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Structure theorems for idempotent
residuated lattices

José Gil-Férez, Peter Jipsen and George Metcalfe

Abstract. In this paper we study structural properties of residuated lat-
tices that are idempotent as monoids. We provide descriptions of the
totally ordered members of this class and obtain counting theorems for
the number of finite algebras in various subclasses. We also establish the
finite embeddability property for certain varieties generated by classes of
residuated lattices that are conservative in the sense that monoid mul-
tiplication always yields one of its arguments. We then make use of a
more symmetric version of Raftery’s characterization theorem for totally
ordered commutative idempotent residuated lattices to prove that the
variety generated by this class has the amalgamation property. Finally,
we address an open problem in the literature by giving an example of a
noncommutative variety of idempotent residuated lattices that has the
amalgamation property.
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1. Introduction

A residuated lattice is an algebraic structure A = 〈A,∧,∨, ·, \, /, e〉 of type
〈2, 2, 2, 2, 2, 0〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, e〉 is a monoid, and \, / are
left and right residuals, respectively, of · in the underlying lattice order, i.e.,
b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b for all a, b, c ∈ A. Such structures
provide algebraic semantics for substructural logics, as well as encompassing
well-studied classes of algebras such as lattice-ordered groups and lattices of
ideals of rings with product and division operators (see, e.g., [12,3,9,19]).
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A residuated lattice A is called idempotent if a · a = a for all a ∈ A.
Structural properties of idempotent residuated lattices have been studied quite
widely in the literature (see, e.g., [8,21,6,5,20,15,11,4]), notably for Brouwe-
rian algebras, where the product coincides with the meet, and odd Sugihara
monoids, where the product is commutative and the map x 
→ x\e is an involu-
tion. The monoidal structure of any idempotent residuated lattice A is a unital
band and the relation on A defined by a � b :⇐⇒ a · b = a is a preorder that
we call the monoidal preorder of A; if the product of A is also commutative,
then 〈A, ·, e〉 is a unital meet-semilattice with order � and greatest element
e. When A is totally ordered—that is, A is a residuated chain—the product
has the further property that a · b ∈ {a, b} for all a, b ∈ A; we call residuated
lattices satisfying this condition conservative, noting that semigroups with this
property are called quasitrivial (see, e.g., [7]).

The aim of this paper is to obtain structural descriptions of various
classes of idempotent residuated chains, recalling that such classes generate
varieties of semilinear residuated lattices, also referred to in the literature as
representable residuated lattices (see, e.g., [21]). In Section 3, we make use
of a description, first given in [22], of finite commutative idempotent residu-
ated chains (Theorem 3.1) to prove that there are 2n−2 such algebras of size
n ≥ 2 (Theorem 3.2). We then establish a more symmetric version of Raftery’s
characterization theorem [21] for commutative idempotent residuated chains
(Theorem 3.5), obtaining also as a corollary (as in [21]) that the variety of
semilinear commutative idempotent residuated lattices is locally finite.

In Section 4, we provide a description of finite idempotent residuated
chains (Theorem 4.3) and show (Theorem 4.4, proved independently in [7])
that the number I(n) of such algebras of size n ≥ 2 satisfies the recurrence
formula I(2) = 1, I(3) = 2, I(n + 2) = 2I(n) + 2I(n + 1), yielding

I(n) =

(
1 +
√

3
)n −

(
1−
√

3
)n

2
√

3
.

In Section 5, we prove that if a variety is generated by a class of conservative
residuated lattices defined relative to the variety of residuated lattices by a set
of positive universal formulas over the language {∨, ·, e}, then it has the finite
embeddability property (Theorem 5.1). In particular, this is the case for the
variety of semilinear idempotent residuated lattices, which is shown to be not
locally finite. We then give a description of finite conservative commutative
residuated lattices (Theorem 5.5) and prove (Theorem 5.6) that the number
of such algebras with n ≥ 1 elements is the (n− 1)th Catalan number

C(n) =
1
n

(
2(n− 1)
n− 1

)
.

Finally, in Section 6, we use Theorem 3.5 and a theorem for amalgamation in
varieties of residuated lattices from [18] to prove that the variety of semilinear
commutative idempotent residuated lattices has the amalgamation property
(Theorem 6.6). We also solve an open problem in the literature (see, e.g.,
[18]) by giving an example of a noncommutative variety of residuated lattices
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(generated by a four element residuated chain) that has the amalgamation
property (Theorem 6.8).

2. Preliminaries

In this section, we establish some basic properties for idempotent residuated
lattices. Recall first that the cone of a residuated lattice A is the union of its
positive cone ↑e and negative cone ↓e, and that A is conical if A = ↑e∪↓e. An
element of a conical residuated lattice is said to have positive sign if it belongs
to the positive cone, and negative sign otherwise. From now on, we also denote
the product of elements a, b in a monoid by ab.

Lemma 2.1 (Cf. [22, Lem. 2.1]). For any idempotent residuated lattice A and
x, y ∈ A:

(i) x ∧ y ≤ xy ≤ x ∨ y.
(ii) If e ≤ xy, then xy = x ∨ y.
(iii) If xy ≤ e, then xy = x ∧ y.
(iv) If x, y ∈ ↑e, then xy = x ∨ y, and, if x, y ∈ ↓e, then xy = x ∧ y.
(v) 〈↓e,∧,∨,⇒, e〉 is a Brouwerian algebra, where x⇒ y := (x\y) ∧ e.

Proof. (i) x ∧ y = (x ∧ y)(x ∧ y) ≤ xy ≤ (x ∨ y)(x ∨ y) = x ∨ y.
(ii) If e ≤ xy, then y ≤ xyy = xy and x ≤ xxy = xy. So x∨y ≤ xy ≤ x∨y.
(iii) If xy ≤ e, then xy = xyy ≤ y and xy = xxy ≤ x. So x ∧ y ≤ xy ≤

x ∧ y.
(iv) Follows immediately from (ii) and (iii).
(v) Note that in any residuated lattice xz ≤ y ⇐⇒ z ≤ x\y, and if z ≤ e,

then z ≤ x\y ⇐⇒ z ≤ (x\y) ∧ e = x ⇒ y. So x ∧ z ≤ y ⇐⇒ z ≤ x ⇒ y
holds in ↓e, and 〈↓e,∧,∨,⇒, e〉 is a Brouwerian algebra. �

For any idempotent residuated lattice A, we define the following useful
binary relation on A:

x � y :⇐⇒ xy = x.

The next lemma justifies us in calling � the monoidal preorder of A.

Lemma 2.2. For any idempotent residuated lattice A, the relation � is a pre-
order on A with greatest element e, where if A has a least element, this is also
the least element of �. Moreover, for any x, y ∈ A:

(i) If e ≤ x, y, then x ≤ y ⇐⇒ y � x.
(ii) If x, y ≤ e, then x ≤ y ⇐⇒ x � y.

Proof. The reflexivity and transitivity of � follow from the idempotence and
associativity of the product of A, respectively. So � is a preorder. Since e is
the unit of the product, it is the greatest element of �, and if A has a least
element ⊥, it is an annihilator of the product and the least element of �.

For (i), if e ≤ x, y ∈ A, then, using Lemma 2.1 (iv),

x ≤ y ⇐⇒ y ∨ x = y ⇐⇒ yx = y ⇐⇒ y � x.

The proof of (ii) is analogous. �
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A residuated lattice A is commutative if ab = ba for all a, b ∈ A; in this
case, also a\b = b/a for all a, b ∈ A and we drop one division operator from
the signature, writing a→ b for a\b. The next result then follows directly from
Lemma 2.2, and justifies us in calling the monoidal preorder of a commutative
idempotent residuated chain its monoidal order.

Corollary 2.3. The monoidal preorder � of any commutative idempotent resid-
uated lattice A is a meet-semilattice order with greatest element e; if A is to-
tally ordered, then 〈A, ·, e〉 is a totally ordered upper-bounded meet-semilattice.

Recall from the introduction that a residuated lattice A is conservative if
ab ∈ {a, b} for all a, b ∈ A; in particular, a commutative idempotent residuated
lattice is conservative if and only if its monoidal preorder is total. Observe also
that the monoidal preorder of a conservative idempotent residuated lattice
determines its product: that is, if x � y, then xy = x by definition; otherwise,
xy = y. The next lemma shows that this is the case in particular for any
idempotent residuated chain.

