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Meet-irreducible congruence lattices

Danica Jakub́ıková–Studenovská and Lucia Janičková

Abstract. The system of all congruences of an algebra (A,F ) forms a
lattice, denoted Con(A,F ). Further, the system of all congruence lattices
of all algebras with the base set A forms a lattice EA. We deal with meet-
irreducibility in EA for a given finite set A. All meet-irreducible elements
of EA are congruence lattices of monounary algebras. Some types of meet-
irreducible congruence lattices were described in Jakub́ıková-Studenovská
et al. (2017). In this paper, we prove necessary and sufficient conditions
under which Con(A, f) is meet-irreducible in the case when (A, f) is an
algebra with short tails (i.e., f(x) is cyclic for each x ∈ A) and in the
case when (A, f) is an algebra with small cycles (every cycle contains at
most two elements).

Mathematics Subject Classification. 08A30, 08A60, 08A62.

1. Introduction

Without doubt, the study of congruences (i.e. reflexive, symmetric and tran-
sitive relations) is important in universal algebra. It is known that all congru-
ences of an algebra A ordered by inclusion form an algebraic lattice, denoted
Con A (see e.g. [8]). In 1963, it was proved by Grätzer and Schmidt that ev-
ery algebraic lattice is isomorphic to the congruence lattice of some algebra
[3]. The congruence lattices have been intensively studied by several authors,
currently e.g. [1,2] or [4].

For a given set A, the system EA of all ConA, where A is an algebra with
the base set A, forms a lattice (with respect to class-theoretical inclusion) [8].
This lattice has been investigated in [6], e.g. it was shown that EA is atomistic
and if |A| ≥ 4, it is tolerance simple. Also, all join-irreducible congruence
lattices were characterized in [6].

In this paper, we study meet-irreducibility in the lattice EA.
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Since F ⊆ G implies Con(A,G) ⊆ Con(A,F ), all ∧-irreducible ele-
ments in EA must be of the form Con(A, f) for a single mapping f , otherwise
Con(A,F ) would be the intersection of all Con(A, f) where f ∈ F . Therefore, it
is sufficient to explore meet-irreducibility of congruence lattices of monounary
algebras (i.e. algebras with a single unary operation). While studying proper-
ties of monounary algebras, we often use that they can be easily visualized as
a digraphs which are always planar, hence easy to draw [7].

In [6], Studenovská, Pöschel and Radeleczki presented some partial an-
swers to the question which lattices Con(A, f) for a given finite set A are meet-
irreducible, namely, in the case when each cycle contains only one element and
in the case when f is a permutation. Further, every coatom is meet-irreducible
in the lattice EA. The coatoms of EA can be obtained directly from coatoms
of the lattice LA, the lattice of all quasiorder lattices of all algebras with the
base set A (see [6]); properties of the lattice LA were studied in [8].

Our aim is to contribute to the characterization of meet-irreducible el-
ements of EA. In what follows, we will investigate two kinds of monounary
algebras (A, f) :

(∗) (A, f) is with short tails (f(x) is cyclic for each x ∈ A),
(∗∗) (A, f) is with small cycles (every cycle of (A, f) contains at most two

elements).

If (A, f) satisfies (∗) or (∗∗), we prove necessary and sufficient conditions
under which Con(A, f) is meet-irreducible (for (∗) see Theorem 3.6; for (∗∗)
see Theorem 5.19).

2. Preliminary

In the following, let A be a fixed finite set. Further, let N := {1, 2, 3, . . . } and
N0 := N ∪ {0}.

For a mapping f : A → A, f(a) denotes the image of the element a ∈ A
in the mapping f , and if n ∈ N then fn denotes the n-fold composition of
f . By convention, f0 denotes the identity mapping idA and f−1(a) = {x ∈
A, f(x) = a}. The mapping f : A → A is called trivial if it is either identity
x 	→ x or the constant mapping x 	→ a. Otherwise it is called nontrivial.

The pair (A, f) is said to be a monounary algebra.
An element x ∈ A is called cyclic if there exists n ∈ N such that

fn(x) = x, otherwise it is called noncyclic. In this case, the set {x, f1(x), f2(x),
. . . , fn−1(x)} is called a cycle of (A, f). Since A is finite, for each a ∈ A there
exists k ∈ N0 such that fk(a) is cyclic. The cycle containing fk(a) will be
denoted C(a).

The set B ⊆ A such that C(x) = C(y) for every x, y ∈ B is called a
component of (A, f). The monounary algebra (A, f) is called connected if it
contains only one component.

Notation 2.1. Let (A, f) be a monounary algebra. We denote Zf (x) = {fk(x);
k = 0, 1, . . . }.
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By length of a cycle, we will understand the number of elements of this
cycle. The cycle containing n elements will be also called n-cycle. Further, the
operation f is called acyclic, if each cycle of (A, f) has length 1.

Definition 2.2. Monounary algebra (A, f) will be called an algebra with small
cycles if each cycle of (A, f) has at most 2 elements.

In [6], the following notations were introduced.

Notation 2.3. Let (A, f) be a monounary algebra. We say that f is of the type
(I) or (II) if the following holds:

(I) f is nontrivial and f2 = f ,
(II) f is nontrivial, f2 is a constant, say 0 and |f−1(0)| ≥ 3.

Figure 1 shows monounary algebras whose operations are of the type (I)
and (II), respectively. Labeled elements are mandatory, all others are optional.

Notation 2.4. Let (A, f) be a monounary algebra. Let f be nontrivial and
acyclic. We say that f satisfies condition (α) or (β) if the following holds:

(α) There exist distinct elements 0, 1, 2, 0′, 1′, 2′ ∈ A such that f(0) = f(1) =
0, f(2) = 1, f(0′) = f(1′) = 0′, f(2′) = 1′.

(β) (A, f) is connected and there exist distinct elements 0, 1, 2, 1′, 2′ ∈ A such
that f(0) = f(1) = f(1′) = 0, f(2) = 1, f(2′) = 1′.

Figure 1. Operations of the type (I) and (II)

Figure 2. Operation satisfying the condition (α) or (β)
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Figure 2 shows monounary algebras whose operations satisfy the condi-
tions (α) or (β), respectively. Again, the labeled elements are mandatory, all
others are optional.

Definition 2.5. If L is lattice, then nonunit element a ∈ L is called meet-
irreducible (shortly ∧-irreducible) if a = b1 ∧ b2 implies a ∈ {b1, b2}. Similarly,
nonzero element a ∈ L is called join-irreducible (∨-irreducible) if a = b1 ∨ b2
implies a ∈ {b1, b2} (see e.g. [9]).

Let us denote the least and the greatest congruence on the set A as
Δ := {(x, x), x ∈ A} and ∇ := A × A respectively. For x, y ∈ A let θf (x, y) be
the smallest congruence on (A, f) such that (x, y) ∈ θf (x, y).

The following Lemma summarizes some properties of operations f, g ∈
AA with Con(A, f) ⊆ Con(A, g), (see [6]).

Lemma 2.6. Let f, g ∈ AA be nontrivial and Con(A, f) ⊆ Con(A, g). Then we
have

(i) ∀x, y ∈ A : (x, y) ∈ κ ∈ Con(A, f) =⇒ (g(x), g(y)) ∈ κ,
in particular we have (g(x), g(y)) ∈ θf (x, y) and θg(x, y) ⊆ θf (x, y).

(ii) Let B be a subalgebra of (A, f). Then either B is also a subalgebra of
(A, g) or g is constant on B, where the constant does not belong to B.

In [6], the following theorem, which describes the ∧-irreducible congru-
ence lattices of monounary algebras with acyclic operations, was proved:

Theorem 2.7. A congruence lattice Con(A, f) with a nontrivial and acyclic
f ∈ AA is ∧-irreducible if and only if f is of type (I) or (II) or satisfies
condition (α) or (β).

Let Eq(A) denote the set of all equivalence relations on a given set A (i.e.
reflexive, symmetric and transitive relations).

Notation 2.8. For κ ∈ Eq(A) consider the corresponding partition A/κ into
equivalence classes. If C1 = {c11, c12, . . . }, C2 = {c21, c22, . . . }, . . . , Ck =
{ck1, ck2, . . . } are the equivalence classes of κ with at least two elements, then
we use the notation

κ = [c11, c12, . . . ] [c21, c22, . . . ] . . . [ck1, ck2, . . . ] or

κ = [C1] [C2] . . . [Ck].

3. Short tails

If f is a permutation on A then we also say that (A, f) is a permutation. In
[6], it was described when the congruence lattice of (A, f) is ∧-irreducible in
the case that (A, f) is a permutation.

