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Abstract. A measurable relation algebra is a relation algebra in which the
identity element is a sum of atoms that can be measured in the sense that
the “size” of each such atom can be defined in an intuitive and reasonable
way (within the framework of the first-order theory of relation algebras).
A large class of examples of such algebras, using systems of groups and
coordinated systems of isomorphisms between quotients of the groups,
has been constructed. This class of group relation algebras is not large
enough to exhaust the class of all measurable relation algebras. In the
present article, the class of examples of measurable relation algebras is
considerably extended by adding one more ingredient to the mix: systems
of cosets that are used to “shift” the operation of relative multiplication.
It is shown that, under certain additional hypotheses on the system of
cosets, each such coset relation algebra with a shifted operation of rel-
ative multiplication is an example of a measurable relation algebra. We
also show that the class of coset relation algebras does contain examples
that are not representable as set relation algebras. In later articles, it is
shown that the class of coset relation algebras is adequate to the task of
describing all measurable relation algebras in the sense that every atomic
measurable relation algebra is essentially isomorphic to a coset relation
algebra, and the class of group relation algebras is similarly adequate
to the task of representing all measurable relation algebras in which the
associated groups are finite and cyclic.
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1. Introduction

In [4], a subidentity element x—that is to say, an element below the identity
element—of a relation algebra is defined to be measurable if it is an atom and
if the square x; 1;x is a sum of functional elements, that is to say, the sum of
elements that satisfy a characteristic property of relations that are functions,
namely, that the composition of the converse of the relation with the relation
itself is included in the identity relation. The number of non-zero functional
elements below the square x; 1;x gives the measure, or the size, of the atom
x. A relation algebra is said to be measurable if the identity element is the
sum of measurable atoms. The group relation algebras constructed in [4] are
examples of measurable relation algebras. It turns out, however, that they are
not the only examples of measurable relation algebras.

In this paper, a more general class of examples of measurable relation al-
gebras is constructed. The algebras are obtained from group relation algebras
by “shifting” the relational composition operation by means of coset multi-
plication, using an auxiliary system of cosets. For that reason, we have called
them coset relation algebras. By using this new construction, we show that
not all measurable relation algebras are representable. In fact, as hinted in the
proof, the class of coset relation algebras includes infinitely many mutually
non-isomorphic, non-representable relation algebras. These are new examples
of non-representable relation algebras, with a completely different underlying
motivation than the examples that have appeared so far in the literature.

These non-representable examples show that it was necessary to broaden
the class of group relation algebras, all of which are representable, in order to
get a representation theorem for all measurable relation algebras. Indeed, the
new class is broad enough for representing all measurable relation algebras,
as is shown in [6]. It is shown in [1] that if the groups Gx constructed in an
atomic, measurable relation algebra A are all finite and cyclic, then A is es-
sentially isomorphic to a full group relation algebra. These theorems together
provide far-reaching generalizations of the atomic case of Maddux’s represen-
tation theorem for pair-dense relation algebras in [8]. An extended abstract
describing these results and their interconnections was published by the au-
thors in [5]. The reader might find it helpful to consult that article in order to
get a overview of the program and its motivation.

In Section 2 of this paper, the principal results concerning group relation
algebras are reviewed. In Section 3, a system of shifting cosets is introduced,
and a new operation of multiplication is defined with the help of these cosets.
Characterizations are given in Section 4 of when the resulting algebra is a
measurable relation algebra. A concrete example of such a measurable coset
relation algebra that, as it turns out, is not representable, is given in Section 5.
Section 6 of the paper contains a decomposition theorem for coset relation al-
gebras that is similar to the decomposition theorem for group relation algebras
proved in [4]. Except for basic facts about groups, this article is intended to
be largely self-contained. Readers who wish to learn more about the subject
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of relation algebras are recommended to look at one or more of the books
Hirsch–Hodkinson [7], Maddux [9], or Givant [2,3].

2. Group relation algebras

For the convenience of the reader, here is a summary of the essential notions
and results from [4] that will be needed in this paper. Fix a system

G = 〈Gx : x ∈ I 〉
of groups 〈Gx , ◦ ,−1 , ex〉 that are pairwise disjoint, and an associated system

ϕ = 〈ϕxy : (x, y) ∈ E 〉
of quotient isomorphisms. Specifically, we require that E be an equivalence
relation on the index set I, and for each pair (x, y) in E , the function ϕxy be
an isomorphism from a quotient group of Gx to a quotient group of Gy. Call

F = (G,ϕ)

a group pair. The set I is the group index set, and the equivalence relation E is
the (quotient) isomorphism index set, of F . The normal subgroups of Gx and
Gy from which the quotient groups are constructed are uniquely determined
by ϕxy, and will be denoted by Hxy and Kxy respectively, so that ϕxy maps
Gx/Hxy isomorphically onto Gy/Kxy.

The elements of the quotient group Gx/Hxy are cosets, and hence com-
plexes (sets) of group elements. As such they obey the standard laws of group
theory. Multiplication of cosets and unions of cosets is an associative opera-
tion for which the normal subgroup Hxy is the identity element that commutes
with every other coset (and every union of cosets). Every coset has an inverse,
and the operation of forming inverses of cosets satisfies the first and second
involution laws: the inverse of the inverse of a coset is the original coset, and
the inverse of the composition of two cosets is the composition of the inverses,
in the reverse order.

For a fixed enumeration 〈Hxy,γ : γ < κxy〉 (without repetitions) of the
cosets of Hxy in Gx, the isomorphism ϕxy induces a corresponding, or associ-
ated, coset system of Kxy in Gy, determined by the rule

Kxy,γ = ϕxy(Hxy,γ)

for each γ < κxy. In what follows, it is always assumed that the given coset
systems for Hxy in Gx and for Kxy in Gy are associated in this manner.
Furthermore, it is assumed that the first elements of the coset systems are
always the normal subgroups themselves, so that

Hxy,0 = Hxy and Kxy,0 = Kxy.

Definition 2.1. For each pair (x, y) in E and each α < κxy, define a binary
relation Rxy,α by

Rxy,α =
⋃

γ<κxy
Hxy,γ × ϕxy[Hxy,γ ◦Hxy,α] =

⋃
γ<κxy

Hxy,γ × (Kxy,γ ◦Kxy,α).
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Lemma 2.2 (Partition Lemma). The relations Rxy,α, for α < κxy, are non-
empty and partition the set Gx × Gy .

Let U be the union of the disjoint system of groups, and E the equivalence
relation on U induced by the isomorphism index set E ,

U =
⋃{Gx : x ∈ I} and E =

⋃{Gx × Gy : (x, y) ∈ E}.

Take A to be the collection of unions of all possible sets of the relations of
the form Rxy,α for (x, y) in E and α < κxy. It turns out that A is always the
universe of a complete and atomic Boolean set algebra.

Theorem 2.3 (Boolean Algebra Theorem). The set A is the universe of a
complete, atomic Boolean algebra of subsets of E . The atoms in A are the
distinct relations Rxy,α for (x, y) in E and α < κxy, and the distinct elements
in A are the unions of distinct sets of atoms .

The set A does not automatically contain the identity relation idU , so it
is important to characterize when idU does belong to A.

Theorem 2.4 (Identity Theorem). For each element x in I, the following con-
ditions are equivalent .

(i) The identity relation idGx
on Gx is in A.

(ii) Rxx,0 = idGx
.

(iii) ϕxx is the identity automorphism of Gx/{ex}.

Consequently, the set A contains the identity relation idU on the base set U if
and only if (iii) holds for each x in I.

Similarly, the set A is not automatically closed under the operation of
converse.

Theorem 2.5 (Converse Theorem). For each pair (x, y) in E , the following
conditions are equivalent .

(i) There are an α < κxy and a β < κyx such that R−1
xy,α = Ryx,β .

(ii) For every α < κxy there is a β < κyx such that R−1
xy,α = Ryx,β .

(iii) ϕ−1
xy = ϕyx.

Moreover, if one of these conditions holds, then we may assume that κyx = κxy,
and the index β in (i) and (ii) is uniquely determined by H−1

xy,α = Hxy,β . The
set A is closed under converse if and only if (iii) holds for all (x, y) in E .

Convention 2.6. Suppose A is closed under converse. If a pair (x, y) is in E ,
then Hyx = Kxy, and therefore any coset system for Hyx is also a coset system
for Kxy . Since the enumeration 〈Hyx,γ : γ < κyx〉 of the cosets of Hyx can
be freely chosen, we can and always shall choose it so that κyx = κxy and
Hyx,γ = Kxy,γ for γ < κxy . It then follows from the Converse Theorem that
Kyx,γ = Hxy,γ for γ < κxy .

Finally, the set A is not in general closed under relational composition,
except when the composition is empty.
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Lemma 2.7. If (x, y) and (w, z) are in E , and if y �= w, then

Rxy,α |Rwz,β = ∅

for all α < κxy and β < κwz.

The most important case regarding the composition of two atomic rela-
tions is when y = w.

Theorem 2.8 (Composition Theorem). For all pairs (x, y) and (y, z) in E , the
following conditions are equivalent .

(i) The relation Rxy,0 |Ryz,0 is in A.
(ii) For each α < κxy and each β < κyz, the relation Rxy,α |Ryz,β is in A.
(iii) For each α < κxy and each β < κyz,

Rxy,α |Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α ◦Hyz,β ]}.

(iv) Hxz ⊆ ϕ−1
xy [Kxy ◦Hyz] and ϕ̂xy | ϕ̂yz = ϕ̂xz, where ϕ̂xy and ϕ̂xz are

the mappings induced by ϕxy and ϕxz on the quotient of Gx modulo the
normal subgroup ϕ−1

xy [Kxy ◦Hyz], while ϕ̂yz is the isomorphism induced
by ϕyz on the quotient of Gy modulo the normal subgroup Kxy ◦Hyz .

Consequently, the set A is closed under relational composition if and only if
(iv) holds for all pairs (x, y) and (y, z) in E .

Corollary 2.9. If the set A contains the identity relation, then for any pairs
(x, y) and (y, z) in E , the following conditions are equivalent .

(i) Rxy,α |Ryz,β is in A for some α < κxy and some β < κyz .
(ii) Rxy,α |Ryz,β is in A for all α < κxy and all β < κyz .

Putting together the preceding theorems yields a characterization, purely
in terms of the quotient isomorphisms, of when a group pair gives rise to a
complete and atomic set relation algebra.

Definition 2.10. A group frame is a group pair

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E 〉)
satisfying the following frame conditions for all pairs (x, y) and (y, z) in E .

(i) ϕxx is the identity automorphism of Gx/{ex} for all x.
(ii) ϕyx = ϕ−1

xy .
(iii) ϕxy[Hxy

◦Hxz] = Kxy
◦Hyz and ϕyz[Kxy

◦Hyz] = Kxz
◦Kyz .

(iv) ϕ̂xy | ϕ̂yz = ϕ̂xz.

Given a group frame F , let A be the collection of all possible unions of
relations of the form Rxy,α for (x, y) in E and α < κxy. Call A the set of frame
relations constructed from F .

Theorem 2.11 (Group Frame Theorem). If F is a group frame, then the set
of frame relations constructed from F is the universe of a complete, atomic,
measurable set relation algebra with base set and unit

U =
⋃{Gx : x ∈ I} and E =

⋃{Gx × Gy : (x, y) ∈ E}
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respectively . The atoms in this algebra are the relations of the form Rxy,α,
and the subidentity atoms are the relations of the form Rxx,0 . The measure of
Rxx,0 is just the cardinality of the group Gx .

The theorem justifies the following definition.

Definition 2.12. Suppose that F is a group frame. The set relation algebra
constructed from F in Group Frame Theorem 2.11 is called the (full) group
relation algebra on F and is denoted by G[F ] (and its universe by G[F ]). A
general group relation algebra is defined to be an algebra that is embeddable
into a full group relation algebra.

3. Coset systems

Group relation algebras by themselves are not sufficient to represent all mea-
surable relation algebras as will be seen in Section 5. However, it is shown in
[6] that if the operation of composition in a group relation algebra is changed
slightly, then the resulting class of new algebras is sufficient to represent all
measurable relation algebras. We call these new algebras coset relation alge-
bras.

The operation of relative multiplication in a coset relation algebra is
a kind of “shifted” relational composition. To accomplish this shifting, it is
necessary to add one more ingredient to a group pair F = (G,ϕ), namely a
system of cosets

〈Cxyz : (x, y, z) ∈ E3〉,
where E3 is the set of all triples (x, y, z) such that the pairs (x, y) and (y, z) are
in E , and for each such triple, the set Cxyz is a coset of the normal subgroup
Hxy

◦Hxz in Gx. Call the resulting triple

F = (G,ϕ,C)

a group triple.
Define a new binary multiplication operation ⊗ on the pairs of atomic

relations in the Boolean algebra A of Theorem 2.3 as follows.

Definition 3.1. For pairs (x, y) and (y, z) in E , put

Rxy,α ⊗ Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α ◦Hyz,β ] ◦Cxyz}
for all α < κxy and all β < κyz, and for all other pairs (x, y) and (w, z) in E
with y �= w, put

Rxy,α ⊗ Rwz,β = ∅

for all α < κxy and β < κwz . Extend ⊗ to all of A by requiring it to distribute
over arbitrary unions. This means that for all subsets X and Y of the set of
atoms in A

(
⋃

X) ⊗ (
⋃

Y ) =
⋃{Rxy,α ⊗ Rwz,β : Rxy,α ∈ X and Rwz,β ∈ Y }.



Vol. 79 (2018) Coset relation algebras Page 7 of 53 28

Comparing the formula defining Rxy,α ⊗ Ryz,β in Definition 3.1 with
the value of the relational composition Rxy,α | Ryz,β given in Composition
Theorem 2.8(iii), it is clear that they are very similar in form. In the first
case, however, the coset ϕ−1

xy [Kxy,α ◦Hyz,β ] of the composite group Hxy ◦Hxz

has been shifted, through coset multiplication by Cxyz, to another coset of
Hxy ◦Hxz, so that in general the value of the ⊗ -product and the value of
relational composition on a given pair of atomic relations will be different,
except in certain cases, for example, the case in which the value is the empty
set.

Observe that the product Rxy,α⊗Rwz,β is, by definition, a union of atomic
relations in A and is therefore itself a member of A. Since ⊗ is extended to
all of A so as to be completely distributive over unions, and since A is closed
under arbitrary unions, it follows that A is automatically closed under the op-
eration ⊗ . It is not necessary to impose any special conditions on the quotient
isomorphisms to ensure this closure, as was the case for relative multiplication
in group relation algebras. However, to ensure that A contains the identity
relation and is closed under converse, it is still necessary to require conditions
(i) and (ii) from Definition 2.10. Conditions (iii) and (iv) in Definition 2.10
ensure that A is closed under relational composition. In order to get a class
of algebras large enough to represent all measurable relation algebras, it is
necessary to weaken condition (iv), but condition (iii) can be retained. In fact,
condition (iv) of Definition 2.10 has to be changed only slightly, as can be seen
in Definition 3.2 below.

Every element of a group induces an inner automorphism of the group.
In particular, the coset Cxyz, which is an element of the quotient group

Gx/(Hxy ◦Hxz),

induces an inner automorphism τxyz of the quotient group that is defined by

τxyz(D) = C−1
xyz

◦D ◦Cxyz

for every coset D of Hxy ◦Hxz . This automorphism coincides with the identity
automorphism of the quotient group just in case the coset Cxyz is in the center
of the quotient group, that is to say, just in case

Cxyz ◦D = D ◦Cxyz

for every coset D of Hxy
◦Hxz .

Definition 3.2. A group triple

F = (G,ϕ,C)

is a pre-semi-frame if the following three conditions are satisfied.
(i) ϕxx is the identity automorphism of Gx/{ex} for all x in I .
(ii) ϕyx = ϕ−1

xy whenever (x, y) is in E .
(iii) ϕxy[Hxy ◦Hxz] = Kxy ◦Hyz whenever (x, y, z) is in E3 .
It is a semi-frame if, in addition, the following fourth condition is also satisfied.
(iv) ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz whenever (x, y, z) is in E3 .
Conditions (i)–(iv) are called the semi-frame conditions .



28 Page 8 of 53 H. Andréka, S. Givant Algebra Univers.

In condition (iv) of this definition, it is understood that ϕ̂xy, ϕ̂yz, and ϕ̂xz

are the induced isomorphisms described in Composition Theorem 2.8. They
are well defined by semi-frame condition (iii).

If the group triple F is a pre-semi-frame, then the Boolean set algebra
A contains the identity relation on its base set (by Identity Theorem 2.4),
and is closed under converse (by Converse Theorem 2.5) and under ⊗ (by
Definition 3.1). Consequently, it is permissible to form the algebra

C[F ] = 〈A ,∪ ,∼ ,⊗ ,−1 , idU 〉.
Of course, C[F ] need not be a relation algebra, that is to say, an abstract
algebra of the form

A = (A ,+ ,− , ; , � , 1’)

in which the following axioms are valid.
(R1) r + s = s + r.
(R2) r + (s + t) = (r + s) + t.
(R3) −(−r + s) + −(−r + −s) = s.
(R4) r; (s; t) = (r; s); t.
(R5) r; 1’ = r.
(R6) r�� = r.
(R7) (r; s)� = s�; r� .
(R8) (r + s); t = r; t + s; t.
(R9) (r + s)� = r� + s� .

