∧e, (ab)∗∧e) = h(ab).

(2) If ab = b, then since b∗b = b∗ by Proposition 3.1(2), b∗ ∧ a = b∗a =
b∗ba = b∗b = b∗, which implies that b∗ < a and b∗ ≤ a → b∗. On the
other hand, by Lemma 2.2(7), b(a → b∗) = b(a → (b → e) = b(ab →
e) = ab(ab → e) ≤ e =⇒ a → b∗ ≤ b → e = b∗. Thus a → b∗ = b∗.
It follows that u = (a → b∗) ∧ (e → e) ∧ e = b∗ ∧ e = b∗. Thus by
Proposition 2.3(3), h(a)◦h(b) = ((b∗ → (a∧ b∧e))∧e, b∗) = ((b∗ →
a) ∧ e, b∗) = (e, b∗) = (b ∧ e, b∗ ∧ e) = ((ab) ∧ e, (ab)∗ ∧ e) = h(ab).

Case4 b < e < a. Similar to Case 3, h(a) ◦ h(b) = h(ab).
We have proved that h is an isomorphism between the lattice-ordered

monoid reducts of L and S(L−
♦ ). Since x → y = max{z ∈ L : xz ≤ y} for

all x, y ∈ L, → is first-order definable in terms of ·,∧. Therefore h(a → b) =
h(a) → h(b) for all a, b ∈ L. It follows that h is an isomorphism between L and
S(L−

♦ ). �
Lemma 5.8. Let L be a strong nuclear Brouwerian algebra, and (a, a′) ∈ S(L).
Then (a, a′) = (a, e) ◦ (e, a′).

Proof. It suffices to prove the equality under the assumption that L is a ♦-
chain. By Lemma 5.2(2), we have (a, e) ◦ (e, a′) = (((a → a′) → a), a → a′) =
(a′ → a, a′) = (a, a′). �
Theorem 5.9. Let L and M be strong nuclear Brouwerian algebras.
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(1) If h : L −→ M is a homomorphism, then S(h) : (a, a′) �→ (h(a), h(a′)) is
a homomorphism from S(L) into S(M).

(2) The map h �→ S(h) is a bijection from Hom(L,M) to Hom(S(L),S(M)).

Proof. (1) follows straightforwardly from the definitions of the operations.
(2) Let h1, h2 ∈ Hom(L,M) such that S(h1) = S(h2). Let a ∈ L. Then

(a, e) ∈ S(L). We have S(h1)(a, e) = S(h2)(a, e). It follows that (h1(a), h1(e))
= (h2(a), h2(e)) and so (h1(a), e) = (h2(a), e). Hence h1(a) = h2(a), which
implies that h1 = h2. Thus the map h �→ S(h) is injective on Hom(L,M).
Finally, we will show the map h �→ S(h) is surjective.

Let g ∈ Hom(S(L),S(M)) and a ∈ L. Suppose that g(a, e) = (ã, ē). Then
since (a, e) ≤ (e, e) and g(e, e) = (e, e), g(a, e) = (ã, ē) ≤ (e, e), and so ē ≥ e,
which implies that ē = e. Hence g(a, e) = (ã, e). We can define a mapping g̃
as follows:

g̃ : L −→ M; a �→ ã such that g(a, e) = (ã, e).

We will prove that g̃ ∈ Hom(L,M). Let a, b ∈ L. Then since g ∈ Hom
(S(L),S(M)), (g̃(ab), e) = (g̃(a∧ b), e) = g(a∧ b, e) = g(a∧ b, e∨ e) = g((a, e)∧
(b, e)) = g(a, e) ∧ g(b, e) = (ã, e) ∧ (b̃, e) = (ã ∧ b̃, e ∨ e) = (ãb̃, e), which implies
that g̃(ab) = ãb̃ = g̃(a)g̃(b) and g̃(a∧b) = ã∧b̃ = g̃(a)∧g̃(b). Similarly, g̃(a∨b) =
g̃(a)∨ g̃(b). By Theorem 5.6, L ∼= S(L)

−
♦ . It follows that (a → b, e) = (a, e) →−

(b, e) and (♦a, e) = ♦(a, e). Hence (g̃(a → b), e) = g(a → b, e) = g((a, e) →−

(b, e)) = g(a, e) →− g(b, e) = (g̃(a), e) →− (g̃(b), e) = (g̃(a) → g̃(b), e) and
(g̃(♦a), e) = g(♦a, e) = g(♦(a, e)) = ♦g(a, e) = ♦(g̃(a), e) = (♦g̃(a), e). Thus
g̃(a → b) = g̃(a) → g̃(b) and g̃(♦a) = ♦g̃(a). Consequently, g̃ ∈ Hom(L,M).

