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Abstract. A measurable relation algebra is a relation algebra in which the
identity element is a sum of atoms that can be measured in the sense that
the “size” of each such atom can be defined in an intuitive and reasonable
way (within the framework of the first-order theory of relation algebras).
A large class of examples of such algebras, using systems of groups and
coordinated systems of isomorphisms between quotients of the groups,
has been constructed. This class of group relation algebras is not large
enough to exhaust the class of all measurable relation algebras. In the
present article, the class of examples of measurable relation algebras is
considerably extended by adding one more ingredient to the mix: systems
of cosets that are used to “shift” the operation of relative multiplication.
It is shown that, under certain additional hypotheses on the system of
cosets, each such coset relation algebra with a shifted operation of rel-
ative multiplication is an example of a measurable relation algebra. We
also show that the class of coset relation algebras does contain examples
that are not representable as set relation algebras. In later articles, it is
shown that the class of coset relation algebras is adequate to the task of
describing all measurable relation algebras in the sense that every atomic
measurable relation algebra is essentially isomorphic to a coset relation
algebra, and the class of group relation algebras is similarly adequate
to the task of representing all measurable relation algebras in which the
associated groups are finite and cyclic.
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1. Introduction

In [4], a subidentity element z—that is to say, an element below the identity
element—of a relation algebra is defined to be measurable if it is an atom and
if the square z; 1; x is a sum of functional elements, that is to say, the sum of
elements that satisfy a characteristic property of relations that are functions,
namely, that the composition of the converse of the relation with the relation
itself is included in the identity relation. The number of non-zero functional
elements below the square x;1;x gives the measure, or the size, of the atom
. A relation algebra is said to be measurable if the identity element is the
sum of measurable atoms. The group relation algebras constructed in [4] are
examples of measurable relation algebras. It turns out, however, that they are
not the only examples of measurable relation algebras.

In this paper, a more general class of examples of measurable relation al-
gebras is constructed. The algebras are obtained from group relation algebras
by “shifting” the relational composition operation by means of coset multi-
plication, using an auxiliary system of cosets. For that reason, we have called
them coset relation algebras. By using this new construction, we show that
not all measurable relation algebras are representable. In fact, as hinted in the
proof, the class of coset relation algebras includes infinitely many mutually
non-isomorphic, non-representable relation algebras. These are new examples
of non-representable relation algebras, with a completely different underlying
motivation than the examples that have appeared so far in the literature.

These non-representable examples show that it was necessary to broaden
the class of group relation algebras, all of which are representable, in order to
get a representation theorem for all measurable relation algebras. Indeed, the
new class is broad enough for representing all measurable relation algebras,
as is shown in [6]. It is shown in [1] that if the groups G, constructed in an
atomic, measurable relation algebra 2l are all finite and cyclic, then 2 is es-
sentially isomorphic to a full group relation algebra. These theorems together
provide far-reaching generalizations of the atomic case of Maddux’s represen-
tation theorem for pair-dense relation algebras in [8]. An extended abstract
describing these results and their interconnections was published by the au-
thors in [5]. The reader might find it helpful to consult that article in order to
get a overview of the program and its motivation.

In Section 2 of this paper, the principal results concerning group relation
algebras are reviewed. In Section 3, a system of shifting cosets is introduced,
and a new operation of multiplication is defined with the help of these cosets.
Characterizations are given in Section 4 of when the resulting algebra is a
measurable relation algebra. A concrete example of such a measurable coset
relation algebra that, as it turns out, is not representable, is given in Section 5.
Section 6 of the paper contains a decomposition theorem for coset relation al-
gebras that is similar to the decomposition theorem for group relation algebras
proved in [4]. Except for basic facts about groups, this article is intended to
be largely self-contained. Readers who wish to learn more about the subject
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of relation algebras are recommended to look at one or more of the books
Hirsch-Hodkinson [7], Maddux [9], or Givant [2,3].

2. Group relation algebras

For the convenience of the reader, here is a summary of the essential notions
and results from [4] that will be needed in this paper. Fix a system

G=(Gy:x€el)
of groups (G, °,”1 ,e,) that are pairwise disjoint, and an associated system

0 = (pay : (z,y) EE)

of quotient isomorphisms. Specifically, we require that £ be an equivalence
relation on the index set I, and for each pair (z,y) in &, the function ¢, be
an isomorphism from a quotient group of G, to a quotient group of G,,. Call

F= (Gv(p)

a group pair. The set I is the group indez set, and the equivalence relation £ is
the (quotient) isomorphism index set, of F. The normal subgroups of G, and
Gy from which the quotient groups are constructed are uniquely determined
by ¢y, and will be denoted by H,, and K, respectively, so that ¢., maps
G/ Hy, isomorphically onto Gy, /K.

The elements of the quotient group G,/H,, are cosets, and hence com-
plexes (sets) of group elements. As such they obey the standard laws of group
theory. Multiplication of cosets and unions of cosets is an associative opera-
tion for which the normal subgroup H,, is the identity element that commutes
with every other coset (and every union of cosets). Every coset has an inverse,
and the operation of forming inverses of cosets satisfies the first and second
involution laws: the inverse of the inverse of a coset is the original coset, and
the inverse of the composition of two cosets is the composition of the inverses,
in the reverse order.

For a fixed enumeration (Hyy , : 7 < Kgy) (without repetitions) of the
cosets of H,, in G, the isomorphism ¢,, induces a corresponding, or associ-
ated, coset system of K, in G, determined by the rule

Koy y = ‘Pwy(ny,v)

for each v < Kgy. In what follows, it is always assumed that the given coset
systems for H,, in G, and for K,, in G, are associated in this manner.
Furthermore, it is assumed that the first elements of the coset systems are
always the normal subgroups themselves, so that

Hmy,O = Hmy and Kmy,O = Kmy

Definition 2.1. For each pair (z,y) in £ and each a < kg, define a binary
relation Ryy o by

Rayo =Uycn,, Heyy X PaylHayy © Heyol = Uy o, Hoyy X (Kayy o Koy o).
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Lemma 2.2 (Partition Lemma). The relations Ryy o, for o < Kgy, are non-
empty and partition the set G, x Gy.

Let U be the union of the disjoint system of groups, and F the equivalence
relation on U induced by the isomorphism index set &,

U=U{Gs:2€l} and E={G:xGy: (z,y) €&}

Take A to be the collection of unions of all possible sets of the relations of
the form Ry o for (z,y) in € and o < kgy. It turns out that A is always the
universe of a complete and atomic Boolean set algebra.

Theorem 2.3 (Boolean Algebra Theorem). The set A is the universe of a
complete, atomic Boolean algebra of subsets of E. The atoms in A are the
distinct relations Ry o for (x,y) in € and o < Ky, and the distinct elements
in A are the unions of distinct sets of atoms.

The set A does not automatically contain the identity relation idy, so it
is important to characterize when idy does belong to A.

Theorem 2.4 (Identity Theorem). For each element x in I, the following con-
ditions are equivalent.

(i) The identity relation idg, on Gy is in A.
(i) Rpg,o0 =lidg,-
(iil) @us is the identity automorphism of Gz /{es}.
Consequently, the set A contains the identity relation idy on the base set U if
and only if (iil) holds for each x in I.

Similarly, the set A is not automatically closed under the operation of
converse.

Theorem 2.5 (Converse Theorem). For each pair (x,y) in &, the following
conditions are equivalent.

(i) There are an a < kgy and a 3 < Ky, such that R, , = Ry. 3.

(i) For every o < kqy there is a 3 < ki, such that Ry}, = Ry. 5.

(i) ¢z = Pya-

Moreover, if one of these conditions holds, then we may assume that Ky, = Kay,
and the index 3 in (i) and (i) is uniquely determined by H!, = Hyy 5. The
set A is closed under converse if and only if (iil) holds for all (z,y) in E.

Convention 2.6. Suppose A is closed under converse. If a pair (x,y) is in &,
then H,, = K,,, and therefore any coset system for H,, is also a coset system
for K,,. Since the enumeration (Hy; y : 7 < Kygz) of the cosets of H,, can
be freely chosen, we can and always shall choose it so that ky, = Kgy and
Hyyy = Kay,y for v < kgy. It then follows from the Converse Theorem that
Kypy = Hyyy for v < kgy.

Finally, the set A is not in general closed under relational composition,
except when the composition is empty.
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Lemma 2.7. If (z,y) and (w,z) are in &, and if y # w, then
Ra:y7a |sz,ﬂ =g
for all a < kyy and B < K.

The most important case regarding the composition of two atomic rela-
tions is when y = w.

Theorem 2.8 (Composition Theorem). For all pairs (x,y) and (y,z) in E, the
following conditions are equivalent.

(i) The relation Ryyo|Ryz0 is in A.

(ii) For each o < Kzy and each B < Ky, the relation Ryy o| Ry. g is in A.
(ili) For each a < kgy and each < ky.,

Rzy,a|Ryz,ﬁ = U{Rzz,'y : Hmz,’y g @;yl [sz,a OHyz,B]}-

(iV) H,. C W;;[KwyoHyz] and @wy | (ﬁyz = Qzz, where @wy and Q. are
the mappings induced by o, and @, on the quotient of G, modulo the
normal subgroup @y} [Kyy° Hy.], while ¢ is the isomorphism induced
by @y on the quotient of Gy modulo the normal subgroup Ky ° H,..

Consequently, the set A is closed under relational composition if and only if

(iv) holds for all pairs (x,y) and (y,z) in E.

Corollary 2.9. If the set A contains the identity relation, then for any pairs

(z,y) and (y, z) in &, the following conditions are equivalent.

(i) Ray,a|Ryzp isin A for some o < Kgzy and some < Ky..

(i) Ryya|Ryzp tsin A for all @ < Ky and all B < Ky..

Putting together the preceding theorems yields a characterization, purely
in terms of the quotient isomorphisms, of when a group pair gives rise to a
complete and atomic set relation algebra.

Definition 2.10. A group frame is a group pair
F:(<Gx:$61>a<4pxy:($ay)eg>)
satisfying the following frame conditions for all pairs (z,y) and (y,z) in £.
(i) @aq is the identity automorphism of G, /{e,} for all x.
(i) @ye = @;y1~
(i) @uy[Hoy© Hos] = Koy o Hy. and @, [Kuy o Hyol = Kp. 0 Ky
(IV) Py | Pyz = Paz-
Given a group frame F, let A be the collection of all possible unions of

relations of the form R, o for (z,y) in € and a < kgy. Call A the set of frame
relations constructed from F.

Theorem 2.11 (Group Frame Theorem). If F is a group frame, then the set
of frame relations constructed from F is the universe of a complete, atomic,
measurable set relation algebra with base set and unit

U=U{Gs:z€l} and E=U{G, xGy:(z,y) €&}
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respectively. The atoms in this algebra are the relations of the form Rgy a,
and the subidentity atoms are the relations of the form Ry 0. The measure of
Razz0 is just the cardinality of the group G.

The theorem justifies the following definition.

Definition 2.12. Suppose that F is a group frame. The set relation algebra
constructed from F in Group Frame Theorem 2.11 is called the (full) group
relation algebra on F and is denoted by &[F] (and its universe by G[F]). A
general group relation algebra is defined to be an algebra that is embeddable
into a full group relation algebra.

3. Coset systems

Group relation algebras by themselves are not sufficient to represent all mea-
surable relation algebras as will be seen in Section 5. However, it is shown in
[6] that if the operation of composition in a group relation algebra is changed
slightly, then the resulting class of new algebras is sufficient to represent all
measurable relation algebras. We call these new algebras coset relation alge-
bras.

The operation of relative multiplication in a coset relation algebra is
a kind of “shifted” relational composition. To accomplish this shifting, it is
necessary to add one more ingredient to a group pair F = (G, ¢), namely a
system of cosets

<O:vyz : (Z‘,y,Z) € g3>a

where & is the set of all triples (z,y, z) such that the pairs (z,y) and (y, 2) are
in £, and for each such triple, the set C,,. is a coset of the normal subgroup
Hyy°H,, in G,. Call the resulting triple

F=(G,p0C)

a group triple.
Define a new binary multiplication operation ® on the pairs of atomic
relations in the Boolean algebra A of Theorem 2.3 as follows.

Definition 3.1. For pairs (x,y) and (y, z) in &, put
Riyo ®@ Ryz g = U{Ruzpy t Hyz iy C ‘P;yl [Kay,a° Hyz,p] ° Cuyz}
for all o < Kgy and all § < Ky, and for all other pairs (z,y) and (w, z) in &
with y # w, put
Reyo @ Ruzp =2

for all @ < kgy and B < K. Extend ® to all of A by requiring it to distribute
over arbitrary unions. This means that for all subsets X and Y of the set of
atoms in A

(U X) ® (U Y) = U{Rzy,a & sz,ﬁ : Rzy,a € X and sz,ﬁ S Y}
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Comparing the formula defining R,, o ® Ry, s in Definition 3.1 with
the value of the relational composition Ry o | Ry. g given in Composition
Theorem 2.8(iii), it is clear that they are very similar in form. In the first
case, however, the coset ¢ [Kyy,o °Hy. 5] of the composite group Hy, © H,.
has been shifted, through coset multiplication by C,., to another coset of
Hyy°H,,, so that in general the value of the ®-product and the value of
relational composition on a given pair of atomic relations will be different,
except in certain cases, for example, the case in which the value is the empty
set.

Observe that the product R;y .« ® R g is, by definition, a union of atomic
relations in A and is therefore itself a member of A. Since ® is extended to
all of A so as to be completely distributive over unions, and since A is closed
under arbitrary unions, it follows that A is automatically closed under the op-
eration ® . It is not necessary to impose any special conditions on the quotient
isomorphisms to ensure this closure, as was the case for relative multiplication
in group relation algebras. However, to ensure that A contains the identity
relation and is closed under converse, it is still necessary to require conditions
(i) and (ii) from Definition 2.10. Conditions (iii) and (iv) in Definition 2.10
ensure that A is closed under relational composition. In order to get a class
of algebras large enough to represent all measurable relation algebras, it is
necessary to weaken condition (iv), but condition (iii) can be retained. In fact,
condition (iv) of Definition 2.10 has to be changed only slightly, as can be seen
in Definition 3.2 below.

Every element of a group induces an inner automorphism of the group.
In particular, the coset Cyy ., which is an element of the quotient group

Gw/(ny oH:vz)y
induces an inner automorphism 7, of the quotient group that is defined by

Tuyz(D) = Cpl o Do Chys

TYz

for every coset D of H,, °H,,. This automorphism coincides with the identity
automorphism of the quotient group just in case the coset Cy,. is in the center
of the quotient group, that is to say, just in case

Czyz oD = Docxyz
for every coset D of Hyy° H,..

Definition 3.2. A group triple
F=(G,p,C)

is a pre-semi-frame if the following three conditions are satisfied.

(i) @ is the identity automorphism of G /{e,} for all = in I.

(il) @yo = @5, Whenever (z,y) is in €.

(iil) pay[Hay o Hyz| = Kgy© Hy, whenever (z,y,z) is in &s.
It is a semi-frame if, in addition, the following fourth condition is also satisfied.
(iv) Puy|Pyz = Twys | Pz- Whenever (z,y, z) is in ;.
Conditions (i)—(iv) are called the semi-frame conditions.
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In condition (iv) of this definition, it is understood that ¢,,, ¢y., and @,
are the induced isomorphisms described in Composition Theorem 2.8. They
are well defined by semi-frame condition (iii).

If the group triple F is a pre-semi-frame, then the Boolean set algebra
A contains the identity relation on its base set (by Identity Theorem 2.4),
and is closed under converse (by Converse Theorem 2.5) and under ® (by
Definition 3.1). Consequently, it is permissible to form the algebra

Q:Iif} = <A7U’N7®’71 7idU>'

Of course, €[F] need not be a relation algebra, that is to say, an abstract
algebra of the form

Q’l: <A7+7_>; 9 val’)
in which the following axioms are valid.
(R1) r+s=s+r.