(R11) (r; s) · t = 0 implies (r�; t) · s = 0.
(On the basis of the other axioms, (R11) is equivalent to the original law (R10)
that Tarski used as the tenth axiom—see, for example, Definition 2.1 in Givant
[2]. Consequently, we will not refer to (R10) again.)

Certain relation algebraic axioms are, however, automatically valid in
C[F ]. For example, the Boolean axioms (R1)–(R3) are all valid, because the
Boolean part of C[F ] is a complete and atomic Boolean set algebra. The first
involution law (R6) involves only the operation of converse, so it is valid in
C[F ]. The operation ⊗ is distributive over arbitrary unions, as is the operation
of converse, so the distributive axioms for relative multiplication and converse
over addition, (R8) and (R9) respectively, are valid in C[F ].

Each of the remaining four axioms, the associative law for relative multi-
plication (R4), the identity law (R5), the second involution law (R7), and the
cycle law (R11) may fail in C[F ]. It is therefore important to impose condi-
tions on the coset system of a pre-semi-frame that characterize when each of
these axioms does hold in C[F ]. This task is simplified by certain observations.
Three of the axioms, namely (R4), (R5), and (R7), are equations, and one of
them, namely (R11), is an implication between two equations of the form
σ = 0. Each of the equations involved is positive in the sense that its terms
are constructed from variables and constant symbols using only the operation
symbols for addition, multiplication, relative multiplication, and converse. In
particular, there is no occurrence of the operation symbol for complement.
Each of the axioms is also regular in the sense that no variable occurs more
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than once on either side of an equation. It is a well-known result that positive,
regular equations, and implications between positive, regular equations of the
form σ = 0, hold in an atomic relation algebra (or in any Boolean algebra
with completely distributive operators) just in case they hold for all atoms
(see, for example, Corollaries 19.26 and 19.28 in Givant [3]). Thus, to verify
that any one of these axioms holds in C[F ] under certain hypotheses on the
coset system, it suffices to verify that it holds for all atomic relations.

We begin with a lemma that says equalities between unions of atomic
relations are equivalent to the corresponding coset equalities.

Lemma 3.3. Let F be a pre-semi-frame, and (x, y, z) a triple in E3 . If D0 and
D1 are each unions of cosets of Hxy ◦Hxz, then the following conditions are
equivalent .

(i) D0 = D1 .
(ii)

⋃{Rxz,γ : Hxz,γ ⊆ D0} =
⋃{Rxz,ξ : Hxz,ξ ⊆ D1}.

Proof. Condition (i) obviously implies (ii). To establish the reverse implication,
assume D0 �= D1 . There must then be a coset M of the subgroup Hxy ◦Hxz

that is included in one of the unions, say D0, but not the other, D1 . It follows
that M must be disjoint from each of the cosets in D1, since two cosets of a
subgroup are either equal or disjoint. In particular, each coset Hxz,γ of Hxz

that is included in M must be disjoint from D1, so the corresponding relation
Rxz,γ , which is included in the left-hand side of (ii), by assumption, must be
disjoint from the right-hand side of (ii), by Partition Lemma 2.2. �

Turn now to the task of finding necessary and sufficient conditions for
various relation algebraic laws to hold in the algebra C[F ], and begin with the
identity law (R5). This law is positive and regular, so it suffices to characterize
when it holds for all atomic relations in C[F ].

Theorem 3.4 (Identity Law Theorem). Let F be a pre-semi-frame, and (x, y)
a pair in E . The following conditions are equivalent .

(i) Rxy,α ⊗ idU = Rxy,α for some α < κxy .
(ii) Rxy,α ⊗ idU = Rxy,α for all α < κxy .
(iii) Rxy,α ⊗ Ryy,0 = Rxy,α for some α < κxy .
(iv) Rxy,α ⊗ Ryy,0 = Rxy,α for all α < κxy .
(v) Cxyy = Hxy .

Consequently, the identity law holds in the algebra C[F ] if and only if (v)
holds for all pairs (x, y) in E .

Proof. Identity Theorem 2.4 and semi-frame condition (i) imply that

idU =
⋃

w∈I

Rww,0 .

Therefore,

Rxy,α ⊗ idU =
⋃

w∈I

Rxy,α ⊗ Rww,0 = Rxy,α ⊗ Ryy,0, (1)
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by the distributivity of ⊗ over arbitrary unions, and the fact that

Rxy,α ⊗ Rww,0 = ∅

whenever w �= y. The equivalences of (i) with (iii), and of (ii) with (iv), are
immediate consequences of (1).

We show the equivalence of (iii) and (v), from which it follows trivially
that conditions (iii), (iv), and (v) are all equivalent. We have by Definition 3.1,
the convention that Hyy,0 = {ey}, and semi-frame condition (ii) and the con-
vention that Kxy,α = ϕxy(Hxy,α). Now, (iii) holds, by Lemma 3.3 just in case
Hxy,α ◦Cxyy = Hxy,α, and this last equality holds just in case Cxyy = Hxy,
which is just condition (v). This establishes the equivalence of conditions (iii)–
(v), and hence of all five conditions, in the statement of the theorem.

The identity law holds in C[F ] just in case it holds for all atoms Rxy,α .
Apply the equivalence of (ii) and (v) in the statement of the theorem to con-
clude that the identity law holds in C[F ] just in case Cxyy = Hxy for all pairs
(x, y) in E . �

Take up now the task of characterizing when the cycle law (R11) holds.
It suffices to characterize when this implication holds for atoms, and for atoms
r, s, and t, the implication is equivalent to the following atomic form of the
cycle law :

s ≤ r�; t implies t ≤ r; s.

Theorem 3.5 (Cycle Law Theorem). Let F be a pre-semi-frame, and (x, y, z)
a triple in E3. The following conditions are equivalent .

(i) If Ryz,β ⊆ R−1
xy,α ⊗Rxz,γ , then Rxz,γ ⊆ Rxy,α ⊗Ryz,β , for some α < κxy,

β < κyz, and γ < κxz .
(ii) If Ryz,β ⊆ R−1

xy,α ⊗ Rxz,γ , then Rxz,γ ⊆ Rxy,α ⊗ Ryz,β , for all α < κxy,
β < κyz, and γ < κxz .

(iii) ϕxy[Cxyz] = C−1
yxz .

Consequently, the cycle law holds in the algebra C[F ] just in case (iii) holds
for all triples (x, y, z) in E3 .

Proof. Fix indices α < κxy, β < κyz, and γ < κxz, with the goal of establishing
the equivalence of conditions (i) and (iii). Choose δ < κxy so that

H−1
xy,α = Hxy,δ, (1)

and observe that

R−1
xy,α = Ryx,δ, (2)

by semi-frame condition (ii) and Converse Theorem 2.5. Semi-frame condition
(ii) and Convention 2.6 imply that

ϕ−1
xy = ϕyx (3)

and

Kyx,δ = Hxy,δ . (4)
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Combine (1)–(4), and use the definition of ⊗ , to arrive at

R−1
xy,α ⊗ Rxz,γ = Ryx,δ ⊗ Rxz,γ

=
⋃{Ryz,ξ : Hyz,ξ ⊆ ϕ−1

yx [Kyx,δ ◦Hxz,γ ] ◦Cyxz}
=

⋃{Ryz,ξ : Hyz,ξ ⊆ ϕ−1
yx [Hxy,δ

◦Hxz,γ ] ◦Cyxz}
=

⋃{Ryz,ξ : Hyz,ξ ⊆ ϕxy[H−1
xy,α

◦Hxz,γ ] ◦Cyxz}.

It follows from this string of equalities and Partition Lemma 2.2 that the
inclusion

Ryz,β ⊆ R−1
xy,α ⊗ Rxz,γ (5)

is equivalent to the inclusion

Hyz,β ⊆ ϕxy[H−1
xy,α

◦Hxz,γ ] ◦Cyxz . (6)

A completely analogous argument shows that the inclusion

Rxz,γ ⊆ Rxy,α ⊗ Ryz,β (7)

is equivalent to the inclusion

Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz . (8)

We now transform (6) in a series of steps. Multiply each side of (6) on
the left by the coset Kxy,α to obtain the equivalent inclusion

Kxy,α ◦Hyz,β ⊆ Kxy,α ◦ϕxy[H−1
xy,α

◦Hxz,γ ] ◦Cyxz . (9)

Notice that the right side of (9) is a coset of Kxy
◦Hyz . (For example, Cyxz

is a coset of Hyx ◦Hyz, which is equal to Kxy ◦Hyz . Also, H−1
xy,α

◦Hxz,γ is a
coset of Hxy

◦Hxz, and ϕ̂xy maps cosets of Hxy
◦Hxz to cosets of Kxy

◦Hyz, so
ϕxy[H−1

xy,α
◦Hxz,γ ] is a coset of Kxy ◦Hyz. Finally, the product of two cosets of

Kxy ◦Hyz with the coset Kxy,α of Kxy is again a coset of Kxy ◦Hyz.) The left
side of (9) is also a coset of Kxy

◦Hyz. Since two cosets of the same group are
either equal or disjoint, the inclusion in (9) is equivalent to the equality

Kxy,α ◦Hyz,β = Kxy,α ◦ϕxy[H−1
xy,α

◦Hxz,γ ] ◦Cyxz . (10)

Observe that

Kxy,α ◦ϕxy[H−1
xy,α

◦Hxz,γ ] = ϕxy[Hxy,α] ◦ϕxy[H−1
xy,α

◦Hxz,γ ]

= ϕxy[Hxy,α ◦H−1
xy,α

◦Hxz,γ ]

= ϕxy[Hxy
◦Hxz,γ ],

by the definition of Kxy,α (which implies that ϕxy[Hxy,α] = Kxy,α), the iso-
morphism properties of ϕxy, and the laws of group theory. Equation (10) can
therefore be rewritten in the form

Kxy,α ◦Hyz,β = ϕxy[Hxy ◦Hxz,γ ] ◦Cyxz . (11)
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Apply ϕ−1
xy to both sides of (11), and use the isomorphism properties of ϕ−1

xy ,
to obtain

ϕ−1
xy [Kxy,α ◦Hyz,β ] = ϕ−1

xy [ϕxy[Hxy ◦Hxz,γ ] ◦Cyxz]

= ϕ−1
xy [ϕxy[Hxy

◦Hxz,γ ]] ◦ϕ−1
xy [Cyxz]

= Hxy ◦Hxz,γ ◦ϕ−1
xy [Cyxz]. (12)

Now Cyxz is a coset of Hyx ◦Hyz, which, in turn, is equal to Kxy ◦Hyz, and ϕxy

maps the group Gx/(Hxy ◦Hxz) isomorphically to the group Gy/(Kxy ◦Hyz),
so the inverse image ϕ−1

xy [Cyxz] must be a coset of Hxy
◦Hxz . Consequently,

Hxy ◦ϕ−1
xy [Cyxz] = ϕ−1

xy [Cyxz],

so that (12) reduces to

ϕ−1
xy [Kxy,α

◦Hyz,β ] = Hxz,γ
◦ϕ−1

xy [Cyxz]. (13)

Summarizing, inclusion (6), and hence also inclusion (5), is equivalent to Equa-
tion (13).

We now subject Equation (8) to similar, but simpler, transformations.
Multiply each side of (8) on the right by C−1

xyz, and use the laws of group
theory, to obtain

Hxz,γ
◦C−1

xyz ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ]. (14)

Each side of this inclusion is a coset of Hxy ◦Hxz . Since two cosets of the same
group are equal or disjoint, the inclusion in (14) is equivalent to the equation

Hxz,γ
◦C−1

xyz = ϕ−1
xy [Kxy,α

◦Hyz,β ]. (15)

Therefore, inclusion (8), and hence also inclusion (7), is equivalent to Equa-
tion (15).

Combine the results of the last two paragraphs to arrive at the following
conclusion: inclusion (5) implies inclusion (7) just in case Equation (13) implies
Equation (15). Compare (13) with (15): the former implies the latter just in
case

Hxz,γ
◦ϕ−1

xy [Cyxz] = Hxz,γ
◦C−1

xyz,

or, equivalently, just in case

ϕ−1
xy [Cyxz] = C−1

xyz . (16)

Form the coset inverse of both sides of (16), and apply the isomorphism prop-
erties of ϕ−1

xy , to rewrite (16) as

ϕ−1
xy [C−1

yxz] = Cxyz . (17)

Apply ϕxy to both sides of (17) to arrive at the equivalent equation

ϕxy[Cxyz] = C−1
yxz . (18)

It has been shown that the implication from (5) to (7) for fixed α, β,
and γ, is equivalent to (18). This means that conditions (i) and (iii) in the
statement of the theorem are equivalent. Since the formulation of (iii) does
not involve any of the three indices α, β, and γ, it follows that (iii) implies
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(i) for each such triple of indices, and hence (iii) implies (ii). The implication
from (ii) to (i) is immediate.

The cycle law holds in C[F ] just in case it holds for all atoms. Consider
such a triple of atoms

Rxy,α, Rwz,β , Ruv,γ ,

we want to show

Rwz,β ⊆ R−1
xy,α ⊗ Ruv,γ implies Ruv,γ ⊆ Rxy,α ⊗ Rwz,β .

If y = w and u = x and v = z, then the atomic form of the cycle law holds for
the triple just in case ϕxy[Cxyz] = C−1

yxz, by the equivalence of conditions (ii)
and (iii) in the first part of the theorem.

Assume y �= w or u �= x or v �= z. We show that the law holds trivially,
because the left side of the implication reduces to the empty relation. Choose
ξ < κxy such that

H−1
xy,α = Hxy,ξ,

and observe that

R−1
xy,α = Ryx,ξ, (19)

by Converse Theorem 2.5. Consequently,

R−1
xy,α ⊗ Ruv,γ = Ryx,ξ ⊗ Ruv,γ ⊆ Gy × Gv,

by (19), the definition of ⊗ , and Partition Lemma 2.2. On the other hand, the
relation Rwz,β is included in Gw×Gz, by Partition Lemma 2.2. The hypothesis
that w �= y or z �= v implies that the two Cartesian products

Gy × Gv and Gw × Gz

are disjoint, since distinct groups in the given group system are assumed to be
disjoint. It follows that

Rwz,β ∩ (R−1
xy,α ⊗ Ruv,γ) ⊆ (Gw × Gz) ∩ (Gy × Gv) = ∅.

Since Rwz,β is non-empty, this argument shows that the antecedent of the
implication does not hold, so the entire implication must be true. If u �= x,
then

R−1
xy,α ⊗ Ruv,γ = Ryx,ξ ⊗ Ruv,γ = ∅,

by (19) and the definition of ⊗ , so again the antecedent of the asserted im-
plication is false, which means that the entire implication is true. �

The next two characterization theorems make use of semi-frame condition
(iv). We begin with an auxiliary lemma. Notice that (i) of the lemma coincides
with semi-frame condition (iv) stated for the triple (x, y, z) in E3.

Lemma 3.6. Suppose that F is a pre-semi-frame, and (x, y, z) a triple in E3.
The following are equivalent .

(i) If Q is a union of cosets of the subgroup Hxy ◦Hxz in Gx, then

ϕyz[ϕxy[Q]] = ϕxz[C−1
xyz

◦Q ◦Cxyz].
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(ii) If Q is a union of cosets of the subgroup Kxy ◦Hyz in Gy, then

ϕ−1
xz [ϕyz[Q]] = C−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz .

(iii) If Q is a union of cosets of the subgroup Kxz
◦Kyz in Gz, then

Cxyz ◦ϕ−1
xz [Q] = ϕ−1

xy [ϕ−1
yz [Q]] ◦Cxyz .

Proof. Assume (i). To prove (ii), let Q be a union of cosets of Kxy
◦Hyz. By

semi-frame condition (iii), which holds by the assumption that F is a pre-
semi-frame, we have that ϕ−1

xy [Q] is a union of cosets of Hxy ◦Hxz. Substitute
ϕ−1

xy [Q] in place of Q in (i) to get

ϕyz[ϕxy[ϕ−1
xy [Q]]] = ϕxz[C−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz]. (1)

On both sides of (1) there is a union of cosets of Kxz
◦Kyz, again by semi-frame

condition (iii). Apply ϕ−1
xz to both sides of (i) to obtain

ϕ−1
xz [ϕyz[ϕxy[ϕ−1

xy [Q]]]] = ϕ−1
xz [ϕxz[C−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz]]. (2)

Use the inverse property of functions to obtain (ii) from (2). (Notice that the
symbol −1 is being used two different ways: to denote the inverse functions of
the isomorphisms ϕxy and ϕxz, and to denote the group inverse of the coset
Cxyz. The two different meanings of this particular symbol are standard, and
should not cause the reader any confusion.)

