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Abstract. We provide universal algebraic characterizations (in the sense
of not involving any “logical notion”) of some elementary classes of struc-
tures whose definitions involve universal d-Horn sentences and universally
closed disjunctions of atomic formulas. These include, in particular, the
classes of fields, of non-trivial rings, and of directed graphs without loops
where every two elements are adjacent. The classical example of this kind
of characterization result is the HSP theorem, but there are myriad other
examples (e.g., the characterization of elementary classes using isomor-
phic images, ultraproducts and ultrapowers due to Keisler and Shelah).
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1. Introduction

Consider an infinitary language L∞∞, where L is the signature of non-logical
symbols, admitting arbitrarily long conjunctions, disjunctions and quantifica-
tions. As usual, by a positive literal we shall mean an atomic formula of this
language, and by a negative literal we shall mean a negated atomic formula.
Disjunctions of literals will be called disjunctive clauses, and conjunctions of
literals will be called conjunctive clauses. A clause will be dubbed entirely
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positive when it contains only positive literals, and entirely negative when it
contains only negative literals. Also as customary, sentences are closed for-
mulas (i.e., formulas that do not contain free variables); we will call universal
any clause obtained by closing a given clause under universal quantification.
We use the symbol ‘=’ for equality; given a formula φ or a set of formulas Δ,
we shall call it =-based if it contains no relation symbols but equality, and
shall call it =-free if it contains only relation symbols distinct from equality.
Moreover, a formula is elementary if it is first order (in the sense that only
finitary quantifications, conjunctions and disjunctions are involved).

Using the above terminology, an equation may be defined as a universal
entirely positive conjunctive =-based clause (or, equivalently, as a conjunction
of universal positive =-based literals), and an anti-equation may be defined
as a universal entirely negative disjunctive =-based clause. (In the literature,
(anti-)equations are sometimes called ‘(anti-)identities’; we find it wiser though
to reserve the latter terminology to the model-theoretic interpretation of the
syntactical equations.) A variety of algebras is a class of structures defined by
equations; an antivariety of algebras is a class of structures defined by anti-
equations. In [9,10], a theorem analogous to Birkhoff’s HSP theorem (cf. [3])
was obtained for antivarieties by replacing closure under direct products by
closure under ultraproducts and replacing closure under homomorphic images
by closure under homomorphic pre-images (plus in [11] some applications were
offered in graph theory). Note that closure under substructures was not strictly
necessary for that characterization (indeed, if a class is closed under homomor-
phic pre-images then it is, a fortiori, closed under substructures). Antivarieties
may be used to present, for instance, the constraint satisfaction problem over
a given finite structure A (cf. [12]). Indeed, given an existential positive for-
mula φ expressing a constraint, deciding whether φ holds at CSP(A) amounts
to deciding whether A belongs to the antivariety Mod(¬φ). Hence, two struc-
tures belonging to the same antivarieties share the same constraint satisfaction
problem. Also, once we recall that any equational class has a trivial model
(namely, a model containing a single object in its carrier), we see that it might
be useful to upgrade its axiomatization by the addition of an anti-equation that
constrains the corresponding interpretations to structures whose carriers con-
tain more than one object. For an example, the ‘zero ring’ would be excluded
from the variety of rings by the addition of an obvious anti-equation enforcing
the failure of the identification between the denotations of the additive and
the multiplicative neutral elements.

A basic Horn formula is a disjunctive clause containing at most one pos-
itive literal; so, they are of the form

∨
i∈I θi, where I is some possibly infinite

index set and the θis are literals, and where at most one of the literals θi is
positive while the remaining ones are negative. Universal Horn sentences are
built from basic Horn formulas using conjunction and the universal quanti-
fier. It is well-known how universal Horn formulas have been of tremendous
significance in both algebra and computer science. The case of algebra is well
covered in, say, [9]. In Prolog, Horn formulas are in general called rules; these
are called facts when no negative literals are present, and are called queries
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when no positive literals are present. Clearly, anti-equations are particular
cases of queries.

In [1, Definition 6], the so-called ‘d-Horn formulas’ were investigated. We
introduce an infinitary version of the definition from that paper:

Definition 1.1. A formula φ is said to be a basic d-Horn formula if φ =
∨

i∈I θi,
where either (i) at most one =-based literal is positive and all =-free literals
are positive, or (ii) all =-based literals are negative and at most one =-free
literal is negative. A universal d-Horn sentence is the universal closure of a
formula

∧
j∈J φj where each φj is basic d-Horn.