Theorem 3.1. A congruence lattice Con(A, f), |A| ≥ 3 with a nontrivial per-
mutation f is ∧-irreducible if and only if f is of prime power order pm with
at least two cycles of length pm.
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Definition 3.2. Let (Ā, f̄) be a monounary algebra. Then (Ā, f̄) is said to be
a permutation-algebra with short tails if there is a subalgebra (A, f) of (Ā, f̄)
such that (A, f) is a permutation and f̄(x) ∈ A for each x ∈ Ā. In this case
(A, f) is called a permutation-algebra corresponding to (Ā, f̄).

Notice that to each x ∈ Ā there is a unique element in A, we denote it x′,
with f̄(x) = f̄(x′) = f(x′).

Lemma 3.3. Let (Ā, f̄) be a permutation-algebra with short tails. If the permu-
tation-algebra (A, f) corresponding to (Ā, f̄) fails to be a transposition and
Con(A, f) is ∧-reducible in EA then Con(Ā, f̄) is ∧-reducible in EĀ.

Proof. (A) Let the order of the permutation f be not a prime power, say
n = rs with gcd(r, s) = 1. Put gr = fr, gs = fs. In view of the proof of
Theorem 4.2 of [8] we obtain that Con(A, f) is ∧-reducible,

Con(A, f) �= Con(A, gr),Con(A, f) �= Con(A, gs),

Con(A, f) = Con(A, gr) ∩ Con(A, gs).

Now define operations on Ā by setting ḡr(x) = gr(x′), ḡs(x) = gs(x′) for
x ∈ Ā. Then (A, gr) is the permutation-algebra corresponding to (Ā, ḡr) and
(A, gs) is the permutation-algebra corresponding to (Ā, ḡs). It is clear to see
that Con(Ā, f̄) � Con(Ā, ḡr), Con(Ā, f̄) � Con(Ā, ḡs). We will show that
Con(Ā, f̄) = Con(Ā, ḡr) ∩ Con(Ā, ḡs).

Let x, y ∈ Ā. Since f is a permutation,

θf̄ (x, y) = [x, y] ∨ θf̄ (f̄(x), f̄(y)) = [x, y] ∨ θf̄ (f̄(x′), f̄(y′))

= [x, y] ∨ θf (f(x′), f(y′)) ∨ ΔĀ = [x, y] ∨ θf (x′, y′) ∨ ΔĀ.

The elements x′, y′ belong to A, hence θf (x′, y′) = θgr (x
′, y′)∨θgs(x

′, y′), which
yields

[x, y] ∨ θf (x′, y′) ∨ ΔĀ = [x, y] ∨ θgr (x
′, y′) ∨ θgs(x

′, y′) ∨ ΔĀ

= [x, y] ∨ θgr (gr(x
′), gr(y′)) ∨ θgs(gs(x

′), gs(y′)) ∨ ΔĀ

= [x, y] ∨ θḡr (ḡr(x
′), ḡr(y′)) ∨ θḡs(ḡs(x

′), ḡs(y′))

= θgr (x
′, y′) ∨ θgs(x

′, y′),

hence θf̄ (x, y) = θḡr (x, y) ∨ θḡs(x, y), and therefore Con(Ā, f̄) = Con(Ā, ḡr) ∧
Con(Ā, ḡs).

(B) It remains to consider the case when the order of f is a prime power
pm. Since Con(A, f) is ∧-reducible, there is exactly one cycle (C0) of length pm,
for simplicity let (C0) = (0, 1, . . . , pm − 1). We can exclude the case p = 2 and
m = 1 since then f is a transposition; thus pm > 2. In the proof of Theorem
4.2 of [8] there were indicated two unary operations g1 and g2 where

g1(x) =

{
0 if x = pm−1 − 1,

f(x) otherwise,

g2(x) =

{
1 if x = pm−1,

f(x) otherwise.
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Further, it was proved that

Con(A, f) �= Con(A, g1), Con(A, f) �= Con(A, g2),

Con(A, f) = Con(A, g1) ∩ Con(A, g2).

Similarly as in the case (A), let us define operations on Ā by setting ḡ1(x) =
g1(x′), ḡ2(x) = g2(x′) for x ∈ Ā. Let x, y ∈ Ā. Then

θf̄ (x, y) = [x, y] ∨ θf̄ (f̄(x), f̄(y)) = [x, y] ∨ θf̄ (f̄(x′), f̄(y′))

= [x, y] ∨ θf (f(x′), f(y′)) ∨ ΔĀ

⊇ [x, y] ∨ θg1(g1(x
′), g1(y′)) ∨ θg2(g2(x

′), g2(y′)) ∨ ΔĀ.

To finish the proof it remains to show the converse inclusion, i.e, that

θf (f(x′), f(y′)) ⊆ θg1(g1(x
′), g1(y′)) ∨ θg2(g2(x

′), g2(y′)),

which is equivalent to

(f(x′), f(y′)) ∈ θg1(g1(x
′), g1(y′)) ∨ θg2(g2(x

′), g2(y′))

The congruence of the right side will be denoted by α. Clearly, we can
assume that (f(x′), f(y′)) �= (g1(x′), g1(y′)); without loss of generality let
f(x′) �= g1(x′). Then x′ = pm−1 − 1, g1(x′) = 0, g2(x′) = f(x′) = pm−1. Next,
we can assume that (f(x′), f(y′)) �= (g2(x′), g2(y′)). Since f(x′) = g2(x′), it
yields y′ = pm−1, g2(y′) = 1, g2(y′) = f(y′) = pm−1 + 1. This follows

(f(x′), f(y′)) = (pm−1, pm−1 + 1),

(0, pm−1 + 1) = (g1(x′), g1(y′)) ∈ α,

(pm−1, 1) = (g2(x′), g2(y′)) ∈ α.

Then

(g(p−1)·pm−1

1 (0), g(p−1)·pm−1

1 (pm−1 + 1)) ∈ α.

Since (pm−1 + 1) + ((p − 1) · pm−1 − 2) = pm − 1 holds, we obtain

g
(p−1)·pm−1

1 (pm−1 + 1) = g21(g
(p−1)·pm−1−2
1 (pm−1 + 1))

= g21((p
m−1+1)+((p −1) · pm−1 − 2)) = g21(p

m −1)=1.

Since g
(p−1)·pm−1

1 (0) = 0, it follows that (0, 1) ∈ α. Using transitivity

(pm−1) α 1 α 0 α (pm−1 + 1),

and hence (f(x′), f(y′)) ∈ α. �

Lemma 3.4. Let (Ā, f̄) be a permutation-algebra with short tails and let the
permutation-algebra (A, f) corresponding to (Ā, f̄) be a transposition, |A| > 2.
Then Con(Ā, f̄) is ∧-irreducible in EĀ if and only if Con(A, f) is ∧-irreducible
in EA.

Proof. By the assumption, there are elements 0, 1 ∈ A such that f(0) = 1,
f(1) = 0 and f(x) = x for x ∈ A\{0, 1}.
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Let |A| = 2. Obviously, Con(A, f) is ∧-irreducible in EA. Suppose that
f̄(x) = 0 for each x ∈ Ā\A. If g is a nontrivial operation on Ā with Con(Ā, f̄) �

Con(Ā, g), then there is a ∈ Ā\A such that

g(x) =

{
1 if x = a,

a otherwise,

which yields that Con(Ā, f̄) is ∧-irreducible in EĀ. If |f̄−1(0)| > 1 and |f̄−1(1)|
> 1, then no nontrivial operation g on Ā with Con(Ā, f̄) � Con(Ā, g) exists,
thus Con(Ā, f̄) is ∧-irreducible as well.

Let |A| ≥ 3. Then Con(A, f) is ∧-reducible in EA. Suppose that Ā �= A.
We define three operations g1, g2, g3 on Ā by putting

g1(x) =

⎧⎪⎨
⎪⎩

0 if f̄(x) = 1,
1 if f̄(x) = 0,
f̄(x) otherwise,

g2(x) =

{
0 if f̄(x) = 1,
1 otherwise,

g3(x) =

{
1 if f̄(x) = 0,
0 otherwise.

Obviously, the operations are nontrivial and it is easy to show that Con(Ā, f̄)
� Con(Ā, gi), i = 1, 2, 3. We need to prove θf̄ (x, y) = θg1(x, y) ∨ θg2(x, y) ∨
θg3(x, y) for each x, y ∈ Ā. Let α be the congruence on the right side. For
simplicity, we name an element x ∈ Ā\{0, 1} by: a if f̄(x) = 0; b if f̄(x) = 1;
u if f̄(x) = x; v if x �= f̄(x) /∈ {0, 1}. Then (x, y) ∈ {(0, u), (a, 0), (a, 1), (a, b)}
implies θf̄ (x, y) = θg2(x, y). Since θf̄ (0, v) = [0, 1, u, v] for u = f̄(v) and

(0, v) ∈ α =⇒ (0, u) = (g1(0), g1(v)) ∈ α =⇒ (0, 1) = (g2(0), g2(u)) ∈ α,

we get θf̄ (0, v) = [0, 1, u, v] = θg1(0, v) ∨ θg2(0, v). Analogously, θf̄ (a, u) =
[0, 1, a, u],

(a, u) ∈ α =⇒ (1, u) = (g1(a), g1(u)) ∈ α =⇒ (1, 0) = (g3(1), g3(u)) ∈ α.