(R2) r+(s+t)=(r+s)+t

R3) =(=r+s8)+—(—r+—s) =s.
(R4) 7;(s;t) = (r58);t.

(R5) r;l’:r.

(R6) r=" =r

(R7) (r;8)" =s7;r".

(R8) (r+s);t=r;t+s;t

(R9) (r+s)"=r"+s~

(R11) (r;s)-t=0 implies (r7;t)-s=0.

(On the basis of the other axioms, (R11) is equivalent to the original law (R10)
that Tarski used as the tenth axiom—see, for example, Definition 2.1 in Givant
[2]. Consequently, we will not refer to (R10) again.)

Certain relation algebraic axioms are, however, automatically valid in
C[F]. For example, the Boolean azioms (R1)—(R3) are all valid, because the
Boolean part of €[F] is a complete and atomic Boolean set algebra. The first
involution law (R6) involves only the operation of converse, so it is valid in
¢[F]. The operation ® is distributive over arbitrary unions, as is the operation
of converse, so the distributive axioms for relative multiplication and converse
over addition, (R8) and (R9) respectively, are valid in €[F].

Each of the remaining four axioms, the associative law for relative multi-
plication (R4), the identity law (R5), the second involution law (RT), and the
cycle law (R11) may fail in €[F]. It is therefore important to impose condi-
tions on the coset system of a pre-semi-frame that characterize when each of
these axioms does hold in €[F]. This task is simplified by certain observations.
Three of the axioms, namely (R4), (R5), and (R7), are equations, and one of
them, namely (R11), is an implication between two equations of the form
o = 0. Each of the equations involved is positive in the sense that its terms
are constructed from variables and constant symbols using only the operation
symbols for addition, multiplication, relative multiplication, and converse. In
particular, there is no occurrence of the operation symbol for complement.
Each of the axioms is also regular in the sense that no variable occurs more
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than once on either side of an equation. It is a well-known result that positive,
regular equations, and implications between positive, regular equations of the
form o = 0, hold in an atomic relation algebra (or in any Boolean algebra
with completely distributive operators) just in case they hold for all atoms
(see, for example, Corollaries 19.26 and 19.28 in Givant [3]). Thus, to verify
that any one of these axioms holds in €[F] under certain hypotheses on the
coset system, it suffices to verify that it holds for all atomic relations.

We begin with a lemma that says equalities between unions of atomic
relations are equivalent to the corresponding coset equalities.

Lemma 3.3. Let F be a pre-semi-frame, and (z,vy,z) a triple in Es. If Dy and
Dy are each unions of cosets of Hyy°H,,, then the following conditions are
equivalent.

(i) Dy = Dr.
(11) U{sz,’y : sz,'y c DO} = U{Ra:z,£ : Ha:z,{ c Dl}

Proof. Condition (i) obviously implies (ii). To establish the reverse implication,
assume Do # D;. There must then be a coset M of the subgroup H,, > H, .
that is included in one of the unions, say Dy, but not the other, D;. It follows
that M must be disjoint from each of the cosets in D1, since two cosets of a
subgroup are either equal or disjoint. In particular, each coset H,, , of H,,
that is included in M must be disjoint from Dy, so the corresponding relation
R, ~, which is included in the left-hand side of (ii), by assumption, must be
disjoint from the right-hand side of (ii), by Partition Lemma 2.2. O

Turn now to the task of finding necessary and sufficient conditions for
various relation algebraic laws to hold in the algebra €[F], and begin with the
identity law (R5). This law is positive and regular, so it suffices to characterize
when it holds for all atomic relations in €[F].

Theorem 3.4 (Identity Law Theorem). Let F be a pre-semi-frame, and (x,y)
a pair in €. The following conditions are equivalent.

(1) Ryyo ®@1dy = Ryy.q for some o < Kyy.

(i) Rypy,a ®idy = Ryy.o for all a < Kyy.

(iil) Ray,a ® Ryyo = Ray,a for some o < Kyy.

(iv) Ray,a ® Ryyo = Ray,a for all o < Kgy.

(V) Cayy = Hay.
Consequently, the identity law holds in the algebra €[F] if and only if (v)
holds for all pairs (z,y) in E.

Proof. Identity Theorem 2.4 and semi-frame condition (i) imply that
idy = U wa,O-

wel

Therefore,

Racy,a X idU - U ny,oz ® wa,O = ny,oz ® Ryy,Oa (1)
wel
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by the distributivity of ® over arbitrary unions, and the fact that
Ra;y7a X wa,O =g

whenever w # y. The equivalences of (i) with (iii), and of (ii) with (iv), are
immediate consequences of (1).

We show the equivalence of (iii) and (v), from which it follows trivially
that conditions (iii), (iv), and (v) are all equivalent. We have by Definition 3.1,
the convention that H,, o = {e,}, and semi-frame condition (ii) and the con-
vention that Kgy o = @uy(Hagy,o). Now, (iii) holds, by Lemma 3.3 just in case
Hyyo°Cryy = Hyyo, and this last equality holds just in case Cuyy = Hyy,
which is just condition (v). This establishes the equivalence of conditions (iii)—
(v), and hence of all five conditions, in the statement of the theorem.

The identity law holds in €[F] just in case it holds for all atoms Ry -
Apply the equivalence of (ii) and (v) in the statement of the theorem to con-
clude that the identity law holds in €[F ]| just in case Cyyy = Hyy for all pairs
(z,y) in £. O

Take up now the task of characterizing when the cycle law (R11) holds.
It suffices to characterize when this implication holds for atoms, and for atoms
r, s, and t, the implication is equivalent to the following atomic form of the
cycle law:

s<r7;t implies t<r;s.

Theorem 3.5 (Cycle Law Theorem). Let F be a pre-semi-frame, and (z,vy, 2)
a triple in Es. The following conditions are equivalent.

(i) If Ryp € Ry o @ Razy, then Ry © Ryy o @ Ry g, for some o < gy,
B < Kyz, and ¥ < Ky
(i) If Ry. 3 C R;yl,a ® Rz, then Rys y C© Ryyo @ Ry. g, for all a < Ky,
B < Kyz, and v < Ky
(iii) Pry [Cwyz} = Cy_aslz
Consequently, the cycle law holds in the algebra €[F| just in case (iil) holds
for all triples (x,y,z) in &s.

Proof. Fix indices a < Ky, 8 < Ky2, and v < k., with the goal of establishing
the equivalence of conditions (i) and (iii). Choose § < kg4, so that

Hx_yl,a = HI%(;’ (1>
and observe that
Rx_yl,a = Ryx’éa (2)

by semi-frame condition (ii) and Converse Theorem 2.5. Semi-frame condition
(ii) and Convention 2.6 imply that

S";yl = Pyz (3)
and

Kyw,ti = Hmy,é- (4)
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Combine (1)—-(4), and use the definition of &, to arrive at
Ryyo®Rozy = Ryss ® Ruzy
= U{Ryz¢ : Hyz ¢ C ‘Py_xl [Kya,°Hozn] o Cyaz}
=U{Ryz¢: Hyz ¢ & ‘P;xl [Hay,s°Hazn]°Cyazt
=U{Ryze t Hyz e © QaylHzyo ° Haz ] ° Cyaz -

It follows from this string of equalities and Partition Lemma 2.2 that the
inclusion

Ryep C Rybo ® Ruzy (5)
is equivalent to the inclusion
Hy. 3 € @zy[Hx_yl,a °Hazp]°Cyaz- (6)
A completely analogous argument shows that the inclusion
Ryzy C Ruyo @ Ry (7)
is equivalent to the inclusion

sz,'y = Cp:ry [sz,a OHyz,,B] OC:L’yz~ (8>

We now transform (6) in a series of steps. Multiply each side of (6) on
the left by the coset K,  to obtain the equivalent inclusion

Kaya°Hy: 3 © Koy ©@ay [H;yla °Hyz v °Cyas . 9)
Notice that the right side of (9) is a coset of K, °H,.. (For example, C,.
is a coset of Hy,°H,.,, which is equal to Ky, °H,.. Also, H;y w®Hy.~ is a

coset of Hyy °H, ., and ¢, maps cosets of Hy, ° sz to cosets of Ky ° H,y., so
wzy[nyla °H,. ] is a coset of K, °H,.. Finally, the product of two cosets of
K., ° H,. with the coset K, o of K, is again a coset of K, °H,.) The left
side of (9) is also a coset of K, ° H,.. Since two cosets of the same group are
either equal or disjoint, the inclusion in (9) is equivalent to the equality

Kaya°Hy: 3 = Kpya° oy [H;yl,oz °Hyz ] °Cyas. (10)
Observe that
Kay,a °90:ry[Hz_y a °Hezn] = Ouy[Hay,al °9"wy[Hz_y, °Hy ]
= Puy[Hay.a H;;y a®Haz

= uy[Hay ° Haz n),

by the definition of K, o (which implies that ¢,y[Hyy.a] = Kgy.a), the iso-
morphism properties of ¢, and the laws of group theory. Equation (10) can
therefore be rewritten in the form

Kuyo°Hyzp = Qay[Hay > Hyz ] o Cyas. (11)
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Apply ga;yl to both sides of (11), and use the isomorphism properties of gp;yl,

to obtain
90;;;1 [(Kay,a°Hyz 5] = 90;3,1 [Pay[Hoy © Hyz iy ° Cyaz
= Sﬁ’;yl [Py [Hzy OHa:zﬁH ° @;yl [Cyez]
= sz"sz,fy"(P;;[Cyzz]~ (12)
Now Cy, is a coset of Hy, ° H,., which, in turn, is equal to K, > H, ., and ¢,
maps the group G,/(Hyy ° Hy.) isomorphically to the group G, /(Kqgy ° Hyz),
so the inverse image <p;yl [Cyz-] must be a coset of Hyy ° H,.. Consequently,

Hy,y O‘P;yl [Cyzz] = ‘P;yl (Cyazls
so that (12) reduces to
Py Kay.o° Hyz p] = Huz oy ° 95y [Cyaz]. (13)
Summarizing, inclusion (6), and hence also inclusion (5), is equivalent to Equa-
tion (13).
We now subject Equation (8) to similar, but simpler, transformations.

Multiply each side of (8) on the right by Cy,l, and use the laws of group
theory, to obtain

Hyzpyo Ca:_ylz c ‘P;yl [Kwy,a OHyz”B]' (14)

Each side of this inclusion is a coset of Hy,, ° H,. Since two cosets of the same
group are equal or disjoint, the inclusion in (14) is equivalent to the equation

Hg 5 °Cr). = SD;yl [(Kay,a°Hyzp- (15)

TYyz
Therefore, inclusion (8), and hence also inclusion (7), is equivalent to Equa-
tion (15).

Combine the results of the last two paragraphs to arrive at the following
conclusion: inclusion (5) implies inclusion (7) just in case Equation (13) implies
Equation (15). Compare (13) with (15): the former implies the latter just in
case

Hy: v O‘P;yl [Cyaz] = Hyz Cry:

Tyz?

or, equivalently, just in case

Form the coset inverse of both sides of (16), and apply the isomorphism prop-
erties of ¢!, to rewrite (16) as

‘P;yl [Cy_zlz] = Cayz. (17)
Apply ¢, to both sides of (17) to arrive at the equivalent equation
Pay[Cryz] = C;xlr (18)

It has been shown that the implication from (5) to (7) for fixed «, 3,
and -, is equivalent to (18). This means that conditions (i) and (iii) in the
statement of the theorem are equivalent. Since the formulation of (iii) does
not involve any of the three indices «, 3, and =, it follows that (iii) implies
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(i) for each such triple of indices, and hence (iii) implies (ii). The implication
from (ii) to (i) is immediate.

The cycle law holds in €[F] just in case it holds for all atoms. Consider
such a triple of atoms

Rwy,ay sz,ﬁa Ruv,'ya
we want to show

Ry-5 C R ® Ryy~ implies Ryy~y C Ryya @ Ry 8-

TY, o
If y = w and v = x and v = z, then the atomic form of the cycle law holds for
the triple just in case @gy[Chrys] = C;xlz, by the equivalence of conditions (ii)
and (iii) in the first part of the theorem.

Assume y # w or u # x or v # z. We show that the law holds trivially,
because the left side of the implication reduces to the empty relation. Choose

& < Kgy such that

-1
Hmy,a = Hmy,g;
and observe that
R;yl,a = Ryl‘,&a (19)

by Converse Theorem 2.5. Consequently,
Ry o ® Ruvy = Ryse @ Ruvy € Gy X G,

Ty,
by (19), the definition of ® , and Partition Lemma 2.2. On the other hand, the
relation R, g is included in G, x G, by Partition Lemma 2.2. The hypothesis
that w # y or z # v implies that the two Cartesian products

Gyx G, and Gy %G,

are disjoint, since distinct groups in the given group system are assumed to be
disjoint. It follows that

Ruzp N (Ry) 0 ® Ruvy) C(Gy x G2) N (Gy x Gy) = 2.

Y,
Since R, g is non-empty, this argument shows that the antecedent of the
implication does not hold, so the entire implication must be true. If u # =z,
then

Ry} ®Ruyvry = Rys e @ Ry, = 9,

Ty,
by (19) and the definition of ®, so again the antecedent of the asserted im-
plication is false, which means that the entire implication is true. O

The next two characterization theorems make use of semi-frame condition
(iv). We begin with an auxiliary lemma. Notice that (i) of the lemma coincides
with semi-frame condition (iv) stated for the triple (z,y, 2) in &s.

Lemma 3.6. Suppose that F is a pre-semi-frame, and (x,y,z) a triple in Es.
The following are equivalent.

i) If Q is a union of cosets of the subgroup Hy, ° H,, in G, then
Yy
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(i) If Q is a union of cosets of the subgroup K, °H,. in G, then

oz [9y=[Ql] = Cry 02y [Q)° Cay.
(iii) If Q is a union of cosets of the subgroup K. K,, in G, then

Cry:° 072 [Q] = 0y [052 Q1] ° iy

Proof. Assume (i). To prove (ii), let @ be a union of cosets of K, H,.. By
semi-frame condition (iii), which holds by the assumption that F is a pre-
semi-frame, we have that gz);yl [Q] is a union of cosets of Hy, © H,.. Substitute

@y |Q] in place of Q in (i) to get
PyzlPay [‘P;yl Q] = ‘sz{ca;ylz ° @;yl [Q] ° Cayz].- (1)

On both sides of (1) there is a union of cosets of K, ° K, ., again by semi-frame
condition (iii). Apply ¢} to both sides of (i) to obtain

‘p;zl [@yz [9090?; [30;7;1 Q] = ‘p;zl [Pz [C;ylz ° (p;yl Q] ° CzyzH (2)

Use the inverse property of functions to obtain (ii) from (2). (Notice that the
symbol ~! is being used two different ways: to denote the inverse functions of
the isomorphisms ¢, and ¢,., and to denote the group inverse of the coset
Cryz. The two different meanings of this particular symbol are standard, and
should not cause the reader any confusion.)

In a similar way, to get (iii) from (ii), let @ be a union of cosets of
K, ° K,.. Substitute <p;zl [@] in place of @ in (ii), multiply both sides by C,.
on the left, and use the inverse property of functions to arrive at (iii).