In addition, it will also be useful in what follows to consider universal
positive disjunctions, namely, universally closed entirely positive disjunctive
clauses. In [2, p.99] it is pointed out how theories containing only this kind
of formulas axiomatize exactly those classes of structures of the same signa-
ture closed under the formation of ultraproducts, subalgebras and homomor-
phic images. Note, in particular, that universal positive =-free disjunctions
are universal d-Horn sentences; however, if all the literals in a universal pos-
itive disjunction are =-based, the corresponding sentences are in general not
d-Horn.

The goal of the present paper is to further the study of the model theory
of these formulas. In particular, as it will be clarified below, we are interested in
obtaining universal algebraic characterizations of certain classes of structures
definable by universal d-Horn sentences and universal positive disjunctions.
This is related to the problem of axiomatizing context-free grammars discussed
in [1] (p. 13). In all cases we assume that a specific signature has been fixed
in advance.

One way to motivate our work here is to consider the class of fields
(cf. [14]). These are algebraic systems of type (2, 2, 1, 1, 0, 0) of the form
(F,+, ·,−,−1 , 0, 1) where F is some domain of objects and the operations
defined on F are such that: (i) multiplication distributes over addition; (ii) both
addition and multiplication are commutative and associative; (iii) ∀x(x + 0 =
x), ∀x(x ·1 = x) and 0 �= 1; (iv) ∀x(x+(−x) = 0) and ∀x(x �= 0 → x ·x−1 = 1).
We know that these algebras do not form a variety. This can be seen by not-
ing that the degenerate one-element algebra is a homomorphic image of any
algebra of the type of fields, but since 0 �= 1 in fields, we have that the class
of fields is not closed under homomorphic images, and hence, by the Birkhoff
HSP theorem, is not a variety. However, fields are axiomatizable by a collec-
tion of anti-equations and universal positive =-based disjunctions. Indeed, on
the one hand, clearly 0 �= 1 is an anti-equation, and on the other hand all for-
mulas of the form ∀x̄(t(x̄) = s(x̄)) are equations (as well as particular cases of
universal positive disjunctions). Finally, ∀x(x �= 0 → x · x−1 = 1) is equivalent
to ∀x(x = 0 ∨ x · x−1 = 1), which is a universal positive disjunction.

Another motivating example in a purely relational setting of a class of
structures defined in this way is given by directed graphs without loops where
every two elements are adjacent, which are axiomatized (where R is the relation
corresponding to the edges) as follows: (i) R is irreflexive; (ii) not Rxy or not



41 Page 4 of 14 G. Badia, J. Marcos Algebra Univers.

Ryx; (iii) Rxy or Ryx. Note that in this case we are dealing with two universal
negative =-free disjunctions and one universal positive =-free disjunction.

Our first results below are concerned with algebraic structures and =-
based languages. The following results deal with relational structures and =-
free formulas.

2. Background from universal algebra

Given a class of structures K over a fixed signature, the class (H,H−1)(K) is
the smallest class of structures V ⊇ K such that if A,B ∈ V and there is a
pair of homomorphisms h : A

onto−−−→ C and h′ : C −→ B, then C ∈ V . Similarly,
S(K), P (K), Pr(K) and Pu(K) denote the smallest classes containing K closed
under subalgebras, products, reduced products and ultraproducts, respectively.
In particular, for a given structure A, we denote (H,H−1)S(A) by [K � A].

The construction of dual reduced products is introduced in [1, Def. 9] to
characterize a formula being equivalent to a d-Horn formula (cf. [1, Theo. 9
and Prop. 10]). The dual reduced product

∏d
F Ai for a sequence of structures

(Ai)i∈I and a proper filter F on I is defined as follows:
(1) The domain is the same as in the reduced product

∏
F Ai.

(2) The interpretation of an arbitrary n-ary relation R is defined by declaring
that 〈f1

F , . . . , fn
F 〉 ∈ R∏d

F Ai
iff there is an ultrafilter F ′ ⊇ F such that

{i ∈ I : 〈f1
F (i), . . . , fn

F (i)〉 ∈ RAi
} ∈ F ′.