Further, θf̄ (a, v) = [a, v][0, 1, u] for u = f̄(v),

(a, v) ∈ α =⇒ (1, u) =(g1(a), g1(v)) ∈ α,

(a, v) ∈ α =⇒ (1, 0) =(g3(a), g3(v)) ∈ α.

This completes the proof: Con(Ā, f̄) is ∧-reducible in EĀ. �

Lemma 3.5. Let (Ā, f̄) be a permutation-algebra with short tails and let (A, f)
be the permutation-algebra corresponding to (Ā, f̄) with f nontrivial. If
Con(A, f) is ∧-irreducible in EA then Con(Ā, f̄) is ∧-irreducible in EĀ.

Proof. Suppose that Con(A, f) is ∧-irreducible in EA and, by the way of con-
tradiction, assume that Con(Ā, f̄) is ∧-reducible in EĀ. There exist nontrivial
operations hi, i ∈ I such that
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Con(Ā, f̄) =
⋂
i∈I

Con(Ā, hi), (∀i ∈ I)Con(Ā, f̄) � Con(Ā, hi).

First assume that there is i ∈ I such that A fails to be a subalgebra of
(Ā, hi). Then there are a ∈ A, b ∈ Ā\A with hi(a) = b. Also, Ā\{b} is a
subalgebra of (Ā, f̄) and it is not a subalgebra of (Ā, hi). According to Lemma
2.6, hi(x) = b for each x ∈ Ā\{b}. The operation hi is nontrivial and

(hi(b), b)) = (hi(b), hi(b′)) ∈ θhi
(b, b′) ⊆ θf̄ (b, b′) = [b, b′],

hence hi(b) = b′. If there is c ∈ Ā\(A ∪ {b}), then

(b, b′) = (hi(c), hi(b)) ∈ θhi
(c, b) ⊆ θf̄ (c, b)

= [c, b] ∨ θf̄ (f̄(c), f̄(b)) = [c, b] ∨ θf̄ (c′, b′) = [c, b][c′, b′, . . . ] . . .

which is a contradiction. Therefore Ā\A = {b}. This implies that A is a sub-
algebra of (Ā, hj) for each j �= i and we may denote gj(x) = hj(x) for x ∈ A.
Let x, y ∈ A. Then

θf (x, y) ∨ ΔĀ = θf̄ (x, y) =
∨
j∈I

θhj
(x, y) = θhi

(x, y) ∨
∨

j∈I\{i}
θhj

(x, y)

= [x, y] ∨
∨

j∈I\{i}
θhj

(x, y) =
∨

j∈I\{i}
θhj

(x, y)

=
∨

j∈I\{i}
θgj (x, y) ∨ ΔĀ,

which implies θf (x, y) =
∨

j∈I\{i} θgj (x, y).
Now let J be the set of all j ∈ I such that A is a subalgebra of (Ā, hj)

and gj is nontrivial. Then

θf (x, y) =
∨
j∈J

θgj (x, y).

According to the assumption that Con(A, f) is ∧-irreducible in EA, there exists
j ∈ J such that Con(A, f) = Con(A, gj). In the paper [5] there were studied
pairs of monounary algebras with coinciding congruence lattices. We will use
the result that if one of the operations is a permutation, then so is the other
(see [5], Theorem 6.10). This implies that if Con(A, gj) = Con(A, f), then gj
is a permutation and for a, b ∈ Ā,

θf̄ (a, b) = [a, b] ∨ θf̄ (f̄(a), f̄(b)) = [a, b] ∨ θf̄ (f̄(a′), f̄(b′))

= [a, b] ∨ θf (f(a′), f(b′)) ∨ ΔĀ = [a, b] ∨ θf (a′, b′) ∨ ΔĀ

= [a, b] ∨ θgj (a
′, b′) ∨ ΔĀ = [a, b] ∨ θgj (gj(a

′), gj(b′)) ∨ ΔĀ

= [a, b] ∨ θgj (gj(a
′), gj(b′)) ∨ ΔĀ = [a, b] ∨ θhj

(hj(a′), hj(b′))

= [a, b] ∨ θhj
(hj(a), hj(b)) = θhj

(a, b).

Hence Con(Ā, f̄) = Con(Ā, hj) and this is a contradiction. �

In the following theorem, we assume that Ā\A �= ∅. Then in view of the
Lemmas 3.3, 3.4 and 3.5 we obtain:
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Theorem 3.6. Let (Ā, f̄) be a permutation-algebra with short tails and let
(A, f) be the permutation-algebra corresponding to (Ā, f̄). Then Con(Ā, f̄) is
∧-irreducible in EĀ if and only if either |A| = 2 or |A| > 2 and Con(A, f) is
∧-irreducible in EA.

4. Small cycles: ∧-reducible cases

In the following sections, we will consider monounary algebras with small cy-
cles.

Lemma 4.1. Suppose that (A, f) is a monounary algebra, A = K ∪ L such
that L �= ∅ and (L, f�L) is a permutation-algebra with short tails. If K is a
component of (A, f) and there are distinct elements 0, 1, 2 ∈ K with f(1) =
f(0) = 0, f(2) = 1, then Con(A, f) is ∧-reducible.

Proof. We define the following operations on A:

g1(x) =

{
f(x) if x ∈ K,

0 otherwise,

g2(x) =

{
0 if x ∈ K,

f(x) otherwise.

Clearly, g1, g2 are nontrivial and Con(A, f) �= Con(A, g1),Con(A, f) �=
Con(A, g2). To prove that Con(A, f) = Con(A, g1)∧Con(A, g2), we prove that
θf (x, y) = θg1(x, y) ∨ θg2(x, y) for every x, y ∈ A.

First, we show that θg1(x, y), θg2(x, y) ⊆ θf (x, y) for every x, y ∈ A.
Clearly, it is sufficient to consider the case when x ∈ K, y ∈ L. Then

θg1(x, y) = [x, y][0, f(x), f2(x), f3(x), . . . ],

θg2(x, y) = [x, y][0, f(y), f2(y), f3(y), . . . ].

Since

θf (x, y) = [x, y][f(x), f2(x), . . . , f(y), f2(y), . . . ],

it is clear to see that θg1(x, y), θg2(x, y) ⊆ θf (x, y). Therefore θg1(x, y) ∨
θg2(x, y) ⊆ θf (x, y) for every x, y ∈ A. Now, to prove

θf (x, y) = [x, y] ∨ θf (f(x), f(y)) ⊆ θg1(x, y) ∨ θg2(x, y)

= [x, y] ∨ θg1(g1(x), g1(y)) ∨ θg2(g2(x), g2(y)),

it is sufficient to show that

(f(x), f(y)) ∈ θg1(g1(x), g1(y)) ∨ θg2(g2(x), g2(y)).

The congruence on the right side will be denoted by α. If x, y ∈ K or x, y ∈ L,
then (f(x), f(y)) ∈ α holds trivially. If x ∈ K, y ∈ L then g1(x) = f(x), g1(y) =
0, g2(x) = 0, g2(y) = f(y). This implies that (f(x), 0) = (g1(x), g1(y)) ∈ α and
(0, f(y)) = (g2(x), g2(y)) ∈ α, hence by transitivity (f(x), f(y)) ∈ α. �
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Lemma 4.2. Let (A, f) be a monounary algebra with small cycles such that there
are distinct elements 0, 1, 2, 0′, 1′, 2′ with f(0) = f(1) = 0, f(2) = 1, f(0′) =
f(1′) = 0′, f(2′) = 1′. Further, suppose that (A, f) contains a single two-
element cycle {a, b} and that cycle {a, b} has only short tails. Then Con(A, f)
is ∧-reducible.

Proof. We define the following operations on A:

g1(x) =

⎧⎪⎨
⎪⎩

a if x ∈ f−1(b),
b if x ∈ f−1(a),
f(x) otherwise,

g2(x) =

{
a if x ∈ f−1(b),
f(x) otherwise,

g3(x) =

{
b if x ∈ f−1(a),
f(x) otherwise.

Clearly, g1, g2, g3 are nontrivial and Con(A, f) �= Con(A, gi) for i ∈
{1, 2, 3}. First, we show that for each x, y ∈ A and for every i ∈ {1, 2, 3}
is

θgi(x, y) ⊆ θf (x, y).

Denote the set of all elements of the component containing {a, b} by K. If
either x, y /∈ K or x, y ∈ K, θgi(x, y) ⊆ θf (x, y) holds trivially for every
i ∈ {1, 2, 3, }.

Let x ∈ {a, b}, y /∈ K. Then for each i ∈ {1, 2, 3}
θgi(x, y) = [x, y] ∨ [{gi(x)} ∪ Zf (f(y))] ⊆ θf (x, y) = [Zf (y) ∪ {a, b}].