To get (i) from (iii), let @ be a union of cosets of Hy, o H,,. In (iii),
substitute @xZ[C;ylz °()°Cyy.] in place of @), and use the inverse property of
functions, to get

CT@/Z ° Cx_ylz ° Q ° nyz = (p;yl [pr_zl [SOI?Z [Ca:_ylz ° Q ° Cﬂ?yz]H ° nyz . (3)

Multiply both sides with C;ylz on the right, and use the inverse property for
groups to get

Q= ‘P;_yl [507;21 [‘sz{cx_ylz °Q°Cyy:]]]. (4)
Finally, apply ¢4, and then ¢, to both sides of (4) and use the inverse prop-
erty of functions to get (i) from (4). O

Turn next to the second involution law. As before, it suffices to charac-
terize when the equation holds for pairs of atoms in €[F].

Theorem 3.7 (Second Involution Law Theorem). Let F be a semi-frame, and
(z,y,2) a triple in E3. The following conditions are equivalent.

(i) (Ruya®Ry.p) ' = Ry_z{ﬁ ® R;;a for some a < Kgy and some B < Ky .
(ii) (Ryya ® Ry, p) ' = R;;,ﬁ ® R;ylva for all o < kyy and all B < Ky..
Consequently, the second involution law holds in the algebra €[F] just in case
(iii) holds for all triples (x,y, z) in &s.
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Proof. Fix a < Kgy and 8 < Ky, with the goal of showing that conditions (i)
and (iii) are equivalent. The first step is to work out concrete formulas for the
expressions on the left and right sides of condition (i). The definition of ®
gives

Ry ® Rysp = H{Razyy t Huzy C ‘P;yl (Kay,a©Hyzp]°Cuy: }- (1)

Form the relational converse of both sides of (1), and apply the distributivity
of converse over arbitrary unions, to obtain

(Rmy,a & Ryz,ﬁ) U{Rmz Yt : fCZ Y = Soxy [szﬂl OHyz’ﬁ] OCZ@!Z}'

This last equation is equivalent to the equation

(Rﬁyﬂ ® Ryz,ﬁ) U{sz 7 zz Yy = (Soxy [sz,a OHyzﬁ] -’JUyZ) 1} (2)

by the first involution law for groups (which says that (¢7')~! = g for every
element g in a group). Converse Theorem 2.5 asserts that

R} =R..¢ justincase H_' = H,..

T2,y xz,y

Substitute the right side of each of these equations into the right side of (2) to
arrive at

(Rmy,a & Ryz,ﬁ)il = U{Rzr,f : Hrz,f g (@;yl [ny,(x OHyZ,B] OCzyz)il}- (3)

Use the second involution law for groups (which says that (geh) =t = h=1og™!
for all elements g and h in a group) and the isomorphism properties of ¢, to
see that

(@;yl [(Kay,a°Hyzp]° CwyZ) Ca:ylz (@;yl Ky, OHyZﬂ])il
J(Kayo o Hyz5) "]

:tyz Sozy [Hyzlﬁ xy, Oc]

zyz szy

Replace the first term by the last term in the right side of (3) to conclude that
(ny,a ® Ryz,ﬁ) - U{sz,i sz,i - nyz ‘ny [Hyzlﬁ K;yl,a]}' (4)

The next step is to work out an analogous expression for the right side
of (i). Choose p < kzy and 1 < k. so that

Ki) oy =Kuy, and H_',=H, . (5)
Apply semi-frame condition (ii) and Converse Theorem 2.5 to obtain
R;y, Rya:,p and Ryzlﬁ RZZ/J]' (6)

Use (6) and the definition of ® to get
Ryzlﬁ ® R;yl,a =Ry ® Ryap (7)
=U{Rezy  Hazy C ‘Pz_yl [Keym o Hya,p)°Cryat-
Convention 2.6 and (5) yield
Koyy=Hy.y=H, !5 and Hy,, =Ky, =K, (8)

2Y,n Yyz,n zy,o”



28 Page 16 of 53 H. Andréka, S. Givant Algebra Univers.

Combine (7) and (8) to arrive at

-1 - —1rpr—1 -
Ryz,,@ ® R:ryl,oc = U{RZI;’Y : HZ%’Y g Llozyl [Hyz,ﬁ Oszl,a] OCZ.UJE}' (9)

Apply the isomorphism ¢, to both sides of the inclusion
Hewry Sz [Hy go Ky o) o Coye (10)

to obtain the equivalent inclusion

Pz [Hz:r,v} C ez [‘pz_yl [H;z{ﬂ OK;yl,oz] ° Czyz] (11)
Use the definition of the coset K, - as the image of the coset H, , under the

isomorphism .., and then use Convention 2.6, to rewrite the left side of (11)
as

Pro[Heny) = Kogy = Hyz . (12)
The right side of (11) may also be rewritten in the following way:
ey oo Koyl Coya] = ralon) [H, 2 g o Koy o)) 020 Crye)
= ¢z [yelH, 5o Kool 020 [Cyal
= Coyz* Py Hy 52 Koyl ° Cayz ° 022 Cayal
(13)

The first equality uses the isomorphism property of ¢.,, the second uses semi-
frame condition (ii) which says that

Pre = ¢r; and @y =@ ],
and the third equality uses Lemma 3.6(ii) (with Hy_zlﬁ ° K., in place of Q).
Combine (12) with (13) to conclude that the inclusion in (11), and consequently
also the one in (10), is equivalent to the inclusion

Hy.rn €Oy [, 50 Koy ol ° Cayz ° 020 [Cryal (14)

Yz ° @;y [ yz,3 TY, o
Use the equivalence between (10) and (14) to rewrite (9) as
—1 —1
Ryz”@ ® Rwy,a
=U{Reuy t Hozy C :;ylz °‘Px_y1 [H;zlﬁ OKw_yl,a] °Cuyz °Pza[Cayal}.  (15)
It follows from (4) and (15) that the equation in (i) holds just in case the

right side of (4) is equal to the right side of (15). The right sides of (4) and
(15) are equal just in case the cosets

C;ylz ° @;yl [Hy_zl,ﬁ ° K;y{a] (16)

and

C;ylz ° (p;yl [Hg;zl,ﬂ ° K:;yl,a] OCM!Z O(pzz[CnyC] (17)
are equal, by Lemma 3.3. (Notice that (16) and (17) really are cosets of
HgyoH,.. In more detail, each of the factors in (16) and (17) is a coset of
Hyy°H,., so the composition of these factors is also a coset of H,,°H,,.
For example, Hy_zlﬁ OK;y{a is a coset of K, °H,,, and ¢;, maps the group
G/ (Hyy© Hy.) isomorphically onto the group Gy /(Kyy°Hy.), so the inverse

image @} [Hy_zlﬁ ° K., must be a coset of Hyy ° H,.. The isomorphism (.,
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which coincides with ¢}, maps the group G /(K. ° K,,.) isomorphically onto
the group G./(Hyy°Hyz), and C.yy is a coset of H.yoH,, = K,,° K., so
the image ¢.,[C.y.] must be a coset of Hy,y, °H,.) The cosets in (16) and (17)
are equal just in case

ny gy = Cgyz © szm[czyz]a

or, put another way, they are equal just in case

Pz [Czyz}il = nyza (18)
by the cancellation law for groups. Rewrite (18) as
‘Pzac[c,;ylx] = Coyz, (19)

using the isomorphism properties of .., and then apply the inverse ¢,, of
the isomorphism ¢, to both sides of (19) to obtain the equivalent equation

Cz_ylz = @IZ[nyZ]~ (20)
Combine these various equivalences to conclude that (i) holds if and only if
(20) holds, that is to say, if and only if (iii) holds.

It has been shown that (i) and (iii) are equivalent for any fixed « and g.
Since (iii) does not involve a and 3, it may be concluded that (iii) implies (i)
for any « and (3, and hence (iii) implies (ii). The implication from (ii) to (i) is
trivial.

The form of the second involution law as a positive, regular equation
implies that it holds in €[F] just in case it holds for all atoms R, . and
Ry.p in C[F]. If y = w, then the law holds for the given pair of atoms
just in case ¢,.[Cyy.] = CL\, by the equivalence of conditions (ii) and (iii)
established above.

Assume y # w. We show that the second involution law holds automati-
cally for the given pair of atoms. Indeed, choose v and § so that

Hy)\=Hyy~ and H, 5= Hy.;.

Ty,

Semi-frame condition (i) and Converse Theorem 2.5 imply that

Ryyo=Ryery and Ryl 5= R.ys.

TY, 0

Combine this with the definition of ® under the assumption that y # w to
obtain

R;i,,@ ®R,) 0 =Rews® Ry, =2 (21)

and
(Riya ® Rusp) ' =271 = 2. (22)
Since the right sides of (21) and (22) are equal, so are the left sides. O

Turn finally to the task of characterizing when the associative law for rel-
ative multiplication holds in an algebra €[F]. Again, it suffices to characterize
when it holds for atoms. It is helpful to introduce a bit of notation. Let &,
denote the set of quadruples (z,y, z,w) such that the pairs (z,y), (z,z), and
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(z,w) are all in &, or, equivalently, such that the triples (z,y, z) and (z, z,w)
are in &3.

Theorem 3.8 (Associative Law Theorem). Let F be a semi-frame, and let
(z,y,z,w) be a quadruple in E,. The following conditions are equivalent.

(i) (Ray,a ® Ry-8) ® Rowyy = Raya @ (Ry238 ® Rawy) for some a < Ky,
B < Kyz and v < Ky .
(i) (Raya ® Ry>8) @ Row~r = Ruya @ (Ryz8 ® Rawy) for all a < Kgy,
B < Kys and 7 < Kz
(111) Czyz oczzw = Pyzx [Cyzw ony} OCa:yw'
Consequently, the associative law for ® holds in the algebra €[F | just in case
(iii) holds for all quadruples (x,y,z,w) in .

Proof. Fix some o < Kgy, 8 < Kyz, and v < K,y, With goal of establishing
the equivalence of (i) and (iii). The first task is to compute and simplify an
expression for

(ny,oe & Ryz,ﬁ) 02y sz,'y~ (1)
The definition of ® implies that
Raya ® Ryzp = U{Roze t Hozg © 00y [Kaya° Hyz 8] °Cayzt. (2)

Form the product, in the sense of ®, on both sides of (2) on the right with
R, and use the distributivity of ® over arbitrary unions, to see that (1)
is equal to the union

UfRaz 6 @ Rew sy Hazg © 00y [Kayo ° Hyz p]° Cryz}- (3)
The definition of ® also yields
Raz¢ ® Rowsy = U Rowp : Howyp C 027 [Kazg *Howp)°Cozw}  (4)
for each &. Write
Dy = ¢, [Kaya©Hyz gl °Crye, (5)

and observe that D; is a coset of the normal subgroup H,, °H,, in G5. Com-
bine (5) with (3) and (4) to arrive at the equality of (1) with

U{wa,p tHyw,p C S";zl [Km,i OHZ’W,’Y] °Cyzy for some Hy, ¢ C Dy}
This union may be rewritten as
U{RIU%P : sz’p Q U{(Pg?zl [Kzz,g onw,'y] Oszw : Ha:z,§ g Dl}} (6)
In more detail, the sets
90;21 [sz,g Osz,’y] ° C.’I,‘ZUM

for various &, are cosets of H,, ° Hy,, (since ¢,, induces an isomorphism from
Gy/(Hyz°Hyy) to G,/ (Ky,°H.y)), and any coset Hyy, , of Hy,y that is con-
tained in a union of cosets of H,, ° H,,, must be contained entirely within one
of these cosets. It follows that (1) and (6) are equal.



Vol. 79 (2018) Coset relation algebras Page 19 of 53 28

We now transform (6) in a series of steps. First,

U{Kazg : Hozg © Di} = H{@uzlHazgl s Hezg © D1}

= Paz[U{Haez e+ Hozie © D1}
= az[D1], (7)
by the definition of K. ¢ as the image of H, ¢ under the mapping ¢,, the
distributivity of function images over unions, and the fact that D; is the union

of the set of cosets of H,, that are included in it, by (5) and the remark
following (5). Therefore

{02 [Kzse °Howr) °Crzw : Hyze € Dy}

= U{9ii [Kozg © Howy| : Huzg © D1} oGz

= 0ot (U{Kuzg° Howry t Hoze € D1} Clzu

= Ot [UH{Kozg © Kz o How iyt Huzg © D1} Clzay

= 0o {U{K s Hyzg € D1} oKy © Ho ] ° Czas

= ¢z [9wz[D1] ° Kaz * Haw ] ° Cozu

= 3z [Pez[D1]] * 9z Koz * Haw ] * Cozw

=D1°9,} [Kyz©How o) ° Crz

= SO;yl [Kwynx OHyz,ﬁ] °Cryz ° S%_zl (K- "sz,v] °Clrrw,
by the distributivity of coset composition over arbitrary unions, the distribu-
tivity of inverse function images over arbitrary unions, the fact that K, is the
identity element for its group of cosets, the distributivity of coset composition

over arbitrary unions, (7), the isomorphism property of ¢, !, the fact that ¢,

and ¢, are inverses of one another (by semi-frame condition (ii)), and the

definition of Dy in (5).

Recall that C, . is a coset of H,, ° H,.. The latter is the identity element
of the quotient group G, /(H. oy °H,.), and also the image of K, ° K, under
the inverse isomorphism ¢ !. Consequently,

Coys * Pz Kz * Hawy] = Coys © Hay © Hoz 0 07 [Koz © Hawy)
= Cuyz ° Py [sz Ky:lop,. [Kx °How ]
:C;cyz"%cz[ 2o Ky o Ky o Hop y)
= Cayz o Kz Kyz © How,y)
= Cuyz ° Pz [Kaz Ky o Kyz © How ]
= 0oy [0y Kz Kyz ° Kyz © How )] Cye
= Yoy [ 0yz [Kaz  Kyz] o0y [Kys o How ] Cys
= @y Ky o Hyz 20y [ Ky © Ho 5] © Gy

The sixth equality uses Lemma 3.6(iii) (with K, ° Kyz ° Ky, °Hy, ~ in place

of @), the seventh the isomorphism property of goyz , and the eighth the fact
that ¢,. maps Kz, °H,, to K;.°K,,.
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Combine the last two strings of equalities with the isomorphism proper-
ties of cpxy , and the fact that K, ° H,. is the identity element of the quotient
group Gy/(Kyy°H,.), to arrive at

U922 Kz How) * Coz - Hozg © D1}
= ¢y [Kay.a oHyz 81 Cayz 0 [Kaz © Haw) * Caz
= Oy [Kaya° Hyz 5] ° 0y [Kay o Hyz 20, [Kyz © How 5] ° Cayz © Coz
= Py [Kry, Hy.poKayoHyz°0,, [Kyz H.w )] 2 Coryz ©Cozu
= Py Kaya " Hys 50y [Kyz ° Howy]]° Cuyz * Cozuo-
Conclusion: (
U{Rew.p : Huw,p C 0oy [Kay,a © Hyz 5202 [Kyz ° Hows]]° Cays © Cozu}y (8)

so (1) and (8) are equal.
The next task is to work out an analogous expression for

6) may be rewritten as the inclusion

Raya ® (Ryzp @ Rowy) (9)
in an analogous fashion. Write
Dy = ‘P;zl [Kyzp°Hzwy) o Cyzu- (10)
The definition of ® and (10) imply that
Ry.p @ Rowy = U{Ryw.¢ : Hywe € D2} (11)

Form the ® product, on both sides of this equation on the left with R, o, and
use the distributivity of ® over arbitrary unions, to see that (9) is equal to

U{Ray,0 ® Ryw,e : Hywe C D2} (12)
Since
Ray,a @ Ryw,e = U{Raw,p : Huw,p C ‘P;yl [Kay,a ° Hyw,e] ° Coyw}
by the definition of ®, it follows that (12), and hence also (9), is equal to
UHRow,p : Hew,p C @;yl [(Kay,a ° Hyw,e] ° Coyw for some Hy, e C Do}
This union can be rewritten as
U{Rxw,p tHywp © U{‘Pay[ ey ® Hyw ] ° Coyw + Hyw,e C DZ}}a
and therefore also as
U{Raw.p : Hewp © Py [Kuy,a° Do) ° Cuyu}- (13)

