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Abstract. We present a scheme for providing axiomatizations of universal
classes. We use infinitary sentences there. New proofs of Birkhoff’s HSP-
theorem and Mal’cev’s SPPy-theorem are derived. In total, we present 75
facts of this sort.
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1. Unary class operators

In this paper we present an easy and unified way for proving preservation the-
orems for various types of universal classes. We start with a basic observation.
It is a formalization of a trick which may be encountered in various proofs of
preservation theorems. In order to do so, we first need to clarify the notion of
unary class operator.

Let L be a fixed first-order language, i.e., a set of functional and relational
symbols of finite arities. Let Struc(L) be the class of all structures in L (called
also L-structures). By a unary class operator we mean an assignment O which
with each structure A in Struc(L) associate a certain class O(A) C Struc(L)
such that the following two requirements are fulfilled

e AcO(A);
e If C is isomorphic to B and B € O(A), then C € O(A).

Presented by J.B. Nation.

This article is part of the topical collection “In memory of Bjarni Jénsson” edited by J.B.
Nation.

The work was supported by the Polish National Science Centre Grant no. DEC-
2011/01/D/ST1/06136.

® Birkhduser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00012-018-0507-y&domain=pdf

26 Page 2 of 12 M. M. Stronkowski Algebra Univers.

(The question whether such objects exist is a set theoretical issue. However,
as it is commonly done in set theory (see e.g. [12, Chapter 8]), we may assume
that there is a first-order formula ®(z,y) in the language of set theory such
that O(A) = {B | B € Struc(L) and ®(A,B)}, and then identify O with ®.)
Note that we do not impose the idempotency condition OO = O.

We may compose unary class operators. So C € O0’(A) if there exists
B such that C € O(B) and B € O'(A).

In this paper we deal only with two class operators which are not unary:
the direct product P and the ultraproduct Py class operators. Thus we do
not need to define this notion. We do it just for the sake of completeness.
By a class operator we mean an assignment O which with each subset S of
Struc(L) associate a certain class O(S) such that S € O(S) and A € O(S)
yields B € O(S) for every structure B isomorphic to A. Optionally, one may
also add the monotonicity conditions: if S C &', then O(S) C O(S’). Clearly,
every unary class operator O may be considered as a (monotone) class operator
by putting O(S) = J{O(A) | A € S}.

A class C C Struc(L) is closed under a class operator O (or just O-closed)
provided O(S) C C for every subset S of C. If O, O’ are class operators and S is
a set of L-structures, then S C O(S) N O’(S). Hence a class is O0’-closed iff it
is O and O’-closed. It does not mean that OO’ = O’0. For instance, in general
the equality HS(A) = SH(A) does not hold. Here H denotes the homomorphic
image and S denotes substructure unary class operators. Moreover, SH is not
idempotent.

Let O be a unary class operator. Assume that with each structure A €
Struc(L) we may associate a sentences X3, say in L o (see e.g. [3] for defini-
tions in infinitary logic), such that

BEx8 if Ae0O(B).
Then we say that the sentences XR are characteristic for O.
Basic Observation. Let X;O; be characteristic sentences for a unary class oper-

ator O and let C be a O-closed class of structures. Then C is axiomatizable by
the class of sentences {-x3 | A & C}.

Proof. Let B € C and A ¢ C. Since C is O-closed, A ¢ O(B). Hence B [~ xQ
and, since x% is a sentence, B = ﬂxg.

Now assume that B ¢ C. Since B € O(B), B = x8. Consequently,
B £ —xB- O

2. Classical applications

By a disjunctive universal sentence we mean a sentence in Lo, o of the form
=YX \/ ;v \/ v,
iel JeJ

where all formulas ¢; and v; are atomic and all its variables are in X. The
subformula \/,; —~¢; is called the negative part of o and \/ ;. ;1; is called the
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positive part of o. We say that o is positive/negative if its negative/positive
part vanishes. A class is definable by universal sentences in Lo o iff it is
definable by disjunctive universal sentences. This fact may be deduced from
Theorem 2.2 as well as from the complete distributivity of Boolean algebras
of power sets [9, Chapter 8].

Every disjunctive universal sentence may be written in the form

o =YX N\gi— \ ¥
i€l JeJ
Thus, if the positive part consists of one atomic formula, then we speak about
implications. A first-order implication, i.e., in L, o, is called a quasi-identity.
And an identity is a positive disjunctive universal sentence with exactly one
disjunct.