Similarly, if x ∈ f−1(a) ∪ f−1(b), y /∈ K, then for each i ∈ {1, 2, 3}
θgi(x, y) = [x, y][{gi(x)} ∪ Zf (f(y))] ⊆ θf (x, y) = [x, y][Zf (f(y)) ∪ {a, b}].

To prove that θf (x, y) = θg1(x, y) ∨ θg2(x, y) ∨ θg3(x, y), for each x, y ∈ A, it
remains to show that

θf (x, y) ⊆ θg1(x, y) ∨ θg2(x, y) ∨ θg3(x, y),

which is equivalent to

(f(x), f(y)) ∈ θg1(g1(x), g1(y)) ∨ θg2(g2(x), g2(y)) ∨ θg3(g3(x), g3(y)) = α.

We can assume that x �= y, f(x) �= f(y) and (f(x), f(y)) �= (g2(x), g2(y)).
Without loss of generality, let f(x) �= g2(x). Then x ∈ f−1(b), f(x) = b.
Similarly, assume that (b, f(y)) = (f(x), f(y)) �= (g3(x), g3(y)) = (b, g3(y)).
This yields f(y) �= g3(y), hence y ∈ f−1(a) and f(y) = a. It follows that
α = [a, b] ∨ [a, a] ∨ [b, b] = [a, b] and (f(x), f(y)) = (b, a) ∈ α. �
Lemma 4.3. Let (A, f) be a monounary algebra with A being the union of the
disjoint sets {0, 1, a, b}, L and M such that f(0) = 1, f(1) = f(a) = 0, f(b) = a;
for every l ∈ L either f(l) ∈ {0, 1} or a ∈ Zf (l); and (M,f � M) is a
permutation-algebra with short tails whose cycles have length 1 or 2. Then
Con(A, f) is ∧-reducible.
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Proof. We define the following operations on A

g1(x) =

{
1 if f(x) = a,

f(x) otherwise,

g2(x) =

{
f(x) if f(x) = a,

1 otherwise.

Let us denote set {l ∈ L, a ∈ Zf (l)} as B and set L\B as L′.
Obviously, g1, g2 are nontrivial and Con(A, f) �= Con(A, g1),Con(A, g2).
To we show that θg1(x, y) ⊆ θf (x, y) for each x, y ∈ A, we consider the

following four cases:
Case 1: If x, y ∈ {0, 1, a} ∪ L′ ∪ M , this holds trivially.
Case 2: Let x, y ∈ {0, 1, a, b} ∪ B. First, let x, y �= a and without loss of
generality, let x ∈ Zf (y). If df (y, x) ≡ 1 (mod 2) then

θg1(x, y) = [Zg1(y)] ⊆ [Zf (y)] = θf (x, y).

If df (y, x) ≡ 0 (mod 2) then

θg1(x, y) = [x, y, f2(x), f2(y), ...] ∨ [f(x), f(y), f3(x), f3(y), ...] ⊆ θf (x, y).

Similarly, if x /∈ Zg1(y) and y /∈ Zg1(x), it is also easy to see that θg1(x, y) ⊆
θf (x, y). Now, let x = a. If either df (y, a) ≡ 0 mod (2) or y = 0, then

θg1(x, y) = [a, y] ∨ [0, f(y), f3(y), ...] ∨ [1, f2(y), f4(y), ...] ⊆ θf (x, y).

Otherwise, θg1(x, y) = [Zg1(y) ∪ {a}] ⊆ θf (x, y).
Case 3: Let x ∈ B ∪ {b}, y ∈ L′. If f(x) = a then trivially θg1(x, y) ⊆ θf (x, y).
Otherwise

θg1(x, y) = [x, y] ∨ θg1(g1(x), g1(y)) = [x, y] ∨ θg1(f(x), f(y)).

Since f(x), f(y) ∈ {0, 1, b} ∪ B, we get

θg1(x, y) = [x, y] ∨ θg1(f(x), f(y)) ⊆ [x, y] ∨ θf (f(x), f(y)) = θf (x, y).

Case 4: Let x ∈ B ∪{b}, y ∈ M . If f(x) = a then trivially θg1(x, y) ⊆ θf (x, y).
Otherwise

θg1(x, y) = [x, y] ∨ θg1(g1(x), g1(y)) = [x, y] ∨ θg1(f(x), f(y))

⊆ [x, y] ∨ θf (f(x), f(y)) = θf (x, y).

On the other hand, θg2(x, y) ⊆ θf (x, y) holds trivially for each x, y ∈ A.
It remains to show that θf (x, y) ⊆ θg1(x, y) ∨ θg2(x, y). This is proved

similarly like in the proof of Lemma 4.2. �

Lemma 4.4. Let (A, f) be a monounary algebra with small cycles. Let it contain
a component K such that there are distinct elements 0, 1, a, b, c, d with f(0) =
1, f(1) = f(a) = f(c) = 0, f(b) = a, f(d) = c and for each x ∈ K either
f(x) ∈ {0, 1} or f2(x) = 0. Moreover, all other components of (A, f) contain
only short tails. Then Con(A, f) is ∧-reducible.
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Proof. Let us denote the set of elements x of A such that f(x) �= 1 and
f2(x) = 0 as K ′. We define the following operations on A:

g1(x) =

{
1 if x ∈ K ′,
f(x) otherwise,

g2(x) =

{
f(x) if x ∈ K ′,
1 otherwise.

Obviously, g1, g2 are nontrivial and Con(A, f) �= Con(A, g1),Con(A, g2).
If x, y ∈ A\K ′ then clearly θg1(x, y) = θf (x, y). Let x ∈ K ′. If y ∈ K

then clearly θg1(x, y) ⊆ θf (x, y). If y ∈ A\K then

θg1(x, y) = [x, y][1, f(y), f3(y), . . . ][0, f2(y), f4(y), . . . ] ⊆
θf (x, y) = [x, y][a, 1, f(y), f3(y), . . . ][0, f2(y), f4(y), . . . ].

Moreover, θg2(x, y) ⊆ θf (x, y) holds trivially for each x, y ∈ A.
In the view of the proof of Lemma 4.2, θf (x, y) ⊆ θg1(x, y) ∨ θg2(x, y)

holds for each x, y ∈ A. Then Con(A, f) = Con(A, g1) ∧ Con(A, g2), hence
Con(A, f) is ∧-reducible. �

5. Small cycles: ∧-irreducible cases

Now, we present the main result of this part - the characterization of the
∧-irreducibility of the congruence lattices of monounary algebras with small
cycles.

Lemma 5.1. Let (A, f) be a monounary algebra and let (A, g) be a monounary
algebra such that Con(A, f) ⊆ Con(A, g). Let there be distinct elements
0, 1, 2, 0′, 1′, 2′ ∈ A with f(1) = f(0) = 0, f(2) = 1 and f(0′) �= 0, f(1′) = 0′,
f(2′) = 1′ such that 0′ is cyclic and 1′ is noncyclic. Let there be an equivalence
(with a simple nontrivial equivalence class) [0, 2] /∈ Con(A, g). Then

(i) g and f agree on the set {0, 1, 2, 1′, 2′},
(ii) g(x) ∈ Zf (f(x)) for each x ∈ A,
(iii) if x ∈ A and f(x) is noncyclic, then g(x) = f(x).

Proof. Put D = C(0′). The assumption yields that {0, 1, 2} is a subalgebra of
(A, g), otherwise g would be constant on {0, 1, 2} and [0, 2] ∈ Con(A, g). Next
we show that {0, 1} is a subalgebra of (A, g). Suppose that this fails to hold.
Then g(0) = g(1) = 2 and g(2) ∈ {0, 1, 2}. Since [0, 2] /∈ Con(A, g), g(2) = 1.
Then for a subalgebra D ∪ {0, 1, 1′} of (A, f) we get that g is constant on this
set, hence g(1′) = 2 and thus

(1, 2) = (g(2), g(1)′) ∈ θf (2, 1′) = [2, 1′][{1, 0} ∪ D],

which is a contradiction. Now, if g(0) �= 0, then the previous result implies
g(0) = 1. Because 1 does not belong to a subalgebra D ∪ {0, 1′} of (A, f), g is
constant on this set, thus g(2′) = 1. From this it follows
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(g(2), 1) = (g(2), g(2′)) ∈ θf (2, 2′) = [2, 2′][1, 1′][{0} ∪ D],

(g(2), 1) = (g(2), g(0)) ∈ θf (2, 0) = [0, 1, 2]

thus g(2) = 1, which contradicts [0, 2] /∈ Con(A, g). Therefore g(0) = 0. Again
using [0, 2] /∈ Con(A, g), g(2) /∈ {0, 2}. i.e., g(2) = 1. From

(1, g(2′)) = (g(2), g(2′)) ∈ θf (2, 2′) = [2, 2′][1, 1′][{0} ∪ D],

(0, g(2′)) = (g(0), g(2′)) ∈ θf (0, 2′) = [{0, 1′, 2′} ∪ D]

it follows that g(2′) = 1′. Then

(g(1), 1′) = (g(1), g(2′)) ∈ θf (1, 2′) = [1, 2′][{0, 1′} ∪ D],

(g(1), 0) = (g(1), g(0)) ∈ θf (1, 0) = [1, 0]

implies that g(1) = 0. Further, since g(2′) ∈ D ∪ {1′, 2′} which is a subalgebra
of (A, f), the set D ∪ {1′, 2′} is a subalgebra of (A, g). Next, from

(0, g(1′)) = (g(1), g(1′)) ∈ θf (1, 1′) = [1, 1′][{0} ∪ D]

we get g(1′) ∈ {0} ∪ D, thus g(1′) = 0′. Hence, we have proved that g and f
agree on the set {0, 1, 2, 1′, 2′}.