Lemma 2.4. Every idempotent residuated chain A is conservative and its
monoidal preorder therefore determines its product.

Proof. Let x, y ∈ A. Then either e ≤ xy or xy ≤ e, and hence, by Lemma 2.1,
either xy = x ∨ y or xy = x ∧ y. Since A is totally ordered, xy ∈ {x, y}. �

The converse does not hold; every conservative residuated lattice is idem-
potent, but might not be totally ordered. This is the case, however, for the
elements belonging to its cone.

Lemma 2.5. If A is a conservative residuated lattice, then 〈↓e ∪ ↑e,≤〉 is a
chain.

Proof. By Lemma 2.1, xy = x ∧ y for any x, y in the negative cone of A, and
therefore conservativity implies that x ∧ y = x or x ∧ y = y, so 〈↓e,≤〉 is a
chain. The argument for the positive cone is symmetrical. �

Example 2.6. The variety OSM of odd Sugihara monoids consists of semilinear
commutative idempotent residuated lattices satisfying (x → e) → e ≈ x, and
is generated as a quasivariety (proved in [8]) by the algebra

Z = 〈Z,∧,∨, ·,→, 0〉,
where · is the meet operation of the total order

· · · ≺ −3 ≺ 3 ≺ −2 ≺ 2 ≺ −1 ≺ 1 ≺ 0,

and, by calculation,

x · y =

{
x ∧ y if x ≤ −y,

x ∨ y if x > −y,
and x→ y =

{
(−x) ∨ y if x ≤ y,

(−x) ∧ y if x > y.

Let us denote the varieties of idempotent and commutative idempotent
residuated lattices by IdRL and CIdRL, respectively, and the corresponding
semilinear varieties generated by their totally ordered members by SemIdRL
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Figure 1. Varieties of idempotent residuated latices

Table 1. Properties of varieties of idempotent residuated latices

Variety LF FEP AP

IdRL no[17] ? ?
CIdRL no[17] yes[2] yes[13]

CsRL noProp. 4.6 yesCor. 5.2 ?
CCsRL ? yesCor. 5.2 ?
SemIdRL noProp. 4.6 yesCor. 5.2 ?
SemCIdRL yes[21] yes[21] yesThm. 6.6

OSM yes[8] yes[8] yes[15]

and SemCIdRL. The class of conservative residuated lattices is not closed under
products (e.g., the two element residuated chain 2 is conservative, but not the
product 2 × 2) and hence does not form a variety. However, it is defined
relative to residuated lattices by a positive universal formula and is therefore
a positive universal class. Let us denote the varieties generated by the classes
of conservative and commutative conservative residuated lattices by CsRL and
CCsRL, respectively, noting that the latter is axiomatized relative to the variety
of commutative residuated lattices (via a method described in [9]) by the
equation (with s↔ t := (s→ t) ∧ (t→ s))

e ≈ ((xy ↔ x) ∧ e) ∨ ((xy ↔ y) ∧ e).

Inclusions between the mentioned varieties are displayed in Figure 1, and Ta-
ble 1 summarizes which of these varieties are locally finite (LF), have the fi-
nite embeddability property (FEP), or have the amalgamation property (AP),
where the superscripts denote where these results were first proved and ‘?’
denotes that the problem is still open. Note that amalgamation for CIdRL is a
consequence of Craig interpolation for the corresponding logic (proved in [13])
and a general theory relating these two properties (see, e.g., [9,18]).

3. Commutative idempotent residuated chains

In this section, we study the structure of commutative idempotent residuated
chains. First, we identify properties of the monoidal order of these algebras
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and show that in the finite setting they yield a complete structural description
(cf. [22, Proposition 4.2 and Corollary 4.3]).

Let C = 〈C,≤〉 be any chain. We say that a total order � on C with
greatest element e is compatible with C if

1. whenever C has a least element ⊥, also 〈C,�〉 has least element ⊥;
2. for all x, y ∈ C, if e ≤ x, y, then x ≤ y ⇐⇒ y � x;
3. for all x, y ∈ C, if x, y ≤ e, then x ≤ y ⇐⇒ x � y.

Theorem 3.1. (a) The monoidal order � of any commutative idempotent
residuated chain A is total and compatible with 〈A,≤〉.

(b) For any chain C = 〈C,≤〉 and compatible total order � on C, the algebra
〈C,∧,∨, ·, e〉 is a commutative idempotent totally ordered monoid, where

x · y =

{
x if x � y,

y otherwise.

Moreover, if C is finite, then · has a (uniquely determined) residual →
and 〈C,∧,∨, ·,→, e〉 is a commutative idempotent residuated chain.

Proof. Part (a) follows from Lemmas 2.2 and 2.4, and Corollary 2.3. For part
(b), notice that the defined product is associative, commutative, and idem-
potent as x · y is the �-meet of x and y for all x, y ∈ C. The element e is
the identity, because it is the greatest element of �. In order to check that
x(y∨z) = xy∨xz for all x, y, z ∈ C, we may assume without loss of generality
that y ≤ z and prove that xz = xy ∨ xz, i.e., xy ≤ xz.

We consider the following cases:
• If e ≤ x, y, z, then the product is just the ≤-join of x, y, z, and hence the

equation holds. Similarly, if x, y, z ≤ e, then the product is the ≤-meet
of x, y, z, and the equation holds by distributivity.
• If x ≤ e ≤ y ≤ z, then z � y, by compatibility. If x � z � y, then

xy = x = xz; if z � x � y, then xy = x ≤ z = xz; if z � y � x, then
xy = y ≤ z = xz.
• If x ≤ y ≤ e ≤ z, then x � y, by compatibility. If x � y � z, then

xy = x = xz; if x � z � y, then xy = x = xz; if z � x � y, then
xy = x ≤ z = xz.
• If y ≤ x ≤ e ≤ z then y � x, by compatibility. If y � x � z, then

xy = y ≤ z = xz; if y � z � x, then xy = y ≤ z = xz; if z � y � x, then
xy = y ≤ z = xz.
• If y ≤ e ≤ x ≤ z, then z � x, by compatibility. If z � x � y, then

xy = x ≤ z = xz; if z � y � x, then xy = y ≤ z = xz; if y � z � x, then
xy = y ≤ z = xz.
• If y ≤ e ≤ z ≤ x, then x � z, by compatibility. If x � z � y, then

xy = x = xz; if x � y � z, then xy = x = xz; if y � x � z, then
xy = y ≤ x = xz.
• If y ≤ z ≤ e ≤ x, then y � z, by compatibility. If y � z � x, then

xy = y ≤ z = xz; if y � x � z, then xy = y ≤ x = xz; if x � y � z, then
xy = x = xz.
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In the case that C is finite, it has a least element ⊥ and, by compatibility, this
is also the least element of 〈C,�〉. That is, x⊥ = ⊥ = ⊥x for all x ∈ C. Since
C also satisfies x(y ∨ z) = xy ∨ xz for all x, y, z ∈ C, it follows immediately
that the product is residuated. �

As a consequence of this theorem, counting the commutative idempotent
residuated chains of size n ≥ 2, up to isomorphism, amounts to counting the
different compatible total orders � on a chain of size n.

Theorem 3.2. There are 2n−2 commutative idempotent residuated chains of
size n ≥ 2.

Proof. We determine the number of compatible orderings on a fixed chain
〈C,≤〉 of size n. The choice of the greatest element e of � is arbitrary, except
that it cannot be the least element. Hence there are n−1 choices for e. For each
choice, consider the interval (e,�] = {x ∈ C : e < x ≤ �} with k elements,
and (⊥, e) = {x ∈ C : ⊥ < x < e} with n− 2− k elements.

Because of the compatibility conditions, the elements of (e,�] appear in
the chain 〈C,�〉 in the opposite order, while the elements of (⊥, e) appear in
the same order. As the positions for e and ⊥ are fixed in 〈C,�〉, all we need
to determine is the number of ways of interlayering two sequences of k and
n− 2− k elements. But this is completely determined by the k places that the
elements (e,�] occupy in the resulting sequence of n − 2 elements. So there
are

(
n−2

k

)
possibilities, and the number of compatible monoidal structures is

n−2∑

k=0

(
n− 2

k

)
= 2n−2. �

We now provide a more symmetric version of a representation theorem
of Raftery [21] that describes the structure of all commutative idempotent
residuated chains, not just the finite ones. Instead of dividing just the negative
cone of such an algebra into a family of (possibly empty) intervals indexed by
the positive elements, as is the case in [21], both negative and positive cones
are divided into families of nonempty intervals with greatest elements that
together form a subalgebra.