In a similar way, to get (iii) from (ii), let Q be a union of cosets of
Kxz ◦Kyz. Substitute ϕ−1

yz [Q] in place of Q in (ii), multiply both sides by Cxyz

on the left, and use the inverse property of functions to arrive at (iii).
To get (i) from (iii), let Q be a union of cosets of Hxy ◦Hxz. In (iii),

substitute ϕxz[C−1
xyz

◦Q ◦Cxyz] in place of Q, and use the inverse property of
functions, to get

Cxyz ◦C−1
xyz

◦Q ◦Cxyz = ϕ−1
xy [ϕ−1

yz [ϕxz[C−1
xyz

◦Q ◦Cxyz]]] ◦Cxyz . (3)

Multiply both sides with C−1
xyz on the right, and use the inverse property for

groups to get

Q = ϕ−1
xy [ϕ−1

yz [ϕxz[C−1
xyz

◦Q ◦Cxyz]]]. (4)

Finally, apply ϕxy and then ϕyz to both sides of (4) and use the inverse prop-
erty of functions to get (i) from (4). �

Turn next to the second involution law. As before, it suffices to charac-
terize when the equation holds for pairs of atoms in C[F ].

Theorem 3.7 (Second Involution Law Theorem). Let F be a semi-frame, and
(x, y, z) a triple in E3 . The following conditions are equivalent .

(i) (Rxy,α ⊗ Ryz,β)−1 = R−1
yz,β ⊗ R−1

xy,α for some α < κxy and some β < κyz .
(ii) (Rxy,α ⊗ Ryz,β)−1 = R−1

yz,β ⊗ R−1
xy,α for all α < κxy and all β < κyz .

(iii) ϕxz[Cxyz] = C−1
zyx .

Consequently, the second involution law holds in the algebra C[F ] just in case
(iii) holds for all triples (x, y, z) in E3 .
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Proof. Fix α < κxy and β < κyz, with the goal of showing that conditions (i)
and (iii) are equivalent. The first step is to work out concrete formulas for the
expressions on the left and right sides of condition (i). The definition of ⊗
gives

Rxy,α ⊗ Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz}. (1)

Form the relational converse of both sides of (1), and apply the distributivity
of converse over arbitrary unions, to obtain

(Rxy,α ⊗ Ryz,β)−1 =
⋃{R−1

xz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦Cxyz}.

This last equation is equivalent to the equation

(Rxy,α ⊗ Ryz,β)−1 =
⋃{R−1

xz,γ : H−1
xz,γ ⊆ (ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz)−1}, (2)

by the first involution law for groups (which says that (g−1)−1 = g for every
element g in a group). Converse Theorem 2.5 asserts that

R−1
xz,γ = Rzx,ξ just in case H−1

xz,γ = Hxz,ξ .

Substitute the right side of each of these equations into the right side of (2) to
arrive at

(Rxy,α ⊗ Ryz,β)−1 =
⋃{Rzx,ξ : Hxz,ξ ⊆ (ϕ−1

xy [Kxy,α ◦Hyz,β ] ◦Cxyz)−1}. (3)

Use the second involution law for groups (which says that (g ◦h)−1 = h−1 ◦g−1

for all elements g and h in a group) and the isomorphism properties of ϕxy to
see that

(ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz)−1 = C−1
xyz

◦ (ϕ−1
xy [Kxy,α

◦Hyz,β ])−1

= C−1
xyz

◦ϕ−1
xy [(Kxy,α

◦Hyz,β)−1]

= C−1
xyz

◦ϕ−1
xy [H−1

yz,β
◦K−1

xy,α].

Replace the first term by the last term in the right side of (3) to conclude that

(Rxy,α ⊗ Ryz,β)−1 =
⋃{Rzx,ξ : Hxz,ξ ⊆ C−1

xyz
◦ϕ−1

xy [H−1
yz,β

◦K−1
xy,α]}. (4)

The next step is to work out an analogous expression for the right side
of (i). Choose ρ < κxy and η < κyz so that

K−1
xy,α = Kxy,ρ and H−1

yz,β = Hyz,η . (5)

Apply semi-frame condition (ii) and Converse Theorem 2.5 to obtain

R−1
xy,α = Ryx,ρ and R−1

yz,β = Rzy,η . (6)

Use (6) and the definition of ⊗ to get

R−1
yz,β ⊗ R−1

xy,α = Rzy,η ⊗ Ryx,ρ (7)

=
⋃{Rzx,γ : Hzx,γ ⊆ ϕ−1

zy [Kzy,η ◦Hyx,ρ] ◦Czyx}.

Convention 2.6 and (5) yield

Kzy,η = Hyz,η = H−1
yz,β and Hyx,ρ = Kxy,ρ = K−1

xy,α . (8)
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Combine (7) and (8) to arrive at

R−1
yz,β ⊗ R−1

xy,α =
⋃{Rzx,γ : Hzx,γ ⊆ ϕ−1

zy [H−1
yz,β

◦K−1
xy,α] ◦Czyx}. (9)

Apply the isomorphism ϕzx to both sides of the inclusion
Hzx,γ ⊆ ϕ−1

zy [H−1
yz,β

◦K−1
xy,α] ◦Czyx (10)

to obtain the equivalent inclusion

ϕzx[Hzx,γ ] ⊆ ϕzx[ϕ−1
zy [H−1

yz,β
◦K−1

xy,α] ◦Czyx]. (11)

Use the definition of the coset Kzx,γ as the image of the coset Hzx,γ under the
isomorphism ϕzx, and then use Convention 2.6, to rewrite the left side of (11)
as

ϕzx[Hzx,γ ] = Kzx,γ = Hxz,γ . (12)

The right side of (11) may also be rewritten in the following way:
ϕzx[ϕ−1

zy [H−1
yz,β

◦K−1
xy,α] ◦Czyx] = ϕzx[ϕ−1

zy [H−1
yz,β

◦K−1
xy,α]] ◦ϕzx[Czyx]

= ϕ−1
xz [ϕyz[H−1

yz,β
◦K−1

xy,α]] ◦ϕzx[Czyx]

= C−1
xyz

◦ϕ−1
xy [H−1

yz,β
◦K−1

xy,α] ◦Cxyz ◦ϕzx[Czyx].
(13)

The first equality uses the isomorphism property of ϕzx, the second uses semi-
frame condition (ii) which says that

ϕzx = ϕ−1
xz and ϕyz = ϕ−1

zy ,

and the third equality uses Lemma 3.6(ii) (with H−1
yz,β

◦K−1
xy,α in place of Q).

Combine (12) with (13) to conclude that the inclusion in (11), and consequently
also the one in (10), is equivalent to the inclusion

Hxz,γ ⊆ C−1
xyz

◦ϕ−1
xy [H−1

yz,β
◦K−1

xy,α] ◦Cxyz ◦ϕzx[Czyx]. (14)

Use the equivalence between (10) and (14) to rewrite (9) as

R−1
yz,β ⊗ R−1

xy,α

=
⋃{Rzx,γ : Hxz,γ ⊆ C−1

xyz
◦ϕ−1

xy [H−1
yz,β

◦K−1
xy,α] ◦Cxyz

◦ϕzx[Czyx]}. (15)

It follows from (4) and (15) that the equation in (i) holds just in case the
right side of (4) is equal to the right side of (15). The right sides of (4) and
(15) are equal just in case the cosets

C−1
xyz

◦ϕ−1
xy [H−1

yz,β
◦K−1

xy,α] (16)

and

C−1
xyz

◦ϕ−1
xy [H−1

yz,β
◦K−1

xy,α] ◦Cxyz ◦ϕzx[Czyx] (17)

are equal, by Lemma 3.3. (Notice that (16) and (17) really are cosets of
Hxy ◦Hxz. In more detail, each of the factors in (16) and (17) is a coset of
Hxy

◦Hxz, so the composition of these factors is also a coset of Hxy
◦Hxz .

For example, H−1
yz,β

◦K−1
xy,α is a coset of Kxy ◦Hyz, and ϕ̂xy maps the group

Gx/(Hxy
◦Hxz) isomorphically onto the group Gy/(Kxy

◦Hyz), so the inverse
image ϕ−1

xy [H−1
yz,β

◦K−1
xy,α] must be a coset of Hxy ◦Hxz . The isomorphism ϕ̂zx,
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which coincides with ϕ̂−1
xz , maps the group Gz/(Kxz ◦Kyz) isomorphically onto

the group Gx/(Hxy
◦Hxz), and Czyx is a coset of Hzy

◦Hzx = Kxz
◦Kyz, so

the image ϕzx[Czyx] must be a coset of Hxy ◦Hxz.) The cosets in (16) and (17)
are equal just in case

Hxy
◦Hxz = Cxyz

◦ϕzx[Czyx],

or, put another way, they are equal just in case

ϕzx[Czyx]−1 = Cxyz, (18)

by the cancellation law for groups. Rewrite (18) as

ϕzx[C−1
zyx] = Cxyz, (19)

using the isomorphism properties of ϕzx, and then apply the inverse ϕxz of
the isomorphism ϕzx to both sides of (19) to obtain the equivalent equation

C−1
zyx = ϕxz[Cxyz]. (20)

Combine these various equivalences to conclude that (i) holds if and only if
(20) holds, that is to say, if and only if (iii) holds.

It has been shown that (i) and (iii) are equivalent for any fixed α and β.
Since (iii) does not involve α and β, it may be concluded that (iii) implies (i)
for any α and β, and hence (iii) implies (ii). The implication from (ii) to (i) is
trivial.

The form of the second involution law as a positive, regular equation
implies that it holds in C[F ] just in case it holds for all atoms Rxy,α and
Rwz,β in C[F ]. If y = w, then the law holds for the given pair of atoms
just in case ϕxz[Cxyz] = C−1

zyx, by the equivalence of conditions (ii) and (iii)
established above.

Assume y �= w. We show that the second involution law holds automati-
cally for the given pair of atoms. Indeed, choose γ and δ so that

H−1
xy,α = Hxy,γ and H−1

wz,β = Hwz,δ .

Semi-frame condition (ii) and Converse Theorem 2.5 imply that

R−1
xy,α = Ryx,γ and R−1

wz,β = Rzw,δ .

Combine this with the definition of ⊗ under the assumption that y �= w to
obtain

R−1
wz,β ⊗ R−1

xy,α = Rzw,δ ⊗ Ryz,γ = ∅ (21)

and

(Rxy,α ⊗ Rwz,β)−1 = ∅
−1 = ∅. (22)

Since the right sides of (21) and (22) are equal, so are the left sides. �

Turn finally to the task of characterizing when the associative law for rel-
ative multiplication holds in an algebra C[F ]. Again, it suffices to characterize
when it holds for atoms. It is helpful to introduce a bit of notation. Let E4

denote the set of quadruples (x, y, z, w) such that the pairs (x, y), (x, z), and
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(x,w) are all in E , or, equivalently, such that the triples (x, y, z) and (x, z, w)
are in E3 .

Theorem 3.8 (Associative Law Theorem). Let F be a semi-frame, and let
(x, y, z, w) be a quadruple in E4 . The following conditions are equivalent .

(i) (Rxy,α ⊗ Ryz,β) ⊗ Rzw,γ = Rxy,α ⊗ (Ryz,β ⊗ Rzw,γ) for some α < κxy,
β < κyz and γ < κzw .

(ii) (Rxy,α ⊗ Ryz,β) ⊗ Rzw,γ = Rxy,α ⊗ (Ryz,β ⊗ Rzw,γ) for all α < κxy,
β < κyz and γ < κzw .

(iii) Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw .

Consequently, the associative law for ⊗ holds in the algebra C[F ] just in case
(iii) holds for all quadruples (x, y, z, w) in E4 .

Proof. Fix some α < κxy, β < κyz, and γ < κzw, with goal of establishing
the equivalence of (i) and (iii). The first task is to compute and simplify an
expression for

(Rxy,α ⊗ Ryz,β) ⊗ Rzw,γ . (1)

The definition of ⊗ implies that

Rxy,α ⊗ Ryz,β =
⋃{Rxz,ξ : Hxz,ξ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz}. (2)

Form the product, in the sense of ⊗ , on both sides of (2) on the right with
Rzw,γ , and use the distributivity of ⊗ over arbitrary unions, to see that (1)
is equal to the union

⋃{Rxz,ξ ⊗ Rzw,γ : Hxz,ξ ⊆ ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦Cxyz}. (3)

The definition of ⊗ also yields

Rxz,ξ ⊗ Rzw,γ =
⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1

xz [Kxz,ξ
◦Hzw,γ ] ◦Cxzw} (4)

for each ξ. Write

D1 = ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz, (5)

and observe that D1 is a coset of the normal subgroup Hxy ◦Hxz in Gx. Com-
bine (5) with (3) and (4) to arrive at the equality of (1) with

⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xz [Kxz,ξ ◦Hzw,γ ] ◦Cxzw for some Hxz,ξ ⊆ D1}.

This union may be rewritten as
⋃{

Rxw,ρ : Hxw,ρ ⊆ ⋃{ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}
}
. (6)

In more detail, the sets

ϕ−1
xz [Kxz,ξ ◦Hzw,γ ] ◦Cxzw,

for various ξ, are cosets of Hxz
◦Hxw (since ϕxz induces an isomorphism from

Gx/(Hxz ◦Hxw) to Gz/(Kxz ◦Hzw)), and any coset Hxw,ρ of Hxw that is con-
tained in a union of cosets of Hxz ◦Hxw must be contained entirely within one
of these cosets. It follows that (1) and (6) are equal.
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We now transform (6) in a series of steps. First,
⋃{Kxz,ξ : Hxz,ξ ⊆ D1} =

⋃{ϕxz[Hxz,ξ] : Hxz,ξ ⊆ D1}
= ϕxz[

⋃{Hxz,ξ : Hxz,ξ ⊆ D1}]

= ϕxz[D1], (7)

by the definition of Kxz,ξ as the image of Hxz,ξ under the mapping ϕxz, the
distributivity of function images over unions, and the fact that D1 is the union
of the set of cosets of Hxz that are included in it, by (5) and the remark
following (5). Therefore

⋃{ϕ−1
xz [Kxz,ξ ◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}

=
⋃{ϕ−1

xz [Kxz,ξ ◦Hzw,γ ] : Hxz,ξ ⊆ D1} ◦Cxzw

= ϕ−1
xz [

⋃{Kxz,ξ
◦Hzw,γ : Hxz,ξ ⊆ D1}] ◦Cxzw

= ϕ−1
xz [

⋃{Kxz,ξ
◦Kxz

◦Hzw,γ : Hxz,ξ ⊆ D1}] ◦Cxzw

= ϕ−1
xz [

⋃{Kxz,ξ : Hxz,ξ ⊆ D1} ◦Kxz
◦Hzw,γ ] ◦Cxzw

= ϕ−1
xz [ϕxz[D1] ◦Kxz

◦Hzw,γ ] ◦Cxzw

= ϕ−1
xz [ϕxz[D1]] ◦ϕ−1

xz [Kxz ◦Hzw,γ ] ◦Cxzw

= D1 ◦ϕ−1
xz [Kxz ◦Hzw,γ ] ◦Cxzw

= ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦Cxyz ◦ϕ−1

xz [Kxz ◦Hzw,γ ] ◦Cxzw,

by the distributivity of coset composition over arbitrary unions, the distribu-
tivity of inverse function images over arbitrary unions, the fact that Kxz is the
identity element for its group of cosets, the distributivity of coset composition
over arbitrary unions, (7), the isomorphism property of ϕ−1

xz , the fact that ϕxz

and ϕ−1
xz are inverses of one another (by semi-frame condition (ii)), and the

definition of D1 in (5).
Recall that Cxyz is a coset of Hxy

◦Hxz. The latter is the identity element
of the quotient group Gx/(Hxy ◦Hxz), and also the image of Kxz ◦Kyz under
the inverse isomorphism ϕ−1

xz . Consequently,

Cxyz ◦ϕ−1
xz [Kxz ◦Hzw,γ ] = Cxyz ◦Hxy ◦Hxz ◦ϕ−1

xz [Kxz ◦Hzw,γ ]

= Cxyz ◦ϕ−1
xz [Kxz ◦Kyz] ◦ϕ−1

xz [Kxz ◦Hzw,γ ]

= Cxyz ◦ϕ−1
xz [Kxz ◦Kyz ◦Kxz ◦Hzw,γ ]

= Cxyz ◦ϕ−1
xz [Kxz ◦Kyz ◦Hzw,γ ]

= Cxyz ◦ϕ−1
xz [Kxz ◦Kyz ◦Kyz ◦Hzw,γ ]

= ϕ−1
xy [ϕ−1

yz [Kxz ◦Kyz ◦Kyz ◦Hzw,γ ]] ◦Cxyz

= ϕ−1
xy [ϕ−1

yz [Kxz ◦Kyz] ◦ϕ−1
yz [Kyz ◦Hzw,γ ]] ◦Cxyz

= ϕ−1
xy [Kxy ◦Hyz ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦Cxyz .

The sixth equality uses Lemma 3.6(iii) (with Kxz ◦Kyz ◦Kyz ◦Hzw,γ in place
of Q), the seventh the isomorphism property of ϕ−1

yz , and the eighth the fact
that ϕyz maps Kxy

◦Hyz to Kxz
◦Kyz .
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Combine the last two strings of equalities with the isomorphism proper-
ties of ϕ−1

xy , and the fact that Kxy
◦Hyz is the identity element of the quotient

group Gy/(Kxy ◦Hyz), to arrive at
⋃{ϕ−1

xz [Kxz,ξ ◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}
= ϕ−1

xy [Kxy,α ◦Hyz,β ] ◦Cxyz ◦ϕ−1
xz [Kxz ◦Hzw,γ ] ◦Cxzw

= ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦ϕ−1

xy [Kxy ◦Hyz ◦ϕ−1
yz [Kyz ◦Hzw,γ ]] ◦Cxyz ◦Cxzw

= ϕ−1
xy [Kxy,α ◦Hyz,β ◦Kxy ◦Hyz ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦Cxyz ◦Cxzw

= ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦Cxyz ◦Cxzw .

Conclusion: (6) may be rewritten as the inclusion
⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1

xy [Kxy,α ◦Hyz,β ◦ϕ−1
yz [Kyz ◦Hzw,γ ]] ◦Cxyz ◦Cxzw}, (8)

so (1) and (8) are equal.
The next task is to work out an analogous expression for

Rxy,α ⊗ (Ryz,β ⊗ Rzw,γ) (9)

in an analogous fashion. Write

D2 = ϕ−1
yz [Kyz,β

◦Hzw,γ ] ◦Cyzw . (10)

The definition of ⊗ and (10) imply that

Ryz,β ⊗ Rzw,γ =
⋃{Ryw,ξ : Hyw,ξ ⊆ D2}. (11)

Form the ⊗ product, on both sides of this equation on the left with Rxy,α, and
use the distributivity of ⊗ over arbitrary unions, to see that (9) is equal to

⋃{Rxy,α ⊗ Ryw,ξ : Hyw,ξ ⊆ D2}. (12)

Since

Rxy,α ⊗ Ryw,ξ =
⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1

xy [Kxy,α ◦Hyw,ξ] ◦Cxyw},

by the definition of ⊗ , it follows that (12), and hence also (9), is equal to
⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1

xy [Kxy,α ◦Hyw,ξ] ◦Cxyw for some Hyw,ξ ⊆ D2}.

This union can be rewritten as
⋃{

Rxw,ρ : Hxw,ρ ⊆ ⋃{ϕ−1
xy [Kxy,α ◦Hyw,ξ] ◦Cxyw : Hyw,ξ ⊆ D2}

}
,

and therefore also as
⋃{Rxw,ρ : Hxw,ρ ⊆ ϕ−1

xy [Kxy,α ◦D2] ◦Cxyw}. (13)

(This last step uses the distributivity of coset compositions and of inverse
function images over arbitrary unions.) Use the identity element property for
Kyz with respect to its cosets, the isomorphism properties of ϕ−1

yz on cosets
and unions of cosets of Kyz, and the definition of Kyz,β to write

ϕ−1
yz [Kyz,β

◦Hzw,γ ] = ϕ−1
yz [Kyz,β

◦Kyz
◦Hzw,γ ]

= ϕ−1
yz [Kyz,β ] ◦ϕ−1

yz [Kyz
◦Hzw,γ ]

= Hyz,β ◦ϕ−1
yz [Kyz ◦Hzw,γ ]. (14)
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It follows that

ϕ−1
xy [Kxy,α ◦D2] ◦Cxyw

= ϕ−1
xy [Kxy,α

◦ϕ−1
yz [Kyz,β

◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1
xy [Kxy,α

◦Kxy
◦Hyz,β

◦ϕ−1
yz [Kyz

◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ] ◦Kxy ◦Cyzw] ◦Cxyw

= ϕ−1
xy [Kxy,α

◦Hyz,β
◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw,

by (10), (14), the identity element properties of Kxy with respect to its cosets,
the fact that Kxy is a normal subgroup of Gy and therefore commutes with
the other sets, and the isomorphism properties of ϕ−1

xy . In this regard, observe
that the complex product Kxy ◦Cyzw is a union of cosets of Kxy (this was the
point of introducing Kxy into the fourth expression), and of course so is

Kxy,α
◦Hyz,β

◦ϕ−1
yz [Kyz

◦Hzw,γ ]

(since the coset Kxy,α is present in the complex product), so the isomorphism
property of ϕ−1

xy for unions of cosets of Kxy really is applicable.
This last string of equalities shows that (13) may be rewritten in the form

⋃{Rxw,ρ : Hxw,ρ

⊆ ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦ϕ−1
xy [Kxy ◦Cyzw] ◦Cxyw}, (15)

so (9) is equal to (15).
It has been shown that (1) is equal to (8), and (9) to (15). It follows that

(1) and (9) will be equal, that is to say, condition (i) of the theorem will hold,
just in case (8) and (15) are equal. According to Lemma 3.3, the unions (8)
and (15) are equal just in case the corresponding cosets

ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦Cxyz ◦Cxzw

and

ϕ−1
xy [Kxy,α

◦Hyz,β
◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw

are equal. Apply the cancellation law for Gx/(Hxy ◦Hxz ◦Hxw) to conclude
that these two cosets are equal if and only if

Cxyz ◦Cxzw = ϕ−1
xy [Kxy ◦Cyzw] ◦Cxyw . (16)

To justify this application of the cancellation law, it must be shown that
the relevant factors, namely

ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ]], (17)

Cxyz
◦Cxzw, (18)

and

ϕ−1
xy [Kxy

◦Cyzw] ◦Cxyw, (19)

really are all cosets in Gx of the normal subgroup

Hxy ◦Hxz ◦Hxw . (20)
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Begin with (17). Observe that Kyz ◦Hzw,γ is a coset of Kyz ◦Hzw, so its inverse
image under ϕyz is a coset of Hyz

◦Hyw . The product Kxy,α
◦Hyz,β is a coset

of Kxy ◦Hyz, so the product

Kxy,α ◦Hyz,β ◦ϕ−1
yz [Kyz ◦Hzw,γ ] (21)

is a coset of the group Kxy
◦Hyz

◦Hyz
◦Hyw, which coincides with the group

Kxy ◦Hyz ◦Hyw . (22)

Applying ϕ−1
xy to (21) gives (17). Applying it to (22) gives

ϕ−1
xy [Kxy ◦Hyz ◦Hyw].

Since

ϕ−1
xy [Kxy ◦Hyz ◦Hyw] = ϕ−1

xy [Kxy ◦Kxy ◦Hyz ◦Hyw]

= ϕ−1
xy [Kxy ◦Hyz ◦Kxy ◦Hyw]

= ϕ−1
xy [Kxy

◦Hyz] ◦ϕ−1
xy [Kxy

◦Hyw]

= (Hxy ◦Hxz) ◦ (Hxy ◦Hxw)
= Hxy

◦Hxy
◦Hxz

◦Hxw

= Hxy ◦Hxz ◦Hxw,

and since (21) is a coset of (22), it may be concluded that (17) is a coset of
(20), as claimed.

Turn now to (18). By assumption, Cxyz is a coset of the subgroup
Hxy ◦Hxz, and Cxzw is a coset of the subgroup Hxy ◦Hxw, so the product
coset (18) is a coset of the product subgroup, which is (20).

Consider, finally, (19). By assumption, Cyzw is a coset of Hyz ◦Hyw, so
the product Kxy ◦Cyzw is a coset of Kxy ◦Hyz ◦Hyw . It follows that the inverse
image

ϕ−1
xy [Kxy ◦Cyzw] (23)

is a coset of the inverse image ϕ−1
xy [Kxy ◦Hyz ◦Hyw]. It was shown above that

this inverse image coincides with (20), so (23) is a coset of (20). The set Cxwy

is a coset of Hxw
◦Hxy, by assumption, so the product of Cxwy with (23) is a

coset of the product of Hxw ◦Hxy with (20). This last product reduces to (20),
so (19) is a coset of (20).

We carry out one final transformation of (16). Semi-frame condition (ii)
says that ϕyx is the inverse of ϕxy, and consequently Kxy coincides with the
subgroup Hyx, by Convention 2.6. Also, the subgroup Hyx is normal. Conse-
quently, Equation (16) may be rewritten in the form

Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw,

which is just the equation in condition (iii).
It has been demonstrated that condition (i) holds for the fixed α, β, and

γ just in case the equation in condition (iii) holds. Since the formulation of (iii)
does not involve any of the three given indices, it follows that (iii) implies (i)
for each such triple of indices, and therefore (iii) implies (ii). The implication
from (ii) to (i) is obvious.
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The associative law holds in C[F ] just in case it holds for all atoms.
Consider a triple of atoms

Rxy,α, Rwz,β , Ruv,γ .

If y = w and z = u, then the law holds for the triple of atoms just in case

Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw,

by the equivalence of conditions (ii) and (iii) in the first part of the theorem.
If y �= w or if z �= u, then the associative law holds automatically for this

triple, since both sides reduce to the empty relation. Indeed, if y �= w, then

Rxy,α ⊗ Rwz,β = ∅,

by the definition of ⊗ , and consequently

(Rxy,α ⊗ Rwz,β) ⊗ Ruv,γ = ∅, (24)

again, by the definition of ⊗ . If also z �= u, then a similar argument shows
that

Rxy,α ⊗ (Rwz,β ⊗ Ruv,γ) = ∅. (25)

In this case, associativity holds by (24) and (25).
If z = u, then the argument is slightly more involved. In this case,

Rwz,β ⊗ Ruv,γ =
⋃{Rwv,ξ : Hwv,ξ ⊆ ϕ−1

wz [Kwz,β
◦Huv,γ ] ◦Cwzv}, (26)

by the definition of ⊗ , and therefore

Rxy,α ⊗ (Rwz,β ⊗ Ruv,γ)
=

⋃{Rxy,α ⊗ Rwv,ξ : Hwv,ξ ⊆ ϕ−1
wz [Kwz,β

◦Huv,γ ] ◦Cwzv},

by (26) and the distributivity of the operation ⊗ over arbitrary unions. Each
of the relations Rxy,α ⊗ Rwv,ξ in this union is empty, by the definition of ⊗ ,
since we have assumed that y �= w. It follows that (25) holds in this case as
well. Compare (25) with (24) to arrive at the desired conclusion for the case
y �= w. The case z �= u is treated in an analogous fashion. �

The next corollary says that semi-frame condition (iv) is necessary for
C[F ] to be a relation algebra.

Corollary 3.9 (Semi-frame Corollary). Assume that F is a pre-semi-frame. If
either the Second Involution Law or the Associative Law holds in the algebra
C[F ], then F is a semi-frame.

Proof. Assume that the Second Involution Law holds in C[F ]. Semi-frame con-
dition (iv) was used only once in the proof of Theorem 3.7, when Lemma 3.6(ii)
was applied to justify the third equality in (13). Omitting that step, the proof
shows that Theorem 3.7(i) holds just in case the cosets in (16) and the modified
(17) of that proof are equal, that is to say, just in case

C−1
xyz

◦ϕ−1
xy [Q] = ϕ−1

xz [ϕyz[Q]] ◦ϕzx[Czyx], (1)

where Q is H−1
yz,β

◦K−1
xy,α. From the assumption that the Second Involution

Law holds, it follows that (1) holds for all α, β, that is to say, for all cosets Q
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of Hyz ◦Kxy. Take Q = Hyz ◦Kxy and use semi-frame condition (iii) to obtain
ϕ−1

xy [Q] = ϕ−1
xz [ϕyz[Q]]. Substitute the left side of this equality for the right

side in (1), and use the cancellation law for groups (and the fact that for this
choice of Q, the inverse image ϕ−1

xy (Q) is a normal subgroup of Gx, and hence
commutes with ϕzx(Czyx)) to reduce (1) to

C−1
xyz = ϕzx[Czyx]. (2)

Substitute the left side of (2) for the right side in Equation (1), and then
multiply both sides of the resulting equation by Cxyz on the right to arrive
at Lemma 3.6(ii), which is equivalent to Lemma 3.6(i). Thus, Lemma 3.6(i)
holds for all triples (x, y, z) in E3, which is just what semi-frame condition (iv)
expresses.

Assume now that the Associative Law holds in C[F ]. The derivation of
semi-frame condition (iv) is similar to the preceding one. Semi-frame condition
(iv) was used only once in the proof of Theorem 3.8, when Lemma 3.6(iii) was
applied to justify the sixth equality in the transformation of the expression
Cxyz ◦ϕ−1

xz [Kxz ◦Hzw,γ ]. If we use the “half-transformed” expression that we
get without using Lemma 3.6(iii), in place of the one in step (8) of that proof,
we get the term

ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦Cxyz ◦ϕ−1

xz [Kxz ◦Kyz ◦Hzw,γ ] ◦Cxzw . (3)

Theorem 3.8(i) is equivalent to the equality of (3) and the term in (15) of that
proof, that is to say, to the term

ϕ−1
xy [Kxy,α ◦Hyz,β ◦ϕ−1

yz [Kyz ◦Hzw,γ ]] ◦ϕ−1
xy [Kxy ◦Cyzw] ◦Cxyw . (4)

Multiply the two terms on the left by ϕxy[Kxy,α
◦Hyz,β ], use isomorphism

property of ϕ−1
xy , and write Q in place of Kyz ◦Hzw,γ to get that Theorem 3.8(i)

is equivalent to the equation

Cxyz ◦ϕ−1
xz [Kxz ◦Q] ◦Cxzw = ϕ−1

xy [ϕ−1
yz [Q]] ◦ϕ−1

xy [Kxy ◦Cyzw] ◦Cxyw . (5)

The assumption that the associative law holds implies that (5) holds for all
cosets Q of Kyz ◦Hzw. In particular, it holds for Kyz ◦Hzw, from which it
follows that

Cxyz
◦Cxzw = ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw . (6)

Substitute the left side of (6) for the right side in its occurrence on the right
side of (5), and then cancel the occurrence of Cxzw on the right of both sides
of the resulting equation, to get Lemma 3.6(iii). The desired conclusion now
follows just as in the previous paragraph. �

Coset relation algebras are generalizations of group relation algebras,
since each group relation algebra may be viewed as a coset relation algebra.
In more detail, let F = (G,ϕ) be a group frame, and put F̄ = (G,ϕ,C) where
Cxyz = Hxy ◦Hxz for each triple (x, y, z) in E3. It is easy to see that the algebras
G[F ] and C[F̄ ] are equal. In Section 5, it will be shown the class of coset relation
algebras is a proper extension of the class of group relation algebras: there exist
coset relation algebras that are not group relation algebras.



Vol. 79 (2018) Coset relation algebras Page 25 of 53 28

We conclude the present section with two lemmas that concern the rela-
tionship between these two constructions. The first lemma characterizes when
the operation ⊗ gives the same result as relational composition.

Lemma 3.10. Let F be a semi-frame . The following conditions are equivalent
for all triples (x, y, z) in E3 .

(i) Rxy,α ⊗ Ryz,β = Rxy,α |Ryz,β for some α < κxy and some β < κyz .
(ii) Rxy,α ⊗ Ryz,β = Rxy,α |Ryz,β for all α < κxy and all β < κyz .
(iii) Cxyz = Hxy

◦Hxz .

Proof. Assume first that condition (iii) holds, with the goal of establishing (ii).
Clearly,

ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz = ϕ−1
xy [Kxy,α

◦Hyz,β ], (1)

because Hxy ◦Hxz is the identity element in its group of cosets. For the same
reason, the inner automorphism τ of Gx/(Hxy ◦Hxz) determined by the coset
Cxyz is the identity automorphism. Semi-frame condition (iv) therefore reduces
to

ϕ̂xy | ϕ̂yz = τ | ϕ̂xz = ϕ̂xz . (2)

Use (2) and the implication from (iv) to (iii) in the Composition Theorem to
obtain

Rxy,α |Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α ◦Hyz,β ]} (3)

for all α < κxy and β < κyz . (The first hypothesis in condition (iv) is satisfied
because of semi-frame condition (iii).) Use Definition 3.1 to get

Rxy,α ⊗ Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz} (4)

for all α < κxy and all β < κyz . Combine (3), (4), and (1) to arrive at (ii).
The implication from (ii) to (i) is obvious. To establish the implication

from (i) to (iii), let α < κxy and β < κyz be fixed indices such that (i) holds.
Since the universe A of the algebra C[F ] is closed under the operation ⊗ , the
composition Rxy,α | Ryz,β must belong to A. Apply Corollary 2.9 to see that
this composition must belong to A for every choice of α < κxy and β < κyz.
Invoke the Composition Theorem to obtain (3). Use Definition 3.1 to get (4).
Combine (3) and (4) with the assumption in (i) to arrive at

⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α ◦Hyz,β ]}

=
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz} (5)

for the α and β chosen so that (i) holds. Apply Lemma 3.3 to (5) to ob-
tain (1). (To check that Lemma 3.3 really is applicable, observe that the
inverse image ϕ−1

xy [Kxy,α ◦Hyz,β ] of the coset Kxy,α ◦Hyz,β of Kxy ◦Hyz is
a coset of Hxy

◦Hxz, because ϕ̂xy maps Gx/(Hxy
◦Hxz) isomorphically to

Gy/(Kxy ◦Hyz). Also, Cxyz is a coset of Hxy ◦Hxz, by assumption. Conse-
quently, the composition

ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz
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is a coset of Hxy ◦Hxz.) The only element of a (quotient) group that leaves an-
other element of the group unchanged under group composition is the identity
element, by the cancellation law for groups. Consequently, it follows from (1)
that Cxyz must coincide with the identity element Hxy ◦Hxz of the quotient
group. �

In general, the composition Rxy,α |Ryz,β does not belong to the algebra
C[F ]. Fortunately, it is possible to characterize when it does belong.