(This last step uses the distributivity of coset compositions and of inverse
function images over arbitrary unions.) Use the identity element property for
K,. with respect to its cosets, the isomorphism properties of <p;zl on cosets
and unions of cosets of K., and the definition of K. g to write

(pg;zl [Kyz,ﬁ ° HZUM’Y] = (py_zl [KyZ,B oKyz ° sz,'y]
= 501;21 [Kyz7ﬂ] ° w;zl [Kyz ° sz,'y]
=Hy.p° @;zl [Kyz © He ] (14)



Vol. 79 (2018) Coset relation algebras Page 21 of 53 28

It follows that
Py [Kay.a°Da] o Cryu
= ‘Pwy [ Ty, ‘Pyz [Kyz 3 ° Hew,y] ° Cyzwl ° Coyu
= Puy [K o Hyzpop,; [Kyz Hewy]°Cyzw] ° Coyw
= Puy [K o KyyoHy.5° Py [K ° How,y] ° Cyzw)] ° Cayw
= S%y [ ya°Hy.p° S"yz [Kyz Hew ] o Kay ° Cyzw] ° Coyw
= Pay K ya o Hyz 50 Pyz Ky o Hawpl) o Py 1Ky ° Cyzu) ° Coyuy

by (10), (14), the identity element properties of K, with respect to its cosets,
the fact that K, is a normal subgroup of G, and therefore commutes with
the other sets, and the isomorphism propertles of <pxy In this regard, observe
that the complex product K, °C) .. is a union of cosets of K, (this was the
point of introducing K, into the fourth expression), and of course so is

Kayo*Hyzp° ¢y [Kyz © How )

(since the coset K.y o is present in the complex product), so the isomorphism
property of S%y for unions of cosets of K, really is applicable.
This last string of equalities shows that (13) may be rewritten in the form

Ui Raw,p : Hrw,p
C Poy Koy * Hyz o0y [Kyz © Hew 4] 00y [Kay ° Cyzu] * Cayu}, (1)
so (9) is equal to (15).
It has been shown that (1) is equal to (8), and (9) to (15). It follows that
(1) and (9) will be equal, that is to say, condition (i) of the theorem will hold,

just in case (8) and (15) are equal. According to Lemma 3.3, the unions (8)
and (15) are equal just in case the corresponding cosets

‘P;yl [Kay,a°Hyz5° ‘Pg,_/zl [Kyz ° Hown ] ° Caysz © Cozw
and
SO;ZJI [Kry,a ° Hyz,ﬂ ° sag;zl [Kyz ° HZW,"/” ° 90;7;1 [ny ° Cyzw] ° nyw

are equal. Apply the cancellation law for G, /(Hzy ° Hy. © Hyy) to conclude
that these two cosets are equal if and only if

Cwyz ° szw %gy [K Cyzw] °© Ca:yw . (16)

To justify this application of the cancellation law, it must be shown that
the relevant factors, namely

%;yl [Kay,a°Hyzp5° ‘F’;zl [Kyz° Howq ), (17)
Czyz °Crzw, (18)

and
QDTy [sz Cyzw] ° Czyuu (19)

really are all cosets in G of the normal subgroup
nyOHa:onww- (20)
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Begin with (17). Observe that K, © H.,, ~ is a coset of K, © H.,,, so its inverse
image under ¢, is a coset of H,, ° Hy,,. The product K,y o°Hy. g is a coset
of Kyy°H,,, so the product

KaoyaoHy: O‘P;zl[Kyz ° Hyu ] (21)
is a coset of the group K, °H,,°H,, °H,,, which coincides with the group
KwyoHyonyw- (22)

Applying ¢, to (21) gives (17). Applying it to (22) gives
‘P;yl [Kay © Hyz © Hyu|.
Since
@;yl [Kay ©Hy. ° Hyw| = @;yl [(Kay © Kay° Hyz © Hyy]

= %Zyl [Kay o Hyz ° Kuy © Hyol
= %;yl [Kay o Hy:| °90;yl [(Koy ° Hyw]
= (Hyy°Hyz) o (Hay ° Hyw)
- Ha:y Ony OHacz onw
= H:Ey Osz Owaa

and since (21) is a coset of (22), it may be concluded that (17) is a coset of
(20), as claimed.

Turn now to (18). By assumption, Cy,. is a coset of the subgroup
HyyoH,,, and C,.,, is a coset of the subgroup H,,° H,,, so the product
coset (18) is a coset of the product subgroup, which is (20).

Consider, finally, (19). By assumption, Cy.,, is a coset of H,, ° Hy,, S0
the product Ky °Cy.w is a coset of Ky ° Hy, © Hy,,. It follows that the inverse
image

Py [Kay © Cyzn] (23)

is a coset of the inverse image gp;yl [Kgy°Hy.°Hy,|. It was shown above that
this inverse image coincides with (20), so (23) is a coset of (20). The set Cyuy
is a coset of Hyy, °Hyy, by assumption, so the product of Cyyyy with (23) is a
coset of the product of Hy,, ° Hy, with (20). This last product reduces to (20),
so (19) is a coset of (20).

We carry out one final transformation of (16). Semi-frame condition (ii)
says that ¢y, is the inverse of ¢,,, and consequently K, coincides with the
subgroup Hy,, by Convention 2.6. Also, the subgroup Hy, is normal. Conse-
quently, Equation (16) may be rewritten in the form

Cwyz ° szw = Pyz [Cyzw OHy:r] ° Czyw;
which is just the equation in condition (iii).

It has been demonstrated that condition (i) holds for the fixed «, 3, and
7 just in case the equation in condition (iii) holds. Since the formulation of (iii)
does not involve any of the three given indices, it follows that (iii) implies (i)
for each such triple of indices, and therefore (iii) implies (ii). The implication
from (ii) to (i) is obvious.
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The associative law holds in €[F] just in case it holds for all atoms.
Consider a triple of atoms
Rmy,a7 sz,ﬁ7 Ru’u,'y~

If y = w and z = u, then the law holds for the triple of atoms just in case
Cmyz ° szw = Py [Cyzw OHyw] ° nywy

by the equivalence of conditions (ii) and (iii) in the first part of the theorem.
If y # w or if z # u, then the associative law holds automatically for this
triple, since both sides reduce to the empty relation. Indeed, if y # w, then
Rzy,a & sz,ﬁ =4,
by the definition of ®, and consequently
(Raya @ Ruzp) @ Ruyy = 9, (24)

again, by the definition of ®. If also z # u, then a similar argument shows
that

Reya ® (Ruzp @ Ryvy) = 9. (25)

In this case, associativity holds by (24) and (25).
If z = u, then the argument is slightly more involved. In this case,

Ruzp ® Ruvy = U{Ruwv,e t Huve C Pz Kuwz,p °Hypy] ° Cuzo }s (26)
by the definition of ® , and therefore
Ry ® (Ruzp ® Ruv,y)
= U{nyya ® Ry, : Huwe © 901;2 [Kuw:.p OHuv,'V} °Cuwzv}

by (26) and the distributivity of the operation ® over arbitrary unions. Each
of the relations Ry o ® Ryy,e in this union is empty, by the definition of ®,
since we have assumed that y # w. It follows that (25) holds in this case as
well. Compare (25) with (24) to arrive at the desired conclusion for the case
y # w. The case z # u is treated in an analogous fashion. 0

The next corollary says that semi-frame condition (iv) is necessary for
€[F] to be a relation algebra.

Corollary 3.9 (Semi-frame Corollary). Assume that F is a pre-semi-frame. If
either the Second Involution Law or the Associative Law holds in the algebra
C[F], then F is a semi-frame.

Proof. Assume that the Second Involution Law holds in €[F |. Semi-frame con-
dition (iv) was used only once in the proof of Theorem 3.7, when Lemma 3.6(ii)
was applied to justify the third equality in (13). Omitting that step, the proof
shows that Theorem 3.7(i) holds just in case the cosets in (16) and the modified
(17) of that proof are equal, that is to say, just in case

Ca:_ylz 090;3,1 Q] = ‘P;zl [Soyz Q] ° 2 [Czyw]> (1)

where @ is Hy_zlﬁ °K,', From the assumption that the Second Involution

Law holds, it follows that (1) holds for all «, 3, that is to say, for all cosets @
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of Hy, ° K, Take Q = H,, ° K,, and use semi-frame condition (iii) to obtain
©on [Q] = 050y [Q]]. Substitute the left side of this equality for the right
side in (1), and use the cancellation law for groups (and the fact that for this
choice of @, the inverse image gogyl (@) is a normal subgroup of G, and hence
commutes with ¢, (Cyz)) to reduce (1) to

Substitute the left side of (2) for the right side in Equation (1), and then
multiply both sides of the resulting equation by C,,. on the right to arrive
at Lemma 3.6(ii), which is equivalent to Lemma 3.6(i). Thus, Lemma 3.6(i)
holds for all triples (x,y, z) in &3, which is just what semi-frame condition (iv)
expresses.

Assume now that the Associative Law holds in €[F]. The derivation of
semi-frame condition (iv) is similar to the preceding one. Semi-frame condition
(iv) was used only once in the proof of Theorem 3.8, when Lemma 3.6(iii) was
applied to justify the sixth equality in the transformation of the expression
Cayz © 052 [Kyz ©Hyop o). If we use the “half-transformed” expression that we
get without using Lemma 3.6(iii), in place of the one in step (8) of that proof,
we get the term

50;7;1 [Kay,a°Hyz,p]° Cuys © ‘Px_zl [(Kaz o Kyz o Haw iy °Crzu (3)

Theorem 3.8(i) is equivalent to the equality of (3) and the term in (15) of that
proof, that is to say, to the term

Py By.o© Hyz g0y [Kyz © Hew n]] 2 00y Ky © ] © Cayu- (4)

Multiply the two terms on the left by ¢, [Kyy o°Hy. gl, use isomorphism
property of ga;yl, and write @ in place of K, °c H.,, , to get that Theorem 3.8(i)
is equivalent to the equation

Cryz© @;zl Kz Qo Crzw = ‘Pz_yl [‘pg;zl [Q]]° SO;yl [Kay ° Cyzw] ° Coyw- (5)

The assumption that the associative law holds implies that (5) holds for all
cosets Q of K,,°H,,. In particular, it holds for K. °H,, from which it
follows that

Czyz °© szw = SD;yl [ny ° Cyzw] Onyw . (6)

Substitute the left side of (6) for the right side in its occurrence on the right
side of (5), and then cancel the occurrence of C,.,, on the right of both sides
of the resulting equation, to get Lemma 3.6(iii). The desired conclusion now
follows just as in the previous paragraph. O

Coset relation algebras are generalizations of group relation algebras,
since each group relation algebra may be viewed as a coset relation algebra.
In more detail, let 7 = (G, ¢) be a group frame, and put F = (G, ¢, C') where
Coy> = Hyy o Hy, for each triple (z,y, 2) in £3. It is easy to see that the algebras
®[F] and €[F] are equal. In Section 5, it will be shown the class of coset relation
algebras is a proper extension of the class of group relation algebras: there exist

coset relation algebras that are not group relation algebras.
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We conclude the present section with two lemmas that concern the rela-
tionship between these two constructions. The first lemma characterizes when
the operation ® gives the same result as relational composition.

Lemma 3.10. Let F be a semi-frame. The following conditions are equivalent
for all triples (x,y, z) in Es.

(i) Rey,a @ Ry. 8 = Raya|Ry-p for some a < kgy and some § < Ky..

(i) Rey,a ® Ry. 3= Raya|Ry-p for all a < kzy and all B < Ky

(iil) Copy. = Hyy°oHy..

Proof. Assume first that condition (iii) holds, with the goal of establishing (ii).
Clearly,

‘P;yl [Kacy,a °Hyz,[3] °Chyz = 90;;3/1 [Kacy,a OHyz,ﬁ]v (1)

because Hy, ° H,. is the identity element in its group of cosets. For the same
reason, the inner automorphism 7 of G, /(Hyy © H;.) determined by the coset
Cgy- is the identity automorphism. Semi-frame condition (iv) therefore reduces
to

Sz)wy | @yz =T | @mz = @zz . (2)

Use (2) and the implication from (iv) to (iii) in the Composition Theorem to
obtain

Rwy,a|Ryz7ﬁ = U{sz,"/ tHyzy © ‘Pw_yl [Kwy,a OHyz,B}} (3)

for all @ < kzy and B < k.. (The first hypothesis in condition (iv) is satisfied
because of semi-frame condition (iii).) Use Definition 3.1 to get

Riyoa ® Ry.p = U{Ruzny t Hizy C ‘P;yl [(Kay,a°Hyzp)°Cuy:} (4)

for all @ < kg, and all 3 < k.. Combine (3), (4), and (1) to arrive at (ii).

The implication from (ii) to (i) is obvious. To establish the implication
from (i) to (iii), let o < Kkgy and B < Ky, be fixed indices such that (i) holds.
Since the universe A of the algebra €[F] is closed under the operation ® , the
composition Ry, o | Ry. g must belong to A. Apply Corollary 2.9 to see that
this composition must belong to A for every choice of & < kgy and 5 < ky.
Invoke the Composition Theorem to obtain (3). Use Definition 3.1 to get (4).
Combine (3) and (4) with the assumption in (i) to arrive at

U{Razy t Hozpy C QP;yl (Kay,a°Hyz g}
= H{Rusy t Hoziy © 0y [Kay,o° Hyz 5] ° Cuyz } (5)

for the o« and 8 chosen so that (i) holds. Apply Lemma 3.3 to (5) to ob-
tain (1). (To check that Lemma 3.3 really is applicable, observe that the
inverse image go;yl [Kay,a°Hy. 3] of the coset Ky ooHy,p of KyyoH,, is
a coset of HyyoH,,, because (¢, maps G./(Hyzy°H,,) isomorphically to
Gy/(Kyy°oHy.). Also, Cyy. is a coset of HyyoH,,, by assumption. Conse-
quently, the composition

SD;yl [Kay,a°Hyzp]°Cuy:
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is a coset of Hyy o H,.) The only element of a (quotient) group that leaves an-
other element of the group unchanged under group composition is the identity
element, by the cancellation law for groups. Consequently, it follows from (1)
that Cy,. must coincide with the identity element H,°H,. of the quotient
group. O

In general, the composition R,y o | Ryz g does not belong to the algebra
¢[F]. Fortunately, it is possible to characterize when it does belong.

Lemma 3.11. Let F be a semi-frame. The following conditions are equivalent
for all triples (z,y,z) in &s.

(i) Ray,a|Ryzp ts in C[F] for some a < kgy and some f < Ky .
(i) Ryyal|Ryzp tsin €[F] for all a < Ky and all B < Ky,.
(iii) Cyys is in the center of the group Gu/(HyyoHyz).

Proof. The equivalence of (i) and (ii) is proved in Corollary 2.9. To estab-
lish the implication from (iii) to (ii), assume that Cy,. is in the center of
Gy /(Hyy°Hy.). The inner automorphism 7 determined by Cy,. is then the
identity automorphism, so semi-frame condition (iv) for the given triple (x,y, 2)
reduces to

¢1y|¢yz = Pz (1)

Keeping in mind semi-frame condition (iii), we see that the conditions in part
(iv) of the Composition Theorem are satisfied for the triple (z,y,z). By the
implication from (iv) to (ii) in that theorem, the composition Ryy .« | Ry- g
must be in the universe A of the algebra €[F] for all & and .