Recall first (see, e.g., [9]) that for any residuated lattice A and a ∈ A,
the map γa : A → A mapping x to (a/x)\a is a closure operator on 〈A,≤〉
satisfying y · γa(x) ≤ γa(y · x). Moreover, when A is commutative, the map γa

is a nucleus on 〈A,≤〉 and the algebra Aγa
= 〈Aγa

,∧,∨γa
, ·γa

,→, γa(e)〉 with
Aγa

= {γa(b) : b ∈ A}, b∨γa
c = γa(b∨ c), and b ·γa

c = γa(bc) is always a com-
mutative residuated lattice. The next result concerns the particular case when
A is a commutative idempotent residuated chain and a = e. For convenience,
we define ∼x = x→ e.

Lemma 3.3. If A is a commutative idempotent residuated chain, then Aγe is
a subalgebra of A, that we call its skeleton. Moreover, any homomorphism be-
tween commutative idempotent residuated chains restricts to a homomorphism
between their skeletons.
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Proof. Clearly, meets and residuals in Aγe
agree with those in A. Also γe(e) =

∼∼e = e. Moreover, for all x, y ∈ Aγe , if xy = x, then x ·γe y = γe(xy) =
γe(x) = x, and, similarly, if xy = y, then x ·γe y = y. Finally, since A is
totally ordered, for all x, y ∈ Aγe , either x ∨ y = x or x ∨ y = y. In the first
case, x ∨γe y = γe(x ∨ y) = γe(x) = x, and in the second case, analogously,
x ∨γe y = y. Hence Aγe is a subalgebra of A.

Finally, let f : A → B be any homomorphism between commutative
idempotent residuated chains. For each c ∈ Aγe , since c = ∼∼c, also f(c) =
f(∼∼c) = ∼∼f(c) ∈ Bγe . �

Proposition 3.4. For any commutative idempotent residuated chain A:

(a) Aγe is a totally ordered odd Sugihara monoid.
(b) For each c ∈ Aγe , the set Ac = {x ∈ A : γe(x) = c} is an interval of A

with greatest element c.
(c) For all x, y ∈ A,

(i) If x, y ∈ Ac for some c ∈ Aγe with c ≤ e, then xy = x ∧ y.
(ii) If x, y ∈ Ac for some c ∈ Aγe with e < c, then xy = x ∨ y.
(iii) If x ∈ Ac, y ∈ Ad for some c �= d ∈ Aγe , then xy = x ⇐⇒ cd = c.

(d) For all x, y ∈ A with x ∈ Ac for some c ∈ Aγe ,

x→ y =

{
∼c ∨ y if x ≤ y,

∼c ∧ y if y < x.

Proof. (a) Aγe is a subalgebra of A, and hence also a commutative idempotent
residuated chain. But ∼ is an involution on Aγe with fixpoint e, so Aγe is a
totally ordered odd Sugihara monoid.

(b) Given c ∈ Aγe and x ∈ Ac, by definition, x ≤ γe(x) = c = γe(c). Also,
given x, y ∈ A such that x ∈ Ac and x ≤ y ≤ c, we have c = γe(x) ≤ γe(y) ≤
γe(c) = c, and hence γe(y) = c. That is, y ∈ Ac.

(c) Part (i) is immediate, since x, y ∈ Ac and c ≤ e imply xy ≤ e, and
therefore xy = x ∧ y, by Lemma 2.1.(ii). For (ii), notice that e ∈ Aγe and
hence x, y ∈ Ac and e < c imply that e < x, y, and therefore xy = x ∨ y, by
Lemma 2.1.(ii). To prove (iii), we distinguish four cases. Assume that γe(x) =
c �= d = γe(y) and, without loss of generality, x < y. If x < y ≤ e, then
c = γe(x) < γe(y) = d ≤ e, and hence both xy = x and cd = c. If e < x < y,
then e < c = γe(x) < γe(y) = d, and both xy = y and cd = d. If x ≤ e < y
and xy = x, then cd = γe(x)γe(y) ≤ γe(xy) = γe(x) = c ≤ e, so cd = c.
Finally, if x ≤ e < y and xy = y, notice that e < y ≤ γe(y), and therefore
yγe(y) = y ∨ γe(y) = γe(y). Hence

γe(y) = yγe(y) = xyγe(y) = xγe(y) ≤ γe(x)γe(y) ≤ γe(xy) = γe(y),

yielding cd = d.
(d) We begin by showing that

x→ x =

{
x if e ≤ x,

∼c if x ≤ e,
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and hence, in both cases, x → x = ∼c ∨ x. Suppose first that x ≤ e. Then
x → x ≤ x → e and c ≤ e. So c(∼c) = c and, by part (c), x(x → e) = x,
yielding x → e ≤ x → x. Hence, x → x = x → e = ∼c. Also, x ≤ e ≤ ∼c, so
∼c ∨ x = ∼c. Suppose next that e ≤ x. Then x ≤ a ∈ A implies xa = a, so
x→ x = x. Also, ∼c ≤ e ≤ x, so ∼c ∨ x = x.

Now suppose that x ≤ y. Then

x(∼c ∨ y) = x(∼c) ∨ xy = x(x→ e) ∨ xy ≤ x ∨ y2 = x ∨ y = y.

Hence ∼c ∨ y ≤ x → y. To establish equality, consider ∼c ∨ y < a ∈ A. If
xa = x, then a ≤ x → x = ∼c ∨ x ≤ ∼c ∨ y < a, a contradiction. So xa = a.
That is, y < a = xa, and x→ y < a.

Suppose finally that y < x. If y < a ∈ A, then xa = x or xa = a, and, in
both cases, y < xa. So x → y ≤ y. We show that also x → y ≤ ∼c. If x ≤ e,
this is clear because x→ y ≤ x→ x = ∼c. If e < x and a ∈ A satisfies ∼c < a
and xa = a, then e ≤ a and x∨a = xa = a; that is y < x ≤ a. So x→ y ≤ ∼c.
Hence we have shown that x→ y ≤ ∼c ∧ y. Let us prove the other inequality.
If x ≤ e, then y ≤ e and x(∼c ∧ y) ≤ xy = x ∧ y = y and ∼c ∧ y ≤ x → y.
Suppose that e ≤ x and hence x(∼c) = ∼c ≤ e. If y ≤ ∼c, then xy = y and
x(∼c ∧ y) ≤ xy = y. If ∼c ≤ y, then x(∼c ∧ y) ≤ x(∼c) = ∼c ≤ y. Hence, in
both cases, ∼c ∧ y ≤ x→ y. �

Now let S be any totally ordered odd Sugihara monoid and let X =
{〈Xc,≤c〉 : c ∈ S} be a family of (disjoint) chains such that each c ∈ S is the
greatest element of Xc. We define for all a, b ∈ S with x ∈ Xa and y ∈ Xb,

x � y :⇐⇒ a < b or (a = b and x ≤a y).

Then � is a total order on

S ⊗X :=
⋃
{Xc : c ∈ S}.

We let ∧ and ∨ be the meet and join operations for � and define the algebra

S⊗X := 〈S ⊗X ,∧,∨, ·,→, e〉,
where for a, b ∈ S and x ∈ Xa, y ∈ Xb,

x · y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∧ y if a = b ≤ e,

x ∨ y if e < a = b,

x if a �= b and ab = a,

y if a �= b and ab = b,

and x → y =

{
∼a ∨ y if x ≤ y,

∼a ∧ y if y < x.

Theorem 3.5 (Cf. [21]). Let S be any totally ordered odd Sugihara monoid and
let X = {〈Xc,≤c〉 : c ∈ S} be a family of (disjoint) chains such that each
c ∈ S is the greatest element of Xc. Then S⊗X is a commutative idempotent
residuated chain satisfying S = (S⊗ X )γe and (S ⊗ X )c = Xc for each c ∈ S.
Moreover, every commutative idempotent residuated chain has this form.