Lemma 3.11. Let F be a semi-frame . The following conditions are equivalent
for all triples (x, y, z) in E3 .

(i) Rxy,α |Ryz,β is in C[F ] for some α < κxy and some β < κyz .
(ii) Rxy,α |Ryz,β is in C[F ] for all α < κxy and all β < κyz .
(iii) Cxyz is in the center of the group Gx/(Hxy ◦Hxz).

Proof. The equivalence of (i) and (ii) is proved in Corollary 2.9. To estab-
lish the implication from (iii) to (ii), assume that Cxyz is in the center of
Gx/(Hxy ◦Hxz). The inner automorphism τ determined by Cxyz is then the
identity automorphism, so semi-frame condition (iv) for the given triple (x, y, z)
reduces to

ϕ̂xy | ϕ̂yz = ϕ̂xz . (1)

Keeping in mind semi-frame condition (iii), we see that the conditions in part
(iv) of the Composition Theorem are satisfied for the triple (x, y, z). By the
implication from (iv) to (ii) in that theorem, the composition Rxy,α | Ryz,β

must be in the universe A of the algebra C[F ] for all α and β.
To establish the implication from (ii) to (iii), assume that Rxy,α |Ryz,β is

in A for all α and β. It follows from the Composition Theorem that (1) holds.
By assumption, F is a semi-frame, so

ϕ̂xy | ϕ̂yz = τ | ϕ̂xz, (2)

with τ denoting τxyz. Comparing (1) and (2), it is clear that

ϕ̂xz = τ | ϕ̂xz .

Form the relational composition of each side of this equation with ϕ̂−1
xz on

the right to see that τ is the identity automorphism of the quotient group
Gx/(Hxy ◦Hxz). This can only happen if Cxyz is in the center of the quotient
group, because τ is the inner automorphism determined by Cxyz . �

4. Coset semi-frames

In the preceding section, necessary and sufficient conditions are given for the
algebra C[F ] constructed from a coset semi-frame F to satisfy the identity law,
the second involution law, the cycle law, and the associative law, and hence to
be a relation algebra. We single out the coset semi-frames that satisfy these
conditions.
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Definition 4.1. A coset semi-frame

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E 〉 , 〈Cxyz : (x, y, z) ∈ E3〉)
is said to satisfy the coset conditions if the following equations hold for all
pairs (x, y) in E , all triples (x, y, z) in E3, and all quadruples (x, y, z, w) in E4

respectively.

(i) Cxyy = Hxy .
(ii) ϕxz[Cxyz] = C−1

zyx .
(iii) ϕxy[Cxyz] = C−1

yxz .
(iv) Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw .

These are called the coset conditions for the identity law, the second involution
law, the cycle law, and the associative law respectively.

The results in the previous section lead to the following theorem, which
is one of the main results of this paper.

Theorem 4.2 (Coset Semi-frame Theorem). If a coset semi-frame F satisfies
the coset conditions, then the algebra C[F ] constructed from F is a complete
and atomic measurable relation algebra with base set and unit

U =
⋃{Gx : x ∈ I} and E =

⋃{Gx × Gy : (x, y) ∈ E}
respectively . The atoms in this algebra are the relations of the form Rxy,α for
pairs (x, y) in E , and the subidentity atoms are the relations of the form Rxx,0

for elements x in I . The measure of Rxx,0 is just the cardinality of the group
Gx .

Proof. The algebra C[F ] is a complete and atomic Boolean algebra of bi-
nary relations containing the identity relation idU , and closed under the set-
theoretic operation of converse and under the operation ⊗ , by the definition
of a semi-frame, the assumption that F is a semi-frame, and Boolean Algebra
Theorem 2.3, Identity Theorem 2.4, Converse Theorem 2.5, and the definition
of ⊗ . The Boolean axioms (R1)–(R3), the first involution law (R6), and the
two distributive laws (R8) and (R9) are valid in C[F ], by Theorem 2.3 and
the remarks following Definition 3.2. The associative law (R4), the identity
law (R5), the second involution law (R7), and the cycle law (R11) are also
valid in C[F ], by Associative Law Theorem 3.8, Identity Law Theorem 3.4,
Second Involution Law Theorem 3.7, and Cycle Law Theorem 3.5 respectively,
because F is assumed to satisfy the coset conditions. Consequently, C[F ] is a
complete and atomic relation algebra in which the universe consists of binary
relations, and all operations except the one for relative multiplication, coincide
with the standard set-theoretic operations of set relation algebras.

The atoms of the algebra C[F ] are the relations of the form Rxy,α, and
the subidentity atoms are the relations of the form Rxx,0, by Lemma 2.2,
Theorem 2.3, and the construction of C[F ]. The identity relation idU is the
disjoint union of the subidentity atoms Rxx,0, by Theorem 2.4 and semi-frame
condition (i).



28 Page 28 of 53 H. Andréka, S. Givant Algebra Univers.

To prove that each subidentity atom Rxx,0 is measurable, with measure
the cardinality of the group Gx, it must be shown that the square

Rxx,0 ⊗ E ⊗ Rxx,0 (1)

is a union of κxx non-zero functional atoms. The unit E may be written in the
form

E =
⋃{Gy × Gz : (y, z) ∈ E} =

⋃{Ryz,α : (y, z) ∈ E and α < κyz}, (2)

by Lemma 2.2 and Theorem 2.3. Consequently,

Rxx,0 ⊗ E ⊗ Rxx,0 = Rxx,0 ⊗ (
⋃{Ryz,α : (y, z) ∈ E and α < κyz}) ⊗ Rxx,0

=
⋃{Rxx,0 ⊗ Ryz,α ⊗ Rxx,0 : (y, z) ∈ E and α < κyz},

(3)

by (2) and the distributivity of ⊗ over arbitrary unions. If x �= y or x �= z,
then

Rxx,0 ⊗ Ryz,α ⊗ Rxx,0 = ∅, (4)

by the definition of the operation ⊗ . On the other hand, if x = y and x = z,
then

Rxx,0 ⊗ Ryz,α ⊗ Rxx,0 = Rxx,0 ⊗ Rxx,α ⊗ Rxx,0

= Rxx,0 |Rxx,α |Rxx,0 = Rxx,α . (5)

The first equality uses the assumptions on y and z. The second equality uses
the assumption that F satisfies the coset condition for the identity law, to-
gether with Lemma 3.10 and Theorem 3.4, which ensures that condition (iii)
of Lemma 3.10, namely

Cxyz = Cxxx = Hxx = Hxx ◦Hxx = Hxy ◦Hxz, (6)

is satisfied. The third equality uses the fact that Rxx,0 = idGx
, and Rxx,α is a

subset of Gx × Gx. Combine (3)–(5), and use Lemma 2.2, to arrive at

Rxx,0 ⊗ E ⊗ Rxx,0 =
⋃{Rxx,α : α < κxx} = Gx × Gx . (7)

Since Hxx = Kxx = {ex}, the sets Hxx,γ = Kxx,γ have the form {gγ},
and therefore the relations Rxx,α (for α < κxx) have the form

Rxx,α =
⋃

γ{Hxx,γ × (Kxx,γ ◦Kxx,α)}
=

⋃
γ{{gγ} × {gγ

◦gα}} = {(gγ , gγ
◦gα) : γ < κxx}, (8)

which is a function, and in fact a bijection.
It follows from (7) and (8) that the square (1) is the disjoint union of κxx

functions. Consequently, Rxx,0 is a measurable atom of measure κxx. Combine
this with the observations of the previous paragraph to conclude that the
relation algebra C[F ] is measurable. �

The theorem justifies the following definition.
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Definition 4.3. Suppose that F is a coset semi-frame that satisfies the coset
conditions. The relation algebra C[F ] constructed from F in Coset Semi-frame
Theorem 4.2 is called the (full) coset relation algebra on F . A general coset
relation algebra is defined to be an algebra that is embeddable into a full coset
relation algebra.

The task of verifying that a given group triple satisfies the semi-frame
conditions and the coset conditions, and therefore yields a full coset relation
algebra, that is to say, it yields an example of a measurable relation algebra,
can be quite complicated and tedious. Fortunately, some simplifications are
possible. To describe them, it is helpful to assume that the group index set I is
linearly ordered, say by a relation < . Roughly speaking, under the assumption
of condition (i), condition (ii) holds in general just in case it holds for each
pair (x, y) in E with x < y, and similarly for the other semi-frame conditions.
Similar simplifications are possible for most of the remaining semi-frame and
coset conditions. Actually, it is possible to replace coset conditions (i)–(iii)
with four simpler conditions that do not simultaneously involve the formation
of a coset inverse and the application of a quotient isomorphism.

We begin with two lemmas. The first formulates some conditions that
are equivalent to coset condition (ii) for the second involution law and coset
condition (iii) for the cycle law.

Lemma 4.4. Let F be a semi-frame, and (u, v, w) a triple in E3 . Consider the
following conditions on the coset system of F .

(i) C−1
xyz = Cxzy for all permutations (x, y, z) of (u, v, w).

(ii) ϕxz[Cxyz] = C−1
zyx for all permutations (x, y, z) of (u, v, w).

(iii) ϕxz[Cxyz] = Czxy for all permutations (x, y, z) of (u, v, w).
(iv) ϕxy[Cxyz] = C−1

yxz for all permutations (x, y, z) of (u, v, w).
(v) ϕxy[Cxyz] = Cyzx for all permutations (x, y, z) of (u, v, w).

Conditions (iii) and (v) are equivalent . Any two of conditions (i)–(iv), and
also any two of conditions (i), (ii), (iv) and (v), imply all of the other condi-
tions .

Proof. First, observe that

ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz] (1)

holds by semi-frame condition (iv), since

τxyz(Cxyz) = C−1
xyz

◦Cxyz ◦Cxyz = Cxyz .

Apply ϕzy to both sides of (1), and use the fact that ϕzy is the inverse of ϕyz,
by semi-frame condition (ii), to obtain

ϕzy[ϕxz[Cxyz]] = ϕxy[Cxyz]. (2)

The equivalence of (iii) and (v) is now easy to prove. If (iii) holds, then

Cyzx = ϕzy[Czxy] = ϕzy[ϕxz[Cxyz]] = ϕxy[Cxyz],
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by (iii) (with z, x, and y in place of x, y, and z respectively), another appli-
cation of (iii), and (2). On the other hand, if (v) holds, then

Czxy = ϕyz[Cyzx] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz],

by (v) (with y, z, and x in place of x, y, and z respectively), another application
of (v), and (1).

The next step is to show that conditions (i) and (ii) imply all of the
remaining conditions. The derivation of (iii) and (iv) from (i) and (ii) is easy.
For (iii), use (ii) and (i) (with x and z interchanged):

ϕxz[Cxyz] = C−1
zyx = Czxy .

For (iv), first use (i), (ii) (with y and z interchanged), and (i) (with y, z, and
x in place of x, y, and z respectively) to get

ϕxy[C−1
xyz] = ϕxy[Cxzy] = C−1

yzx = Cyxz .

Form the coset inverses of the first and last terms, and use the isomorphism
properties of ϕxy, to arrive at (iv). It has already been shown that (v) follows
from (iii), so conditions (i) and (ii) do imply all of the remaining conditions.

To show that conditions (i) and (iii) imply all of the remaining conditions,
it suffices to derive (ii), by the observations of the preceding paragraph. Use
(iii) and (i) (with x and z interchanged) to obtain

ϕxz[Cxyz] = Czxy = C−1
zyx .

Similarly, to show that conditions (i) and (iv) imply all of the remaining con-
ditions, it suffices to derive (ii). First, use (i), (iv) (with y and z interchanged),
and (i) (with z, x, and y in place of x, y, and z respectively) to obtain

ϕxz[C−1
xyz] = ϕxz[Cxzy] = C−1

zxy = Czyx .

Form the coset inverses of the first and last terms, and use the isomorphism
properties of ϕxz, to arrive (ii).

To prove that (ii) and (iii) imply all of the remaining conditions, it suffices
to derive (i). Use (iii) and (ii) to get

Czxy = ϕxz[Cxyz] = C−1
zyx .

Interchange x and z to arrive at (i). Similarly, to prove that (ii) and (iv) imply
all of the remaining conditions, it suffices to derive (i). Use (ii) (with x and
y interchanged) and the isomorphism properties of ϕxy, (iv), (1), and (ii) to
obtain

Czxy = ϕyz[C−1
yxz] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz] = C−1

zyx .

Again, interchange x and z to arrive at (i).
Finally, to show that (iii) and (iv) imply the remaining conditions, it

suffices to derive (i). Use (iii) (with x and y interchanged) and the isomorphism
properties of ϕyz, (iv), (1), and (iii) to obtain

C−1
zyx = ϕyz[C−1

yxz] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz] = Czxy .

As before, interchange x and z to arrive at (i). �
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The second lemma facilitates the verification of the second and third coset
conditions in cases when some of the indices coincide.

Lemma 4.5. Let F be a semi-frame . If Cxyz = Hxy ◦Hxz for every permutation
(x, y, z) of a given triple in E3, then

C−1
xyz = Cxzy and ϕxy[Cxyz] = Cyzx

for every permutation of the given triple.

Proof. Assume that

Cxyz = Hxy
◦Hxz (1)

for all permutations (x, y, z) of a given triple in E3. Obviously,

C−1
xyz = (Hxy

◦Hxz)−1 = H−1
xz

◦H−1
xy = Hxz

◦Hxy = Cxzy

for all such permutations, by (1), the second involution law for cosets, the fact
that Hxz and Hxy are subgroups of Gx and hence closed under inverses, and
(1) (with y and z interchanged). Thus, the first equation in the conclusion
holds.

Semi-frame conditions (ii) and (iii), together with Convention 2.6 and
the fact that Hyx ◦Hyz is a subgroup of Gy, imply that

ϕxy[Hxy ◦Hxz] = Kxy ◦Hyz = Hyx ◦Hyz = (Hyx ◦Hyz)−1 . (2)

Consequently,

ϕxy[Cxyz] = ϕxy[Hxy ◦Hxz] = (Hyx ◦Hyz)−1 = C−1
yxz = Cyzx,

by (1), (2), (1) (with x and y interchanged), and the first conclusion of the
lemma (with x and y interchanged). Thus, the second equation in the conclu-
sion holds. �

The next theorem formulates a set of simplified semi-frame and coset
conditions.

Theorem 4.6. A group triple F is a coset semi-frame that satisfies the first
three coset conditions if and only if the following eight conditions are satisfied .

(i) ϕxx is the identity automorphism of Gx/{ex} for every x in I .
(ii) ϕyx = ϕ−1

xy for every pair (x, y) in E with x < y .
(iii) ϕxy[Hxy ◦Hxz] = Kxy ◦Hyz and ϕyz[Kxy ◦Hyz] = Kxz ◦Kyz for every

triple (x, y, z) in E3 with x < y < z .
(iv) ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz for every triple (x, y, z) in E3 with x < y < z .
(v) Cxxy = Cxyx = Cxyy = Hxy for all pairs (x, y) in E .
(vi) C−1

xyz = Cxzy for all triples (x, y, z) in E3 with x, y, z mutually distinct .
(vii) ϕxy[Cxyz] = Cyzx for all triples (x, y, z) in E3 with x < y < z .
(viii) ϕxz[Cxyz] = Czxy for all triples (x, y, z) in E3 with x < y < z .
If F is a group triple that satisfies conditions (i)–(viii), then F satisfies the
fourth coset condition if and only if
(ix) Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw for all quadruples (x, y, z, w) in E4

with x < y < z < w.
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Proof. Suppose that a group triple F satisfies conditions (i)–(viii) of the the-
orem. The proof that semi-frame conditions (i)–(iii) must hold is easy, and is
in fact exactly the same as in the case of the corresponding simplification of
the group frame conditions for group pairs (see Theorem 4.4 and its proof in
[4]). The details are therefore omitted. Turn to the verification of semi-frame
condition (iv).