Since

(g(0′), 0) = (g(0′), g(0)) ∈ θf (0′, 0) = [{0} ∪ D],

(g(0′), 0′) = (g(0′), g(1′)) ∈ θf (0′, 1′) = [{1′} ∪ D],

g(0′) ∈ D. Let x ∈ A. If f(x) = x, then

(g(x), 0) = (g(x), g(0)) ∈ θf (x, 0) = [x, 0],
(g(x), g(0′)) ∈ θf (x, 0′) = [{x} ∪ D],

thus g(x) = x = f(x). If x belongs to a two-element cycle {x, x′}, then

(g(x), 0) = (g(x), g(0)) ∈ θf (x, 0) = [x, x′, 0],

and since (0, g(0′)) /∈ θf (x, 0′), we get that g(x) ∈ {x, x′} = Zf (f(x)). Now
suppose that x is a noncyclic element. Then

(g(x), 0) = (g(x), g(1)) ∈ θf (x, 1) = [x, 1][{0} ∪ Zf (f(x))],

thus g(x) = 0 or g(x) ∈ Zf (f(x)). If 0 /∈ Zf (x), then (0, 0′) /∈ θf (x, 1′) implies
g(x) ∈ Zf (f(x)). If 0 ∈ Zf (x), then

(g(x), 0) = (g(x), g(1)) ∈ θf (x, 1) = [x, 1][{0} ∪ Zf (f(x))],

implies g(x) ∈ Zf (f(x)), which completes the proof of (ii).
Finally, suppose that f(x) is noncyclic. If x = 1 or f(x) = 1, then

according to (i), g(x) = f(x). Otherwise from (ii) and

(g(x), 1′) = (g(x), g(2′)) ∈ θf (x, 2′) = [x, 2′][f(x), 1′][f2(x), 0′] . . . ,

it follows that g(x) = f(x). �

Lemma 5.2. Let the assumption of the above lemma be satisfied and let f(0′) =
0′′ �= 0′, f(0′′) = 0′. Then g(x) = f(x) for each x ∈ A.
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Proof. From

(0′, g(0′′)) = (g(1′), g(0′′)) ∈ θf (1′, 0′′) = [1′, 0′′],

we get g(0′′) = 0′ = f(0′′). Next, g(0′) ∈ Zf (f(0′)) = {0′′, 0′}, thus

(1′, g(0′)) = (g(2′), g(0′)) ∈ θf (2′, 0′) = [2′, 0′][1′, 0′′]

implies g(0′) = 0′′ = f(0′).
Let x ∈ A\{0, 1, 2, 0′, 1′, 2′, 0′′}. By Lemma 5.1 (ii) and (iii), if f(x) = x,

f(x) is noncyclic or f2(x) = f(x), then g(x) = f(x). Otherwise let f(x) = y �=
x. If f(y) = x, then

(g(x), 0′′) = (g(x), g(0′)) ∈ θf (x, 0′) = [x, 0′][y, 0′′],

hence g(x) = y = f(x). Now let there be z ∈ A\{x, y} with f(y) = z = f2(z).
Since {y, z} is a two-element cycle, we have already shown that g(z) = y, thus

(g(x), y) = (g(x), g(z)) ∈ θf (x, z) = [x, z]

implies g(x) = y = f(x) as well. �

Theorem 5.3. Let (A, f) be a monounary algebra with small cycles and such
that there are distinct elements 0, 1, 2, 0′, 1′, 2′ with f(1) = f(0) = 0, f(2) = 1,
f(0′) �= 0, f(1′) = 0′, f(2′) = 1′. Let 0′ be cyclic and 1′ be noncyclic. If
(a) (A, f) is acyclic, or
(b) f(0′) = 0′′ �= 0′, f(0′′) = 0′, or
(c) (A, f) contains at least two 2-element cycles,

then Con(A, f) is ∧-irreducible.

Proof. (a) From Lemma 5.1 (see also [6] Theorem 6.4) it follows that if (A, f)
is acyclic, then Con(A, f) is ∧-irreducible.

(b) Suppose that there exists 0′′ ∈ A with f(0′) = 0′′ �= 0′. Since (A, f)
possesses only small cycles, f(0′′) = 0′. From Lemma 5.2 we conclude that

[0, 2] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.

Since θf (0, 2) = [0, 1, 2] we have [0, 2] /∈ Con(A, f) and the above intersection
cannot be equal to Con(A, f). Therefore Con(A, f) is ∧-irreducible.

(c) Suppose that f(0′) = 0′ and that there exist two distinct two-element
cycles {a, b}, {u, v}.

Let (A, g) be a monounary algebra with Con(A, f) ⊆ Con(A, g). The
assumption of Lemma 5.1 is satisfied, thus by (i) and (ii) of it, g = f on the
set K of the elements of all components with one-element cycles; and by (iii),
if f(x) is noncyclic then g(x) = f(x). Also, g(x) ∈ Zf (f(x)) for each x ∈ A.

Moreover,

(g(a), g(v)) ∈ θf (a, v) = [a, v][b, u],

(g(a), g(u)) ∈ θf (a, u) = [a, u][b, v],

which implies that either g = f on the set {a, b, u, v} or g is identity on
{a, b, u, v}.

If g = f on the set {a, b, u, v}, then clearly g = f on A.
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If g is identity on {a, b, u, v}, then [a, 0] ∈ Con(A, g). Therefore

[a, 0] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.

However, θf (a, 0) = [a, b, 0], which implies that [a, 0] /∈ Con(A, f) and the
above intersection cannot be equal to Con(A, f). Therefore Con(A, f) is ∧-
irreducible. �

It remains to examine ∧-irreducibility of Con(A, f) in the case when
(A, f) contains at least one two-element cycle and each one-element cycle has
only short tails.

Lemma 5.4. Let (A, f) be a monounary algebra such that there are distinct
elements 0, 1, a, d, b with f(0) = 1, f(1) = f(a) = f(d) = 0, f(b) = a and let
Con(A, f) ⊆ Con(A, g). Then one of the following conditions is satisfied:
(1) g is an identity on the set {0, 1, a, b, d}
(2) g is a constant on {0, 1, a, b, d}
(3) g is equal to f on {0, 1, a, b, d}
(4) g is equal to f on {0, 1, a, d} and g(b) = 1,
(5) g(1) = g(a) = g(d) = 1, g(0) = g(b) = 0,
(6) g is constant on the set {0, 1, a, d}, the constant is 1 and g(b) = a,
(7) g is constant on the set {0, 1, a, d}, the constant is a and g(b) = 1.

Proof. Let the assumption be valid. According to

(g(0), g(1)) ∈ θf (0, 1) = [0, 1],

(g(a), g(1)) ∈ θf (a, 1) = [a, 1],

the following cases can occur:
(a) g is equal to f on the set {0, 1, a},
(b) g is identity on {0, 1, a},
(c) g is constant on {0, 1, a}
(d) g(0) = 0, g(1) = g(a) = 1,
(e) g(0) = g(1) = 1, g(a) = a.