Proof. The product on S ⊗ X is clearly commutative and conservative (and
therefore idempotent), and extends the product of S. Hence it suffices to check
the following:
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(a) The product is associative. For x ∈ Xa, y ∈ Xb, and z ∈ Xc, there
are four cases:
• a = b = c. Then the product is either meet or join, both of which are

associative operations.
• a = b �= c. Either ac = bc = a = b and (xy)z = xy = x(yz), or ac = bc = c

and (xy)z = z = xz = x(yz).
• a = c �= b. This case is analogous to the previous case.
• a, b, c are distinct. In this case, both (xy)z and x(yz) are x, y, or z de-

pending on whether (ab)c = a(bc) is a, b, or c, respectively.
(b) e is the unit of the product. Consider x ∈ Xc. Recall that e is the

greatest element of the chain 〈Xe,≤e〉. Hence, if c = e, then ex = e ∧ x = x,
and if c �= e, then ex = x since ec = c.

(c) The product is monotone. Consider x ∈ Xa, y ∈ Xb, and z ∈ Xc such
that y � z. First, if b = c, then y ≤b z, and we can distinguish the following
cases: if e < a = b, then xy = x ∨ y ≤b x ∨ z = xz; if a = b ≤ e, then
xy = x ∧ y ≤b x ∧ z = xz; if a �= b and ab = a, then xy = x = xz; if a �= b and
ab = b, then xy = y ≤b z = xz. In all these cases, xy � xz.

On the other hand, if b < c, then we have the following cases:
• a, b, c are distinct. If ab = a and ac = a, then xy = x = xz. If ab = a

and ac = c, then it is easy to check that the only possibilities are a ≤
b ≤ e ≤ c, b ≤ e ≤ a ≤ c, or e ≤ b ≤ a ≤ c, and in all three cases
a ≤ c. So xy = x ∈ Xa and xz = z ∈ Xc, yielding xy � xz. Finally,
if ab = b, then the monotonicity of the product of S yields ac = c, and
hence xy = y � z = xz.
• a = b. If e < a, then e < c and so ac = c. Hence xy ∈ Xb and xz = z ∈ Xc,

so xy � xz. If a ≤ e, then xy = x ∧ y � xz, by conservativity and the
assumption that y � z.
• a = c. If a ≤ e, then b < c = a ≤ e and so ab = b. Hence xy = y ∈ Xb

and xz ∈ Xc, and therefore xy ≤ xz. If e < a, then xy � x ∨ z = xz, by
the conservativity and the assumption that y � z.
(d) xy ≤ x ⇐⇒ y ≤ x → x for all x, y ∈ A. Suppose that x ∈ Xc. If

x ≤ e, then c ≤ e ≤ ∼c and x→ x = ∼c ∨ x = ∼c; it follows that c(∼c) = c
and x(x → x) = x(∼c) = x. If e < x, then e < c, and so ∼c ≤ e ≤ x. Hence
x→ x = ∼c ∨ x = x, so x(x→ x) = xx = x. In any case, x(x→ x) = x, and,
by part (c), if y ≤ x→ x, then xy ≤ x(x→ x) = x.

Now, if y ∈ Xc′ is such that ∼c ∨ x < y, we can distinguish again the
following cases: If x ≤ e, then e ≤ ∼c ≤ c′, so cc′ = c′, and therefore x < y =
xy. If e < x, then e < c ≤ c′, so cc′ = c′. So if c = c′, then x < y = x∨ y = xy,
and if c �= c′, then x < y = xy. We have proved that xy ≤ x implies y ≤ x→ x.

(e) The residuation property. Let x ∈ Xc be an arbitrary element of A
and consider the following cases:
• x ≤ y. Given that the order is total, either x(∼c ∨ y) = x(∼c) or x(∼c ∨

y) = xy. In both cases, x(∼c∨y) ≤ y. Now, if ∼c∨y < z, then ∼c∨x < z,
that is, x→ x < z, so xz �= x, by part (d). Hence y < z = xz. It follows
that xz ≤ y ⇐⇒ z ≤ x→ y.
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• y < x. First, if x ≤ e, we have y ≤ e, and therefore by part (c), x(∼c∧y) ≤
xy = x ∧ y = y. On the other hand, if e < x, then x(∼c) = ∼c ≤ e. If
y ≤ ∼c, then xy = y and, as before, x(∼c∧y) ≤ xy = y. Finally, if∼c ≤ y,
then x(∼c ∧ y) ≤ x(∼c) = ∼c ≤ y. In either case, x(∼c ∧ y) ≤ y. Hence,
by part (c), z ≤ x → y implies xz ≤ y. Suppose now that ∼c ∧ y < z.
If y ≤ ∼c, then y = ∼c ∧ y < z, and by conservativity, y < xz. On the
other hand, if ∼c < y, then ∼c = ∼c ∧ y < z. Notice that if x ≤ e, then
y < x ≤ e ≤ ∼c < y, which is impossible. So e < x and ∼c ≤ e. Hence
xz = z implies x ≤ z ≤ c. By conservativity, y < xz. Hence also xz ≤ y
implies z ≤ x→ y. �

The preceding theorem can be used (as in [21]) to prove the following
local finiteness result.

Corollary 3.6 ([21]). The variety of semilinear commutative idempotent resid-
uated lattices is locally finite.

Proof. We recall first the following well-known criterion for local finiteness
(see [21] for a proof): a variety V of finite type is locally finite if there exists
a function f : N → N such that for all n ∈ N, every n-generated subdirectly
irreducible algebra in V has at most f(n) elements.

Consider any commutative idempotent residuated chain A and Y ⊆ A.
By Theorem 3.5, A decomposes into a totally ordered odd Sugihara monoid
S and a family of chains {〈Xc,≤c〉 : c ∈ S}. Let

S′ = {γe(a) : a ∈ Y } ∪ {∼γe(a) : a ∈ Y } ∪ {e}.
Notice that S′ forms a subuniverse of S. Consider also for each c ∈ S′, the set
X ′

c = (Xc ∩ Y ) ∪ {c} totally ordered by the restriction ≤′
c of ≤c. It is easy

to check that the commutative idempotent residuated chain constructed from
S′ and the family {〈X ′

c,≤c〉 : c ∈ S′} is a subalgebra A′ of A containing Y .
Moreover, if |Y | = n, then |S′| ≤ 2n + 1 and |X ′

c| ≤ n for each c ∈ S′. Hence
|A′| ≤ (2n + 1)n. The result now follows directly using the criterion. �

4. Idempotent residuated chains

We turn our attention now to the more general case of idempotent residuated
chains. Since the monoidal preorder of such an algebra A is not a partial order
in general, we define for x, y ∈ A,

x �� y ⇐⇒ x � y and y � x and x ‖ y ⇐⇒ x �� y and y �� x.

We also say that x ∈ A is central if it commutes with every other element
of A, i.e., xy = yx for all y ∈ A. The following lemma describes the properties
of elements of A that are central and non-central (cf. [5, Proposition 3.1]).

Lemma 4.1. For any idempotent residuated chain A, if two elements do not
commute, then they have different signs. Moreover, for each x ∈ A, there are
three distinct possibilities:
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(1) x is central and for all y ∈ A, either x � y or y � x, and x �� y ⇐⇒
x = y.

(2) x is not central, there is a unique y ∈ A such that x and y do not com-
mute, and x �� y.

(3) x is not central, there is a unique y ∈ A such that x and y do not com-
mute, and x ‖ y.

Proof. By Lemma 2.1, elements in the positive cone commute with each other
and the same is true of elements in the negative cone. Hence, if xy �= yx, then
x and y must have different signs.

We now consider any x ∈ A. Suppose first that x is central. Then for all
y ∈ A, either xy = x and then x � y, or xy = y and then yx = xy = y, that is,
y � x. Also, if x �� y, then x = xy = yx = y. So (1) holds. Suppose now that
x is not central. Then there exists y ∈ A such that xy �= yx. Moreover, since
A is conservative, xy = x or xy = y. We consider these two cases separately:

• xy = x. Then yx = y, so x � y and y � x, i.e., x �� y. If z ∈ A is another
element that does not commute with x, then again x �� z and, by the
transitivity of ��, also y �� z. Since y and z both have different signs to x,
they have the same sign and y = z. So (2) holds. Moreover, in this case,
there is no z ∈ A such that x ‖ z. If this were the case, then y and z would
have the same sign and either z ≤ y and z = xz ≤ xy = x = zx ≤ yx = y,
or y ≤ z and y = yx ≤ zx = x = xy ≤ xz = z, contradicting the fact
that x has a different sign to both z and y.
• xy = y. Then also yx = x, i.e., x ‖ y. If z ∈ A is another element such

that x ‖ z, then xz = z and zx = x. Notice that

y = xy = yxy = yzxy = yxzxy = xzxy = xzy = zy.