Consider a triple (x, y, z) in E3, and assume first that not all of the indices
are distinct, say x = y. The mapping ϕxy is the identity automorphism of
Gx/{ex}, by condition (i), so that

Hxy = Hxx = {ex} = Kxx = Kxy, Hxz = Hyz, Kxz = Kyz,

and therefore

Hxy
◦Hxz = Hxz, Kxy

◦Hyz = Hyz = Hxz, Kxz
◦Kyz = Kyz

◦Kyz = Kyz .

It follows that the isomorphism ϕ̂xy induced by ϕxy on Gx/(Hxy ◦Hxz) co-
incides with the identity automorphism of Gx/Hxz, the isomorphism ϕ̂yz on
Gy/(Kxy ◦Hyz) coincides with ϕyz, and the isomorphism ϕ̂xz induced by ϕxz

on Gx/(Hxy ◦Hxz) coincides with ϕxz. On the other hand, the coset that de-
termines the inner automorphism τxyz is the subgroup

Cxyz = Cxxz = Hxz,

by condition (v), so that τxyz must be the identity automorphism of Gx/Hxz.
Consequently,

ϕ̂xy | ϕ̂yz = ϕyz = ϕxz = τxyz | ϕ̂xz,

so semi-frame condition (iv) holds in this case. The cases when y = z and
when x = z are treated in a completely analogous fashion.

It remains to consider the case when x, y, and z are all distinct. Condition
(vi) of the theorem implies that

C−1
xyz = Cxzy, C−1

yxz = Cyzx, C−1
zxy = Czyx, (1)

from which it follows that

τ−1
xyz = τxzy, τ−1

yzx = τyxz, τ−1
zxy = τzyx . (2)

For example, for every coset D in Gy/(Hyz
◦Hyx), we have

τyxz(τyzx(D)) = τyxz(C−1
yzx

◦D ◦Cyzx) = C−1
yxz

◦ (C−1
yzx

◦D ◦Cyzx) ◦Cyxz

= Cyzx
◦C−1

yzx
◦D ◦Cyzx

◦C−1
yzx = D,

by the definition of τyzx, the definition of τyxz, the second equation in (1), and
the laws of group theory. This argument shows that the composition of τyzx

and τyxz is the identity function on its domain. The same is also true of the
reverse composition, so these two inner automorphisms are the inverses of one
another.

The next step is to check that

τxyz | ϕ̂xy = ϕ̂xy |τyzx and τxyz | ϕ̂xz = ϕ̂xz |τzxy . (3)
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To verify the first equation, consider an arbitrary coset D in Gx/(Hxy ◦Hxz).
The definition of τxyz, the isomorphism properties of ϕxy, condition (vii) of
the theorem, and the definition of τyzx imply that

ϕxy[τxyz[D]] = ϕxy[C−1
xyz

◦D ◦Cxyz] = ϕxy[Cxyz]−1 ◦ϕxy[D] ◦ϕxy[Cxyz]

= C−1
yzx

◦ϕxy[D] ◦Cyzx = τyzx[ϕxy[D]].

An analogous argument, using condition (viii) in place of condition (vii), es-
tablishes the second equation in (3).

Consider finally the case when all of the indices x, y, and z are distinct.
Assume x < y < z, and use condition (iv) of the theorem to obtain

ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz . (4)

Compose both sides of this equation on the right with ϕ̂−1
yz , and on the left

with τ−1
xyz, to arrive at

τ−1
xyz | ϕ̂xy = ϕ̂xz | ϕ̂−1

yz .

The mapping τ−1
xyz coincides with τxzy, by (2), and ϕ̂−1

yz coincides with ϕ̂zy,
because, as has already been pointed out, semi-frame condition (ii) is valid in
F . The previous equation may therefore be rewritten in the form

ϕ̂xz | ϕ̂zy = τxzy | ϕ̂xy, (5)

which is a permuted version of (4) in which the second and third indices y and
z have been transposed. Compose both sides of (4) on the right with ϕ̂−1

xz and
on the left with ϕ̂−1

xy to obtain

ϕ̂yz | ϕ̂−1
xz = ϕ̂−1

xy |τxyz .

Observe that

ϕ̂−1
xy |τxyz = ϕ̂−1

xy |τxyz | ϕ̂xy | ϕ̂−1
xy = ϕ̂−1

xy | ϕ̂xy |τyzx | ϕ̂−1
xy = τyzx | ϕ̂−1

xy ,

by the properties of isomorphism composition and (3). It follows from these
computations and from the validity of semi-frame condition (ii) in F that

ϕ̂yz | ϕ̂zx = ϕ̂yz | ϕ̂−1
xz = ϕ̂−1

xy |τxyz = τyzx | ϕ̂−1
xy = τyzx | ϕ̂yx, (6)

which is a permuted version of (4) in which the indices have been shifted one
to the left modulo 3, so that x, y, and z have been replaced by y, z, and x
respectively. This argument shows that the two permuted versions of (4), the
first obtained by transposing the last two indices y and z of the triple (x, y, z)
to arrive at (5), and the second by shifting each of the indices x, y, and z
of the triple to the left by one modulo 3 to arrive at (6), are valid in F . All
permutations of the triple (x, y, z) may be obtained by composing these two
permutations. For example, transpose the last two indices of (4), permuting
(x, y, z) to (x, z, y), to obtain (5), and then use (6) to shift the indices of (5)
to the left by one modulo 3, permuting (x, z, y) to (z, y, x), to arrive at

ϕ̂zy | ϕ̂yx = τzyx | ϕ̂zy .

It follows that semi-frame condition (iv) is valid in F .
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The next step in the proof is the verification of the coset conditions
for the identity law, the second involution law, and the cycle law under the
assumption of conditions (i)–(viii) of the theorem. Certainly, F will satisfy the
coset condition for the identity law, since this is just the equality of the last two
cosets in condition (v) of the theorem. In order to verify the coset conditions
for the second involution law and the cycle law, which coincide with conditions
(ii) and (iv) in Lemma 4.4, it suffices to show that conditions (i) and (v) of
that lemma, namely

C−1
xyz = Cxzy (10)

and

ϕxy[Cxyz] = Cyzx, (11)

hold for all triples (x, y, z) in E3 . If two of the indices, say x and y, are equal,
then

Cxyz = Cxxz = Hxz = {ex} ◦Hxz = Hxy ◦Hxz, (12)

Cxzy = Cxzx = Hxz = Hxz ◦{ex} = Hxz ◦Hxy,
Czxy = Czxx = Hzx = Hzx

◦Hzx = Hzx
◦Hzy,

by the assumption on x and y, condition (v) (with z in place of y), condition
(i), which implies that Hxy = {ex}, and, for the second to the last equality
in the last line, the assumption that Hzx is a subgroup of Gz and therefore
closed under composition. It is clear from this argument that (12) holds for all
permutations of the indices x, y, and z. Apply Lemma 4.5 to arrive at (10).
The cases y = z and x = z are handled in a similar fashion.

As regards the verification of (11), if two of the indices, say x and y are
equal, then (12) holds for all permutations of the variables x, y, and z, and
therefore Lemma 4.5 yields (11). A similar argument applies if y = z or x = z.

Assume now that all three indices x, y, and z are distinct. If x < y < z,
then (11) holds, by condition (vii) of the theorem. To derive the permuted
version of (11) in which the indices x and y are transposed, use condition (vi),
the isomorphism properties of ϕxy, condition (vii), and condition (vi) (with y,
z, and x in place of x, y, and z respectively) to obtain

ϕxy[Cxzy] = ϕxy[C−1
xyz] = ϕxy[Cxyz]−1 = C−1

yzx = Cyxz .

Apply ϕyx to the first and last terms in this string of equalities, and use the
fact that ϕyx is the inverse of ϕxy, by semi-frame condition (ii), to arrive at

ϕyx[Cyxz] = Cxzy . (13)

To derive the permuted version of (11) in which x, y, and z are shifted one to
the right modulo 3 to obtain the equation for z, x, and y respectively,

ϕzx[Czxy] = Cxyz, (14)

apply ϕzx to both sides of condition (viii), and use semi-frame condition (ii)
(with z in place of y).
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The permutation of the triple (x, y, z) implicit in (13) that is obtained
by transposing the first two indices to obtain (y, x, z), and the permutation
of the triple implicit in (11) that is obtained by shifting each index to the
right by one modulo 3 to obtain (z, x, y), together generate all permutations
of (x, y, z), and hence all permutations of (11). For example, use (13) to shift
all the indices of (11) to the right by one modulo 3, permuting (x, y, z) to
(z, x, y) and arriving at (14), and then repeat this process on (14), permuting
(z, x, y) to (y, z, x), to arrive at

ϕyz[Cyzx] = Czxy .

From these observations, it is clear that (11) holds for all permuted versions
of a given triple of distinct elements in E3. Combine this with the arguments
following (11) to see that (11) holds for all triples in E3. Use (10), (11), and
Lemma 4.4 to conclude the coset conditions for the second involution law and
the cycle law hold in F . This completes the derivation of the coset condi-
tions for the identity law, the second involution law, and the cycle law from
conditions (i)–(viii) above.

To establish the reverse implication, assume F is a semi-frame satisfying
the coset conditions for the identity law, the second involution law, and the
cycle law. Certainly, F satisfies conditions (i)–(iv) of the theorem, because
these conditions are special cases of the semi-frame conditions. To see that F
satisfies condition (v), use the coset condition for the identity law for the pair
(y, x), which says that Cyxx = Hyx, use the definition of ϕyx, and use semi-
frame condition (ii) in the form of Convention 2.6 (with x and y interchanged),
to obtain

ϕyx[Cyxx] = ϕyx[Hyx] = Kyx = Hxy . (15)

The coset conditions for the second involution law and the cycle law are con-
ditions (ii) and (iv) of Lemma 4.4, so they imply all of the other conditions
of the lemma. In particular, they imply (v) (with y, x, and x in place of x, y,
and z respectively), so

ϕyx[Cyxx] = Cxxy . (16)

Combine (15) and (16) to arrive at

Cxxy = Hxy . (17)

Invoke Lemma 4.4 again, this time using (i) (with x and y in place of y and z
respectively), to obtain

C−1
xxy = Cxyx .

Combine this equation with (17), and use the fact that Hxy is a subgroup of
Gx and therefore closed under inverse, to arrive at

Cxyx = C−1
xxy = H−1

xy = Hxy . (18)

Together, the coset condition for the identity law, (17), and (18) imply con-
dition (v) of the theorem. To derive conditions (vi), (vii), and (viii) of the
theorem, use Lemma 4.4 again, and in fact parts (i), (v), and (iii) respectively.
This completes the proof of the first assertion of the theorem.
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To prove the second assertion of the theorem, suppose that F satisfies
conditions (i)–(viii) of the theorem. It follows from the first part of the theorem
that F must be a semi-frame that satisfies the first three coset conditions. The
key step in the argument is showing that F satisfies the coset condition for
the associative law for one quadruple of elements in E4 if and only if it satisfies
the condition for every permutation of that quadruple.

Fix a quadruple (x, y, z, w) in E4 of not necessarily distinct elements, and
suppose that

Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw . (19)

The immediate goal is to derive a permuted version of (19) in which the indices
z and w have been transposed. Form the coset inverses of both sides of (19),
and apply the second involution law for cosets, to obtain

C−1
xzw

◦C−1
xyz = C−1

xyw
◦ϕyx[Cyzw

◦Hyx]−1 . (20)

Conditions (ii) and (iv) in Lemma 4.4 hold for all triples of indices in E3,
because F satisfies the coset conditions for the second involution law and the
cycle law. Consequently, part (i) of the lemma holds for all such triples. Use it
repeatedly on different triples to obtain

C−1
xyz = Cxzy, C−1

xyw = Cxwy, C−1
xzw = Cxwz, C−1

yzw = Cywz . (21)

Expand the second term on the right side of (20) as follows:

ϕyx[Cyzw ◦Hyx]−1 = ϕyx[(Cyzw ◦Hyx)−1] = ϕyx[H−1
yx

◦C−1
yzw]

= ϕyx[Hyx
◦C−1

yzw] = ϕyx[C−1
yzw

◦Hyx] = ϕyx[Cywz
◦Hyx],

(22)

by the isomorphism properties of ϕyx, the second involution law for cosets, the
assumption that Hyz is a normal subgroup of Gx, and hence is closed under
inverses and commutes with all elements in Gx, and the final equation in (21).
Combine (22) with (20) and the first three equations in (21) to arrive at

Cxwz
◦Cxzy = C−1

xzw
◦C−1

xyz = C−1
xyw

◦ϕyx[Cyzw
◦Hyx]−1

= Cxwy ◦ϕyx[Cywz ◦Hyx]. (23)

Multiply the first and last expressions in (23) on the left by C−1
xwy and on the

right by C−1
xzy, and use the inverse law for cosets, to obtain

C−1
xwy

◦Cxwz = ϕyx[Cywz ◦Hyx] ◦C−1
xzy . (24)

In more detail, the inverse law for cosets, the assumption that Cxzy is a coset
of Hxz

◦Hxy, and the assumption that the subgroup Hxy is normal yield

C−1
xwy

◦Cxwz ◦Cxzy ◦C−1
xzy = C−1

xwy
◦Cxwz ◦Hxz ◦Hxy

= C−1
xyw

◦Hxy ◦Cxwz ◦Hxz = C−1
xyw

◦Cxwz .

The final equality is justified because Cxwz is a coset of the normal subgroup
Hxw

◦Hxz, and therefore absorbs the factor Hxz in the sense that

Cxwz
◦Hxz = Cxwz

◦ (Hxw
◦Hxz) ◦Hxz = Cxwz

◦Hxw
◦Hxz = Cxwz,
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by the identity law for groups of cosets, the assumption that Cxwz is a coset
of Hxw

◦Hxz, and the assumption that Hxz is a subgroup of Gx and there-
fore closed under composition. Similarly, the coset C−1

xwy of Hxw ◦Hxy absorbs
the factor Hxy . An analogous argument shows that the product of Cxzy with
its inverse is absorbed by the term ϕyx[Cywz

◦Hyx] on the right side of Equa-
tion (24). This completes the justification of the computation in (24). Combine
the first and second equations in (21) with (24) to conclude that

Cxyw ◦Cxwz = ϕyx[Cywz ◦Hyx] ◦Cxyz . (25)

This is just the desired permuted version of (19) in which the indices z and w
have been transposed.

The next goal is to derive a permuted version of (19) in which the indices
y and w have been transposed. Begin with an application of Lemma 3.6(iii)
(with w and y in place of y and z respectively, and with Cywz

◦Hyx in place
of Q) to obtain

Cxwy ◦ϕ−1
xy [Cywz ◦Hyz] = ϕ−1

xw[ϕ−1
wy[Cywz ◦Hyx]] ◦Cxwy . (26)

Notice in this connection that Cywz is a coset of Hyw
◦Hyz, so the product

Cywz ◦Hyx is a coset of Hyw ◦Hyz ◦Hyx, and therefore a union of cosets of
Hyw ◦Hyx . This latter group coincides with Kxy ◦Kwy, by semi-frame condi-
tion (ii) and Convention 2.6, so the hypotheses of Lemma 3.6(iii) are indeed
satisfied. Use semi-frame condition (ii) to rewrite (26) as

Cxwy
◦ϕyx[Cywz

◦Hyz] = ϕwx[ϕyw[Cywz
◦Hyx]] ◦Cxwy . (27)

The argument of ϕwx on the right side of (27) may be rewritten as

ϕyw[Cywz ◦Hyx] = ϕyw[Cywz ◦Hyw ◦Hyx]

= ϕyw[Cywz] ◦ϕyw[Hyw
◦Hyx]. (28)

The first equality uses the fact that Cywz is a coset of Hyw ◦Hyz and therefore
absorbs Hyw, and the second uses the isomorphism properties of ϕyw . The
function ϕyw maps the group Kxy ◦Hyw to the group Kxw ◦Kyw, by the second
equation in condition (iii) of the theorem (with w in place of z), which has
been shown to hold for all triples in E3. The first of these groups coincides with
Hyx ◦Hyw, and the second with Hwx ◦Hwy, by semi-frame condition (ii) and
Convention 2.6, so (using also the assumption that the subgroups involved are
normal)

ϕyw[Hyw ◦Hyx] = Hwy ◦Hwx . (29)

Also, parts (ii) and (iv) of Lemma 4.4 hold for all triples in E3, because F
satisfies the coset conditions for the second involution law and the cycle law.
Apply part (v) of the lemma (with y and w in place of x and y respectively)
to obtain

ϕyw[Cywz] = Cwzy . (30)
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Combine (28)–(30), and use the fact that the coset Cwzy of Hwz ◦Hwy absorbs
the subgroup Hwy, to arrive at

ϕyw[Cywz
◦Hyx] = ϕyw[Cywz] ◦ϕyw[Hyw

◦Hyx]

= Cwzy ◦Hwy ◦Hwx = Cwzy ◦Hwx . (31)

Replace the occurrence in (27) of the left side of (31) with the right side of
(31) to get

Cxwy ◦ϕyx[Cywz ◦Hyz] = ϕwx[Cwzy ◦Hwx] ◦Cxwy .