To establish the implication from (ii) to (iii), assume that Ry o | Ry. 3 is
in A for all « and 3. Tt follows from the Composition Theorem that (1) holds.
By assumption, F is a semi-frame, so

@Iy | @yz =T | Paz) (2)
with 7 denoting 7,,.. Comparing (1) and (2), it is clear that

@zz =T | @zz .
Form the relational composition of each side of this equation with ¢! on
the right to see that 7 is the identity automorphism of the quotient group
Gy /(Hyy°Hg.). This can only happen if Cy, . is in the center of the quotient
group, because 7 is the inner automorphism determined by C,.. 0

4. Coset semi-frames

In the preceding section, necessary and sufficient conditions are given for the
algebra €[F ] constructed from a coset semi-frame F to satisfy the identity law,
the second involution law, the cycle law, and the associative law, and hence to
be a relation algebra. We single out the coset semi-frames that satisfy these
conditions.



Vol. 79 (2018) Coset relation algebras Page 27 of 53 28

Definition 4.1. A coset semi-frame

F=(Gr:x€l) (pay:(x,y) €E),(Coyz: (x,y,2) € E3))

is said to satisfy the coset conditions if the following equations hold for all
pairs (z,y) in &, all triples (z,y, z) in &, and all quadruples (z,y,z,w) in &4
respectively.

(i) Cayy = Hay.

(ii) “sz{cxyZ] = Cz_ylz

(iV) Czyz oczzw = Pyz [Cyzw oHyfI?} OCIyw‘

These are called the coset conditions for the identity law, the second involution
law, the cycle law, and the associative law respectively.

The results in the previous section lead to the following theorem, which
is one of the main results of this paper.

Theorem 4.2 (Coset Semi-frame Theorem). If a coset semi-frame F satisfies
the coset conditions, then the algebra €[F | constructed from F is a complete
and atomic measurable relation algebra with base set and unit

U=U{Gs:2z€l} and E=J{G, xGy:(z,y) €&}

respectively. The atoms in this algebra are the relations of the form Ryy o for
pairs (x,y) in £, and the subidentity atoms are the relations of the form Ryq o
for elements x in I. The measure of Ry, o is just the cardinality of the group
G,.

Proof. The algebra €[F] is a complete and atomic Boolean algebra of bi-
nary relations containing the identity relation idy, and closed under the set-
theoretic operation of converse and under the operation ® , by the definition
of a semi-frame, the assumption that F is a semi-frame, and Boolean Algebra
Theorem 2.3, Identity Theorem 2.4, Converse Theorem 2.5, and the definition
of ®. The Boolean axioms (R1)—(R3), the first involution law (R6), and the
two distributive laws (R8) and (R9) are valid in €[F], by Theorem 2.3 and
the remarks following Definition 3.2. The associative law (R4), the identity
law (R5), the second involution law (R7), and the cycle law (R11) are also
valid in €[F], by Associative Law Theorem 3.8, Identity Law Theorem 3.4,
Second Involution Law Theorem 3.7, and Cycle Law Theorem 3.5 respectively,
because F is assumed to satisfy the coset conditions. Consequently, €[F] is a
complete and atomic relation algebra in which the universe consists of binary
relations, and all operations except the one for relative multiplication, coincide
with the standard set-theoretic operations of set relation algebras.

The atoms of the algebra €[F] are the relations of the form Ry, o, and
the subidentity atoms are the relations of the form R;. o, by Lemma 2.2,
Theorem 2.3, and the construction of €[F]. The identity relation idy is the
disjoint union of the subidentity atoms R, o, by Theorem 2.4 and semi-frame
condition (i).
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To prove that each subidentity atom R, o is measurable, with measure
the cardinality of the group G, it must be shown that the square

R:cz,O ®E®me,0 (1)

is a union of k., non-zero functional atoms. The unit £ may be written in the
form

E={GyxG,:(y,2) €E} =U{Ryz0: (y,2) € € and o < Ky}, (2)
by Lemma 2.2 and Theorem 2.3. Consequently,
Ran0 ® B ® Runio = Roao ® (U Ryt (4.2) € € and @ < 5,.}) & Ruso
= {Roz,0 ®Ryz.0a ® Ryzo: (y,2) € € and a < Ky}, 5

by (2) and the distributivity of ® over arbitrary unions. If x # y or z # z,
then

Rzz,O & Ryz,a & Rxm,O =4, (4)

by the definition of the operation ® . On the other hand, if x =y and z = z,
then
Rx:r,O & Ryz,a ® Rxm,O = Rxm,O & Rzz,a ® Rm:}c,O
= Ra:w,O l Rmaj,a | wa,O = R:Ez,oc . (5)
The first equality uses the assumptions on y and z. The second equality uses
the assumption that F satisfies the coset condition for the identity law, to-

gether with Lemma 3.10 and Theorem 3.4, which ensures that condition (iii)
of Lemma 3.10, namely

nyz = szz =Hyp = HyppoHyp = Ha:y OHmzv (6)

is satisfied. The third equality uses the fact that R, o = idg,, and Ry; « is a
subset of G x G5. Combine (3)-(5), and use Lemma 2.2, to arrive at

Ra::r,O RFE® sz’o = U{sz,a o< Iiza;} =Gy x Gy. (7)

Since Hyy = K;p = {e3}, the sets Hyy 4 = Kgy o have the form {g,},
and therefore the relations Ry, o (for @ < kg,) have the form
wa,a - UW{me,'y X (sz;y OKmv,a)}
= U’y{{g’Y} X {gy°9att ={(9+,9y°9a) v < Kz}, (8)
which is a function, and in fact a bijection.
It follows from (7) and (8) that the square (1) is the disjoint union of x,
functions. Consequently, R, o is a measurable atom of measure k,,. Combine

this with the observations of the previous paragraph to conclude that the
relation algebra €[F ] is measurable. O

The theorem justifies the following definition.
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Definition 4.3. Suppose that F is a coset semi-frame that satisfies the coset
conditions. The relation algebra €[F | constructed from F in Coset Semi-frame
Theorem 4.2 is called the (full) coset relation algebra on F. A general coset
relation algebra is defined to be an algebra that is embeddable into a full coset
relation algebra.

The task of verifying that a given group triple satisfies the semi-frame
conditions and the coset conditions, and therefore yields a full coset relation
algebra, that is to say, it yields an example of a measurable relation algebra,
can be quite complicated and tedious. Fortunately, some simplifications are
possible. To describe them, it is helpful to assume that the group index set [ is
linearly ordered, say by a relation <. Roughly speaking, under the assumption
of condition (i), condition (ii) holds in general just in case it holds for each
pair (z,y) in £ with z < y, and similarly for the other semi-frame conditions.
Similar simplifications are possible for most of the remaining semi-frame and
coset conditions. Actually, it is possible to replace coset conditions (i)—(iii)
with four simpler conditions that do not simultaneously involve the formation
of a coset inverse and the application of a quotient isomorphism.

We begin with two lemmas. The first formulates some conditions that
are equivalent to coset condition (ii) for the second involution law and coset
condition (iii) for the cycle law.

Lemma 4.4. Let F be a semi-frame, and (u,v,w) a triple in E3. Consider the
following conditions on the coset system of F.

(i) Cr ) = Cazy for all permutations (z,y, z) of (u,v,w).

(il) @uz[Cryz] = CL  for all permutations (x,y,z) of (u,v,w).
(iil) pzz[Cayz] = C’Z;Ey for all permutations (z,y,z) of (u,v,w).
(iv) Pay[Cayz] = Cprly  for all permutations (x,y, z) of (u,v,w).
(V) oayl xyz} Cyze  for all permutations (x,y, z) of (u,v,w).

Conditions (iii) and (v) are equivalent. Any two of conditions (i)-(iv), and
also any two of conditions (i), (ii), (iv) and (v), imply all of the other condi-
tions.

Proof. First, observe that
Pyz[Pay[Cay:l] = Paz[Cay:] (1)
holds by semi-frame condition (iv), since
Teyz (Cmyz) C;yz Czyz ° Cwyz = Cmyz .

Apply ¢., to both sides of (1), and use the fact that ¢., is the inverse of ¢, .,
by semi-frame condition (ii), to obtain

Qozy[@wz [nyzﬂ = <pxy[cxyz]~ (2)

The equivalence of (iii) and (v) is now easy to prove. If (iii) holds, then

Cyzz = @zy[czzy] = @zy[%ﬁ’wz [Caryzﬂ = ‘sz[czyz]a
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by (iii) (with z, z, and y in place of z, y, and z respectively), another appli-
cation of (iii), and (2). On the other hand, if (v) holds, then

by (v) (with y, z, and « in place of z, y, and z respectively), another application
of (v), and (1).

The next step is to show that conditions (i) and (ii) imply all of the
remaining conditions. The derivation of (iii) and (iv) from (i) and (ii) is easy.
For (iii), use (ii) and (i) (with z and z interchanged):

<)Oaxcz[c’acyz] = 071 = Czacy~

zZyx

For (iv), first use (i), (ii) (with y and z interchanged), and (i) (with y, z, and
z in place of x, y, and z respectively) to get
Pay [Cx_ylz] = Pay [C:rrzy] = Cy_zlz = Cyzz.
Form the coset inverses of the first and last terms, and use the isomorphism
properties of ¢, to arrive at (iv). It has already been shown that (v) follows
from (iii), so conditions (i) and (ii) do imply all of the remaining conditions.
To show that conditions (i) and (iii) imply all of the remaining conditions,

it suffices to derive (ii), by the observations of the preceding paragraph. Use
(iii) and (i) (with = and z interchanged) to obtain

%cz[cﬂcyZ] = Clay = sz;lsc

Similarly, to show that conditions (i) and (iv) imply all of the remaining con-
ditions, it suffices to derive (ii). First, use (i), (iv) (with y and z interchanged),
and (i) (with z, z, and y in place of z, y, and z respectively) to obtain

@wz[cw_ylz] = @wz[czzy] = Cz_mly = Czy;v-
Form the coset inverses of the first and last terms, and use the isomorphism
properties of ¢,, to arrive (ii).

To prove that (ii) and (iii) imply all of the remaining conditions, it suffices
to derive (i). Use (iii) and (ii) to get

Czacy = @xz[cacyz] =C. )

zyx*
Interchange = and z to arrive at (i). Similarly, to prove that (ii) and (iv) imply
all of the remaining conditions, it suffices to derive (i). Use (ii) (with x and
y interchanged) and the isomorphism properties of ¢, (iv), (1), and (ii) to
obtain

Clay = Py- [Cy_:vlz] = Pyz[Pay[Cayz]] = p22[Cuy:] = Cz_ylz

Again, interchange x and z to arrive at (i).

Finally, to show that (iii) and (iv) imply the remaining conditions, it
suffices to derive (i). Use (iii) (with « and y interchanged) and the isomorphism
properties of ¢,., (iv), (1), and (iii) to obtain

Cz_ylx = Pyz [Cy_wlz] = Pyz [‘Pwy[cﬂcyZH = Pz [CwyZ] = Clay-

As before, interchange 2 and z to arrive at (i). O
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The second lemma facilitates the verification of the second and third coset
conditions in cases when some of the indices coincide.

Lemma 4.5. Let F be a semi-frame. If Cyy, = Hyy© Hy, for every permutation
(z,y,2) of a given triple in Es, then

C_l = CZDZZ/ and QOwy[CZyZ] = Cyz:v

Yz

for every permutation of the given triple.
Proof. Assume that

Cryz = Hyy o Hy, (1)
for all permutations (z,y, z) of a given triple in &. Obviously,

Crye = (Hoyo Hyo) ™ = Ho o Hyp = Hoys o Hyy = Coy

TYZz
for all such permutations, by (1), the second involution law for cosets, the fact
that H,, and H,, are subgroups of G; and hence closed under inverses, and
(1) (with y and z interchanged). Thus, the first equation in the conclusion
holds.

Semi-frame conditions (ii) and (iii), together with Convention 2.6 and
the fact that Hy, °H,. is a subgroup of G, imply that

Puy[Hay o Hyz) = Koy o Hyo = Hyg o Hyo = (Hye o Hy) 7 (2)
Consequently,
Py [nyz] = Pxy [ny Osz] = (Hy:v OHyz)_l = Cy_mlz = Cyzm;

by (1), (2), (1) (with « and y interchanged), and the first conclusion of the
lemma (with = and y interchanged). Thus, the second equation in the conclu-
sion holds. O

The next theorem formulates a set of simplified semi-frame and coset
conditions.

Theorem 4.6. A group triple F is a coset semi-frame that satisfies the first
three coset conditions if and only if the following eight conditions are satisfied.

(i) pue is the identity automorphism of G, /{e.} for every x in I.
(ii) @ye = gp;yl for every pair (x,y) in € with v < y.
(1) @uy[Hay o Hys) = KyyoHy. and ¢y, [Kyy o Hy,] = Ky oK, for every
triple (x,y, z) in & with x <y < z.
) Pay | Pys = Tayz | Pzz for every triple (x,y, z) in €3 with x <y < z.
) Cazy = Cayz = Coyy = Hyy for all pairs (z,y) in E.
(vi) C;ylz = Cyzy for all triples (z,y, z) in E with x, y, z mutually distinct.
) PaylCay:] = Cyza for all triples (x,y, z) in E with x < y < z.
(Vill) 32 [Cuyz] = Cray for all triples (z,y,z) in & with x <y < z.
If F is a group triple that satisfies conditions (i)—(viii), then F satisfies the
fourth coset condition if and only if
(ix) Cayz°Crzw = @ya|Cyew ° Hyz] ° Coyw for all quadruples (x,y,z,w) in &y
with r <y < z < w.
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Proof. Suppose that a group triple F satisfies conditions (i)—(viii) of the the-
orem. The proof that semi-frame conditions (i)—(iii) must hold is easy, and is
in fact exactly the same as in the case of the corresponding simplification of
the group frame conditions for group pairs (see Theorem 4.4 and its proof in
[4]). The details are therefore omitted. Turn to the verification of semi-frame
condition (iv).

Consider a triple (z,y, z) in £3, and assume first that not all of the indices
are distinct, say x = y. The mapping ¢, is the identity automorphism of
Gy /{es}, by condition (i), so that

sz =H,, = {ez} =Ky = Ka:yv H,, = Hyza K. = Kyza
and therefore
Hmyonz :sz» szoHyz :Hyz :HxZ7 szoKyz :KyzoKyz :Kyz

It follows that the isomorphism ¢z, induced by ¢gy on Gg/(Hzy° Hy.) co-
incides with the identity automorphism of G,/H,., the isomorphism ¢,. on
Gy/(Kyy°Hy.) coincides with ¢, and the isomorphism ¢, induced by ¢,
on Gy /(Hyy°Hy,) coincides with ¢,,. On the other hand, the coset that de-
termines the inner automorphism 7., is the subgroup

nyz = mez = szv

by condition (v), so that 7,,, must be the identity automorphism of G, /H,..
Consequently,

Py | Pyz = Pyz = Pxz = Tayz | Pz,

so semi-frame condition (iv) holds in this case. The cases when y = z and
when x = z are treated in a completely analogous fashion.

It remains to consider the case when x, ¢, and z are all distinct. Condition
(vi) of the theorem implies that

C;ylz = C:czy» C;zlz = Cyzzv C;cng = Czyaca (1)

from which it follows that

Teyz = Tazy, Tyza = Tyxz, Toxy = Tzyx- (2)
For example, for every coset D in G /(Hy,°Hy;), we have

Tyaz(Tyza (D)) = Twa(C_l cDeCysy) = Co O(C_l °D°Cyy)°Cyaz

YzT yrz YZT
-1 -1
=Cyes°Cyy°D°Cyy°C, ., = D,

by the definition of 7., the definition of 7., the second equation in (1), and
the laws of group theory. This argument shows that the composition of 7.,
and Ty, is the identity function on its domain. The same is also true of the
reverse composition, so these two inner automorphisms are the inverses of one
another.