Since y and z have the same sign, they commute, and hence y = yz, that
is, y � z. By a symmetrical argument, y �� z, and since y and z have the
same sign, y = z. So (3) holds. �

Following this last lemma, let us fix for any element a of an idempotent
residuated chain A, the element a� to be a, if a is central, and otherwise, the
only element of A that does not commute with a. Notice that in both cases
(a�)� = a. If a is not central, we call {a, a�} a noncommuting pair.

Lemma 4.2. For any idempotent residuated chain A, a ∈ A, and x ∈ A \
{a, a�},

a � x ⇐⇒ a� � x and x � a ⇐⇒ x � a�.

Proof. We will prove only the first part, since the second is analogous. We
distinguish two cases: a �� a� and a ‖ a�. Suppose first that a �� a�. If a � x,
then a� � a � x, so a� � x. Since (a�)� = a, this also proves that a� � x
implies a � x. Suppose now that a ‖ a�. Then x ∈ A \ {a, a�} commutes with
both a and a�, and is hence �-comparable with them. If a � x and x � a�,
then a � a�, contradicting a ‖ a�. Hence a � x if and only if a� � x. �
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We now identify properties of the monoidal preorder, analogously to the
commutative case, and show that in the finite setting these properties provide
a complete description of the algebra. First, let us say that a preorder � on a
set A is laced if

1. it has a (unique) greatest element e;
2. each a ∈ A is either comparable with all the other elements and we fix

a� = a, or there is a unique element a� such that a �� a� or a ‖ a�;
3. for all a ∈ A and x ∈ A \ {a, a�},

a � x ⇐⇒ a� � x and x � a ⇐⇒ x � a�.

Now let C = 〈C,≤〉 be any chain. We say that a laced preorder � on C is
compatible with C if

1. any least element of C is also the least element of �;
2. for all x, y ∈ C, if e ≤ x, y, then x ≤ y ⇐⇒ y � x;
3. for all x, y ∈ C, if x, y ≤ e, then x ≤ y ⇐⇒ x � y;
4. for each x ∈ C, if x �= x�, then e ≤ x ⇐⇒ x� ≤ e.

Theorem 4.3.

(a) The monoidal preorder � of any idempotent residuated chain A is laced
and compatible with 〈A,≤〉.

(b) For any chain C = 〈C,∧,∨〉 and compatible laced preorder � on C, the
algebra 〈C,∧,∨, ·, e〉 is an idempotent totally ordered monoid, where

x · y =

{
x if x � y,

y otherwise,

Moreover, if C is finite, then · has (uniquely determined) residuals \ and
/ and 〈C,∧,∨, ·, \, /, e〉 is an idempotent residuated chain.

Proof. Part (a) is an immediate consequence of Lemmas 4.1 and 4.2. For
part (b), note first that, since � is reflexive and has greatest element e, the
product is idempotent and has neutral element e. To prove associativity, we
consider x, y, z ∈ C and distinguish the following cases:

• If x � y and y � z, then x � z. So (xy)z = xz = x = xy = x(yz).
• If x � y and y �� z, then (xy)z = xz = x(yz).
• If x �� y and y � z, then (xy)z = yz = y = xy = x(yz).
• If x �� y and y �� z, then there are four subcases: z � y � x, z ‖ y � x,

z � y ‖ x, y ‖ x = z. In the first three, we obtain x �� z and hence
x(yz) = xz = z = yz = (xy)z; in the last, x(yz) = x(yx) = xx = x =
yx = (xy)x = (xy)z.

We check now that the product distributes over joins, which, since C
is a chain, is equivalent to the monotonicity of the product. Suppose that
x, y, z ∈ C and y ≤ z. We distinguish the following cases:

• e ≤ x, y, z or x, y, z ≤ e. Then the product is, respectively, the join or
meet and the result follows immediately.
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• x ≤ e ≤ y ≤ z. Then z � y and y �� z. If x � z, then x � y and so
xy = x = xz. Otherwise, x �� z, so xy is x or y and hence xy ≤ z = xz.
To prove yx ≤ zx, we proceed analogously, noting that if z �� x, then
yx = x = zx, and if z � x, then yx ≤ z = zx.
• x, y ≤ e ≤ z. Then xy = yx = x ∧ y, so xy ≤ x ≤ xz and yx ≤ x ≤ zx.
• y ≤ e ≤ x, z. Then xz = zx = x ∨ z, so xy ≤ x ≤ xz and yx ≤ x ≤ zx.
• y ≤ z ≤ e ≤ x. Then y � z and z �� y. If x � y, then x � z and

xy = x = xz. If x �� y, then xy = y, which is smaller than xz. For the
other inequation, if y �� x, then z �� x and then yx = x = zx. If y � x,
then yx = y ≤ zx.

In the case that C is finite, it has a least element ⊥ and, by compatibility, this
is also the least element of 〈C,�〉. That is, x⊥ = ⊥ = ⊥x for all x ∈ C. Since
C also satisfies x(y ∨ z) = xy ∨ xz for all x, y, z ∈ C, it follows immediately
that the product is residuated. �

We use this representation theorem to count the number of idempotent
residuated chains of size n ≥ 2 up to isomorphism.

Theorem 4.4. The number of idempotent residuated chains of size n ≥ 2 is

I(n) =
[n
2 ]−1∑

s=0

[n
2 ]−1−s∑

t=0

2n−2(1+s+t)

(
n− 2− s− t

n− 2(1 + s + t), s, t

)
.

We determine the number of laced preorders that are compatible with a
finite chain 〈A,≤〉 of size n ≥ 2. Notice that, in every noncommuting pair, one
of them will be positive and the other negative. Hence, up to isomorphism,
which one is which is not relevant. Moreover, if we let C = {a ∈ A : a = a�},
then ��C2 is a compatible total order on the finite chain 〈C,≤�C2〉. Hence it
suffices to determine the relative positions of the noncommuting pairs and the
compatible total preorder of the central elements.

Observe first that the greatest and least elements are fixed, so there are
at most m = n−2 possible positions for the noncommuting pairs. Let s be the
number of comparable noncommuting pairs, and t the number of incomparable
(noncommuting) pairs. Then 0 ≤ s ≤

[
m
2

]
=

[
n
2

]
− 1 and 0 ≤ t ≤

[
m
2

]
− s =[

n
2

]
−1−s, and there are r = n−2s−2t central elements. The number of total

positions is r − 2 + s + t. Hence there are
(
r−2+s+t

s

)
possible choices for the

positions of the comparable noncommuting pairs and
(
r−2+t

t

)
possible choices

for the positions of the incomparable pairs. The number of compatible total
orders is 2r−2, so the number of compatible laced preorders with s comparable
noncommuting pairs and t incomparable pairs is

f(s, t) = 2r−2

(
r − 2 + s + t

s

)(
r − 2 + t

t

)
= 2r−2

(
r − 2 + s + t

r − 2 + s + t, s, t

)
.

Hence the number of compatible laced preorders is
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I(n) =
[n
2 ]−1∑

s=0

[n
2 ]−1−s∑

t=0

f(s, t)

=
[n
2 ]−1∑

s=0

[n
2 ]−1−s∑

t=0

2r−2

(
r − 2 + s + t

r − 2 + s + t, s, t

)

=
[n
2 ]−1∑

s=0

[n
2 ]−1−s∑

t=0

2n−2(1+s+t)

(
n− 2− s− t

n− 2(1 + s + t), s, t

)
. �

Theorem 4.5. The sequence (I(n) : n ≥ 2) satisfies the recurrence formula
I(2) = 1, I(3) = 2, I(n+2) = 2I(n)+2I(n+1), and the number of idempotent
residuated chains of size n ≥ 2 is

I(n) =

(
1 +
√

3
)n −

(
1−
√

3
)n

2
√

3
.