Let (a, a′) ∈ S(L). Then ♦a′ = a′ and so ♦g̃(a′) = g̃(♦a′) = g̃(a′). Thus
(a′, e)∗ = (a′, e) → (e, e) = ((a′ → e) ∧ (e → e), ((a′ → e) ∧ (e → e)) →
♦(a′ ∧ e)) = (e,♦a′) = (e, a′). Similarly, (ã′, e)∗ = (e, ã′) = (e, g̃(a′)). By
Lemma 5.8, we have (a, a′) = (a, e) ◦ (e, a′). Thus g(a, a′) = g((a, e) ◦ (e, a′)) =
g((a, e) ◦ (a′, e)∗) = g(a, e) ◦ (g(a′, e))∗ = (g̃(a), e) ◦ (g̃(a′), e)∗ = (g̃(a), e) ◦
(e, g̃(a′)) = (g̃(a), g̃(a′)) = S(g̃)(a, a′). Therefore, g = S(g̃). �

By Theorems 5.6–5.9, we have the following result, which generalizes [8,
Theorem 8.7].

Theorem 5.10. The variety of semiconic generalized Sugihara monoids and the
variety of strong nuclear Brouwerian algebras are categorically equivalent. In
particular, a category equivalence from SNBrA to SGSM is witnessed by the
functor that sends L to S(L) and h to S(h) for all L,M ∈ SNBrA and all
h ∈ Hom(L,M). The strong nuclear negative cone functor sending L to L−

♦
and g to g|L− for all L,M ∈ SGSM and g ∈ Hom(L,M) is a reverse functor
for S.

6. Applications

In this section we will use the present category equivalences to give some new
results about non-integral varieties, which generalize the main results of [8].
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Let K be a quasivariety of algebras. A homomorphism h between algebras
in K is called a (K-)epimorphism provided that, for any two homomorphisms
f, g from the co-domain of h to a single member of K, if f ◦ h = g ◦ h, then
f = g. Clearly, every surjective homomorphism between algebras in K is an
epimorphism. If the converse holds, then K is said to have the ES property.
The strong ES property for K is the demand that, whenever A is a subalgebra
of some B ∈ K and b ∈ B \A, then there are two homomorphisms from B to a
single member of K that agree on A but not at b. The weak ES property for
K forbids non-surjective K-epimorphisms h : A −→ B in all cases where B is
generated (as an algebra) by X ∪ h[A] for some finite X ⊆ B.

The amalgamation property for a class K of similar algebras is the demand
that for any A,B,C ∈ K and any two embeddings gB : A −→ B and gC : A −→
C, there exist an algebra D ∈ K and embeddings fB : B −→ D and fC : C −→
D such that fB◦gB = fC ◦gC . The strong amalgamation property for K asks, in
addition, that D, fB and fC can be chosen so that (fB◦gB)[A] = fB [B]∩fC [C].

These conditions are linked as follows (see [10, Sec.2.5.3] and [14,15,19]).

Theorem 6.1. A quasivariety has the strong amalgamation property if and only
if it has the amalgamation and weak ES properties. In that case, it also has
the strong ES property.

Given a class X of similar algebras, we use V(X) to denote the variety
generated by X. A variety is finitely generated if it has the form V(X) for some
finite set X consisting of finite algebras.

Theorem 6.2 [1]. Let K be a variety consisting of expansions of Brouwerian
algebras, where every member of K has the same congruences as its Brouwerian
algebra reduct. Then (i) K has the weak ES property, and (ii) if K is finitely
generated, it has the ES property.

Recall that a category equivalence F between two varieties V and W in-
duces an isomorphism F : E �→ {B ∈ W : B ∼= F (A) for some A ∈ E} between
their subvariety lattices. Moreover, F restricts to a category equivalence from
E to F (E) for each subvariety E of V. In this situation, E is finitely generated if
and only if F (E) is. It is well known that a category equivalence functor F be-
tween quasivarieties preserves the amalgamation, ES, weak ES and strong ES
properties. By the remarks above, Theorem 6.2 (ii) and the category equiv-
alence in Theorem 5.10, we have the following result, which generalizes [1,
Theorem 7.3].

Theorem 6.3. Every finitely generated subvariety of the variety SGSM has
the ES property.

The following result is essentially due to Maksimova (see [9, Chapter 6]).