(3) Functions and constants of the language are interpreted as in the usual
reduced product. The class operator P d

r will be used to denote closure
under dual reduced products.
Given a sequence of structures (Ai)i∈I , we define the dual direct product,

∏d
i∈I Ai, of this sequence to be the structure which is exactly like

∏
i∈I Ai

except that for any n, the extension of the n-ary relation R
∏

i∈I Ai in
∏

i∈I Ai is
given by the collection of all n-tuples f1, . . . , fn of

∏
i∈I Ai such that, for some

i ∈ I, RAi
(f1(i), . . . , fn(i)) holds. The only difference from the direct product

construction is, then, that in the place where a universal quantifier is used to
define the relations in the direct product, in the new structure for the dual
direct product we have used an existential quantifier. We shall denote by P d the
operator that closes a class of structures under this construction. Analogously
to the case of direct products, we can now introduce 0 as the dual direct
product of an empty family of structures: this will be taken by definition to be
the structure whose carrier contains a single arbitrarily chosen object a and a
collection of empty relations (hence all positive literals fail in 0). Obviously, a
class of structures is to be called ‘closed under 0’ if it contains 0.

The class operator H−1
s will denote closure under strict homomorphisms,

i.e., homomorphisms preserving relations in both directions (see [7, p.1164]).
In view of our Definition 1.1, we may define, for an equality-free language, a
strict d-Horn sentence as a formula of the form ∀x̄(ψ → ∨

Φ), where Φ∪{ψ} is
a set of positive literals. (Note that, if one compares this to the usual definition
of a strict Horn formula [13, p.416], namely, a quasi equation, one might be
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tempted to say that strict d-Horn formulas are ‘d-quasi equations’; this could
however be confusing given that we are not necessarily dealing here with =-
based formulas.) We will call a class of structures axiomatized by collections
of elementary strict d-Horn formulas an elementary strict d-Horn class.

To establish the axiomatizability of a given class of structures, it is often
useful to employ some compactness property. Generalizing the model-theoretic
notion of ‘weak atomic compactness’ (cf. [8]), we shall say that a structure A
is weakly literal-compact if every set of literals finitely satisfiable in A is also
satisfiable in A.

We briefly recall here the construction of diagram languages for a given
structure, which we will often be making use of, in what follows. Fixed a lan-
guage L, and given a structure A, let C be a collection of constants with the
same cardinality as the carrier of A. The positive diagram of A in the con-
stants C, hereinafter to be referred to as Diag+C(A), will be the collection of
all positive literals P (t0, . . . , tn) (where t0, . . . , tn are terms in the language
obtained by just adding C to L and P is any n-ary predicate of such lan-
guages, including equality if it is present) that hold in A when each object
in A is the denotation of some element of C. Similarly, the negative diagram
of A in C, to be referred to as Diag−

C(A) will be the collection of all negative
literals, in the appropriately extended language, containing atomic formulas
that are not satisfied in A. Given the positive diagram of a structure Diag+C(A),
its complement Diag

+

C (A) is just the collection of all positive literals not in
Diag+C(A).

3. Equality-based languages

In this section we provide characterizations of the classes of structures that
can be axiomatized by a theory formed by a combination of anti-equations and
of universal positive disjunctions (or simply equations).

One thing to observe about the proof of following result is that, in contrast
to the proof of the HSP theorem, we cannot use free algebras, as the latter
are in general not available in this setting. For instance, in the case of fields,
it is well-known that there is no free field because there is no homomorphism
between fields of different characteristic.

Theorem 3.1. Let K be a class of structures. Then the following are equivalent:
(i) K is axiomatizable by a theory T ∪U where T is a collection of elementary

universal =-based positive disjunctions while U is a collection of anti-
equations.

(ii) K = (H,H−1)SPu(K∗) for some class of structures K∗.

Proof. (i) =⇒ (ii): This direction follows easily.
(ii) =⇒ (i): Let Th(K∗) be the collection of all anti-equations and ele-

mentary universal =-based positive disjunctions holding in all the elements
of K∗. We will show that Mod(Th(K∗)) ⊆ K. Note that K ⊆ Mod(Th(K∗))
is straightforward.
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Suppose that A ∈ Mod(Th(K∗)). Let C be a set of constants naming
all objects in A, and consider both the positive and negative diagrams of
A in C, namely Diag+C(A) and Diag−

C(A). Consider now any finite D+
0 ⊆

Diag+C(A) and D−
0 ⊆ Diag−

C(A). Suppose that no B ∈ K∗ can be expanded
to satisfy D+

0 . Hence, for any such B we have that B |= ¬∃x
(∧

D+
0

)
, where

∃x
(∧

D+
0

)
is the result of existentially quantifying away all the new constants

in the conjunction
∧

D+
0 . Clearly, ¬∃x

(∧
D+

0

)
is equivalent to an anti-equation.