Proof. It is easy to see that, up to isomorphism, there is only one idempotent
residuated chain with 2 elements and only two with 3 elements: one in which
the identity is the greatest element and one with a strictly positive element.
For any compatible laced preorder on a chain 〈A,≤〉 with n ≥ 4 elements,
there are four possible cases:
• There is only one �-cocover a of e, and e < a.
• There is only one �-cocover a of e, and a < e.
• There are two �-cocovers a, a� of e, and a �� a�.
• There are two �-cocovers a, a� of e, and a ‖ a�.

It is not difficult to prove that, removing the �-cocovers of e, we obtain a
compatible laced preorder on a chain of n− 1 elements in the first two cases,
or a chain of n− 2 elements in the last two cases.

Reciprocally, given a compatible laced preorder on a chain of size n ≥ 2,
we can add a �-cocover of e, which can be either positive or negative, or two
�-cocovers of e, which can consist of comparable or incomparable elements.
We obtain a compatible laced preorder on a chain with n+1 elements or n+2
elements, respectively. �

Recall that the variety of semilinear commutative idempotent residuated
lattices is locally finite ([21] and Corollary 3.6). This property fails, however,
if semilinearity is weakened to distributivity or idempotence is weakened to
being square-increasing, square-decreasing, or n-potent for n ≥ 3 (see [21]).
The next result shows that also commutativity plays an essential role.

Proposition 4.6. The variety of semilinear idempotent residuated lattices is not
locally finite.

Proof. It suffices to exhibit an infinite idempotent residuated chain with a
finite set of generators. Consider the set Z of integers with the standard order,
and define x · y = x if |x| ≥ |y| and x · y = y otherwise. It is easy to see
that this determines the unique structure of an idempotent residuated chain.
Moreover, x\x = |x| for each x ∈ Z, and if x > 0, then x\0 = −x − 1. So we



28 Page 16 of 25 J. Gil-Férez, P. Jipsen and G. Metcalfe Algebra Univers.

have 1 = | − 1|, −2 = 1\0, 2 = | − 2|, −3 = 2\0, etc. Also, 0 = (−1)/(−1).
Hence {−1} generates the whole algebra. �

The variety of semilinear idempotent residuated lattices does have the
finite embeddability property, however, as will be shown in Corollary 5.2.

5. Conservative residuated lattices

In the previous two sections, we have studied classes of idempotent residuated
lattices that are totally ordered, i.e., classes satisfying the positive universal
formula (∀x)(∀y)(x ∨ y ≈ x or x ∨ y ≈ y). In this section, we obtain similar
results for classes of idempotent residuated lattices that are conservative, i.e.,
classes satisfying the positive universal formula (∀x)(∀y)(xy ≈ x or xy ≈ y).
That is, we consider the variety CsRL generated by the class of conservative
residuated lattices, noting that by congruence distributivity and Jónsson’s
Lemma, every subdirectly irreducible member of CsRL is conservative and any
subvariety of CsRL is generated by its conservative members.

We show first that any variety V generated by a class of conservative
residuated lattices defined relative to IdRL by positive universal formulas in
the language {∨, ·, e} has the finite embeddability property : that is, any finite
partial subalgebra of a member of V embeds into a finite member of V.

Theorem 5.1. Let K be a class of conservative residuated lattices defined rela-
tive to IdRL by positive universal formulas in the language {∨, ·, e}. Then the
variety V generated by K has the finite embeddability property.

Proof. It suffices to check that the finite embeddability property holds for the
subdirectly irreducible members of V. Hence, since K is a positive universal
class, it suffices to show that any finite partial subalgebra B of some A ∈ K
embeds into a finite member of K. Without loss of generality, we may also
assume that e ∈ B. First, we let

� =
∨

B, B′ = B ∪ {�\e, e/�}, and C = B′ ∪ {a ∧ e : a ∈ B′}.

Notice that C is finite, every element a ∈ C is lower bounded by a∧ e ∈ C ∩↓e
and, by Lemma 2.5, 〈C ∩ ↓e,≤〉 is a chain. Hence C has a least element ⊥.

Now consider the join-subsemilattice 〈C∗,∨〉 of 〈A,∨〉 generated by C.
The order induced by ∨ in C∗ is the restriction of the order ≤ of A. Since
C is finite and has a least element, 〈C∗,≤〉 is a lattice with the same least
element ⊥. Moreover, by the conservativity of A, the set C∗ is also the universe
of a submonoid of 〈A, ·, e〉. That is, 〈C∗,∨, ·, e〉 is a subalgebra of 〈A,∨, ·, e〉 and
hence every positive universal formula in the language {∨, ·, e} that is valid in
A is also valid in 〈C∗,∨, ·, e〉, in particular, the equations x(y ∨ z) ≈ xy ∨ xz
and (x ∨ y)z ≈ xz ∨ yz.

Observe next that e ≤ �, since e ∈ B, and hence that �\e and e/�
are both negative. So � =

∨
B =

∨
B′ =

∨
C =

∨
C∗. If � = e, then

⊥ · � = ⊥ = � · ⊥. Otherwise, e < � and ⊥ · � ≤ (e/�)� ≤ e < � and
hence, by conservativity, ⊥·� = ⊥; similarly, �·⊥ = ⊥. Hence, in both cases,
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⊥ · a = ⊥ = a · ⊥ for all a ∈ C∗. Since 〈C∗,∨, ·, e〉 also satisfies x(y ∨ z) ≈
xy ∨ xz and is finite, it follows that the product of C∗ has residuals given by
a\\b = max{c ∈ C∗ : ac ≤ b} and a//b = max{c ∈ C∗ : ca ≤ b}. It is then
straightforward to see that if a\b ∈ B, then a\\b = a\b, and if a/b ∈ B, then
a//b = a/b. Hence the partial algebra B embeds into 〈C∗,∧C∗

,∨, ·, \\, //, e〉 ∈
K. �

Corollary 5.2. CsRL, CCsRL, and SemIdRL have the finite embeddability prop-
erty.

Proof. The result follows directly from Theorem 5.1, since CsRL, CCsRL, and
SemIdRL are generated by the classes of all conservative residuated lattices,
commutative conservative residuated lattices, and conservative residuated lat-
tices satisfying (∀x)(∀y)(x ∨ y ≈ x or x ∨ y ≈ y), respectively. �

Let us turn our attention now to the variety CCsRL generated by the class
of commutative conservative residuated lattices. As has just been shown, this
variety has the finite embeddability property and is therefore generated by its
finite members. Also, any finite commutative conservative residuated lattice
is subdirectly irreducible, since its negative cone is a finite chain of (central)
idempotents. The class Si(CCsRL)fin of finite subdirectly irreducible members
of CCsRL therefore consists of all finite commutative conservative residuated
lattices and generates CCsRL. Moreover, using Mace4 [16], it can be shown
that there are 1, 2, 5, 14, 42, 132, 429, 1430, 4862, and 16796 such algebras of
size 2 to 11, respectively. As we show below, it is no accident that this sequence
corresponds exactly to the Catalan numbers Cn = 1

n+1

(
2n
n

)
.

We first define a binary operation on Si(CCsRL)fin , which we call the
Catalan sum, and show that the resulting algebra is uniquely determined up
to isomorphism by its two summands. For A,B ∈ Si(CCsRL)fin , we define an
algebra C = A c©B as follows. We let C be the disjoint union of A and B and
define a lattice order

≤C = ≤A ∪ ≤B ∪ ({⊥A} ×B) ∪ (A× ↑eB).

To specify ·C, it suffices to define the following monoidal order:

�C = �A ∪ �B ∪ ({⊥A} ×B) ∪ (B × (A \ {⊥A})).
Informally, the monoidal order of C is the ordinal sum {⊥A} ⊕ 〈B,�〉 ⊕ 〈A \
{⊥A},�〉. Since the greatest element is always the identity, it follows that
if A is nontrivial, then eC = eA and otherwise eC = eB. The lattice order
implies that ⊥A is the least element of C, and that a ∨ b = eB ∨ b whenever
a ∈ A \ {⊥A} and b ∈ B. Note also that if A or B is a one element algebra,
then the underlying lattice of C is simply the ordinal sum of the lattices of A
and B (see Figure 2).

Lemma 5.3. If A,B ∈ Si(CCsRL)fin , then A c©B ∈ Si(CCsRL)fin .