Then according to

(g(d), g(1)) ∈ θf (d, 1) = [d, 1],

(g(a), g(d)) ∈ θf (a, d) = [a, d],

(g(b), g(0)) ∈ θf (b, 0) = [b, 0][a, 1],

(g(b), g(d)) ∈ θf (b, d) = [b, d][a, 0, 1],

if a) holds then g(d) = 0, g(b) ∈ {a, 1}, hence (3) or (4) is satisfied. If b)
holds then g(d) = d, g(b) = b, hence (1) is satisfied. In the case c), either
g(d), g(b) both equal the constant or the constant is 1 and g(d) = 1, g(b) = a
or the constant is a and g(d) = a, g(b) = 1. So the case c) implies that either
(2), (6) or (7) is satisfied. If d) holds then g(d) = 1, g(b) = 0, hence (5) is
satisfied. Finally, if e) holds then g(d) = d and g(b) = b which yields (b, 1) =
(g(b), g(0)) ∈ θf (b, 0) = [b, 0][a, 1], a contradiction. �
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Lemma 5.5. Let (A, f) be a monounary algebra such that there are distinct
elements 0, 1, a, b, d with f(0) = f(d) = 1, f(1) = f(a) = 0, f(b) = a and let
Con(A, f) ⊆ Con(A, g). Then one of the following conditions is satisfied:
(1) g is an identity on the set {0, 1, a, b, d}
(2) g is a constant on {0, 1, a, b, d}
(3) g is equal to f on {0, 1, a, b, d}
(4) g is equal to f on {0, 1, a, d} and g(b) = 1,
(5) g(0) = g(b) = g(d) = 0, g(1) = g(a) = 1,
(6) g is constant on the set {0, 1, a, d}, the constant is 1 and g(b) = a,
(7) g is constant on the set {0, 1, a, d}, the constant is a and g(b) = 1.

Proof. Let the assumptions be valid. According to proof of Lemma 5.4, cases
a) – e) may occur. Moreover

(g(0), g(d)) ∈ θf (0, d) = [0, d],

(g(0), g(b)) ∈ θf (0, b) = [0, b][1, a],

(g(a), g(d)) ∈ θf (a, d) = [a, d][0, 1],

(g(b), g(d)) ∈ θf (b, d) = [b, d][a, 1].

Then similarly to proof of the previous Lemma, we get that the conditions
(1)–(7) are satisfied and that no other case may occur. �

In the following Lemmas 5.6–5.10 we will assume that:
• each one-element cycle has only short tails,
• there are distinct elements 0, 1, a, b, 0′, 1′ ∈ A such that f(0) = 1, f(a) =

f(1) = 0, f(b) = a, f(0′) = 1′, f(1′) = 0′.

Lemma 5.6. Let (A, f) be a monounary algebra. Suppose that Con(A, f) ⊆
Con(A, g) and ρ = [0, 1][a, b] /∈ Con(A, g), π = [a, 0′] /∈ Con(A, g). Then one
of the following conditions is satisfied:
(1) g is equal to f on the set {0, 1, 0′, 1′, a, b},
(2) g(a) = 1 and g(x) = a, x ∈ {0, 1, 0′, 1′, b},
(3) g(a) = a and g(x) = 1, x ∈ {0, 1, 0′, 1′, b},
(4) g is identity on the set {0, 1, 0′, 1′, b} and g(a) = 1.

Proof. Let the assumption be valid. If {0, 1, 0′, 1′} fails to be a subalgebra of
(A, g), then g is constant on the set {0, 1, 0′, 1′} (the constant, say z, does not
belong to {0, 1, 0′, 1′}). From

(g(a), z) = (g(a), g(1)) ∈ θf (a, 1) = [a, 1],

it follows that g(a) = z or g(a) = 1, z = a. From

(g(b), z) = (g(b), g(0)) ∈ θf (b, 0) = [b, 0][a, 1]

it follows that g(b) = z or g(b) = 0, z = b or g(b) = 1, z = a. Moreover, if
g(a) = g(b) then ρ ∈ Con(A, g), a contradiction. Hence only the following
cases may occur:
(a) z = b, g(a) = z, g(b) = 0,
(b) z = a, g(a) = z, g(b) = 1,
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(c) z = a, g(a) = 1, g(b) = z.

In the cases (a) or (b) we get π ∈ Con(A, g), a contradiction. Hence (a), (b)
cannot occur. If (c) holds, then (2) is valid.

Otherwise, let {0, 1, 0′, 1′} be a subalgebra of (A, g). According to

(g(0), g(1)) ∈ θf (0, 1) = [0, 1],

(g(0′), g(1′)) ∈ θf (0′, 1′) = [0′, 1′],

(g(1), g(1′)) ∈ θf (1, 1′) = [1, 1′][0, 0′],

(g(0), g(1′)) ∈ θf (0, 1′) = [0, 1′],

hence only the following cases may occur:

(d) g equals to f on the set {0, 1, 0′, 1′},
(e) g is a constant on the set {0, 1, 0′, 1′} such that the constant belongs to

{0, 1, 0′, 1′},
(f) g is identity on {0, 1, 0′, 1′}.

Moreover,

(g(a), g(1)) ∈ θf (a, 1) = [a, 1],

(g(b), g(0)) ∈ θf (b, 0) = [b, 0][a, 1].

In the case d), we get g(a) = 0 and either g(b) = a or g(b) = 1. If g(b) = a
then (1) is valid. If g(b) = 1, ρ ∈ Con(A, g), a contradiction.

If (e) holds, we denote the constant t. Let t �= 1. Then g(a) = 1 and
π ∈ Con(A, g), a contradiction. Hence t = 1. Then either g(a) = 1 which
yields a contradiction like in the previous case, or g(a) = a, g(b) ∈ {1, a}. If
g(b) = a then ρ ∈ Con(A, g), a contradiction, hence g(b) = 1 and (3) is valid.

Finally, in the case (f), g(a) = a or g(a) = 1. In the first case, π ∈
Con(A, g), a contradiction, hence g(a) = 1. Then g(b) = 0 or g(b) = b. Sim-
ilarly, in the first case we get a contradiction with is ρ /∈ Con(A, g), hence
g(b) = 1 and (4) is valid. �

Lemma 5.7. Let (A, f) be a monounary algebra. Suppose that Con(A, f) ⊆
Con(A, g). If g equals f on the set {0, 1, 0′, 1′, a, b} then the following holds:

(i) if x or f(x) is cyclic then g(x) = f(x),
(ii) for every x ∈ A, g(x) ∈ {f2k−1(x) : k ∈ N}.

Proof. Let x ∈ A. If f(x) = x, then

(g(x), 1) = (g(x), g(0)) ∈ θf (x, 0) = [x, 0, 1],

(g(x), 1′) = (g(x), g(0′)) ∈ θf (x, 0′) = [x, 0′, 1′],

which implies g(x) = x = f(x). If x is noncyclic and {f(x)} is a cycle, i.e.,
f(x) = f2(x) �= x then

(g(x), 0) = (g(x), g(a)) ∈ θf (x, a) = [x, a][f(x), 0, 1],

(g(x), 1′) = (g(x), g(0′)) ∈ θf (x, 0′) = [x, f(x), 0′, 1′],
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hence g(x) = f(x). If {x, f(x)} is a two-element cycle distinct from {0, 1},
{0′, 1′}, then

(g(x), 1) = (g(x), g(0)) ∈ θf (x, 0) = [x, 0][f(x), 1],

(g(x), 0) = (g(x), g(1)) ∈ θf (x, 1) = [x, 1][f(x), 0, ],

which yields g(x) = f(x). If x is noncyclic and {f(x), f2(x)} is a two-element
cycle, then

(g(x), f(x)) = (g(x), f(f2(x))) = (g(x), g(f2(x))) ∈ θf (x, f2(x)) = [x, f2(x)],

which yields g(x) = f(x). Hence (i) is valid.
If x ∈ {0, 1, 0′, 1′, a, b} or f(x) is cyclic, then (ii) clearly holds. Now

suppose that x is a noncyclic element and {f(x)} fails to be a cycle. There is
n ∈ N such that fn(x) is cyclic and fn−1(x) is noncyclic. If n is even then

(g(x), fn+1(x)) = (g(x), g(fn(x))) ∈ θf (x, fn(x))

= [x, f2(x), f4(x), . . . , fn(x)][f(x), f3(x), . . . , fn+1(x)]

and if n is odd then

(g(x), fn(x)) = (g(x), g(fn+1(x))) ∈ θf (x, fn+1(x))

= [x, f2(x), f4(x), . . . , fn+1(x)][f(x), f3(x), . . . , fn(x)],

which implies that (ii) is valid. �

Lemma 5.8. Let (A, f) be a monounary algebra such that there are distinct
elements d, e /∈ {0, 1, a, b, 0′, 1′} with f(d) = 1, f(e) = d. Further, suppose that
Con(A, f) ⊆ Con(A, g) and ρ = [0, 1][a, b] /∈ Con(A, g). Then g(x) = f(x) for
each x ∈ A.

Proof. By assumptions and by Lemma 5.5, following cases may occur:

(a) g is equal to f on {0, 1, a, b, d}
(b) g is constant on the set {0, 1, a, d}, the constant is 1 and g(b) = a,
(c) g is constant on the set {0, 1, a, d}, the constant is a and g(b) = 1.