The next step is to check that

Tayz | Poy = Pay | Tyza a0 Tayz |Poz = Poz | Taay. (3)
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To verify the first equation, consider an arbitrary coset D in Gy /(Hyy° Hy.).
The definition of 7., the isomorphism properties of ¢, condition (vii) of
the theorem, and the definition of 7,,, imply that

Py [TTyZ[DH = Qozy[C;ylz °D OCrcyz] = Pxy [Czyz}il ° Py [D] ° Py [Cryz]
= u_z%p °ry[D]° Cyzz = Tyzz[@ay[D]].
An analogous argument, using condition (viii) in place of condition (vii), es-
tablishes the second equation in (3).

Consider finally the case when all of the indices x, y, and z are distinct.
Assume z < y < z, and use condition (iv) of the theorem to obtain

Py ‘ Pyz = Tayz | @z - (4)

Compose both sides of this equation on the right with ¢, ', and on the left

-1
Yz

. _1 .
with 7., to arrive at

7';;;12 | Pay = Pz | @;z1~
The mapping leylz coincides with 7,.,, by (2), and gby_zl coincides with ¢,

because, as has already been pointed out, semi-frame condition (ii) is valid in
F. The previous equation may therefore be rewritten in the form

@xz |¢zy = Txzy | Sﬁ:cyv (5)
which is a permuted version of (4) in which the second and third indices y and

2z have been transposed. Compose both sides of (4) on the right with ¢! and
on the left with gﬁ;yl to obtain

@yz | @;zl = @;yl |T$yz'

Observe that

A1 A—1 s A=l _ -1y A—1 A—1

Pay | Tayz = Pay | Tayz | Pay | Py = Pay | @y | Ty | Py = Tyza | Py s
by the properties of isomorphism composition and (3). It follows from these
computations and from the validity of semi-frame condition (ii) in F that

Pyz | Pra = Dy | @a_;zl = Qﬁ;yl | Tayz = Tyza | 927;;,1 = Tyza | Pyas (6)

which is a permuted version of (4) in which the indices have been shifted one
to the left modulo 3, so that z, y, and z have been replaced by y, z, and =
respectively. This argument shows that the two permuted versions of (4), the
first obtained by transposing the last two indices y and z of the triple (x,y, z)
to arrive at (5), and the second by shifting each of the indices z, y, and z
of the triple to the left by one modulo 3 to arrive at (6), are valid in F. All
permutations of the triple (x,y, z) may be obtained by composing these two
permutations. For example, transpose the last two indices of (4), permuting
(z,y,2) to (x,2,y), to obtain (5), and then use (6) to shift the indices of (5)
to the left by one modulo 3, permuting (z, z,y) to (z,y, ), to arrive at

¢zy | @ym = Tzyx | @zy-

It follows that semi-frame condition (iv) is valid in F.
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The next step in the proof is the verification of the coset conditions
for the identity law, the second involution law, and the cycle law under the
assumption of conditions (i)—(viii) of the theorem. Certainly, F will satisfy the
coset condition for the identity law, since this is just the equality of the last two
cosets in condition (v) of the theorem. In order to verify the coset conditions
for the second involution law and the cycle law, which coincide with conditions
(ii) and (iv) in Lemma 4.4, it suffices to show that conditions (i) and (v) of
that lemma, namely

and
ay|Cryz] = Cyza, (11)

hold for all triples (z,y, z) in &. If two of the indices, say x and y, are equal,
then

nyz - szz — Iy, — {em} OHmz - Hacy Oszv (12)
C:rzy - sz:v - Ha:z = Hmz o{ez} = sz Onya
szy = Czam = Hz:v = Hzm OHzx = Hzr onya

by the assumption on x and y, condition (v) (with z in place of y), condition
(i), which implies that H,, = {e,}, and, for the second to the last equality
in the last line, the assumption that H,, is a subgroup of G, and therefore
closed under composition. It is clear from this argument that (12) holds for all
permutations of the indices z, y, and z. Apply Lemma 4.5 to arrive at (10).
The cases y = z and x = z are handled in a similar fashion.

As regards the verification of (11), if two of the indices, say = and y are
equal, then (12) holds for all permutations of the variables z, y, and z, and
therefore Lemma 4.5 yields (11). A similar argument applies if y = z or x = z.

Assume now that all three indices x, y, and z are distinct. If © < y < z,
then (11) holds, by condition (vii) of the theorem. To derive the permuted
version of (11) in which the indices x and y are transposed, use condition (vi),
the isomorphism properties of ¢, condition (vii), and condition (vi) (with y,
z, and z in place of z, y, and z respectively) to obtain

Pay [szy] = Pay [C:;ylz] = ‘P:cy[cxyzrl = C;zlL = Cyzz-

Apply @ya to the first and last terms in this string of equalities, and use the
fact that ¢, is the inverse of ¢,,, by semi-frame condition (ii), to arrive at

Pyx [nyz] = Orzy . (13)

To derive the permuted version of (11) in which x, y, and z are shifted one to
the right modulo 3 to obtain the equation for z, x, and y respectively,

@ZL[CZ.Ly] = Cwyzv (14)

apply .. to both sides of condition (viii), and use semi-frame condition (ii)
(with z in place of y).
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The permutation of the triple (x,y, z) implicit in (13) that is obtained
by transposing the first two indices to obtain (y,z, z), and the permutation
of the triple implicit in (11) that is obtained by shifting each index to the
right by one modulo 3 to obtain (z,z,y), together generate all permutations
of (z,y,2), and hence all permutations of (11). For example, use (13) to shift
all the indices of (11) to the right by one modulo 3, permuting (z,y,z) to
(z,z,y) and arriving at (14), and then repeat this process on (14), permuting
(z,z,y) to (y,z,x), to arrive at

Pyz[Cyza] = Caay-

From these observations, it is clear that (11) holds for all permuted versions
of a given triple of distinct elements in £5. Combine this with the arguments
following (11) to see that (11) holds for all triples in £3. Use (10), (11), and
Lemma 4.4 to conclude the coset conditions for the second involution law and
the cycle law hold in F. This completes the derivation of the coset condi-
tions for the identity law, the second involution law, and the cycle law from
conditions (i)—(viii) above.

To establish the reverse implication, assume F is a semi-frame satisfying
the coset conditions for the identity law, the second involution law, and the
cycle law. Certainly, F satisfies conditions (i)—(iv) of the theorem, because
these conditions are special cases of the semi-frame conditions. To see that F
satisfies condition (v), use the coset condition for the identity law for the pair
(y, ), which says that Cyz, = Hys, use the definition of ¢, and use semi-
frame condition (ii) in the form of Convention 2.6 (with z and y interchanged),
to obtain

Pya[Cyaal = OyaHya| = Kyo = Hay. (15)
The coset conditions for the second involution law and the cycle law are con-
ditions (ii) and (iv) of Lemma 4.4, so they imply all of the other conditions

of the lemma. In particular, they imply (v) (with y, z, and z in place of z, y,
and z respectively), so

Combine (15) and (16) to arrive at
Croy = Hyy. (17)

Invoke Lemma 4.4 again, this time using (i) (with z and y in place of y and z
respectively), to obtain

Crl = Crya.

xry —
Combine this equation with (17), and use the fact that H,, is a subgroup of
G, and therefore closed under inverse, to arrive at

Caye = Crpyy = Hy,) = Hyy. (18)

Ty

Together, the coset condition for the identity law, (17), and (18) imply con-
dition (v) of the theorem. To derive conditions (vi), (vii), and (viii) of the
theorem, use Lemma 4.4 again, and in fact parts (i), (v), and (iii) respectively.
This completes the proof of the first assertion of the theorem.
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To prove the second assertion of the theorem, suppose that F satisfies
conditions (i)—(viii) of the theorem. It follows from the first part of the theorem
that F must be a semi-frame that satisfies the first three coset conditions. The
key step in the argument is showing that F satisfies the coset condition for
the associative law for one quadruple of elements in &4 if and only if it satisfies
the condition for every permutation of that quadruple.

Fix a quadruple (z,y, z,w) in & of not necessarily distinct elements, and
suppose that

Czyz ° szw = Pyx [Cyzw ° Hy:c] ° Cryw- (19)

The immediate goal is to derive a permuted version of (19) in which the indices
z and w have been transposed. Form the coset inverses of both sides of (19),
and apply the second involution law for cosets, to obtain

C_ DC1x_yz - I_ylw 0<py;1; [Cy;;w oHyw]_l' (20)

Conditions (ii) and (iv) in Lemma 4.4 hold for all triples of indices in &s,
because F satisfies the coset conditions for the second involution law and the
cycle law. Consequently, part (i) of the lemma holds for all such triples. Use it
repeatedly on different triples to obtain

C;yz - szy7 CVa:_ylw = Cﬁva7 Ca?zlw = CCUU)Z7 Cy_zw = Cwa‘ (21)
Expand the second term on the right side of (20) as follows:
Pyx [Cyzw OHyz]il - (Pyx[(cyzw OHyz)il] = Pyx [H Cyzw}

= Qyu[Hys ° Cyzw] Pyx [Cyzlw °Hyz| = 0y [Cyus © Hyz), )

(22

by the isomorphism properties of ¢,,, the second involution law for cosets, the
assumption that H,, is a normal subgroup of G, and hence is closed under
inverses and commutes with all elements in G, and the final equation in (21).
Combine (22) with (20) and the first three equations in (21) to arrive at

Crwz °Crzy = szlw nylz Oa:yw ‘F’yar:[cyzwC’Hyacr1

= Cgwy ° Py [Cywz ° Hym] . (23)

Multiply the first and last expressions in (23) on the left by Cy.}, and on the
right by C.}, and use the inverse law for cosets, to obtain

T2y’
C_ waz = Pyx [Cywz ° ] Cm_zy (24)

TWY

In more detail, the inverse law for cosets, the assumption that C,., is a coset
of Hy,°H,,, and the assumption that the subgroup H,, is normal yield

Cx—wy Cowz CTZ?J Cac_zy Ca:_wy Crwz°Hy OH:z:y
= O 1 HJ,y Cowz°Hyz = C 1 °Crwsz-

The final equality is Justlﬁed because Cy.,, is a coset of the normal subgroup
H,.,°H,., and therefore absorbs the factor H,, in the sense that

waz O-I%[a:z = Ca:wz °© (H:cw OH(EZ) O-Iya:z = Ca:wz onw OI—Ia:z = Ca:wz;
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by the identity law for groups of cosets, the assumption that C,,,. is a coset
of Hyy°H,,, and the assumption that H,, is a subgroup of GG, and there-
fore closed under composition. Similarly, the coset C;u%y of Hyy ° Hyy absorbs
the factor H,. An analogous argument shows that the product of C;., with
its inverse is absorbed by the term ¢, [Cyws ° Hyz] on the right side of Equa-
tion (24). This completes the justification of the computation in (24). Combine
the first and second equations in (21) with (24) to conclude that

C:z:yw ° Czwz = Pyx [Cywz ° Hya:] ° Czyz~ (25)

This is just the desired permuted version of (19) in which the indices z and w
have been transposed.

The next goal is to derive a permuted version of (19) in which the indices
y and w have been transposed. Begin with an application of Lemma 3.6(iii)
(with w and y in place of y and z respectively, and with Cy,,, ° Hy, in place
of @) to obtain

Cawy * Py [Cyuoz ° Hyz] = @ [0y [Cyoz ° Hyall * Couy - (26)

Notice in this connection that Cy,,. is a coset of Hy,, °H,., so the product
Cywz°Hy, is a coset of Hy,, °H,,°H,,, and therefore a union of cosets of
Hyy, ° Hy,. This latter group coincides with Ky ° K, by semi-frame condi-
tion (ii) and Convention 2.6, so the hypotheses of Lemma 3.6(iii) are indeed
satisfied. Use semi-frame condition (ii) to rewrite (26) as

way °Pyx [Cywz OHyz] = Pwz [(p'qw [Cywz OHya:]] OC:Ewy~ (27)
The argument of ¢,,, on the right side of (27) may be rewritten as

Pyw[Cyuwz ° Hyz] = 0yuw[Cyuwz © Hyw ° Hys]
= Oyw|Cyuwz] ° Pyw[Hyw ° Hyz]- (28)

The first equality uses the fact that Cy,,. is a coset of Hy,, ° H,. and therefore
absorbs H,,,, and the second uses the isomorphism properties of ¢,,,. The
function ¢, maps the group Ky, ° Hy,, to the group K., ° K, by the second
equation in condition (iii) of the theorem (with w in place of z), which has
been shown to hold for all triples in £5. The first of these groups coincides with
Hyy°Hyy, and the second with Hy,y © Hyy, by semi-frame condition (ii) and
Convention 2.6, so (using also the assumption that the subgroups involved are

normal)
Pyw[Hyw ° Hyz] = Huy ° Hus - (29)

Also, parts (ii) and (iv) of Lemma 4.4 hold for all triples in &3, because F
satisfies the coset conditions for the second involution law and the cycle law.
Apply part (v) of the lemma (with y and w in place of = and y respectively)
to obtain

Pyw [Cywz] = szy- (30)
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Combine (28)—(30), and use the fact that the coset Cy,.y of Hy» © Hyy absorbs
the subgroup H,,, to arrive at
= szyonyona: = szyonz~ (31)
Replace the occurrence in (27) of the left side of (31) with the right side of
(31) to get
way ° Pyax [Cywz oHyz} = Puwz [szy OHw;E] ° mey .

Combine this with (23) to conclude that

Cxwz °© szy = Quz [szy ° er] ° Cxwyv (32)

which is the permuted version of (19) in which the indices y and w have been
transposed.

Finally, we derive a permuted version of (19) in which the indices 2 and
y have been transposed. Apply ¢4, to both sides of (19) to obtain

The left side of (33) may be rewritten as

Pry [Cwyz ° Caczw] = @azy[ca:yz OH:vy ° szw] = (sz[co:yz ° szw Oku]
= Py [Oxyz] °Pay [szw ° ny] = Cyzx ° Py [Oa:z'w ° ny]
(34)

The first equality uses the fact that the coset Cy,, of Hg,°H,. absorbs the
subgroup H,, the second uses the assumption that H, is normal, the third
uses the isomorphism properties of ¢, (which is why it is necessary to insert
a copy of Hy, to compose with Cj.,,) , and the fourth uses Lemma 4.4(v).
The right side of (33) may be rewritten as

PaylPyz[Cyaw © Hyz] ° Cryw] = Pay|Pya[Cyaw © Hyz] ° 02y [Cayu)

= Cyzw ° Hym °Pay [Cwyw]

= Cyzw ° Hyz ° Cyw:r

- Cyzw °© Cywa:a (35)
by isomorphism properties of ¢,,, semi-frame condition (ii), Lemma 4.4(v)
(with w in place of z), and the fact that the coset Cy,, absorbs the group
H,,. Combine (33)—(35) to arrive at

Cyzw ° Cywx = Uyza °Pay [Crzw ° H$y] .

Multiply both sides of the preceding equation by C;-! on the left and by C;.!

Yyzx Yywr
on the right, and use the inverse law for groups of cosets, to obtain
ngzlac °Cyzw = Pay [Crow® H:Ey] ° Cg;u}x (36)
From Lemma 4.4(i), it follows that
Cy_zi, =Cyy. and Cy_lim = Cyzuw- (37)
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Combine (36) and (37) to conclude that
Cywz ° Cyzw = Pzy [szw ° Hw ] ° Cywwv (38)

which is the desired permuted version of (19) obtained by transposing the
indices = and y.