Proof. Let C = A c©B. It is straightforward to check that 〈C,≤C〉 is a lattice.
By assumption, A and B have total monoidal orders, so by definition the
same holds for �C. Hence �C determines a unique commutative monoidal
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Figure 2. The Catalan sum C = A c©B, for nontrivial A

operation. Since A,B are finite and the least element of 〈C,≤C〉 is also the
least element of 〈C,�C〉, to show that C is a residuated lattice, it suffices to
check that x(y∨z) = xy∨xz for all x, y, z ∈ C. Note that {⊥A}∪B and A are
both closed under ·C and ∨C, hence the identity holds when x, y, z ∈ B∪{⊥A}
or x, y, z ∈ A, and we now check the remaining six cases.
• x ∈ A\{⊥A}, y, z ∈ B: From the definition of �C, we have y, z, y∨Bz �C

x and hence x(y ∨ z) = y ∨ z = xy ∨ xz.
• y ∈ A \ {⊥A}, x, z ∈ B: In this case x �C y and y ∨ z = eB ∨ z, so

x(y∨ z) = x(eB∨ z) = x∨xz = xy∨xz. The case z ∈ A\{⊥A}, x, y ∈ B
is similar.
• x, y ∈ A\{⊥A}, z ∈ B: In this case y∨z = eB∨z �C x and xy ∈ A\{⊥A},

so x(y ∨ z) = y ∨ z = eB ∨ z and xy ∨ xz = xy ∨ z = eB ∨ z. The case
x, z ∈ A \ {⊥A}, y ∈ B is similar.
• y, z ∈ A \ {⊥A}, x ∈ B: In this case x �C y, z, y ∨ z, so x(y ∨ z) = x =

x ∨ x = xy ∨ xz.
The algebra C is subdirectly irreducible since its negative cone, which is also
the negative cone of A, is a finite chain of central idempotents. �

We now prove a converse to the preceding lemma.

Lemma 5.4. Suppose that C ∈ Si(CCsRL)fin has size n ≥ 2. Then C = A c©B
for a pair A,B ∈ Si(CCsRL)fin that is unique up to isomorphism.

Proof. Since C is finite, commutative, and conservative, the semilattice order
�C is a chain. Let b ∈ C be the unique atom of this chain. The sets A,B are
defined by B = ↑b = {x ∈ C : b ≤ x} and A = C \ B. The operations ∧,∨, ·
are defined on A and B by restriction from C. To ensure that these operations
are total, we need to prove that both A and B are closed under the operations
on C. This is obvious for the conservative operation ·. Moreover, since B is a
filter, it is the universe of a sublattice. The set A is closed under meets since it
is the complement of a filter. Suppose now that b ≤ x ∨ y and x �= ⊥C �= y. If
xy = x, then b = xb ≤ x2 ∨xy = x∨x = x; analogously, if xy = y, then b ≤ y.
If x = ⊥C, then b ≤ x ∨ y = y; and if y = ⊥C, then b ≤ x. So if x ∨ y ∈ ↑b,
then x ∈ ↑b or y ∈ ↑b; that is, A is closed under ∨.

Let us show that B is an interval of 〈C,�〉. If b � b′′ � b′ and b′ ∈ B,
then b ≤ b′ implies that b = b′′b ≤ b′′b′ = b′′, and therefore b′′ ∈ B. Since
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C is finite, B = [b, c]� for some c ∈ C. Hence, for every x ∈ B we have that
cx = x. That is, c is the identity on B. Notice also that cb = b ≤ c implies
b ≤ c\c, that is, c\c ∈ B. So c\c = c(c\c) ≤ c. By idempotence, cc ≤ c, and
hence c ≤ c\c. So c = c\c. If eC ∈ B, then c = eC and A = {⊥A}. Otherwise,
eC is the identity on A.

If x ∈ A \ {⊥C}, then cx = c, yielding x ≤ c\c = c. Clearly also ⊥C ≤ c.
Given x ∈ A \ {⊥C} and y ∈ B, if x ≤ y, we have that c = cx ≤ cy = y. So
c is the cover of A in C if A �= {⊥C}. If A = {⊥A}, then b is the cover of A
in C.

For y ∈ B and x ∈ A \ {⊥C}, we have x ≤ x ∨ y ∈ B. Hence c ≤ x ∨ y
and c ∨ y ≤ x ∨ y. Since also x ≤ c, we have x ∨ y ≤ c ∨ y. So x ∨ y = c ∨ y.

Finally, if ⊥ < x < b, then x ∈ A, and hence c = xc ≤ bc = b ≤ c. That
is, ↑b = {b}, which implies b = �C. So b is an atom of C, unless b = �C.

We have shown that A and B are commutative conservative residuated
lattices. Moreover, by Lemma 2.5, their negative cones are finite chains of
central idempotents, so both are subdirectly irreducible. The proof concludes
with the observation that C = A c©B by definition of the Catalan sum. �

Let us call an algebra Catalan if it is a one element algebra (in the
language of residuated lattices) or a Catalan sum of Catalan algebras. In par-
ticular, if C1

1 is a one element algebra, then C2
1 = C1

1 c© C1
1 is the two ele-

ment Boolean algebra. The two three element chains are C3
1 = C1

1 c©C2
1 and

C3
2 = C2

1 c©C1
1. In general, the algebras of size n are built by constructing all

Catalan sums of algebras A and B of size n−k and k respectively, as k ranges
from 1 to n− 1 (see Figure 2). The following characterization theorem is now
an immediate consequence of Lemmas 5.3 and 5.4

Theorem 5.5. The class of finite conservative commutative residuated lattices
is precisely the class of Catalan algebras.

This yields the following result.

Theorem 5.6. The number of conservative commutative residuated lattices of
n ≥ 1 elements is C(n) = 1

n

(
2(n−1)

n−1

)
, that is, the (n− 1)th Catalan number.

We will prove the result by induction. The sequence (Ci : i ≥ 0) of Cata-
lan numbers is determined by C0 = 1 and Cn+1 =

∑n
i=0 CiCn−i. Obviously,

C(1) = 1 = C0. Suppose now that n > 1. Using Lemmas 5.3 and 5.4 and the
induction hypothesis,

C(n + 1) =
n∑

k=1

C(k) ·C(n + 1− k)

=
n∑

k=1

Ck−1Cn−k

=
n−1∑

i=0

CiCn−1−i = Cn−1. �
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6. The amalgamation property

For the purposes of this paper, a span of a class of algebras K is a pair of
embeddings 〈i1 : A ↪→ B, i2 : A ↪→ C〉 between algebras A,B,C ∈ K. The
class K is said to have the amalgamation property if for every span of K, there
exist D ∈ K and embeddings j1 : B ↪→ D and j2 : C ↪→ D such that the
following diagram commutes:

B

A D

C

j1i1

i2 j2

In this section, we prove that both the variety of semilinear commutative
idempotent residuated lattices and a noncommutative variety of idempotent
residuated lattices have the amalgamation property. Our main tools will be
the characterization of commutative idempotent residuated chains provided
by Theorem 3.5 and the following criterion for amalgamation in varieties of
semilinear residuated lattices obtained in [18].

Theorem 6.1 ([18]). Let V be a variety of semilinear residuated lattices with
the congruence extension property, and let T be the class of finitely generated
totally ordered members of V. If every span in T has an amalgam in V, then
V has the amalgamation property.

Let us begin by considering the special case of odd Sugihara monoids.

Lemma 6.2 ([8]). Given any chain 〈C,≤〉 and order-preserving involution ∼
on C with fixpoint e ∈ C, define for x, y ∈ C,

x · y :=

{
x ∧ y if x ≤ ∼y,

x ∨ y if x > ∼y,
and x→ y :=

{
∼x ∨ y if x ≤ y,

∼x ∧ y if y < x.

Then 〈C,∧,∨, ·,→, e〉 is a totally ordered odd Sugihara monoid.

Lemma 6.3. The class of totally ordered odd Sugihara monoids has the amal-
gamation property.

Proof. Consider a span 〈i1 : A ↪→ B, i2 : A ↪→ C〉 of totally ordered odd Sugi-
hara monoids, assuming without loss of generality that i1 and i2 are inclusion
maps and that B ∩C = A. Let A−, B−, and C− denote the negative cones of
A, B, and C with induced total orders ≤A, ≤B , and ≤C , respectively. We fix
S = A− ∪B− and let ≤S be any total order extending ≤B and ≤C .