Assume that the case a) holds. Since

(g(e), 0) = (g(e), g(1)) ∈ θf (e, 1) = [e, 1][d, 0],

(g(e), a) = (g(e), g(b)) ∈ θf (e, b) = [e, b][d, a][0, 1],

we get g(e) = d = f(e). Let x ∈ A. If x belongs to a component possessing
a one-element cycle then by Lemma 5.7 (i), g(x) = f(x). The remaining case
is that x �= b, e belongs to a component possessing a two-element cycle but
neither x nor f(x) is cyclic. Without loss of generality, a /∈ Zf (f(x)). Since

(g(x), a) ∈ θf (x, b) = [x, b][f(x), a][f2(x), f4(x), . . . , 0] ∨ [f3(x), f5(x), . . . , 1],

Lemma 5.7 (ii) implies g(x) = f(x).
If (b) holds then from (ii) of Lemma 5.7 and

(1, g(0′)) = (g(0), g(0′)) ∈ θf (0, 0′) = [0, 0′][1, 1′],
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it follows that g(0′) = g(1′) = 1. Then from

(g(e), 1) = (g(e), g(1)) ∈ θf (e, 1) = [e, 1][0, d],

(g(e), a) = (g(e), g(b)) ∈ θf (e, b) = [e, b][d, a][1, 0],

we get g(e) ∈ {e, 1} ∩ {d, a}, a contradiction. Similarly, if c) holds then we get
g(e) = a and (g(e), g(b)) = (a, 1) /∈ θf (e, b) = [e, b][a, d][0, 1], a contradiction.

�

Lemma 5.9. Let (A, f) be a monounary algebra such that there are distinct
elements c, d, e /∈ {0, 1, a, b, 0′, 1′} with f(c) = b, f(d) = 0, f(e) = d. Further,
suppose that Con(A, f) ⊆ Con(A, g) and ρ = [0, 1][a, b] /∈ Con(A, g). Then
g(x) = f(x) for each x ∈ A.

Proof. By assumptions and by Lemma 5.4, following cases may occur:
(a) g is equal to f on {0, 1, a, b, d}
(b) g is constant on the set {0, 1, a, d}, the constant is 1 and g(b) = a,
(c) g is constant on the set {0, 1, a, d}, the constant is a and g(b) = 1.

If (a) holds then from

(g(e), a) = (g(e), g(b)) ∈ θf (e, b) = [e, b][d, a],

we get g(e) = d. Further

(g(c), 0) = (g(c), g(1)) ∈ θf (c, 1) = [a, c, 1][b, 0],

(g(c), d) = (g(c), g(e)) ∈ θf (c, e) = [c, e][b, d][a, 0, 1],

yield that g(c) = b = f(c). By Lemma 5.7, for every x ∈ A such that either x
or f(x) is cyclic, it holds g(x) = f(x). It remains to prove that g(x) = f(x) for
x �= b, e such that x belongs to a component possessing a two-element cycle
but neither x nor f(x) is cyclic. Without loss of generality, a /∈ Zf (f(x)). Since

(g(x), a) ∈ θf (x, b) = [x, b][f(x), a][f2(x), f4(x), . . . , 0] ∨ [f3(x), f5(x), . . . , 1],

Lemma 5.7 (ii) implies g(x) = f(x).
If b) or c) hold then from

(g(0), g(0′)) ∈ θf (0, 0′) = [0, 0′][1, 1′],

(g(0′), g(1′)) ∈ θf (0′, 1′) = [0′, 1′],

it follows that g(0′) = g(1′) = 1. Moreover

(g(e), g(0)) ∈ θf (e, 0) = [e, 0][d, 1],

(g(e), g(b)) ∈ θf (e, b) = [e, b][d, a].

Then in the case b), we get g(e) = d and from

(g(c), 1) = (g(c), g(d)) ∈ θf (c, d) = [c, d][b, 0][a, 1],

(g(c), d) = (g(c), g(e)) ∈ θf (c, e) = [c, e][b, d][a, 0, 1]

g(c) ∈ {a, 1} ∩ {b, d}, a contradiction. Finally in the case c), g(e) ∈ {a} ∩ {1},
a contradiction. �
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Lemma 5.10. Let (A, f) be a monounary algebra such that there are distinct
elements d, e /∈ {0, 1, a, b, 0′, 1′} with f(d) = 0′, f(e) = d. Further, suppose
that Con(A, f) ⊆ Con(A, g) and ρ = [0, 1][a, b] /∈ Con(A, g), π = [a, 0′] /∈
Con(A, g). Then g(x) = f(x) for each x ∈ A.

Proof. By assumption and by Lemma 5.6, the following cases may occur:
(a) g is equal to f on the set {0, 1, 0′, 1′, a, b},
(b) g(a) = 1 and g(x) = a, x ∈ {0, 1, 0′, 1′, b},
(c) g(a) = a and g(x) = 1, x ∈ {0, 1, 0′, 1′, b},
(d) g is identity on the set {0, 1, 0′, 1′, b} and g(a) = 1.

From

(g(d), g(1′)) ∈ θf (d, 1′) = [d, 1′]

it follows that that in the cases (a)–(c), g(d) = g(1′). However, in cases (b),
(c), we get a contradiction with (1, a) = (g(d), g(1)) ∈ θf (d, 1) = [d, 1, 1′][0, 0′].
Moreover,

(g(e), g(b)) ∈ θf (e, b) = [e, b][d, a][0′, 0][1′, 1].

Then in the case a), g(d) = 0′, g(e) = d. By Lemma 5.7, if either x or f(x) is
cyclic then g(x) = f(x). It remains to prove that g(x) = f(x) for x ∈ A\{b, e}
such that f(x) fails to be cyclic. Then either a /∈ Zf (f(x)) or d /∈ Zf (f(x)).
Without loss of generality, let a /∈ Zf (f(x)). According to

(g(x), a) = (g(x), g(b)) ∈ θf (x, b)

= [x, b][f(x), a][0, f2(x), f4(x), . . . ][f3(x), f5(x), . . . ],

(g(x), f2(x)) = (g(x), g(f(x))) ∈ θf (x, f(x)) = [Zf (x)],

we obtain g(x) = f(x). Hence g(x) = f(x) for all x ∈ A.
Finally, in the case (d), we get g(d) = 1′ and g(e) = e which yields a

contradiction with (g(e), g(a)) ∈ θf (e, a) = [e, a][d, 0, 1′][0′, 1]. �

Theorem 5.11. Let (A, f) be a monounary algebra with small cycles, let each
one-element cycle have only short tails and assume that there are distinct el-
ements 0, 1, 0′, 1′, a, b with f(0) = 1, f(a) = f(1) = 0, f(b) = a, f(0′) = 1′,
f(1′) = 0′. If
(a) there exist elements d, e ∈ A\{0, 1, a, b, 0′, 1′} such that f(d) ∈ {1, 0′},

f(e) = d, or
(b) there exist elements c, d, e ∈ A\{0, 1, a, b, 0′, 1′} such that f(c) = b, f(d) =

0, f(e) = d,
then Con(A, f) is ∧-irreducible.

Proof. According to Lemmas 5.6, 5.8–5.10 we have

[a, b][0, 1] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.

or

[a, 0′] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.
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Also, [a, b][0, 1] /∈ Con(A, f) because θf (a, b) = [a, b, 0, 1] and similarly [a, 0′]
/∈ Con(A, f) because θf (a, 0′) = [a, 0′, 1][0, 1′]. Hence the above intersections
fail to be equal to Con(A, f) thus Con(A, f) is ∧-irreducible. �

In the following Lemmas 5.12–5.16 we will assume that:
• there is a single two-element cycle {0, 1},
• each one-element cycle has only short tails,
• there are noncyclic elements a, b ∈ A such that f(a) = 0, f(b) = a.

Lemma 5.12. Let (A, f) be a monounary algebra such that there are distinct
elements d, e with f(d) = 0, f(e) = d. Further, suppose that Con(A, f) ⊆
Con(A, g) and ρ = [a, e][0, 1] /∈ Con(A, g). Then one of the following conditions
is satisfied:
(1) g is equal to f on {0, 1, a, b, d, e}
(2) g is constant on the set {0, 1, a, d}, the constant is 1, g(b) = a, g(e) = d.

Proof. Assume that our assumptions are satisfied. Then according to Lemma
5.4, one of the following cases occurs:
(a) g is an identity on the set {0, 1, a, b, d}
(b) g is a constant on {0, 1, a, b, d}
(c) g is equal to f on {0, 1, a, b, d}
(d) g is equal to f on {0, 1, a, d} and g(b) = 1,
(e) g(1) = g(a) = g(d) = 1, g(0) = g(b) = 0,
(f) g is constant on the set {0, 1, a, d}, the constant is 1 and g(b) = a,
(g) g is constant on the set {0, 1, a, d}, the constant is a and g(b) = 1.

Then like in the proof of Lemma 4.2, it follows that the cases (a), (b), (d), (e),
(g) yield contradiction. If (c) holds then we get g(e) = d and (1) is valid. If (f)
holds then g(e) = d and (2) is valid. �

Lemma 5.13. Let the assumption of Lemma 5.12 be satisfied and let there exist
c ∈ A such that f(c) = b. Then g(x) = f(x) for each x ∈ A.