Combine this with (23) to conclude that

Cxwz
◦Cxzy = ϕwx[Cwzy

◦Hwx] ◦Cxwy, (32)

which is the permuted version of (19) in which the indices y and w have been
transposed.

Finally, we derive a permuted version of (19) in which the indices x and
y have been transposed. Apply ϕxy to both sides of (19) to obtain

ϕxy[Cxyz
◦Cxzw] = ϕxy[ϕyx[Cyzw

◦Hyx] ◦Cxyw]. (33)

The left side of (33) may be rewritten as

ϕxy[Cxyz
◦Cxzw] = ϕxy[Cxyz

◦Hxy
◦Cxzw] = ϕxy[Cxyz

◦Cxzw
◦Hxy]

= ϕxy[Cxyz] ◦ϕxy[Cxzw
◦Hxy] = Cyzx

◦ϕxy[Cxzw
◦Hxy].

(34)

The first equality uses the fact that the coset Cxyz of Hxy
◦Hxz absorbs the

subgroup Hxy, the second uses the assumption that Hxy is normal, the third
uses the isomorphism properties of ϕxy (which is why it is necessary to insert
a copy of Hxy to compose with Cxzw) , and the fourth uses Lemma 4.4(v).
The right side of (33) may be rewritten as

ϕxy[ϕyx[Cyzw ◦Hyx] ◦Cxyw] = ϕxy[ϕyx[Cyzw ◦Hyx]] ◦ϕxy[Cxyw]

= Cyzw ◦Hyx ◦ϕxy[Cxyw]
= Cyzw ◦Hyx ◦Cywx

= Cyzw ◦Cywx, (35)

by isomorphism properties of ϕxy, semi-frame condition (ii), Lemma 4.4(v)
(with w in place of z), and the fact that the coset Cywx absorbs the group
Hyx . Combine (33)–(35) to arrive at

Cyzw ◦Cywx = Cyzx ◦ϕxy[Cxzw ◦Hxy].

Multiply both sides of the preceding equation by C−1
yzx on the left and by C−1

ywx

on the right, and use the inverse law for groups of cosets, to obtain

C−1
yzx

◦Cyzw = ϕxy[Cxzw ◦Hxy] ◦C−1
ywx . (36)

From Lemma 4.4(i), it follows that

C−1
yzx = Cyxz and C−1

ywx = Cyxw . (37)
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Combine (36) and (37) to conclude that

Cyxz ◦Cyzw = ϕxy[Cxzw ◦Hxy] ◦Cyxw, (38)

which is the desired permuted version of (19) obtained by transposing the
indices x and y.

It has been shown that the three permuted versions of (19) obtained
by transposing the indices z and w, the indices y and w, and the indices
x and y, are all derivable from (19). These three transpositions generate all
permutations of the quadruple (x, y, z, w), so it follows that every version of
(19) in which the indices x, y, z, and w have been permuted is derivable from
(19).

The next step is to derive all instances of the coset condition for the
associative law on the basis of condition (ix) of the theorem and the assump-
tion that F is a semi-frame satisfying conditions (i)–(viii) of the theorem, or
equivalently, satisfying the first three coset conditions. Suppose that the first
two indices of an arbitrary quadruple in E4, say (x, y, z, w), are equal, with the
goal of deriving (19). This derivation does not require the use of condition (ix)
at all. Observe that

Cxyz = Cxxz = Hxz and Cxyw = Cxxw = Hxw, (39)

by the assumption on x and y, and condition (v) of the theorem. Also, ϕyx and
Hyx coincide with ϕxx and {ex} respectively, and ϕxx is the identity function
on Gx/{ex}, by condition (i) of the theorem, so

ϕyx[Cyzw ◦Hyx] = ϕxx[Cxzw ◦{ex}] = Cxzw ◦{ex} = Cxzw . (40)

Consequently,

Cxyz ◦Cxzw = Hxz ◦Cxzw = Cxzw, (41)

by the first part of (39) and the fact that the coset Cxzw absorbs the subgroup
Hxz. Therefore,

ϕyx[Cyzw ◦Hyz] ◦Cxyw = Cxzw ◦Cxyw = Cxzw ◦Hxw = Cxzw, (42)

by (40), the second part of (39), and the fact that the coset Cxzw absorbs the
subgroup Hxw. Combine (41) and (42) to arrive at (19).

Consider next the case of an arbitrary quadruple (x, y, z, w) in E4 in which
at least two of the indices are equal. Form a permutation of this quadruple in
which two of the equal indices are moved to the first and second positions of the
quadruple. The resulting quadruple satisfies the hypotheses of the preceding
paragraph, so the version of (19) that is associated with this quadruple is valid
in F , by the observations of the previous paragraph. It follows that (19) must
hold for the given quadruple (x, y, z, w), since every permuted version of a
valid instance of the coset condition for the associative law is also valid.

Turn finally to the case when the indices in a quadruple (x, y, z, w) in E4

are distinct. If x < y < z < w, then (19) holds by the assumed condition (ix).
Consequently, every permuted version of (19) also holds, so (19) is valid in F
in all cases in which the indices of the given quadruple are mutually distinct.
Combine the observations of this and the preceding paragraph to conclude that
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if condition (ix) of the theorem is true in a semi-frame F satisfying conditions
(i)–(viii), then the coset condition for the associative law holds in F . The
reverse implication is trivially true. �

The following special case of the second part of Theorem 4.6 is quite
useful in verifying the coset condition for the associative law in basic examples
of semi-frames.

Corollary 4.7. Suppose F is a semi-frame satisfying the coset conditions for
the identity law, the second involution law, and the cycle law. If

Hxy ◦Hxz ◦Hxw = Gx

for all quadruples (x, y, z, w) in E4, then F satisfies the coset conditions for
the associative law.

Proof. Consider a quadruple (x, y, z, w) in E4, with the intention of showing
that

Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw . (1)

Since Cxyz and Cxzw are cosets of Hxy ◦Hxz and Hxz ◦Hxw, the complex prod-
uct

Cxyz ◦Cxzw

is a coset of the triple product

Hxy ◦Hxz ◦Hxw,

which is Gx, by assumption. There is only one coset of the improper subgroup
Gx, namely itself, so

Cxyz ◦Cxzw = Gx . (2)

As regards the right side of (1), because Cyzw is a coset of Hyz ◦Hyw, the
product

Cyzw
◦Hyx

is a coset of the triple product

Hyz ◦Hyw ◦Hyx,

which is Gy, by assumption. Therefore,

Cyzw ◦Hyx = Gy .

Apply the mapping ϕyx to both sides of the previous equation to obtain

ϕyx[Cyzw ◦Hyx] = ϕyx[Gy] = Gx .

Multiply the first and last terms of this equation on the right by Cxyw to arrive
at

ϕyx[Cyzw ◦Hyx] ◦Cxyw = Gx ◦Cxyw = Gx . (3)

Combine (2) and (3) to see that (1) holds in this case. Apply Theorem 4.6 to
conclude that coset conditions for the associative law are valid in F . �
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There are a number of other special cases in which the verification of
the coset conditions for a given semi-frame simplify. For instance, in many of
the examples of group triples, most of cosets Cxyz in the coset shifting system
are the identity coset in the sense that they are the identity element of the
corresponding quotient group,

Cxyz = Hxy
◦Hxz .

The next corollary is perhaps the simplest example of such a special case. Call
two cosets Cxyz and Cuvw associated if (u, v, w) is a permutation of (x, y, z).

Corollary 4.8. Let F be a semi-frame, and (p, q, r) a triple in E3 with p < q < r.
If every coset not associated with Cpqr is the identity coset, then F satisfies
the four coset conditions if and only if the following conditions hold .

(i) C−1
pqr = Cprq, and C−1

qrp = Cqpr, and C−1
rpq = Crqp .

(ii) ϕpq[Cpqr] = Cqrp .
(iii) ϕpr[Cpqr] = Crpq .
(iv) Cpqr ⊆ ⋂{Hpq ◦Hpr ◦Hps : (p, s) ∈ E and s �= p, q, r}.

Proof. Assume the conditions of the corollary, with the goal of verifying the
conditions of Theorem 4.6. The assumption that F is a semi-frame implies
that conditions (i)–(iv) of Theorem 4.6 are satisfied. Also, condition (v) of the
theorem holds. To see this, consider an arbitrary pair (x, y) in E . The cosets

Cxxy, Cxyy, Cxyx,

are identity cosets, by assumption, so

Cxxy = Hxx ◦Hxy = {ex} ◦Hxy = Hxy = Hxy ◦{ex} = Hxy ◦Hxx = Cxyx

and

Cxyy = Hxy
◦Hxy = Hxy .

The second and fifth equalities use semi-frame condition (i).
To verify that condition (vi) of the theorem is equivalent to condition (i)

of the corollary (under the basic assumption of the corollary), let (x, y, z) be
a triple in E3 of pairwise distinct elements. If (x, y, z) is not associated with
(p, q, r), then

C−1
xyz = (Hxy

◦Hxz)−1 = H−1
xz

◦H−1
xy = Hxz

◦Hxy = Cxzy .

The first and last equality use the basic assumption of the corollary, the second
uses the second involution law for group complexes, and the third uses the
fact that Hxy and Hxz are subgroups, and hence closed under the operation
of forming inverses. If (x, y, z) is an associate of (p, q, r), then condition (vi) of
the theorem holds by condition (i) of the corollary, and vice versa.

The next step is to check that conditions (vii) and (viii) of the theorem are
respectively equivalent to conditions (ii) and (iii) of the corollary. Let (x, y, z)
be a triple in E3 with x < y < z. If this triple is not (p, q, r), then it cannot be
an associate of (p, q, r), because of the ordering, and therefore

ϕxy[Cxyz] = ϕxy[Hxy
◦Hxz] = Kxy

◦Hyz = Hyx
◦Hyz = Hyz

◦Hyx = Cyzx .
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The first and fifth equalities hold by the basic assumption of the corollary,
the second by semi-frame condition (iii), the third by semi-frame condition (ii)
(and semi-frame condition (i) in the case when x = y), and the fourth by the
fact that the subgroups are normal and hence commute with one another. A
completely analogous argument shows that

ϕxz[Cxyz] = Czxy .

Thus, in this case, conditions (vii) and (viii) of the theorem hold. If the triple
(x, y, z) is (p, q, r), then conditions (vii) and (viii) of the theorem are exactly
conditions (ii) and (iii) of the corollary.

The associative law coset conditions will hold for all permutations of a
quadruple (x, y, z, w) just in case

Cxyz ◦Cxzw = ϕyx[Cyzw ◦Hyx] ◦Cxyw, (1)

by Associative Law Theorem 3.8. By assumption,

Cxyw = Hxy
◦Hxw, Cxzw = Hxz

◦Hxw, Cyzw = Hyz
◦Hyw

(under the hypothesis that w is different from p, q, and r), so Equation (1)
can equivalently be rewritten as

Cxyz
◦Hxz

◦Hxw = ϕyx[Hyz
◦Hyw

◦Hyx] ◦Hxy
◦Hxw . (2)

It is a consequence of semi-frame condition (iii) that

ϕyx[Hyz
◦Hyw

◦Hyx] = Hxy
◦Hxz

◦Hxw,

so the right-hand side of (2) reduces to Hxy ◦Hxz ◦Hxw . On the other hand,

Cxyz
◦Hxz = Cxyz,

since Cxyz is a coset of Hxy
◦Hxz, so the left-hand side of (2) reduces to

Cxyz ◦Hxw . Thus, (2) is equivalent to

Cxyz
◦Hxw = Hxy

◦Hxz
◦Hxw . (3)

Finally, since Cxyz is a coset of Hxy ◦Hxz, Equation (3) will hold just in case
Cxyz is a subset of Hxy

◦Hxz
◦Hxw .

If (x, y, z) is not an associate of (p, q, r), then Cxyz is the identity coset
Hxy ◦Hxz, and so the desired inclusion is trivial. If (x, y, z) is an associate
of (p, q, r), then of course (p, q, r) is an associate of (x, y, z), and for (p, q, r),
the desired inclusion holds by condition (iv) of the corollary. This means that
condition (1) holds for (p, q, r), and hence also for the original triple (x, y, z),
since the validity of (1) for one triple implies its validity for all associates of
the triple.

The remaining parts of the proof are trivial and are left to the reader. �

The final observation we wish to make is that in a coset relation algebra
C[F ], the operation ⊗ reduces to relational composition in all those cases
in which the indices x, y, and z of the coset Cxyz used to define the relative
product Rxy,α ⊗ Ryz,β are not mutually distinct.
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Corollary 4.9. If F is a group triple satisfying conditions (i)–(viii) of Theo-
rem 4.6, then

Rxy,α ⊗ Ryz,β = Rxy,α |Ryz,β

for every triple (x, y, z) in E3 in which at least two of the indices x, y, z are
equal .

Proof. According to Lemma 3.10,

Rxy,α ⊗ Ryz,β = Rxy,α |Ryz,β

if and only if

Cxyz = Hxy ◦Hxz . (1)

The verification that (1) follows from conditions (i)–(viii) of Theorem 4.6 is
nearly identical to the argument establishing (12) in the proof of Theorem 4.6.
The details are left to the reader. �

5. Example

In this section, and example of a coset relation algebra that is not representable
is constructed. Start with a group pair

F = (G,ϕ) = (〈Gx : x ∈ I 〉, 〈ϕxy : (x, y) ∈ I × I 〉)
in which the index set I has five elements, say

I = {p, q, r, s, t}.

Each of the groups Gx is assumed to be a copy of the Cartesian product
Z2 × Z2 × Z2, where Z2 = {0, 1} denotes the cyclic group of order two, and
these copies are assumed to be mutually disjoint.

To describe the subgroups Hxy and Kxy for distinct indices x and y in I,
consider the following four subgroups of Z2 × Z2 × Z2 :

L0 = Z2 × {0} × {0}, L1 = {0} × Z2 × {0},

L2 = {0} × {0} × Z2, L3 = {(0, 0, 0), (1, 1, 1)}.

Take Hxy, respectively Kxy, to be the copy of one of these four subgroups
in Gx, respectively Gy, according to the prescriptions given in Figure 1. For
example, the subgroup Hpt is the copy of L3 in Gp and the subgroup Kpt is
the copy of L0 in Gt, because the edge between the vertices p and t in the
diagram is labeled with 3 and 0. Similarly, the subgroup Hqs is the copy of L2

in Gq and the subgroup Kqs is the copy of L1 in Gs, because the edge from q
to s is labeled with 2 and 1.

The quotient isomorphisms ϕxy when x and y are equal are of course
taken to be the appropriate identity automorphisms of Gx/{ex} for every x
in I. For distinct x and y, they are completely determined by the requirement
that ϕ̂xy | ϕ̂yz = ϕ̂xz . For instance, according to the diagram in Figure 1, we
must have

ϕpq[L0
◦L3] = L0

◦L1, ϕpq[L0
◦L1] = L0

◦L3, ϕpq[L0
◦L2] = L0

◦L2
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Figure 1. Normal subgroup diagram
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Figure 2. The triangles from the pentagon that determine ϕpq

(see (a), (b), and (c) respectively in Figure 2). (The composite subgroups
on the left, inside the brackets, should actually be interpreted as denoting their
copies in Gp, and the composite subgroups on the right should be interpreted
as denoting their copies in Gq.) These three requirements determine ϕpq in the
following way. According to the pentagon, the copy of the subgroup L0 in Gp

is mapped by ϕpq to the copy of the subgroup L0 in Gq. The subgroup L0 has
four cosets in Z0 × Z0 × Z0, namely

C0 = (0, 0, 0) ◦ L0 = {(0, 0, 0), (1, 0, 0)},

C1 = (0, 1, 0) ◦ L0 = {(0, 1, 0), (1, 1, 0)},

C2 = (0, 0, 1) ◦ L0 = {(0, 0, 1), (1, 0, 1)},
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C3 = (0, 1, 1) ◦ L0 = {(0, 1, 1), (1, 1, 1)}.

Observe that

L0 ◦L3 = {(0, 0, 0), (1, 0, 0)} ◦ {(0, 0, 0), (1, 1, 1)}
= {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)} = C0 ∪ C3,

L0
◦L1 = {(0, 0, 0), (1, 0, 0)} ◦ {(0, 0, 0), (0, 1, 0)}

= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)} = C0 ∪ C1,

L0 ◦L2 = {(0, 0, 0), (1, 0, 0)} ◦ {(0, 0, 0), (0, 0, 1)}
= {(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1)} = C0 ∪ C2 .

Because ϕpq maps the copies of L0 ◦L3 and C0 in Gp respectively to the copies
of L0 ◦L1 and C0 in Gq, it must map the copy of C3 in Gp to the copy of C1

in Gq, by the preceding observations. Similarly, it must map the copies of C1

and C2 in Gp respectively to the copies of C3 and C2 in Gq.
The resulting group pair F is easily seen to be a frame, so the group

relation algebra G[F ] exists. The next step is to modify the operation of
relative multiplication in G[F ] by introducing a coset system

C = 〈Cxyz : (x, y, z) ∈ I × I × I〉.
If a triple of indices (x, y, z) is not a permutation of the triple (p, q, r), take
Cxyz to be the identity coset,

Cxyz = Hxy
◦Hxz .