Now consider the set D = B ∪ C and the map ∼ : D → D given by
∼B ∪∼C, recalling that ∼x := x→ e. We also define x ≤D y if and only if (i)
x, y ∈ S and x ≤S y, (ii) x ∈ S, y ∈ D \S, or (iii) x, y ∈ D \S and ∼y ≤S ∼x.
It is easy to check that ≤D is a total order on D extending both ≤B and ≤C ,
and that S = {x ∈ D : x ≤D e}. Moreover, ∼ is an order-preserving involution
on D with fixpoint e. Hence by Lemma 6.2, we obtain a totally odd ordered
Sugihara monoid D = 〈D,∧,∨, ·,→, e〉. Since the order of D and the map ∼
extend the orders and involutions of B and C, it follows that B and C are
subalgebras of D, and hence that D is the required amalgam. �
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Since the variety OSM of odd Sugihara monoids has the congruence ex-
tension property, an application of Theorem 6.1 yields the following result,
proved using model-theoretic methods in [15] as part of a full classification of
varieties of Sugihara monoids with the amalgamation property.

Corollary 6.4 (Cf. [15]). The variety of odd Sugihara monoids has the amalga-
mation property.

Note that this last result also follows from the fact that OSM and the
variety of relative Stone algebras are categorically equivalent and the latter
has the amalgamation property, as shown in [10] and [14], respectively. Let
us also mention that OSM is locally finite by Corollary 3.6; moreover, every
n-generated subdirectly irreducible member of OSM is a residuated chain with
at most 2n + 2 elements (see [8]).

We now turn our attention to the variety SemCIdRL of semilinear com-
mutative idempotent residuated lattices.

Lemma 6.5. The class of commutative idempotent residuated chains has the
amalgamation property.

Proof. Let 〈i1 : A ↪→ B, i2 : A ↪→ C〉 be a span of commutative idempotent
residuated chains, assuming without loss of generality that i1 and i2 are inclu-
sion maps and that B∩C = A. Then, using Lemma 3.3, we also have inclusions
between their skeletons Aγe ↪→ Bγe and Aγe ↪→ Cγe . Since, by Proposition 3.4,
these skeletons are totally ordered odd Sugihara monoids, Lemma 6.3 yields an
amalgam S for this span that is also a totally ordered odd Sugihara monoid.
Moreover, we may assume that S = Bγe ∪ Cγe .

Consider a ∈ Aγe . Recalling that Aa = {x ∈ A : γe(x) = a}, clearly

Aa ⊆ Ba = {x ∈ B : γe(x) = a} and Aa ⊆ Ca = {x ∈ C : γe(x) = a}.
Moreover, the inclusions 〈Aa,≤A�Aa〉 ↪→ 〈Ba,≤B�Ba〉 and 〈Aa,≤A�Aa〉 ↪→
〈Ca,≤C�Ca〉 form a span of chains (viewed as algebras) and have as an amal-
gam a chain 〈Da,≤a〉 with Da = Ba∪Ca. Since a is the greatest element of Aa,
Ba, and Ca, it is also the greatest element of 〈Da,≤a〉. Now, for all b ∈ Bγe\Aγe

and c ∈ Cγe \ Aγe , let 〈Db,≤b〉 = 〈Bb,≤B�Bb〉 and 〈Dc,≤c〉 = 〈Cc,≤C�Cc〉.
Then X = {〈Ds,≤s〉 : s ∈ S} is a family of (disjoint) chains such that each
s ∈ S is the greatest element of Ds. By Theorem 3.5, D = S⊗X is a commuta-
tive idempotent residuated chain satisfying S = (S⊗X )γe and (S⊗X )s = Ds

for each s ∈ S.
To show that D is an amalgam of the original span, it suffices to check

that B and C are subalgebras of D. Consider x, y ∈ B with x ∈ Bb1 and
y ∈ Bb2 . Then b1, b2 ∈ S and x ∈ Db1 , y ∈ Db2 . If x ≤B y, then b1 ≤ b2. If
b1 = b2 = b, then x, y ∈ Db and since the order of 〈Db,≤b〉 extends the order
of Bb, we also have x ≤b y, and hence x ≤D y. If b1 �= b2, then b1 ≤ b2, and
hence x ≤D y. This shows that the order of D extends the order of B.

Let us prove next that the product of D extends the product of B. If
b1 = b2 = b, then either e <B b and x ·B y = x ∨B y = x ∨D y = x ·D y, or
b <B e, which is analogous. If b1 �= b2, then
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Figure 3. The algebra C4

x ·B y = x ⇐⇒ b1 ·B b2 = b1 ⇐⇒ b1 ·Bγe b2 = b1 ⇐⇒ b1 ·S b2 = b1

⇐⇒ b1 ·D b2 = b1 ⇐⇒ x ·D y = x.

For the residuals:

x→B y =

{
∼Bγe b1 ∨B y if x ≤B y,

∼Bγe b1 ∧B y if y <B x

=

{
∼Sb1 ∨D y if x ≤D y,

∼Sb1 ∧D y if y <D x

= x→D y.

The proof that C is a subalgebra of D is symmetrical. �

Every variety of commutative residuated lattices has the congruence ex-
tension property, so Theorem 6.1 yields the following result.

Theorem 6.6. The variety of semilinear commutative idempotent residuated
lattices has the amalgamation property.

We now address an open question in the literature (see, e.g., [18]) by de-
scribing a noncommutative variety of (idempotent) residuated lattices that has
the amalgamation property. Note first that all idempotent residuated chains
with at most 3 elements are commutative, since ⊥ and e are central elements
and noncentral elements come in pairs. Similarly, there are only two non-
isomorphic noncommutative idempotent residuated chains of size 4: the one
represented in Figure 3, which we call C4, and its “opposite” (i.e., the algebra
resulting from swapping the order of the product).

We will use Theorem 6.1 to prove that the variety V(C4) generated by C4

has the amalgamation property. To show first that V(C4) has the congruence
extension property, we make use of some results from [1]. Recall that a term
u(�x, �y ) is an ideal term in �x for a variety V with respect to a (term-definable)
constant 1 if and only if V |= t(�1, �y ) ≈ 1. The ideals (with respect to 1) of
an algebra A ∈ V are the subsets I ⊆ A such that u(�a,�b ) ∈ I for every
ideal term u(�x, �y ) and �a ∈ I, �b ∈ A. If A is a residuated lattice, then the
ideals with respect to e coincide with the convex normal subalgebras of A.
In [1] it was proved that the variety generated by a residuated lattice A has
equationally definable principal congruences (and therefore the congruence
extension property) if there exists a finite set J of ideal terms (with respect to
e) such that for all a, b ∈ ↓e, there exists u(x, y) ∈ J satisfying
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b ∈ 〈a〉A ⇐⇒ b = uA(a, b), (1)

where 〈a〉A denotes the convex normal subalgebra generated by a.

Lemma 6.7. V(C4) has the congruence extension property.

Proof. Observe first that C4 has only the trivial proper subalgebra, since c� =
c\e = ⊥\e, ⊥ = c�\e = e/c�, and c = e/c�. It suffices now to check that
C4 satisfies (1) for the set of ideal terms J = {e, x, (x\e)\e, e/(e/x)}. For
a = e, we have 〈e〉C4 = {e} = J(e), and for a �= e, we have 〈a〉C4 = C4 and
J(a) = {e, c,⊥}. �

Theorem 6.8. V(C4) has the amalgamation property.

Proof. By Theorem 6.1 and Lemma 6.7, it suffices to consider spans of finitely
generated totally ordered members of V(C4). But C4 only has the trivial
proper subalgebra {e} and, since the lattice of congruences of a residuated
lattice is isomorphic to the lattice of its convex normal subalgebras, is simple.
By Jónsson’s Lemma, the only nontrivial subdirectly irreducible algebra of
V(C4) up to isomorphism is C4. Hence all spans of finitely generated totally
ordered members of V(C4) are trivial and clearly have an amalgam. �

Let us note finally that the same method can be used to prove that the
variety generated by the strongly simple idempotent residuated chain C2n+2

with n ≥ 2 pairs of noncommuting elements has the amalgamation property.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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