Proof. It holds

(g(c), g(1)) ∈ θf (c, 1) = [c, 1, a][b, 0],

(g(c), g(e)) ∈ θf (c, e) = [c, e][b, d][a, 0, 1],

(g(c), g(d)) ∈ θf (c, d) = [c, d][b, 0][a, 1].

If (1) of Lemma 5.12 holds then g(c) = b, hence g is equal to f on {0, 1, a, b, c,
d, e}. Let x ∈ A\{0, 1, a, b, d, e}. If f(x) ∈ {0, 1}, clearly g(x) = f(x). Similarly
if C(x) �= C(0), then clearly g(x) = f(x). Then b /∈ Zf (x) or e /∈ Zf (x).
Without loss of generality let b /∈ Zf (x). Then

(g(x), a) ∈ θf (x, b) = [x, b][f(x), a][0, f2(x), f4(x), . . . ][1, f3(x), f5(x) . . . ],

(g(x), 0) ∈ θf (x, a) = [x, a][0, f(x), f3(x), . . . ][1, f2(x), f4(x) . . . ],

which yields g(x) = f(x). Therefore g is equal to f on A.
If (2) of Lemma 5.12 holds, then g(c) ∈ {c, a, 1} ∩ {b, d}, which is a

contradiction. �
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Theorem 5.14. Let (A, f) be a monounary algebra with small cycles and assume
that each one-element cycle has only short tails. Further, assume that there are
distinct elements 0, 1, a, b, c, d, e with f(0) = 1, f(1) = f(a) = f(d) = 0, f(b) =
a, f(c) = b, f(e) = d and that (A, f) contains a single two-element cycle. Then
Con(A, f) is ∧-irreducible.

Proof. According to Lemmas 5.12 and 5.13, we have

[a, e][0, 1] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.

However, [a, e][0, 1] /∈ Con(A, f) because θf (a, e) = [a, e][d, 0, 1]. Therefore the
above intersection fails to be equal to Con(A, f) which implies that Con(A, f)
is ∧-irreducible. �

Lemma 5.15. Let (A, f) be a monounary algebra such that there are distinct ele-
ments d, e /∈ {0, 1, a, b} with f(d) = 1, f(e) = d and let Con(A, f) ⊆ Con(A, g).
Then one of the following conditions is satisfied:

(1) g is equal to f on the set {0, 1, a, b, d, e},
(2) g is identity on {0, 1, a, b, d, e},
(3) g is constant on {0, 1, a, b, d, e},
(4) g is equal to f on {0, 1, a, d} and g(e) = 0, g(b) = 1,
(5) g(1) = g(a) = g(e) = 1, g(0) = g(b) = g(d) = 0.

Proof. Let the assumptions be valid. According to

(g(0), g(1)) ∈ θf (0, 1) = [0, 1],

(g(a), g(1)) ∈ θf (a, 1) = [a, 1],

(g(0), g(d)) ∈ θf (0, d) = [0, d],

(g(a), g(d)) ∈ θf (a, d) = [a, d][0, 1],

the following cases can occur:

(a) g is equal to f on the set {0, 1, a, d},
(b) g is identity on {0, 1, a, d}
(c) g is constant on {0, 1, a, d}, the constant is u ∈ {0, 1, a, d},
(d) g is constant on {0, 1, a, d}, the constant is u /∈ {0, 1, a, d},
(e) g(0) = g(d) = 0, g(1) = g(a) = 1.

Moreover,

(g(b), g(0)) ∈ θf (b, 0) = [b, 0][a, 1],

(g(e), g(1)) ∈ θf (e, 1) = [e, 1][d, 0],

(g(b), g(e)) ∈ θf (b, e) = [b, e][a, d][0, 1],

which implies that in the case (a), either g(b) = a, g(e) = d or g(b) = 1, g(e) =
0, i.e. either (1) or (4) is satisfied. If (b) holds then g(b) = b, g(e) = e, hence
(2) is satisfied. In the case (c), g(b) = g(e) = u and in (d), clearly g(b) = g(e)
and u ∈ {b, e}. Then from (c) and (d), we get (3). Finally, if (e) holds then
g(b) = 0, g(e) = 1 and (5) is satisfied. �
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Lemma 5.16. Let (A, f) be a monounary algebra such that there are distinct
elements d, e /∈ {0, 1, a, b} with f(d) = 1, f(e) = d. Further, suppose that
Con(A, f) ⊆ Con(A, g) and ρ = [e, b][0, 1] /∈ Con(A, g). Then g(x) = f(x) for
every x ∈ A.

Proof. According to Lemma 5.15, the only case when ρ /∈ Con(A, g) is case (1),
hence g is equal to f on the set {0, 1, a, b, d, e}.

Let x ∈ A\{0, 1, a, b, d, e}. If f(x) ∈ {0, 1}, clearly g(x) = f(x). Similarly
if C(x) �= C(0), then clearly g(x) = f(x). Otherwise either b /∈ Zf (x) or
e /∈ Zf (x). Without loss of generality let b /∈ Zf (x). Then

(g(x), a) ∈ θf (x, b) = [x, b][f(x), a][0, f2(x), f4(x), . . . ][1, f3(x), f5(x) . . . ],

(g(x), 0) ∈ θf (x, a) = [x, a][0, f(x), f3(x), . . . ][1, f2(x), f4(x) . . . ],

which yields g(x) = f(x). Therefore g is equal to f on A. �
Theorem 5.17. Let (A, f) be a monounary algebra with small cycles and let
each one-element cycle have only short tails. Further, assume that there are dis-
tinct elements 0, 1, a, b, d, e with f(0) = f(d) = 1, f(1) = f(a) = 0, f(b) = a,
f(e) = d and that (A, f) contains a single two-element cycle. Then Con(A, f)
is ∧-irreducible.

Proof. According to Lemmas 5.15–5.16 we have

[e, b][0, 1] ∈
⋂

{Con(A, g) : Con(A, f) � Con(A, g)}.

However, [e, b][0, 1] /∈ Con(A, f) because θf (e, b) = [e, b][a, d][0, 1]. Hence the
above intersection fails to be equal to Con(A, f) and Con(A, f) is ∧-irreducible.

�
Notation 5.18. Let (A, f) be a monounary algebra with small cycles. We say
that f satisfies condition (γ) or (δ) if the following holds:
(γ) there are distinct elements 0, 1, 2, 0′, 1′, 2′ with f(1) = f(0) = 0, f(2) = 1,

f(0′) �= 0, f(1′) = 0′, f(2′) = 1′ such that 0′, f(0′) are cyclic, 1′ is
noncyclic and one of the following conditions is satisfied:

(i) (A, f) is acyclic, or
(ii) f(0′) = 0′′ �= 0′, f(0′′) = 0′, or
(iii) f(0′) = 0′ and (A, f) contains at least two 2-element cycles.

(δ) there are distinct elements 0, 1, a, b with f(0) = 1, f(a) = f(1) = 0,
f(b) = a and one of the following conditions is satisfied:

(i) there exist c, d, e ∈ A\{0, 1, a, b} such that f(c) = b, f(d) = 0,
f(e) = d, or

(ii) there exist d, e ∈ A\{0, 1, a, b} such that f(d) = 1, f(e) = d, or
(iii) there exist 0′, 1′, d, e ∈ A\{0, 1, a, b} such that f(0′) = 1′, f(1′) =

f(d) = 0′, f(e) = d.

Figures 3 and 4 illustrate the conditions (γ) and (δ) respectively. In each
figure, the labeled elements are mandatory.
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Figure 3. Operations satisfying the condition (γ)

Figure 4. Operations satisfying the condition (δ)

Theorem 5.19. Let (A, f) be a monounary algebra with small cycles and |A| > 2.
Then Con(A, f) is ∧-irreducible iff one of the following holds:
(1) (A, f) is connected and f is of type (II) or satisfies condition (β), or
(2) (A, f) is a permutation-algebra with short tails such that f is nontrivial

and the corresponding permutation is either identity, or a two-element
cycle, or (A, f) contains at least two nontrivial cycles, or

(3) f satisfies condition (γ) or (δ).

Proof. If (1) holds, then according to Theorem 2.7, Con(A, f) is ∧-irreducible.
If (2) holds, then from Theorems 3.1 and 3.6 it follows that Con(A, f) is
∧-irreducible. In the case (3), if f satisfies condition (γ) then Theorem 5.3
implies that Con(A, f) is ∧-irreducible. Let f satisfy condition (δ). Theorems
5.11, 5.14 and 5.17 imply that if f satisfies (i)–(iii) of the condition (δ) then
Con(A, f) is ∧-irreducible

On the other hand, if (A, f) is a monounary algebra with small cycles
and it fails to satisfy the conditions (1)–(3), then according to Theorems 2.7,
3.1, 3.6 and Lemmas 4.1–4.4, Con(A, f) is ∧-reducible. �
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