Suppose now that (x, y, z) is a permutation of (p, q, r). As is clear from Figure 1,
two different edges emanating from a given vertex x are labeled with distinct
numbers, so the subgroup Hxy ◦Hxz is a composition of two distinct subgroups
of Gx of order 2, and therefore has order 4. It follows that the quotient group

Gx/(Hxy ◦Hxz) (1)

has order 2, so it has exactly two cosets, the identity coset and the non-identity
coset. Take Cxyz to be the non-identity coset,

Cxyz = Gx ∼ (Hxy ◦Hxz).

It is not difficult to check that the resulting group triple

F̄ = (G,ϕ,C)

is a coset semi-frame that satisfies the coset conditions. For example, the quo-
tient group in (1) is Abelian, so the inner automorphism of (1) determined by
the coset Cxyz must be the identity automorphism. Use, in addition, the fact
that F is a group frame to verify semi-frame condition (iv) for F̄ ,

ϕ̂xy | ϕ̂yz = ϕ̂xz = τ | ϕ̂xz .

The proof that F̄ satisfies the coset conditions is based on Corollary 4.8.
It suffices to check that conditions (i)–(iv) of that corollary are satisfied. As
regards condition (i), the quotient group in (1) has order 2, so every coset is
its own inverse. Consequently,

C−1
pqr = Cpqr = Cprq = Gp ∼ (Hpq

◦Hpr),
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and similarly

C−1
qrp = Cqpr and C−1

rpq = Crqp .

As regards conditions (ii) and (iii), the quotient isomorphisms ϕ̂pq and ϕ̂pr

induced by ϕpq and ϕpr respectively map the identity coset to the identity
coset, and consequently they map the non-identity coset to the non-identity
coset. It follows that

ϕpq[Cpqr] = ϕpq[Gp ∼ (Hpq
◦Hpr)] = Gq ∼ (Kpq

◦Hqr)
= Gq ∼ (Hqp ◦Hqr) = Cqrp,

and similarly, ϕpr[Cpqr] = Crpq. Finally, to verify condition (iv) of the corollary,
observe that each of the four edges emanating from vertex p in Figure 1 is
labeled with a different number. Consequently, the composite subgroups

Hpq ◦Hpr ◦Hpw

for w = s, t have order 8, that is to say, they coincide with Gp. The coset Cpqr

is trivially included in their intersection, since

(Hpq
◦Hpr

◦Hps) ∩ (Hpq
◦Hpr

◦Hpt) = Gp .

Apply Corollary 4.8 to arrive at the following conclusion.

Theorem 5.1. The group triple F̄ is a coset semi-frame that satisfies the coset
conditions . Consequently, the corresponding algebra C[F̄ ] is a full coset relation
algebra and hence an example of a finite, measurable relation algebra .

It is instructive to look somewhat closer at the operation ⊗ of relative
multiplication in the algebra C[F̄ ] just constructed, and to compare it with
the corresponding operation in G[F ]. On atoms, ⊗ is determined by

Rxy,a ⊗ Rwz,β = Rxy,a |Rwz,β

whenever y �= w, or y = w and {x, y, z} �= {p, q, r}, and

Rxy,a ⊗ Ryz,β = Gx × Gy ∼ (Rxy,a |Ryz,β)

whenever {x, y, z} = {p, q, r}. Thus, the operation of relative multiplication in
C[F̄ ] is obtained by changing only slightly the operation of relational compo-
sition in G[F ] as it affects atomic relations, namely, for those pairs of atomic
relations Rxy,a and Ryz,β that are indexed, in some order, by a permutation
(x, y, z) of the triple (p, q, r), the relative product has been shifted to the com-
plement of what it is in G[F ].

It turns out that the full coset relation algebra of the theorem is not
representable as a set relation algebra, and in particular, it is not isomorphic
to a full group relation algebra.

Theorem 5.2. The finite measurable relation algebra C[F̄ ] is not representable.

Proof. Write A = C[F̄ ]. The argument that A is not representable proceeds
by contradiction. Assume that it is representable, say ϑ is a representation of
A over a base set V . Because A is simple in the algebraic sense of the word
(see the remarks preceding Theorem 6.1 below), it may be assumed that the
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unit of the representation is the Cartesian square V × V (see, for example,
Theorem 16.18 in [3]). We identify Rxx,0 with x in the proof, so that the set
I becomes the set of measurable atoms of A. This permits some simplification
in the notation.

The first step is to use the representation ϑ for constructing a scaffold in
A, that is to say, a system of atoms 〈axy : x, y ∈ I〉 satisfying the following
three conditions for all measurable atoms x, y, and z in I.

axx = x. (1)

ayx = a�

xy . (2)

axz ≤ axy ⊗ ayz . (3)

Each element x in I is a subidentity atom, so its image ϑ(x) must be idVx
for

some non-empty subset Vx of V , these sets are mutually disjoint for distinct
x, and because A is finite,

⋃{idVx
: x ∈ I} =

⋃{ϑ(x) : x ∈ I} = ϑ(
∑

I) = ϑ(1’) = idV .

For each x in I, choose an element vx in Vx, and for each pair of elements x,
y, let axy be the unique atom in A such that

(vx, vy) ∈ ϑ(axy).

Since ϑ(x) is the unique atom containing (vx, vx), property (1) follows. Since
ϑ(a�

xy) is an atom (the converse of an atom is an atom) that contains (vy, vx),
by the representation properties of ϑ, property (2) follows. Since (vx, vy) is
in ϑ(axy) and (vy, vz) is in ϑ(ayz), it follows from the definition of relational
composition that (vx, vz) is in ϑ(axy) |ϑ(ayz). The representation properties of
ϑ imply that

ϑ(axy) |ϑ(ayz) = ϑ(axy ⊗ ayz).

Thus, ϑ(axz) and ϑ(axy ⊗ayz) have a non-empty intersection—they both con-
tain the pair (vx, vz)—so the former, which is an atom, must be below the
latter. Use the representation properties of ϑ one more time to conclude that
(3) holds. This completes the proof of the three scaffold conditions.

Here are some further properties of the elements axy that we shall need.
Notice that each such atom is actually one of the atomic binary relations of
A on the base set U =

⋃{Gx : x ∈ I}, so it makes sense to speak of the pairs
in axy. The converse of each atom is the set-theoretic relational inverse, in
symbols,

ayx = a−1
xy . (4)

Second, the relative product of two elements is the set-theoretic relation com-
position of the elements as long as the set of indices {x, y, z} does not coincide
with the set {p, q, r},

axy ⊗ ayz = axy |ayz . (5)
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Third, the relative product is disjoint from the relational composition when
the two sets of indices {x, y, z} and {p, q, r} are equal,

axy ⊗ ayz = Gx × Gy ∼ axy |ayz . (6)

Fourth, the intersection of certain relative products that share a common
“edge” is an atom when that common edge is pq or qr or pr. Specifically,

(aps ⊗ asq) ∩ (apt ⊗ atq) = apq, (7)

and similarly if pq is replaced by either qr or pr.
Choose elements us and ut in U so that

(us, ut) ∈ ast . (8)

Such a choice is possible because ast is a non-empty binary relation. Since for
each x = p, q, r

ast ≤ asx |axt, (9)

by (3) and (5), the pair in (8) must also belong to the right side of (9), so that
there must be an element ux in U for which

(us, ux) ∈ asx and (ux, ut) ∈ axt,

by (8). In particular, take x = p, q, and use (4), to obtain

(up, us) ∈ aps and (us, uq) ∈ asq,

so that

(up, uq) ∈ aps |asq = aps ⊗ asq,

and also to obtain

(up, ut) ∈ apt and (ut, uq) ∈ atq,

so that

(up, uq) ∈ apt |atq = apt ⊗ atq .

Apply (7) to arrive at

(up, uq) ∈ apq . (10)

Similar arguments applied to p and r and to r and q lead to

(up, ur) ∈ apr and (ur, uq) ∈ arq . (11)

In view of the definition of relational composition, (11) implies that

(up, uq) ∈ apr |arq . (12)

Together, (10) and (12) show that the intersection

apq ∩ (apr |arq)

is not empty, since both factors contain the pair (up, uq). The left-hand factor
is an atom, so

apq ⊆ apr |arq . (13)

On the other hand,

apq ⊆ apr ⊗ arq = Gp × Gq ∼ apr |arq,
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by (3) and (6). This is a direct contradiction to (13), so the assumption that
A is representable cannot be tenable. �

The group Z2 can be replaced everywhere in the preceding construction
by an arbitrary non-trivial Abelian group. The mappings ϕxy are no longer
uniquely determined, and the definition of relative multiplication is slightly
more involved. In each case we get an atomic, measurable relation algebra
that is not representable. These are new examples of non-representable relation
algebras, with a completely different underlying motivation than the examples
that have appeared so far in the literature.

6. A decomposition theorem

The isomorphism index set E of a coset semi-frame F = (G,ϕ,C) satisfying
the coset conditions is an equivalence relation on the group index set I, and
the unit

E =
⋃{Gx × Gy : (x, y) ∈ E}

of the corresponding full coset relation algebra C[F ] is an equivalence relation
on the base set U =

⋃
x∈I Gx. Call the semi-frame F simple if the group index

set I is not empty, and if E is the universal relation on the index set I. It turns
out that F is simple in this sense of the word if and only if the algebra C[F ]
is simple in the algebraic sense of the word, namely, it has more than one
element and every non-constant homomorphism on the algebra is injective;
or, equivalently, the algebra has exactly two ideals, the trivial ideal and the
improper ideal.

Theorem 6.1. Let F be a semi-frame satisfying the coset conditions. The coset
relation algebra C[F ] is simple if and only if the semi-frame F is simple.

Proof. We begin with a preliminary observation: for all triples (x, y, z) in E3,
⋃{Rxy,α ⊗ Ryz,β : α < κxy and β < κyz} = Gx × Gz . (1)

For the proof, suppose that (x, y, z) is in E3. The definition of ⊗ implies that

Rxy,α ⊗ Ryz,β =
⋃{Rxz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α ◦Hyz,β ] ◦Cxyz}. (2)

Each relation Rxz,γ is included in

Gx × Gz, (3)

by Partition Lemma 2.2, so each product of the form (2) is included in (3),
and therefore the left side of (1) is included in the right side.

To establish the reverse inclusion, notice that as the indices α and β vary,
the complex products Kxy,α ◦Hyz,β run through all cosets of the subgroup
Kxy

◦Hyz. The function ϕxy induces an isomorphism from the quotient group
Gx/(Hxy ◦Hxz) to the quotient group Gy/(Kxy ◦Hyz), so the inverse images
ϕ−1

xy [Kxy,α
◦Hyz,β ] must run through all of the cosets of Hxy

◦Hxz . It follows
that, as α and β vary, the complex products

ϕ−1
xy [Kxy,α ◦Hyz,β ] ◦Cxyz (4)
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must also run through all cosets of Hxy ◦Hxz, because Cxyz is a fixed element
of the quotient group Gx/(Hxy

◦Hxz). Thus, for each index γ < κxz, there are
indices α < κxy and β < κyz such that the coset Hxz,γ of Hxz is included
in (4). The relation Rxz,γ is therefore included in Rxy,α ⊗ Ryz,β , by (2). The
union of all of the relations Rxz,γ is (3), by Partition Lemma 2.2, so the right
side of (1) must be included in the left side.

Turn now to the proof of the theorem, and assume first that the semi-
frame F is simple. The isomorphism index set E is the universal relation on
the group index set I, by assumption, so

U × U = (
⋃

x∈I Gx) × (
⋃

y∈I Gy) =
⋃{Gx × Gy : x, y ∈ U}

=
⋃{Rxy,α : x, y ∈ U and α < κxy} =

⋃{Gx × Gy : (x, y) ∈ E} = E,
(5)

by the definition of U , the distributivity of Cartesian products over arbitrary
unions, Partition Lemma 2.2, the assumption on E , and the definition of E.
The index set I is assumed to be non-empty, and the groups are non-empty,
so the unit U × U of C[F ] is non-empty and therefore different from the zero
element ∅. In particular, the relation algebra C[F ] has more than one element.

In order to show that a non-degenerated, atomic relation algebra is sim-
ple, it suffices to show that the equation 1; r; 1 = 1 holds for every subidentity
atom r (see, for example, Givant [2], Theorem 9.2). A subidentity atom of
C[F ] has the form Ryy,0 for some y in I, so it must be shown that

(U × U) ⊗ Ryy,0 ⊗ (U × U) = U × U (6)

for every y in I. Use (5) and the distributivity of ⊗ over arbitrary unions to
rewrite the left side of (6) as the union of the relations

Rxu,α ⊗ Ryy,0 ⊗ Rvz,β (7)

over all x, u, v, z in I, with α < κxu and β < κvz. If u �= y or v �= y, then the
relation in (7) reduces to the empty relation, by the definition of ⊗ . The left
side of (6) is therefore equal to the union of the relations

Rxy,α ⊗ Ryy,0 ⊗ Ryz,β (8)

over all x and z in I, with α < κxy and β < κyz. The coset condition for the
identity law, which F is assumed to satisfy, and Identity Law Theorem 3.4,
imply that

Rxy,α ⊗ Ryy,0 = Rxy,α .

Consequently, (8) reduces to

Rxy,α ⊗ Ryz,β . (9)

For fixed x and z, the union, over all α and β, of the relations in (9) is (3),
by the preliminary observation in (1). The union of all relations of the form
(7) therefore coincides with the union of all relations of the form (3), and this
latter union is just U × U , by (5). Conclusion: the equation in (6) holds in
C[F ] for all y in I, as was to be shown.



Vol. 79 (2018) Coset relation algebras Page 51 of 53 28

We postpone the proof of the reverse implication of the theorem until
after the next theorem. �

It turns out that every full coset relation algebra can be decomposed into
the direct product of simple, full coset relation algebras, or equivalently, full
coset relation algebras on simple frames. We sketch briefly how this decompo-
sition may be accomplished. Given an arbitrary coset semi-frame

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E〉 , 〉 , 〈Cxyz : (x, y, z) ∈ E3〉),
consider an equivalence class J of the isomorphism index set E . The universal
relation J ×J on J is a subrelation of E , and in fact it is a maximal connected
component of E in the graph-theoretic sense of the word. The restriction of F
to J is defined to be the group triple

FJ = (〈Gx : x ∈ J 〉 , 〈ϕxy : (x, y) ∈ J × J〉 , 〉 , 〈Cxyz : (x, y, z) ∈ J × J × J〉)
Each such restriction of F to an equivalence class of the index set E inherits
the coset semi-frame properties of F , and is therefore a simple semi-frame.
Call these restrictions the components of F . Clearly, F is the disjoint union of
its components in the sense that the group system, the isomorphism system,
and the coset system of F are obtained by respectively forming the unions
of the group systems, the isomorphism systems, and the coset systems of the
components of F . It is also easy to see that F satisfies the coset conditions
if and only if each component satisfies the coset conditions, because these
conditions are formulated only for cosets Cxyz such that the elements x, y,
and z all belong to the same equivalence class of E .

If F is a semi-frame satisfying the coset conditions, then so is each compo-
nent FJ , and consequently C[FJ ] is a full coset relation algebra that is simple,
with base set and unit

UJ =
⋃

x∈J Gx and Ej = UJ × UJ

respectively. The coset relation algebra C[F ] is isomorphic to the direct prod-
uct of the simple coset relation algebras C[FJ ] constructed from the compo-
nents of F (so J varies over the equivalence classes of E). In fact, if internal
direct products are used instead of Cartesian direct products, then C[F ] is
actually equal to the internal direct product of the full coset relation algebras
constructed from its component semi-frames.

Theorem 6.2 (Decomposition Theorem). Every full coset relation algebra is
isomorphic to a direct product of full coset relation algebras on simple frames .

The details of the proof of this theorem are left to the reader.
Return now to the proof of the reverse implication in Theorem 6.1. As-

sume that the given semi-frame F is not simple. If the group index set I is
empty, then the base set U is also empty, and in this case C[F ] is a one-element
relation algebra with the empty relation as its only element. In particular, C[F ]
is not simple. On the other hand, if the group index set I is non-empty, then
the isomorphism index set E has at least two equivalence classes, by the defini-
tion of a simple semi-frame. The coset relation algebra C[F ] is isomorphic to
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the direct product of the coset relation algebras on the component semi-frames
of F , by Decomposition Theorem 6.2, and there are at least two such compo-
nents. Each of these components is a simple semi-frame that satisfies the coset
conditions, so the corresponding coset relation algebra must be simple, by the
first part of the proof of Theorem 6.1. It follows that C[F ] is isomorphic to
a direct product of at least two simple relation algebras, so C[F ] cannot be
simple. For example, the projection of C[F ] onto one of the factor algebras is
a non-constant homomorphism that is not injective.
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