Then, ¬∃x
(∧

D+
0

)
belongs to Th(K∗), which contradicts our choice of A.

Similarly, the assumption that no B ∈ K∗ can be expanded to satisfy D−
0

leads to a contradiction using universal positive disjunctions.
Since our class K is closed under ultraproducts, we have a compactness

result with respect to K for theories formed by literals, and so we can find
algebras D+,D− ∈K such that D+ can be expanded to a model of Diag+C(A)
and D− can be expanded to a model of Diag−

C(A). But in that case, we claim,
it is possible to define a pair of homomorphisms h : D

onto−−−→ A, where D ⊆ D−,
and h′ : A −→ D+. Indeed, on the one hand, for h′ let the image of any element
a ∈ A be the denotation in D+ of the constant from C denoting a in A. On
the other hand, let D be the subalgebra of D+ generated by the denotations
of constants from C, and extend h in the obvious way to a homomorphism
assigning to any such denotation the corresponding denotation in A. Since we
have D− ∈ K, by closure under subalgebras, we conclude that A ∈ K. �

In the above result we cannot replace closure under ultraproducts by
closure under reduced products, unfortunately, for universal positive disjunc-
tions are not preserved under the latter (it takes a prime filter to preserve
disjunctions, cf. [13, Theo. 9.43]).

Example 3.2. As briefly discussed in §2, fields provide an example of a class K
as described in Theorem 3.1.

We look next at how to characterize theories in which the positive dis-
junctions involved amount more simply to equations (so, =-based positive
literals). The following structures sit indeed at the intersection of varieties and
antivarieties.

Theorem 3.3. Let K be a class of structures. Then the following are equivalent:
(i) K is axiomatizable by a theory T ∪U where T is a collection of equations

while U is a collection of elementary anti-equations.
(ii) K = (H,H−1)SPr(K∗) for some class of structures K∗.

Proof. (i) =⇒ (ii): This direction follows easily.
(ii) =⇒ (i): Let Th(K∗) be the collection of all equations and elementary

anti-equations true in all the elements of K∗. Again, it is clear that K ⊆
Mod(Th(K∗)), so we’re left to show that Mod(Th(K∗)) ⊆ K.

Suppose that A ∈ Mod(Th(K∗)) and construct Diag+C(A) and Diag−
C(A)

as in the preceding proof. If we consider a finite D+
0 ⊆ Diag+C(A), and suppose

that no B ∈ K∗ can be expanded to satisfy D+
0 , we get a contradiction just

like before. Now, on the one hand, since our class of structures K is closed
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under reduced products, we have a compactness result with respect to K for
theories formed by equations, so we can find some algebra D ∈ K such that D
can be expanded to a model of Diag+C(A) and we can define a homomorphism
h′ : A −→ D. On the other hand, products are a special case of reduced prod-
ucts ([3, Lemma 2.22(a)]). Then we know by [3, Theo. 10.12 and Cor. 10.11]
that there is an algebra D′ ∈ SPr(K∗) such that A is a homomorphic image
of D′. �

Example 3.4. Non-trivial rings (i.e., rings where 1̄ �= 0̄) provide an example of
a class K as described in Theorem 3.3.

Example 3.5. Another example of a class K as described in Theorem 3.3 is
the class of non-idempotent De Morgan lattices (cf. [15]), a.k.a. intensionally
complemented distributive lattices. In these algebras, non-indempotency is
axiomatized as ∀x(∼x �= x), where ∼ is the De Morgan involution.

Proposition 3.6. [K � A] is first-order axiomatizable iff A is weakly literal-
compact.

Proof. Let [K � A] be axiomatizable. That every set of positive literals that is
finitely satisfiable in A is also satisfiable in A is shown as in [10, Prop. 2.2]. We
now argue that, moreover, every set of negated literals that is finitely satisfiable
in A is also satisfiable in A. Take Δ to be such a set. Then, by compactness of
first-order logic, we know that there is a structure B ∈ [K � A] where Δ is
satisfied. But in that case there is h : A′ onto−−−→ B, with A′ ⊆ A, and, hence, Δ
must also be satisfiable in A′, and hence in A (due to the structure of Δ and
to the surjectivity of h).