It has been shown that the three permuted versions of (19) obtained
by transposing the indices z and w, the indices y and w, and the indices
x and y, are all derivable from (19). These three transpositions generate all
permutations of the quadruple (z,y, z,w), so it follows that every version of
(19) in which the indices z, y, z, and w have been permuted is derivable from
(19).

The next step is to derive all instances of the coset condition for the
associative law on the basis of condition (ix) of the theorem and the assump-
tion that F is a semi-frame satisfying conditions (i)—(viii) of the theorem, or
equivalently, satisfying the first three coset conditions. Suppose that the first
two indices of an arbitrary quadruple in &4, say (z,y, z, w), are equal, with the
goal of deriving (19). This derivation does not require the use of condition (ix)
at all. Observe that

C:cyz = Cza:z = H,. and Czyw = C:z::cw = Hmw; (39)

by the assumption on  and y, and condition (v) of the theorem. Also, ¢, and
H,, coincide with ¢,, and {e;} respectively, and ¢, is the identity function
on G, /{e;}, by condition (i) of the theorem, so

Pyx [Cyzw oHy:c] = Pz [szw ° {ew}] = C:Ezw ° {em} = szw . (40)
Consequently,
Czyz ° szw = Ha:z OCa:zw = szwa (41)

by the first part of (39) and the fact that the coset C,.,, absorbs the subgroup
H,,. Therefore,

Pyx [Cyzw ° Hyz] Ocazyw = szw ° Czyw = C:rzw o Hypw = szwa (42)

by (40), the second part of (39), and the fact that the coset Cj.,, absorbs the
subgroup Hg,,. Combine (41) and (42) to arrive at (19).

Consider next the case of an arbitrary quadruple (z,y, z,w) in & in which
at least two of the indices are equal. Form a permutation of this quadruple in
which two of the equal indices are moved to the first and second positions of the
quadruple. The resulting quadruple satisfies the hypotheses of the preceding
paragraph, so the version of (19) that is associated with this quadruple is valid
in F, by the observations of the previous paragraph. It follows that (19) must
hold for the given quadruple (z,y, z,w), since every permuted version of a
valid instance of the coset condition for the associative law is also valid.

Turn finally to the case when the indices in a quadruple (z,y, z, w) in &
are distinct. If x < y < z < w, then (19) holds by the assumed condition (ix).
Consequently, every permuted version of (19) also holds, so (19) is valid in F
in all cases in which the indices of the given quadruple are mutually distinct.
Combine the observations of this and the preceding paragraph to conclude that
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if condition (ix) of the theorem is true in a semi-frame F satisfying conditions
(i)—(viii), then the coset condition for the associative law holds in F. The
reverse implication is trivially true. (]

The following special case of the second part of Theorem 4.6 is quite
useful in verifying the coset condition for the associative law in basic examples
of semi-frames.

Corollary 4.7. Suppose F is a semi-frame satisfying the coset conditions for
the identity law, the second involution law, and the cycle law. If

H:zcy OHrz OHrw = G'r

for all quadruples (x,y, z,w) in &4, then F satisfies the coset conditions for
the associative law.

Proof. Consider a quadruple (z,y, z,w) in &, with the intention of showing
that

C:ryz ° szw = Pyzx [Cyzw ° Hyz] ° C:z:yw- (]->

Since Cyy.» and Cy.., are cosets of Hyy ° H,, and H,, ° H;,,, the complex prod-
uct

Czyz ° szw
is a coset of the triple product
Hacy °oHy, o Hpyy,

which is G, by assumption. There is only one coset of the improper subgroup
G, namely itself, so

nyz ° Caczw = Gac (2)

As regards the right side of (1), because Cy.,, is a coset of Hy, °H,,, the
product

Cyzw e Hys
is a coset of the triple product
Hy,°Hyype Hyg,
which is G, by assumption. Therefore,
Cyrw e Hyz = Gy.
Apply the mapping ¢, to both sides of the previous equation to obtain
Pya|Cyzw © Hya] = ¢ya[Gy] = G

Multiply the first and last terms of this equation on the right by C,,, to arrive
at

Pyax [Cyzw Ony] ° Cacy'w = Gac ° nyw = Gac (3)

Combine (2) and (3) to see that (1) holds in this case. Apply Theorem 4.6 to
conclude that coset conditions for the associative law are valid in F. ]
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There are a number of other special cases in which the verification of
the coset conditions for a given semi-frame simplify. For instance, in many of
the examples of group triples, most of cosets Cy, . in the coset shifting system
are the identity coset in the sense that they are the identity element of the
corresponding quotient group,

C;cyz = H‘Ly OHJJZ'

The next corollary is perhaps the simplest example of such a special case. Call
two cosets Cyy» and Cyyy associated if (u,v,w) is a permutation of (x,y, 2).

Corollary 4.8. Let F be a semi-frame, and (p,q,7) a triple in Es withp < q¢ < r.
If every coset not associated with Cpqyr is the identity coset, then F satisfies
the four coset conditions if and only if the following conditions hold.

(i) Copr = Cprq, and Ci3 = Cypyy and Crt = Chrgp.
(i) ©pq[Cpgr] = Cyrp-
i) ¢

(iii pr[ pqr] = Crpq

(i) Cpar © (W Hyq Hpr o Hys : (p.5) € € and s # p,q,r}.

Proof. Assume the conditions of the corollary, with the goal of verifying the
conditions of Theorem 4.6. The assumption that F is a semi-frame implies
that conditions (i)—(iv) of Theorem 4.6 are satisfied. Also, condition (v) of the
theorem holds. To see this, consider an arbitrary pair (z,y) in €. The cosets

Caozy,  Cayys  Caya,
are identity cosets, by assumption, so
Coroy = HypoHyy = {eg} o Hyy = Hyy = Hyyo{ey} = Hyy o Hyp = Coya
and
Coyy = Hyy o Hyy = Hyy.

The second and fifth equalities use semi-frame condition (i).

To verify that condition (vi) of the theorem is equivalent to condition (i)
of the corollary (under the basic assumption of the corollary), let (x,y, z) be
a triple in &3 of pairwise distinct elements. If (z,y, 2) is not associated with
(p,q,7), then

C_ = (sz OHIZ)_l = Hm_zl OH:c_yl = Hacz OHmy = szy

Yz

The first and last equality use the basic assumption of the corollary, the second
uses the second involution law for group complexes, and the third uses the
fact that H,, and H,, are subgroups, and hence closed under the operation
of forming inverses. If (z,y, z) is an associate of (p, ¢, ), then condition (vi) of
the theorem holds by condition (i) of the corollary, and vice versa.

The next step is to check that conditions (vii) and (viii) of the theorem are
respectively equivalent to conditions (ii) and (iii) of the corollary. Let (x,y, z)
be a triple in &3 with # < y < z. If this triple is not (p, ¢, r), then it cannot be
an associate of (p, g, r), because of the ordering, and therefore

(Pa:y[ca:yz] = @my[Hwy Osz] = K:cy oHyz = Hy:c OHyz = Hyz OHy:z: = Cyz:v
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The first and fifth equalities hold by the basic assumption of the corollary,
the second by semi-frame condition (iii), the third by semi-frame condition (ii)
(and semi-frame condition (i) in the case when = = y), and the fourth by the
fact that the subgroups are normal and hence commute with one another. A
completely analogous argument shows that

Pz [Oxyz} - szy-

Thus, in this case, conditions (vii) and (viii) of the theorem hold. If the triple
(z,y,2) is (p,q,r), then conditions (vii) and (viii) of the theorem are exactly
conditions (ii) and (iii) of the corollary.

The associative law coset conditions will hold for all permutations of a
quadruple (z,y, z, w) just in case

nyz °Chrow = Py [Cyzw ° Hyz] ° Cmywv (]-)
by Associative Law Theorem 3.8. By assumption,
O:tyw = Hry OH.’EUU Crzw = Hmz OH"cwa Oyzw = Hyz OHyw

(under the hypothesis that w is different from p, ¢, and r), so Equation (1)
can equivalently be rewritten as

Cayz ° Hoz o Hyw = 0ya[Hyz © Hyw © Hyo] © Hey © Hyw - (2)
It is a consequence of semi-frame condition (iii) that
Pya[Hyz ° Hyw © Hys] = Hoy o Hyz © Hyw,
so the right-hand side of (2) reduces to Hyy © H. © Hy,,. On the other hand,
Cayz °Hez = Cayz,

since Cuy. is a coset of Hyy o H,., so the left-hand side of (2) reduces to
Coyz © Hyy . Thus, (2) is equivalent to

Czyonzw = nyononxw~ (3>

Finally, since Cy, . is a coset of Hy,, ° H,., Equation (3) will hold just in case
Cry- is a subset of Hyy o Hy, o Hyy,.

If (x,y, z) is not an associate of (p,q,r), then Cy,. is the identity coset
Hgy°H,., and so the desired inclusion is trivial. If (z,y,2) is an associate
of (p,q,r), then of course (p,q,r) is an associate of (z,y, z), and for (p,q,r),
the desired inclusion holds by condition (iv) of the corollary. This means that
condition (1) holds for (p,q,r), and hence also for the original triple (x,y, z),
since the validity of (1) for one triple implies its validity for all associates of
the triple.

The remaining parts of the proof are trivial and are left to the reader. [

The final observation we wish to make is that in a coset relation algebra
¢[F], the operation ® reduces to relational composition in all those cases
in which the indices z, y, and z of the coset C,,. used to define the relative
product Rgy o ® Ry, g are not mutually distinct.
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Corollary 4.9. If F is a group triple satisfying conditions (1)—(viii) of Theo-
rem 4.6, then

Rzy’a ® Ryz,ﬁ = Rwy,a | Ryz,,@

for every triple (x,y,z) in Es in which at least two of the indices x, y, z are
equal .

Proof. According to Lemma 3.10,
Raya ® Ry. 3 = Reya | Ry. s
if and only if
Coyr = HyyoHy. (1)

The verification that (1) follows from conditions (i)—(viii) of Theorem 4.6 is
nearly identical to the argument establishing (12) in the proof of Theorem 4.6.
The details are left to the reader. O

5. Example

In this section, and example of a coset relation algebra that is not representable
is constructed. Start with a group pair

F=(G,0)=(Go:xel) (ay:(x,y) €I xT))
in which the index set I has five elements, say

I=A{p,q,rs,t}.
Each of the groups G, is assumed to be a copy of the Cartesian product
Zo X Lo X Za, where Zy = {0,1} denotes the cyclic group of order two, and
these copies are assumed to be mutually disjoint.
To describe the subgroups H,, and K, for distinct indices x and y in I,
consider the following four subgroups of Zo X Zo X Zsg :

Ly =17y x {0} x {0}, L3 ={0} xZs x {0},

Ly ={0} x {0} x Zy, L3=1{(0,0,0),(1,1,1)}.

Take H,,, respectively K,,, to be the copy of one of these four subgroups
in G, respectively G, according to the prescriptions given in Figure 1. For
example, the subgroup H,; is the copy of L3z in G, and the subgroup K, is
the copy of Ly in Gy, because the edge between the vertices p and ¢ in the
diagram is labeled with 3 and 0. Similarly, the subgroup Hy, is the copy of Lo
in G4 and the subgroup K is the copy of L; in G, because the edge from ¢
to s is labeled with 2 and 1.

The quotient isomorphisms ¢,, when = and y are equal are of course
taken to be the appropriate identity automorphisms of G, /{e,} for every x
in I. For distinct x and g, they are completely determined by the requirement
that @gy | Pyz = Pu.. For instance, according to the diagram in Figure 1, we
must have

YpqlLo°Ls) = Lo° L1, pqlLo°Li] = Lo°Ls, pg[Lo°La]=Lo°Lo
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F1GURE 1. Normal subgroup diagram

q q
0 0 )
0 0
P P
3
q
0 3
0
t P 1 r s
(@) (b) (c)

FIGURE 2. The triangles from the pentagon that determine ¢,

(see (a), (b), and (c) respectively in Figure 2). (The composite subgroups
on the left, inside the brackets, should actually be interpreted as denoting their
copies in G, and the composite subgroups on the right should be interpreted
as denoting their copies in G,.) These three requirements determine ¢, in the
following way. According to the pentagon, the copy of the subgroup Lo in G),

is mapped by ¢, to the copy of the subgroup Ly in G,. The subgroup Lg has
four cosets in Zg X Zg X Zg, namely

Co = (0,0,0)° Ly = {(0,0,0),(1,0,0)},
Cl = (0, 1,0) °L0 = {(0, 1, 0), (1, 1, 0)},
Cy =(0,0,1)°Lo = {(0,0,1),(1,0,1)},
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C3=(0,1,1)° Lo ={(0,1,1),(1,1,1)}.
Observe that

Lo Ly = {(0,0,0),(1,0,0)}{(0,0,0),(0,0,1)}
{ O 050)7 (17070)a (07071)7 (1,0, 1)} = CO U C’2-

Because ¢,, maps the copies of L L3 and Cy in G, respectively to the copies
of Lo° Ly and Cp in Gy, it must map the copy of 5 in G}, to the copy of C;
in G4, by the preceding observations. Similarly, it must map the copies of C}
and Cz in Gy, respectively to the copies of C5 and Cy in Gy.

The resulting group pair F is easily seen to be a frame, so the group
relation algebra &[F ] exists. The next step is to modify the operation of
relative multiplication in &[F ] by introducing a coset system

C = (Cry-: (x,y,2) €I x I x1I).
If a triple of indices (x,y, z) is not a permutation of the triple (p,q,r), take
Cyy- to be the identity coset,
Cmyz = ny e Hy..

Suppose now that (x,y, z) is a permutation of (p, ¢, 7). As is clear from Figure 1,
two different edges emanating from a given vertex = are labeled with distinct
numbers, so the subgroup Hy,, ° H,. is a composition of two distinct subgroups
of G, of order 2, and therefore has order 4. It follows that the quotient group

Go/(Hay° Hy) (1)
has order 2, so it has exactly two cosets, the identity coset and the non-identity
coset. Take Cy,. to be the non-identity coset,

Cuyz = Gy ~ (Hyy° Hyy).
It is not difficult to check that the resulting group triple

F=(G,9,0)

is a coset semi-frame that satisfies the coset conditions. For example, the quo-
tient group in (1) is Abelian, so the inner automorphism of (1) determined by
the coset C,,. must be the identity automorphism. Use, in addition, the fact
that F is a group frame to verify semi-frame condition (iv) for F,

Lo°Ls = {(0,0,0),(1,0,0)} = {(0,0,0), (1,1, 1)}
= {(0,0,0),(1,0,0),(0,1,1),(1,1,1)} = Co U Cs,
Lo° Ly ={(0,0,0),(1,0,0)}{(0,0,0), (0,1,0)}
={(0,0,0),(1,0,0),(0,1,0), (1,1,0)} = Cy U Cy,
(0,0,0),(1,0,0)
(

@xu‘@uz = @mz = 7-|¢7acz-
The proof that F satisfies the coset conditions is based on Corollary 4.8.
It suffices to check that conditions (i)—(iv) of that corollary are satisfied. As
regards condition (i), the quotient group in (1) has order 2, so every coset is
its own inverse. Consequently,

Cp_qr = Cpgr = Cprq = Gp ~ (Hpq° Hpr),
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and similarly
Cot =Cypr and C’fpz:(]rqp.

arp
As regards conditions (ii) and (iii), the quotient isomorphisms ¢,, and @p,
induced by ¢pq and ¢, respectively map the identity coset to the identity
coset, and consequently they map the non-identity coset to the non-identity
coset. It follows that

pg[Cpar] = pglGp ~ (Hpg° Hpr)] = Gy ~ (Kpg° Hyr)
= Gq ~ (Hgp°Hgr) = Corp,

and similarly, ¢, [Cpgr] = Cypq- Finally, to verify condition (iv) of the corollary,
observe that each of the four edges emanating from vertex p in Figure 1 is
labeled with a different number. Consequently, the composite subgroups

Hpq o Hyr © Hpy

for w = s,t have order 8, that is to say, they coincide with G,,. The coset Cp
is trivially included in their intersection, since

(Hpq ° Hpr ° Hps) N (Hpg ° Hpr © Hpt) = G
Apply Corollary 4.8 to arrive at the following conclusion.

