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1. Introduction

There are a number of interesting problems concerning finite non-desarguesian
projective planes. One would hope that these problems would admit an alge-
braic, or geometric, or combinatorial solution. But it may just be that the
existence, or non-existence, of certain types of planes is an accident of nature.
With that in mind, since 1999 the author has been trying various computer
programs to construct non-desarguesian projective planes. While all these at-
tempts have failed, hope springs eternal, and this note describes a set of prob-
lems and some ideas for addressing them.

This note is based on a talk given to the Courant Institute geometry
seminar in October 2017. The author appreciates the hospitality and encour-
agement from the participants of the seminar.

2. Basics

Recall that a projective plane is an incidence structure of points and lines
satisfying these axioms.

• Two points determine a unique line.
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Figure 1. Desargues’ Law: If the lines a0 ∨ b0, a1 ∨ b1, and
a2 ∨b2 intersect in a point p, then the points c0, c1, and c2 are
colinear, where ci = (aj ∨ak)∧(bj ∨bk) for {i, j, k} = {0, 1, 2}.
In a failure of Desargues’ Law, the lines c0 ∨ c1, c0 ∨ c2, and
c1 ∨ c2 are distinct.
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• Two lines intersect in a unique point.
• There exist four points with no three on a line.

Each finite plane has an order n such that there are

• n + 1 points on each line,
• n + 1 lines through each point,
• n2 + n + 1 total points,
• n2 + n + 1 total lines.

An elementary construction allows us to construct a projective plane starting
from the affine plane over any division ring. Indeed, every projective plane
can be coordinatized by a ternary ring [12]. For the basic combinatorics and
coordinatization of projective planes, see [1,7,13].

Desargues’ Law, a property that holds in some projective planes and not
others, is illustrated in Figure 1 and explained in the caption. Planes that sat-
isfy Desargues’ Law are called desarguesian. A projective plane is desarguesian
if and only if it can be coordinatized by a division ring. Thus from finite fields
we obtain projective planes of order q for any prime power q > 1. The same
construction yields non-desarguesian finite projective planes coordinatized by
various finite quasi-fields; these are of prime power order q ≥ 9.

There are four isomorphism types of planes of order 9, including the one
coordinatized by a field of order 9, and a non-desarguesian plane coordinatized
by a Hall quasi-field, and its dual. The fourth type, the Hughes plane, admits
no such nice description.
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A classic result of Bruck and Ryser [4] shows that some orders are im-
possible: If n ≡ 1 or 2mod 4 and there is a plane of order n, then n is a sum
of two squares. Beyond the Bruck–Ryser Theorem, only one more restriction
is known: Lam, Theil and Swiercz [14] proved that there is no plane of order
10.

That leaves the existence of a projective plane of the following orders
unknown: 12, 15, 18, 20, 24, 26, 28, . . . .

A subplane of a finite projective plane need not have order dividing the
order of the plane. Indeed, H. Neumann showed that every Hall plane has a
subplane of order 2 (see [11]).

3. Partial projective planes

A partial projective plane is a collection of points and lines, and an incidence
relation, so that

• two points lie on at most one line,
• two lines intersect in at most one point.

M. Hall showed that every finite partial plane can be extended to a projective
plane (usually infinite) [12]. In retrospect, it is not hard to see how to build
this free extension.

Now projective planes correspond to simple, complemented, modular lat-
tices of height 3 (Birkhoff [2] and Menger [15]). To form a projective plane
from such a lattice, take the points to be the elements of height 1, and the
lines to be the elements of height 2. Upper semimodularity means that 2 points
join to a unique line, while lower semimodularity means that 2 lines meet in
a unique point. In a finite dimensional, complemented, modular lattice, every
element is a join of atoms. Such a lattice is simple if and only if the join of
any two atoms contains a third, which in geometric terms says that every line
contains at least three points. To obtain four points in general position, choose
two distinct lines, and take two points from each line, none of which is their
point of intersection.

This suggests that we employ partial planes that are meet semilattices.
A semiplane is a collection of lines and points, with an incidence relation,
such that any two lines intersect in a unique point. A canonical example of a
semiplane is formed by taking any subset of the lines of a plane, together with
the points that are intersections of those lines.

4. Four questions

That brings us to four basic questions about finite projective planes.
• Is there a finite projective plane of non-prime-power order (necessarily

non-desarguesian)?
• Is there a non-desarguesian plane of prime order?
• Does every finite non-desarguesian plane contain a subplane of order 2?
• Does every finite partial plane have an extension to a finite plane?
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If we fix a desired order n, the general plan for extending a finite partial
plane to a plane of order n is straightforward enough.

• Start with a semiplane that contains your desired configuration (e.g., a
failure of Desargues’ Law or a plane of order 2).

• As long as possible add lines, with their intersections with existing lines,
one at a time, keeping a semiplane structure and at most n + 1 points-
per-line.

• Intersections can be new points or old points.
• If you get n2 + n + 1 lines, the semiplane is a plane [6].
• Otherwise, when adding a line is no longer possible, back up and try

again.