For the converse direction, assume that A is weakly literal-compact. By
Theorem 3.3, it suffices to show that [K � A] is closed under reduced products.
Let (Ai)i∈I be a sequence of structures in [K � A], and consider an Aj , for
j ∈ I, such that there are hi1 : Aj −→ Ai1 and hi2 : Ai2

onto−−−→ Aj , for Ai1 , Ai2 ⊆
A. Let F be any proper filter on I. That there is h :

∏
i∈I Ai/F −→ A follows

essentially as in the proof of [10, Prop. 2.2] (observe that reduced products
suffice for this argument to go through according to [13, Lemma 9.4.2]). Now,
consider the reduced power AI/F . We may take (AI/F )′ ⊆ AI/F to be the
substructure containing exactly those elements f/F such that f(i) is a member
of Ai2 . A homomorphism h0 : (AI/F )′ onto−−−→ ∏

i∈I Ai/F is obtained by letting
h0(f/F ) be g/F where g(i) = hi2(f(i)) (surjectivity is inherited from the
surjectivity of hi2). Now we show that (AI/F )′ is a homomorphic image of
some A′ ⊆ A. To that effect, expanding our language by adding a large enough
collection C of new constants symbols, it suffices to show that Diag+C((AI/F )′)
is satisfied in A. Now, each finite fragment of Diag+C((AI/F )′) is satisfied in A,
since it is satisfied in AI/F and ∃x̄ φ(x̄, y) (where φ is a conjunction of negative
literals) is satisfied in AI/F . As A is weakly literal-compact, it follows that
Diag+C((AI/F )′) is satisfied in A. �
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4. Equality-free languages

We will now focus on relational structures. The results below deal with =-
free languages. They may be partly seen as generalizations of results from the
previous section. The model theory of languages without equality and related
problems having to do with Horn-formulas, among other topics, have been
explored in [6,5,4].

Proposition 4.1. Let K be a class of structures in a signature L without func-
tion symbols. The following are equivalent:

(i) K is axiomatizable by a collection of universal negative =-free literals.
(ii) K = H−1P d(K∗) for some class of structures K∗.

Proof. (i) =⇒ (ii): This direction follows easily.
(ii) =⇒ (i): Let Th(K∗) be the collection of all formulas ∀x̄ φ(x̄), where

φ(x̄) is a negative literal, holding in all the elements of K∗. Suppose that A ∈
Mod(Th(K∗)). Add to our language a collection of constants C with the same
cardinality as the carrier of A, and construct Diag+C(A) as usual (note that it
will not contain any literal involving equality). Now, since A ∈ Mod(Th(K∗)),
we know that the universal negative literals holding in all structures in K∗

also hold in A. So, contrapositively, for each φ(ca1 , . . . , can
) ∈ Diag+C(A), we

can find a structure Bφ(ca1 ,...,can ) and a sequence of elements eφ
c1 , . . . , e

φ
cn in

this new structure such that Bφ(ca1 ,...,can ) |= φ(eφ
ca1

, . . . , eφ
can

). Now consider
the dual direct product of all such structures. Then take the mapping

b �→
(
eφ
cai

)

φ(ca1 ,...,cai−1,cb,cai+1,...,can )∈Diag+
C(A)

.

This is a relational homomorphism

h : A −→
d∏

φ(ca1 ,...,can )∈Diag+
C(A)

Bφ(ca1 ,...,can ).

Hence, A ∈ K. �
Example 4.2. An example of a class of structures as described in Propo-
sition 4.1 is the collection of all irreflexive relations, axiomatized by, say,
∀x(¬Rxx).

Theorem 4.3. Let K be a class of structures in a signature L without function
symbols. The following are equivalent:

(i) K is axiomatizable by a theory T ∪U, where T is a collection of universal
positive =-free literals and U is a collection of universal negative =-free
literals.

(ii) K = H−1P d(K∗) ∩ HSP (K∗) for some class of structures K∗.

Proof. (i) =⇒ (ii): Easy.
(ii) =⇒ (i): Again, this is the only direction that concerns us. Let Th(K∗)

be the collection of all formulas ∀x̄ φ(x̄) where φ(x̄) is a literal holding in all
the elements of K∗. Suppose that A ∈ Mod(Th(K∗)). Then, arguing as in the
proof of (a) to (c) in [13, Cor. 9.2.8] (which is Birkhoff’s HSP theorem for
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the more general case where we have relations in the signature), we see that
A ∈ HSP (K∗). Now, using the second half of the proof of Proposition 4.1
above, we may conclude that A ∈ H−1P d(K∗). �

Example 4.4. An example of a class of structures as described in Theorem 4.1
is the class of all pairs of reflexive and irreflexive relations, axiomatized by,
say, {∀xRxx} ∪ {∀x(¬Sxx)}.