Theorem 5.1. The group triple F is a coset semi-frame that satisfies the coset

conditions. Consequently, the corresponding algebra €[F | is a full coset relation
algebra and hence an example of a finite, measurable relation algebra.

It is instructive to look somewhat closer at the operation ® of relative

multiplication in the algebra €[F] just constructed, and to compare it with
the corresponding operation in &[F]. On atoms, ® is determined by

Raya @ Ruzp = Reya ‘ Rz p
whenever y # w, or y = w and {z,y, 2} # {p, ¢, r}, and
Roya ® Ry, p=Go X Gy ~ (Ray,a| Ry:p)

whenever {z,y, 2} = {p, q,r}. Thus, the operation of relative multiplication in
¢[F] is obtained by changing only slightly the operation of relational compo-
sition in &[F ] as it affects atomic relations, namely, for those pairs of atomic
relations R, , and R, g that are indexed, in some order, by a permutation
(x,y, z) of the triple (p, g, r), the relative product has been shifted to the com-
plement of what it is in &[F].

It turns out that the full coset relation algebra of the theorem is not
representable as a set relation algebra, and in particular, it is not isomorphic
to a full group relation algebra.

Theorem 5.2. The finite measurable relation algebra €[F | is not representable.

Proof. Write 2 = €[F]. The argument that 2 is not representable proceeds
by contradiction. Assume that it is representable, say ¢ is a representation of
2 over a base set V. Because 2 is simple in the algebraic sense of the word
(see the remarks preceding Theorem 6.1 below), it may be assumed that the
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unit of the representation is the Cartesian square V' x V (see, for example,
Theorem 16.18 in [3]). We identify R, o with x in the proof, so that the set
I becomes the set of measurable atoms of 2. This permits some simplification
in the notation.

The first step is to use the representation 9 for constructing a scaffold in
2, that is to say, a system of atoms (a,, : =,y € I) satisfying the following
three conditions for all measurable atoms z, y, and z in I.

gy = . (1)
Aye = a;y' (2)
Uzz < Agy ® Qys. (3)

Each element z in I is a subidentity atom, so its image ¥(z) must be idy,, for
some non-empty subset V, of V, these sets are mutually disjoint for distinct
z, and because 2 is finite,

U{idy, :z eI} =U{d(z) :x € I} =90 1) =9(1) =idy.

For each z in I, choose an element v, in V,, and for each pair of elements z,
Y, let agy be the unique atom in A such that

(Vg, y) € Vagy).

Since ¥(x) is the unique atom containing (v, vs), property (1) follows. Since
¥(ay,) is an atom (the converse of an atom is an atom) that contains (v, vs),
by the representation properties of ¢, property (2) follows. Since (vs,vy) is
in ¥(azy) and (vy,v.) is in ¥(ay.), it follows from the definition of relational
composition that (v,,v,) is in ¥(azy)|9(ay,). The representation properties of

¥ imply that
V(azy) |V(ay:) = V(azy @ ay.).

Thus, ¥(a,.) and ¥(azy ® ay ) have a non-empty intersection—they both con-
tain the pair (v, v.)—so the former, which is an atom, must be below the
latter. Use the representation properties of 9 one more time to conclude that
(3) holds. This completes the proof of the three scaffold conditions.

Here are some further properties of the elements a,, that we shall need.
Notice that each such atom is actually one of the atomic binary relations of
2 on the base set U = |J{G, : z € I'}, so it makes sense to speak of the pairs
in agy. The converse of each atom is the set-theoretic relational inverse, in
symbols,

Ayg = a;yl . (4)

Second, the relative product of two elements is the set-theoretic relation com-
position of the elements as long as the set of indices {z,y, z} does not coincide
with the set {p,q,r},

Azy ® Ayz = Agy | ay- . (5)
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Third, the relative product is disjoint from the relational composition when
the two sets of indices {z,y, 2z} and {p, ¢, 7} are equal,

Ay ® Gy = Gy X Gy ~ gy | Gy (6)

Fourth, the intersection of certain relative products that share a common
“edge” is an atom when that common edge is pq or qr or pr. Specifically,

(aps & asq) N (apt & atq) = Qpgq, (7)

and similarly if pq is replaced by either gr or pr.
Choose elements u, and u; in U so that

(us,ut) € agt- (8)

Such a choice is possible because ag; is a non-empty binary relation. Since for
each z =p,q,r

st S Asy |a:pt7 <9)

by (3) and (5), the pair in (8) must also belong to the right side of (9), so that
there must be an element u, in U for which

(us,uz) € asy and  (ug,ut) € Ay,
by (8). In particular, take = p, ¢, and use (4), to obtain
(Up,us) € aps and  (us,Uq) € Gsgq,
so that
(Up, Uq) € Qps|Asg = Aps D Gsgq,
and also to obtain
(up,us) € apr  and  (ug, uq) € G,
so that
(Ups Ug) € Gpt|Atg = pt @ rq.
Apply (7) to arrive at
(Up, tq) € apg- (10)
Similar arguments applied to p and r and to r and ¢ lead to
(Up, ur) € apy  and  (Uy,ug) € Apg. (11)
In view of the definition of relational composition, (11) implies that
(up; uq) € apr | arg- (12)
Together, (10) and (12) show that the intersection
apg N (apr | arg)

is not empty, since both factors contain the pair (u,, u,). The left-hand factor
is an atom, so

apg € apr | arg. (13)
On the other hand,

apg C apr @ arg = Gp X Gg ~ apr | arg,
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by (3) and (6). This is a direct contradiction to (13), so the assumption that
2l is representable cannot be tenable. O

The group Zs can be replaced everywhere in the preceding construction
by an arbitrary non-trivial Abelian group. The mappings ¢, are no longer
uniquely determined, and the definition of relative multiplication is slightly
more involved. In each case we get an atomic, measurable relation algebra
that is not representable. These are new examples of non-representable relation
algebras, with a completely different underlying motivation than the examples
that have appeared so far in the literature.

6. A decomposition theorem

The isomorphism index set £ of a coset semi-frame F = (G, ¢, C) satisfying
the coset conditions is an equivalence relation on the group index set I, and
the unit

E={Gs xGy:(z,y) €&}

of the corresponding full coset relation algebra €[F] is an equivalence relation
on the base set U = |J,o; G- Call the semi-frame F simple if the group index
set I is not empty, and if £ is the universal relation on the index set I. It turns
out that F is simple in this sense of the word if and only if the algebra €[F ]
is simple in the algebraic sense of the word, namely, it has more than one
element and every non-constant homomorphism on the algebra is injective;
or, equivalently, the algebra has exactly two ideals, the trivial ideal and the
improper ideal.

Theorem 6.1. Let F be a semi-frame satisfying the coset conditions. The coset
relation algebra €[F ] is simple if and only if the semi-frame F is simple.

Proof. We begin with a preliminary observation: for all triples (z,y, z) in &s,

U{Ray,a ® Ry p: ¢ < gy and 3 < ky.} = Gy X G (1)
For the proof, suppose that (x,y, z) is in £3. The definition of ® implies that
Ryyo @ Ry p = U{szw tHyeny C ‘P;yl [Kwy,a OHyz,B] OCzyz}~ (2)

Each relation R,  is included in
G, x G, (3)

by Partition Lemma 2.2, so each product of the form (2) is included in (3),
and therefore the left side of (1) is included in the right side.

To establish the reverse inclusion, notice that as the indices o and (3 vary,
the complex products Ky o °Hy. g run through all cosets of the subgroup
Koy °Hy.. The function ¢, induces an isomorphism from the quotient group
Gy /(Hyy°Hy,) to the quotient group G /(Ky,y °H,y.), so the inverse images
<p;yl [Kyy .o °Hy. 5] must run through all of the cosets of Hyy, °H,,. It follows
that, as a and 3 vary, the complex products

‘Px_yl [Kay,a°Hyz,p]°Cay: (4)
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must also run through all cosets of Hyy ° H, ., because Cyy . is a fixed element
of the quotient group G /(Hyzy © Hy). Thus, for each index v < k., there are
indices @ < Kgy and B < Ky, such that the coset H., of H,, is included
in (4). The relation R,  is therefore included in Ryy o ® Ry 3, by (2). The
union of all of the relations R, ~ is (3), by Partition Lemma 2.2, so the right
side of (1) must be included in the left side.

Turn now to the proof of the theorem, and assume first that the semi-
frame F is simple. The isomorphism index set £ is the universal relation on
the group index set I, by assumption, so

UxU = (Upes Ga) x (Uye[ Gy) =U{Ga x Gy 12,y €U}
= H{Ruyo:z,y €U and a < kyyy} = U{Gs x Gy : (z,y) € E} =E,
()
by the definition of U, the distributivity of Cartesian products over arbitrary
unions, Partition Lemma 2.2, the assumption on £, and the definition of F.
The index set I is assumed to be non-empty, and the groups are non-empty,
so the unit U x U of €[F] is non-empty and therefore different from the zero
element @. In particular, the relation algebra €[F | has more than one element.
In order to show that a non-degenerated, atomic relation algebra is sim-
ple, it suffices to show that the equation 1;7;1 = 1 holds for every subidentity
atom 7 (see, for example, Givant [2], Theorem 9.2). A subidentity atom of
C[F] has the form Ry, ¢ for some y in I, so it must be shown that

(UxU)®@Ryyo® (U xU)=UxU (6)

for every y in I. Use (5) and the distributivity of ® over arbitrary unions to
rewrite the left side of (6) as the union of the relations

qu,a Y Ryy,O ® sz,ﬂ (7)

over all x,u,v,z in I, with a < Kz and 8 < Ky,. If u # y or v # y, then the
relation in (7) reduces to the empty relation, by the definition of ® . The left
side of (6) is therefore equal to the union of the relations

Rwy,a ® Ryy70 ® Rylﬁ (8)

over all z and z in I, with a < Kgy and 3 < k.. The coset condition for the
identity law, which F is assumed to satisfy, and Identity Law Theorem 3.4,
imply that

Rry,a ® Ryy,O - Rzy,a'
Consequently, (8) reduces to
Riya @ Ryz - (9)

For fixed  and z, the union, over all a and 3, of the relations in (9) is (3),
by the preliminary observation in (1). The union of all relations of the form
(7) therefore coincides with the union of all relations of the form (3), and this
latter union is just U x U, by (5). Conclusion: the equation in (6) holds in
C[F] for all y in I, as was to be shown.
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We postpone the proof of the reverse implication of the theorem until
after the next theorem. O

It turns out that every full coset relation algebra can be decomposed into
the direct product of simple, full coset relation algebras, or equivalently, full
coset relation algebras on simple frames. We sketch briefly how this decompo-
sition may be accomplished. Given an arbitrary coset semi-frame

F= (<Gr5$61>7<90my : (x,y) €€>7>’<C”Eyz : (I7yvz) 653>)v

consider an equivalence class J of the isomorphism index set £. The universal
relation J x J on J is a subrelation of £, and in fact it is a maximal connected
component of £ in the graph-theoretic sense of the word. The restriction of F
to J is defined to be the group triple

Fr={Ge:xz€J),{pay: (z,y) €T xJ),),(Coyz: (x,y,2) € I x J xJ))

Each such restriction of F to an equivalence class of the index set £ inherits
the coset semi-frame properties of F, and is therefore a simple semi-frame.
Call these restrictions the components of F. Clearly, F is the disjoint union of
its components in the sense that the group system, the isomorphism system,
and the coset system of F are obtained by respectively forming the unions
of the group systems, the isomorphism systems, and the coset systems of the
components of F. It is also easy to see that F satisfies the coset conditions
if and only if each component satisfies the coset conditions, because these
conditions are formulated only for cosets C,. such that the elements x, y,
and z all belong to the same equivalence class of €.

If F is a semi-frame satisfying the coset conditions, then so is each compo-
nent Fy, and consequently €[F ;] is a full coset relation algebra that is simple,
with base set and unit

UJ:U G and Ej:UJXUJ

zeJ %
respectively. The coset relation algebra €[F ] is isomorphic to the direct prod-
uct of the simple coset relation algebras €[F ;] constructed from the compo-
nents of F (so J varies over the equivalence classes of £). In fact, if internal
direct products are used instead of Cartesian direct products, then €[F] is
actually equal to the internal direct product of the full coset relation algebras
constructed from its component semi-frames.

Theorem 6.2 (Decomposition Theorem). Every full coset relation algebra is
isomorphic to a direct product of full coset relation algebras on simple frames.

The details of the proof of this theorem are left to the reader.

Return now to the proof of the reverse implication in Theorem 6.1. As-
sume that the given semi-frame F is not simple. If the group index set I is
empty, then the base set U is also empty, and in this case €[F ] is a one-element
relation algebra with the empty relation as its only element. In particular, €[F ]
is not simple. On the other hand, if the group index set I is non-empty, then
the isomorphism index set £ has at least two equivalence classes, by the defini-
tion of a simple semi-frame. The coset relation algebra €[F] is isomorphic to
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the direct product of the coset relation algebras on the component semi-frames
of F, by Decomposition Theorem 6.2, and there are at least two such compo-
nents. Each of these components is a simple semi-frame that satisfies the coset
conditions, so the corresponding coset relation algebra must be simple, by the
first part of the proof of Theorem 6.1. It follows that €[F] is isomorphic to
a direct product of at least two simple relation algebras, so €[F] cannot be
simple. For example, the projection of €[F] onto one of the factor algebras is
a non-constant homomorphism that is not injective.

References

[1] Andréka, H., Givant, S.: A representation theorem for measurable relation alge-
bras with cyclic groups. Trans. Am. Math. Soc. (to appear)

[2] Givant, S.: Introduction to Relation Algebras. Springer International Publishing
AG, Berlin (2017)

[3] Givant, S.: Advanced Topics in Relation Algebras. Springer International Pub-
lishing AG, Berlin (2017)

[4] Givant, S.: Relation algebras and groups. Algebra Universalis (to appear)

[5] Givant, S., Andréka, H.: Groups and algebras of relations. Bull. Symb. Log. 8,
38-64 (2002)

[6] Givant, S., Andréka, H.: A representation theorem for measurable relation alge-
bras (submitted for publication)

[7] Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Studies in Logic and the
Foundations of Mathematics, vol. 147. Elsevier Science, North-Holland Publishing
Company, Amsterdam (2002)

[8] Maddux, R.D.: Pair-dense relation algebras. Trans. Am. Math. Soc. 328, 83-131
(1991)

[9] Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Math-
ematics, vol. 150. Elsevier Science, North-Holland Publishing Company, Amster-
dam (2006)

Hajnal Andréka

Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences

Reéltanoda utca 13-15

Budapest 1053

Hungary

e-mail: andreka.hajnal@renyi.mta.hu

URL: https://www.renyi.hu/en/researchers/hajnal-andreka



Vol. 79 (2018) Coset relation algebras

Steven Givant

Mills College

5000 MacArthur Boulevard
Oakland CA 94613

USA

Received: 18 September 2017.
Accepted: 20 November 2017.

Page 53 of 53 28



	Coset relation algebras
	Abstract
	1. Introduction
	2. Group relation algebras
	3. Coset systems
	4. Coset semi-frames
	5. Example
	6. A decomposition theorem
	References