Theorem 6.4 (Maksimova). The variety all Brouwerian algebras has the amal-
gamation property.

Definition 6.5. The variety CSGSM of central semiconic generalized Sugihara
monoids consists of the algebras in SGSM that satisfy e ≤ x∗∗ ∨ (x∗∗ → x).
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The subdirectly irreducible algebras in CSGSM are exactly the conic
idempotent CRLs L such that the set {a ∈ L : a < e} has a greatest element
and for all a ∈ L, a∗∗ = a or a∗ = e.

Let U be the subvariety of SNBrA axiomatized by ♦(♦x → x) = e.
Let A be a totally ordered Brouwerian algebra and B be a Brouwerian

algebra such that A∩B = {e}. The ordinal sum A⊕B is the unique Brouwerian
algebra with universe A ∪ B such that the order ≤ of A ∪ B restricts to the
original order of A and to that of B, while a < b whenever e �= a ∈ A and
b ∈ B.

Lemma 6.6. Let L ∈ U such that L is [finitely ] subdirectly irreducible. Let
L1 = {a ∈ L : ♦a = a} and L2 = {a ∈ L : ♦a = e}. Then
(1) L1 is a chain, L1 ∩ L2 = {e} and L = L1 ∪ L2.
(2) L1 and L2 are subalgebras of L and L = L1 ⊕ L2.
(3) If L2 is nontrivial, then L2 is [finitely ] subdirectly irreducible.

Proof. (1) Because L is [finitely] subdirectly irreducible, L is a ♦-chain and e
is join-irreducible by Theorem 4.2 and Proposition 4.8. Then ♦a ∦ b for all
a, b ∈ L. This implies that L1 is a chain. Let a ∈ L1 ∩ L2. Then ♦a = a and
♦a = e. Hence a = e. Thus L1 ∩ L2 = {e}. Let a ∈ L such that a /∈ L1.
Then a < ♦a by (N1). Hence ♦a → a = a or ♦a → a ‖ a by Proposition
3.2. Suppose that ♦a �= e. Then ♦(♦a → a) = ♦a �= e by Lemma 5.2(3). But
since L ∈ U, ♦(♦a → a) = e, a contradiction. Thus ♦a = e, which implies that
a ∈ L2. Consequently, L = L1 ∪ L2.

(2) Let a, b ∈ L2. By (N2), ♦(a ∧ b) ≤ ♦a and ♦(a ∧ b) ≤ ♦b. Hence
♦(a∧b) ≤ ♦a∧♦b = ♦a♦b ≤ ♦(ab) = ♦(a∧b) by (N3) and so ♦(ab) = ♦(a∧b) =
♦a∧♦b = e, which implies that ab, a∧b ∈ L2. By (SN1), ♦(a∨b) = ♦a∨♦b = e
. Hence a∨b ∈ L2. If a ≤ b, then a → b = e and so a → b ∈ L2. If b < a or a ‖ b,
then by Proposition 3.2, a → b = b or a → b ‖ a. If a → b = b, then a → b ∈ L2.
If a → b ‖ a, then since L is a ♦-chain, ♦(a → b) = ♦a = e by Lemma 5.2(3).
Hence a → b ∈ L2. Consequently, L2 is a subalgebra of L. Similarly, L1 is a
subalgebra of L. We claim that for all a ∈ L2 and b ∈ L1\{e}, b < a. Since
♦b = b, b ∦ a by Proposition 4.8. Suppose that there exist b ∈ L1\{e} and
a ∈ L2 such that b ≥ a. Then by (N2), e = ♦a ≤ ♦b = b < e, a contradiction.
Thus for all a ∈ L2 and b ∈ L1\{e}, b < a. It follows that L = L1 ⊕ L2.

(3) Let L ∈ U such that L is finitely subdirectly irreducible and L2 is
nontrivial. Suppose that L2 is not finitely subdirectly irreducible. Then there
exist a, b ∈ L2 such that a ‖ b and a ∨ b = e. Since L = L1 ⊕ L2, e is not join-
irreducible in L, which implies that L is not finitely subdirectly irreducible. It is
a contradiction. Consequently, L2 is finitely subdirectly irreducible. Similarly,
if L ∈ U such that L is subdirectly irreducible and L2 is nontrivial, then L2 is
subdirectly irreducible. �

By Lemma 6.6, the subdirectly irreducible algebras in U are exactly the
strong nuclear Brouwerian algebras L such that the set {a ∈ L : a < e} has a
greatest element and for each a ∈ L, the element ♦a is a or e.