Recall that in an =-free context both universal positive disjunctions and
universal negative literals are special cases of d-Horn sentences.

Theorem 4.5. Let K be a class of structures in a signature L without function
symbols. Then the following are equivalent:

(i) K is axiomatizable by a theory T ∪ U, where T is a collection of univer-
sal positive =-free disjunctions and U is a collection of universal =-free
negative literals.

(ii) K = (H,H−1)P d
r (K∗) for some class of structures K∗.

Proof. (i) =⇒ (ii): Easy.
(ii) =⇒ (i): As usual, we only need to verify this direction. Let Th(K∗)

be the collection of all universal positive =-free disjunctions and sentences
∀x̄ φ(x̄), where φ(x̄) is a negative literal, holding in all the elements of K∗.
Suppose that A ∈ Mod(Th(K∗)). Note that a dual direct product is a special
case of a dual reduced product where the filter is {I} and I is the set indexing
the collection of structures we want to build a dual direct product of. This
is because, in fact, the principal filter generated by any element i ∈ I is
going to extend the trivial filter {I}. Using the second half of the proof of
Proposition 4.1 above, we see that there is B ∈ P d

r (K∗) such that A is a
homomorphic pre-image of B. For the remainder of the argument, proceed as
in Theorem 3.1 except that now one may substitute the use of ultraproducts
by dual reduced products. �

Example 4.6. An example of a class of structures as described in Theo-
rem 4.5 is the collection of all irreflexive total relations, axiomatized by, say,
{∀x(¬Rxx)} ∪ {∀x, y(Rxy ∨ Ryx)}.

Theorem 4.7. Let K be a class of structures in a signature L without function
symbols. Then H−1

s P d(K) is the smallest class closed under strict homomor-
phic pre-images, dual direct products and containing K axiomatized by the col-
lection of all strict d-Horn formulas holding in every member of K. Moreover,
if K is first-order axiomatizable, then HsP

d(K) is an elementary strict d-Horn
class.

Proof. Take T to be the set of all strict d-Horn formulas holding in every mem-
ber of K. Let V be the smallest class of structures closed under substructures,
dual direct products and containing K. To establish the first part of the the-
orem it suffices to show that H−1

s P d(K) ⊆ V ⊆ Mod (T ) ⊆ H−1
s P d(K). The

first inclusion is clear. For the second inclusion, if Ai |= ∀x̄(ψ → ∨
Φ) for all

i ∈ I, and if
∏d

i∈I Ai |= ψ, given that ψ is a positive literal, there is some Ai
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such that Ai |= ψ, but then also Ai |= φ for some φ ∈ Φ. Since φ is a positive
literal, we may conclude that

∏d
i∈I Ai |= φ, which implies that

∏d
i∈I Ai |= ∨

Φ
as desired. On what concerns the third inclusion, take B to be a model for T .
Let b̄ be a list of names for the elements of B, without repetition. Now we can
consider DiagB(b̄), that is, the collection of all literals θ such that B |= θ[b̄] or
simply Diag+B(b̄) ∪ Diag−

B(b̄). Consider further Diag+B(b̄) as well as its comple-
ment Diag

+

B (b̄). We can see that for each φ ∈ Diag+B(b̄) there is a model Aφ ∈ K

such that Aφ |= φ and Aφ ��|= ψ for every ψ ∈ Diag
+

B (b̄) (in other words, Aφ

satisfies the negative diagram Diag+B(b̄)). Otherwise, ∀x̄(φ → ∨
Diag

+

B (b̄)) ∈ T
and, hence, such strict d-Horn formula holds in B, which is impossible. We can
then build a strict homomorphism from B to

∏d
φ∈Diag+

B(b̄) Aφ by the diagram
technique, which shows that B ∈ SP d(K).