Did we mention that you should be patient, as the program could take tens of
thousands of years?

Nonetheless, there is a simple turnaround criterion from [16]. Given n
and a semiplane Π = 〈P0, L0,≤0〉, define

ρn(Π) =
∑

�∈L0

rΠ(�) + n2 + n + 1 − |P0| − |L0|(n + 1)

where rΠ(�) denotes the number of points on the line � in the semiplane Π. If
Π = 〈P0, L0,≤0〉 can be extended to a projective plane Σ = 〈P,L,≤〉 of order
n, then

ρn(Π) = |{p ∈ P : p � � for all � ∈ L0}|.
Hence Π can be extended to a projective plane of order n only if ρn(Π) ≥ 0.

There are nice extension theorems for some types of partial structures,
summarized in Chapter 9 of Dénes and Keedwell [8], and updated in [9]. We
note especially the results of Bruck [3] and Dow [10]. For a logical approach,
see Conant and Kruckman [5].

5. Non-desarguesian planes

In order to apply this program to construct a non-desarguesian plane of ques-
tionable order, we must first extend a non-desarguesian configuration to a
semi-plane. A non-desarguesian configuration has 10 points and 12 lines, see
Figure 1. To form a semiplane, those lines can intersect in various ways: the
intersections could be new points or old ones. The result is a semiplane with
12 lines and between 20 and 37 points. Seffrood proved that there are 875
such non-desarguesian semiplanes, which fall into 105 isomorphism classes. For
some pairs (A,B) of the 105 types, if a plane contains a semiplane of type A
then it contains one of type B. There are 15 non-desarguesian semiplanes that
are minimal in the sense that every non-desarguesian plane must contain one
of these 15 semiplanes. Thus a program to construct finite non-desarguesian
planes can use one of these 15 minimal semiplanes as a starting configuration.
(The results in this paragraph are from Seffrood and Nation [16].)
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So far, our programs have yielded
• semiplanes of order 11 with 40 lines (a plane has 133 lines),
• semiplanes of order 12 with 44 lines (a plane has 157 lines),
• semiplanes of order 13 with 48 lines (a plane has 183 lines),
• a semiplane of order 15 with 56 lines (a plane has 241 lines).

In each case, these semiplanes are maximal, in the sense that they cannot be
extended to a projective plane of the given order. Most of the semiplanes have
the full number of points.

This is not as bad as it first seems. When we tested the program by
constructing a Hall plane of order 9, it turned out that once the semiplane
had 35 lines, from that point on there was a unique choice for how to extend
it with a new line. Thus the program extended the semiplane with 35 lines to
a plane with 91 lines in a matter of seconds. Hence we suggest the following
problem:

Find f(n) such that every semiplane with at least f(n) lines and at most
n + 1 points-per-line can be extended to a plane of order n.

There are results of this nature for latin squares. A projective plane of
order n can be constructed from a set of n−1 mutually orthogonal n×n latin
squares (MOLS), and vice versa [8,9]. Shrikhande [17] proved that, for n > 4,
any set of n − 3 mutually orthogonal n × n latin squares can be extended to
a complete set of n − 1 MOLS, and Bruck [3] proved the same result for any
collection of n − 1 − (2n)

1
4 MOLS. (See Chapter 9 of [8].)

6. Other starting configurations

Pappus’ Law is illustrated in Figure 2 and explained in the caption. A de-
sarguesian plane can be coordinatized by a division ring; that division ring is
commutative if and only if the plane satisfies Pappus’ Law. Since every finite
division ring is a field, this suggests that we start with a semiplane generated
by a failure of Pappus’ Law. A non-pappian configuration has 9 points and 11
lines, so there should be fewer options for completing it to a semiplane.

Hanna Neumann’s Fano planes sitting inside Hall planes suggests another
idea: What happens if you start with a plane of order 2 and try to extend it
to a plane of order n? A starting semiplane with a Fano plane and one extra
line would have 8 lines and 14 points as the only option.

Freese tried a variation on this theme, with a program to look for inter-
mediate subplanes in a Hall plane, between a Fano subplane and the whole
Hall plane [11]. Perhaps it is time to revisit this approach.

A theorem from folklore is that if a plane of order n has a subplane of
order r < n, then either n = r2 or n ≥ r2 + r. Thus possibly a plane of order
3 could be extended to a non-desarguesian plane of order 12 or more.
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Figure 2. Pappus’ Law: If the points a0, a1, and a2 are colin-
ear, and the points b0, b1, and b2 are colinear, then the points
c0, c1, and c2 are colinear, where ci = (aj ∨ bk) ∧ (bj ∨ ak)
for {i, j, k} = {0, 1, 2}. In a failure of Pappus’ Law, c0 ∨ c1,
c0 ∨ c2, and c1 ∨ c2 are three distinct lines.
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7. Conclusion

Of course, if a non-desarguesian projective plane of a given order does not
exist, then no amount of subtle programming will matter. Nonetheless, it seems
prudent to complement attempts to prove that they don’t exist with searches
to find them, in hopes that one or the other will succeed!

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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