Theorem 6.7. CSGSM is categorically equivalent to U.
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Proof. Let L ∈ SGSM. Then L ∼= S(L−
♦ ), by Theorem 5.7. So by the above

remarks, L is a subdirectly irreducible member of CSGSM if and only if L−
♦ is

a subdirectly irreducible member of U, and the result follows from [8, Theorem
9.3]. �

Proposition 6.8. Let L1 be a totally ordered strong nuclear Brouwerian algebra
such that for all a ∈ L1,♦a = a. Let L2 ∈ SNBrA such that for all b ∈
L2,♦b = e. Let L = L1 ⊕ L2. Let L♦ be the expansion of L in which ♦a = a
for all a ∈ L1 and ♦b = e for all b ∈ L2. Then
(1) L♦ ∈ U;
(2) if L2 is nontrivial, then L♦ is [finitely ] subdirectly irreducible if and only

if L2 is [finitely ] subdirectly irreducible.

Proof. (1) It is clear that L♦ ∈ SNBrA. Let a ∈ L. If a ∈ L1, then ♦(♦a →
a) = ♦(a → a) = ♦e = e. If a ∈ L2, then ♦(♦a → a) = ♦(e → a) = ♦a = e.
Hence L♦ ∈ U.

(2) By Lemma 6.6 (3) and the definition of L♦, L♦ is [finitely] subdirectly
irreducible if and only if L2 is [finitely] subdirectly irreducible. �

For our purpose, we need the following result, which is essentially due to
Maksimova (see [9, Chapter 6], [16] and [8, p.3213] for clarification).

Theorem 6.9 (Maksimova). Let K be a variety consisting of expansions of
Brouwerian algebras, where every member of K has the same congruences
as its Brouwerian algebra reduct. Then the following conditions are equiva-
lent: (i) K has the amalgamation property. (ii) The class of finitely subdirectly
irreducible algebras in K has the amalgamation property.

Lemma 6.10. The variety U has the amalgamation property.

Proof. Let U be the class of all finitely subdirectly irreducible algebras in U.
Let L1,L2 ∈ U, and let L0 be a subalgebra both of L1 and of L2. Then L0 ∈ U.
By Theorem 6.9, we only need show that there exist B ∈ U and embeddings
h1 : L1 → B and h2 : L2 → B, with h1 |L0= h2 |L0 . We may assume without
loss of generality that L0 = L1 ∩ L2.

By Lemma 6.6, we have Li = L′
i ⊕ L′′

i , where i ∈ {0, 1, 2}, the sets

L′′
i :={a ∈ Li : ♦a = e} and L′

i:=(Li\L′′
i ) ∪ {e}

are subuniverses of Li and, because L0 is a subalgebra of Li, we have

L′
0 = L′

1 ∩ L′
2 and L′′

0 = L′′
1 ∩ L′′

2 .

Let L′
i and L′′

i be the BrA-subreducts of Li whose universes are L′
i and

L′′
i , respectively. Since by Lemma 6.6, L′′

i ∈ BrA and are finitely subdirectly ir-
reducible algebras, by Theorems 6.4 and 6.9, there exists a finitely subdirectly
irreducible algebra B′′ ∈ BrA such that, for each i ∈ {1, 2}, there are embed-
dings g′′

i : L′′
i → B′′ with g′′

1 |L′′
0
= g′′

2 |L′′
0

. By Lemma 6.6, L′
i are chains. Hence

by Theorem 6.9 and [8, Theorem 12.7], there exists a totally ordered algebra
B′ ∈ BrA such that, for each i ∈ {1, 2}, there are embeddings g′

i : L′
i → B′

with g′
1 |L′

0
= g′

2 |L′
0

. Let B = B′ ⊕ B′′, so B ∈ BrA. Let B♦ be the expansion
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of B in which ♦b = b for all b ∈ B′ and ♦b = e for all b ∈ B′′, so by Proposi-
tion 6.8, B♦ ∈ U. For each i ∈ {1, 2}, the relation hi = g′

i ∪ g′′
i is a function

embedding Li into B♦, and h1 |L0= h2 |L0 . It follows that the variety U has
the amalgamation property. �

By Theorem 6.7, we have the following result, which generalizes [8, The-
orem 13.3].

Theorem 6.11. The variety CSGSM has the strong amalgamation property,
and therefore the strong ES property.

Proof. Amalgamation follows from Lemma 6.10 and the category equivalence
in Theorem 6.7. Then strong amalgamation and the strong ES property follow
from Theorems 6.2 and 6.1. �
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