Finally, say that Mod(U) = K for some first-order theory U . Then any
formula ∀x̄(ψ → ∨

Φ) ∈ T is reducible to a first-order formula. Indeed, since
U ∪ {ψ,¬(

∨
Φ)} has no model, then, by compactness, there is some finite

Φ0 ⊆ Φ such that U ∪{ψ,¬(
∨

Φ0)} has no model. Hence, U |= ∀x̄(ψ → ∨
Φ0)

and, obviously, U |= ∀x̄(ψ → ∨
Φ0) ↔ ∀x̄(ψ → ∨

Φ). �

An immediate consequence of the above is a characterization of elemen-
tary strict d-Horn classes.

Corollary 4.8. K is an elementary strict d-Horn class iff K is closed under
strict homomorphic pre-images, dual direct products and is first-order axiom-
atizable.

Example 4.9. An example of a class as described in Corollary 4.8 is the col-
lection of all undirected graphs (irreflexive and symmetric binary relations)
where if an edge exists between two vertices v1 and v2, then for any vertex v3
an edge exists between either v1 and v3 or v2 and v3, which can be axiomatized
by, say,
{

∀x
(
Rxx →

∨
∅
)}

∪ {∀x, y(Rxy → Ryx)} ∪ {∀x, y, z(Rxy → (Rxz ∨ Ryz))}.

A class K shall be called d-quasicompact if whenever a strict d-Horn
formula ∀x̄(ψ → ∨

Φ) holds in the entirety of K, then ∀x̄(ψ → ∨
Φ0) also

holds in all members of K for some finite Φ0 ⊆ Φ.

Proposition 4.10. H−1
s P d(K) is an elementary strict d-Horn class iff K is

d-quasicompact.

Proof. Suppose that H−1
s P d(K) is an elementary strict d-Horn class. Assume

further that for all finite Ψ0 ⊆ Ψ, the set {θ,¬(
∨

Ψ0)} is satisfiable in K.
Hence there is an ultraproduct A of elements of K where {θ,¬(

∨
Ψ)} holds.

But since strict d-Horn first-order sentences are preserved under ultraproducts,
then A ∈ H−1

s P d(K). So, there is a member of K which is a factor of a dual
direct product of elements of K, where θ holds and

∨
Ψ fails. Now let K

be d-quasicompact. Consider Mod(T ), where T is the set of all strict d-Horn
formulas holding in every member of K. Clearly, H−1

s P d(K) ⊆ Mod (T ). So,
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all that is left to show is that Mod (T ) ⊆ H−1
s P d(K). This follows as in the

proof the first half of Theorem 4.7; then, by arguing as in the second half
of the aforementioned theorem, and appealing to the d-quasicompactness of
K instead of to the compactness of first-order logic, we can reduce T to a
first-order theory. �

We obtain next an analogue of the Maltsev characterization theorem for
quasivarieties [9, Cor. 2.3.3]:

Theorem 4.11. K is an elementary strict d-Horn class iff K = H−1
s P d

r (Q) for
some Q.

Proof. It suffices to show that if T is the set of all strict d-Horn formulas
holding in every member of P d

r (K), then we have that Mod(T ) = H−1
s P d

r (K).
That H−1

s P d
r (K) ⊆ Mod(T ) is straightforward. We may proceed next to

argue that Mod(T ) ⊆ H−1
s P d

r (K) as in the proof of Theorem 4.7. Note that
any formula ∀x̄(ψ → ∨

Φ) ∈ T is reducible to a first-order formula. This is
because if {ψ,¬(

∨
Φ)} has no model in P d

r (K), then {ψ,¬(
∨

Φ0)} also has no
model in P d

r (K), for some finite Φ0 ⊆ Φ. If that were not so, we could build
an ultraproduct of elements of P d

r (K) where {ψ,¬(
∨

Φ)} would hold, and this
structure would in turn belong to P d

r (K), a contradiction. �

Let K be a class of structures. A d-presentation in K will be a pair
(c̄,Φ[c̄]) where c̄ is a collection of constants and Φ[c̄] is a collection of negative
literals possibly involving c̄. A model of (c̄,Φ[c̄]) is a structure (A, ā) in K
satisfying Φ[c̄]. We shall say that (c̄,Φ[c̄]) d-presents (A, ā) if ā is a list of
names for all elements of A, (A, ā) is a model of (c̄,Φ[c̄]), and for every (B, b̄)
that is a model of (c̄,Φ[c̄]) there is a partial homomorphism f : B�b̄ −→ A such
that f

[
b̄
]

= ā.

Proposition 4.12. If K is a class of structures, (A, ā) is a structure with A ∈ K
and (c̄,Φ[c̄]) is a d-presentation in K, then following are equivalent:

(i) (c̄,Φ[c̄]) d-presents (A, ā).
(ii) ā is a list of names for all elements of A; and for every positive literal ψ,

A ��|= ψ[ā] iff every structure in K satisfies ∀x(
∧

Φ → ¬ψ).

Proof. (i) ⇒ (ii): Suppose that A ��|= ψ[ā] and B ∈ K. Let B |= ∧
Φ[b̄]. Then,

by (i), there is a partial homomorphism f : B�b̄ −→ A such that f
[
b̄
]

= ā.
Hence, B ��|= ψ[b̄]. So we might indeed conclude that every structure in K
satisfies ∀x(

∧
Φ → ¬ψ). The converse direction of (ii) is straightforward.

(ii) ⇒ (i): Since each structure in K satisfies ∀x(
∧

Φ → ¬ψ) for ¬ψ ∈ Φ,
we surely must have that it is a model of (c̄,Φ[c̄]). Now if (B, b̄) is a model of
(c̄,Φ[c̄]), we must also have that (B, b̄) satisfies the negative diagram of (A, ā),
and hence we can define the desired homomorphism f : B�b̄ −→ A such that
f

[
b̄
]

= ā. �

Theorem 4.13. Let K be a class of structures in a signature L without function
symbols. Then the following are equivalent:
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(i) K is closed under dual direct products, 0 and strict homomorphic pre-
images.

(ii) K admits d-presentations.
(iii) K is axiomatizable by a collection of strict d-Horn sentences.

Proof. (i) ⇒ (ii): Let (c̄,Φ[c̄]) be a d-presentation in K. Consider the collection
Ψ of the positive literals ψ for which there is Aψ ∈ K and a sequence ā of
elements from Aψ such that Aψ |= ∧

Φ ∧ ψ[ā] (observe that at least 0 satisfies∧
Φ). Form the dual direct product B of all the Aψ (which belongs to K). Note

that there is a sequence of elements of B that satisfies
∧

Φ and
∧

Ψ, that B
satisfies (ii) in Proposition 4.12, and that the same goes for the substructure
generated by the sequence witnessing (

∧
Φ) ∧ (

∧
Ψ) (which belongs to K, by

closure under strict homomorphic pre-images). So, the latter substructure is
d-presented by (c̄,Φ[c̄]), as desired.

(ii) ⇒ (iii): Consider Mod(T ) where T is the set of all strict d-Horn
formulas holding in every member of K. Clearly, K ⊆ Mod(T ), so all that is left
is to show the converse inclusion. List the elements of an arbitrary B ∈ Mod(T )
without repetition as b̄. Then take a structure (A, ā) in K d-presented by
(b̄,Diag−(B)). Note that the diagram mapping f : B −→ A will provide an
isomorphism. Indeed, on the one hand, it should be clear that relations will be
preserved from A to B. On the other hand, if some positive literal ψ is false
in A, by Proposition 4.12 we conclude that ∀x̄(

∧
Diag−(B) → ¬ψ) ∈ T and,

hence, we see that ψ will fail in B as well, as desired.
(iii) ⇒ (i): Straightforward. �

5. By way of closure

Towards the end of the present investigation, there are two things we find
worth commenting upon. First, note that it is not difficult to find examples of
classes of structures that would not be characterizable by axiomatizations with
the shapes that we have discussed. One such class is the class of undirected
graphs. To see this, consider the structure A = 〈{a, b}, {〈a, b〉}〉. On the other
hand, take the empty graph of order 2, K2 and the empty graph of order 1, K1.
There clearly is a pair of homomorphisms h : K2

onto−−−→ A and h′ : A −→ K1.
However, A is not a graph, for symmetry fails. Using Theorem 4.5, the class
of graphs is not axiomatizable by a theory T ∪ U , where T is a collection of
universal positive =-free disjunctions and U is a collection of universal =-free
negative literals.

Second, the results from the present paper point to some natural direc-
tions for further investigation. For instance, looking at Proposition 4.1 one
might wonder if it is possible to obtain a similar result for algebraic systems
and anti-equations. The challenge is that to get some analogue of dual direct
products we would have to define an equivalence relation and take the quotient
structure of the dual direct product in such a way that an equation would hold
in the quotient structure iff it holds at some Ai. However, this does not give
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rise to an equivalence relation in general (transitivity, in particular, may fail).
Moreover, it is not even a tolerance relation.
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