A general scheme of theorems in this paper is as follows: A class of L-
structures is closed under a particular class operator O if and only if it is
definable by sentences of a special form. The proofs split into two parts. We
should check that if o is of the special form, A = o and B € O(A), then
B E 0. Secondly, we find characteristic sentences for O which are of the
considered form. Usually, the first part is easy. Hence, in most cases we just
argue for the second part.

Let A be an L-structure and A be its carrier. Let X 4 be a set of variables
for which there is a bijection m4: A — X 4. For a set X of variables let At(X)
be the set of atomic formulas with all variables in X. Define

Diag"(A) = {¢/(74(a)) € At(Xa) | A |= ¥(a)},
Diag™ (A) = {(ma(a)) € At(Xa) | A [~ p(a)}.
For A € Struc(L) let S(A) the the class of structures isomorphic to

substructures of A and let H(A) be the class of homomorphic images of A.
Define

XZS =3X4 /\ 2

¢ € Diag— (A)
Xa=3Xa AN A~ A @
© € Diag= (A) W € DiagT (A)

Then we have the following facts.

Fact 2.1. The sentences XZS are characteristic for HS. The sentences XSA are
characteristic for S.

We immediately obtain the following fact.
Theorem 2.2. Let C be a class of L-structures. Then C is

(1) S-closed if and only if it is definable by disjunctive universal sentences;
(2) HS-closed if and only if it is definable by positive disjunctive universal
sentences.

We are mainly interested in first-order axiomatizations. We use the fol-
lowing known facts. (For (1) see e.g. [13, Theorem 7.5.2]. Point (2) may be
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proved using the same construction as in Mal’cev’s proof of compactness theo-
rem [13, theorem 8.3.1].) Recall that P denotes the direct product and Py the
ultraproduct class operators.

Lemma 2.3. Let 0 = VX N\;c;0i — Ve 95 be a disjunctive universal sen-
tence. Assume that the class C satisfies o. If C is
(1) P-closed, then C =YX \;c; @i — ; for some j € J,
(2) Py-closed, then C = VX Ny pi — Vjeg, ¥5 for some finite subsets
IogI andJOQJ

Corollary 2.4. Let C be a class of structures. Then C is

(1) S and P-closed if and only if it is definable by implications (Shafaat [14]);

(2) S and Py-closed if and only if it is definable by disjunctive universal first-
order sentences (Los, Tarski [6, Theorem 5.2.4));

(3) HS and P-closed if and only if it is definable by identities (Birkhoff [4,
Section 8]);

(4) HS and Py-closed if and only if it is definable by positive disjunctive
universal first-order sentences ( [6, Exercise 3.2.2));

(5) is S, P and Py-closed if and only if it is definable by quasi-identities
(Mal’cev [13, Theorem 11.1.2]).

Proof. 1t follows by

(1) Theorem 2.2 point
2) Theorem 2.2 point

(1) and Lemma 2.3 point (1)
( (1) and Lemma 2.3 point (2);
(3) Theorem 2.2 point (2) and Lemma 2.3 point (1);
(4) Theorem 2.2 point (2) and Lemma 2.3 point (2)
(5) Theorem 2.2 point (1) and Lemma 2.3 points (1

)

b

) and (2). O

The above proof is non-constructive. The original proof of Birkhoff’s the-
orem has a different character. It is longer, but also has an advantage that it
connects equational theories with free algebras. Similarly for Mal’cev’s theo-
rem, there is a connection of a quasi-equational theories and finitely presented
algebras. It is used in categorical generalizations of Mal’cev’s theorem [1, Sec-
tion 16]. Although proofs of Mal’cev’s theorem presented in most textbooks
are, as our, non-constructive.

3. Other applications

It appears that the closure under other unary class operators leads to various
restrictions on the defining sentences.

3.1. Restrictions on the negative part

In the previous section we had an extreme situation. The unary class opera-
tor HS completely eliminated the negative part. But we may consider weaker
restrictions: forbidding occurrences of the equality symbol ~ or occurrences of
relational symbols different than ~, called from now on just relational symbols.
This may be achieved by considering various types of homomorphisms.
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Let Li be the set of relational symbols in L (i.e., non-functional sym-
bol different than ). For A € Struc(L) and R € Lg let R® denotes the
interpretation of R in A.

We say that A is a relational expansion of B if A and B have the same
algebraic reduct and RB C RA for every R € Lg. Thus, informally speaking,
A is obtained from B by adding new tuples of elements from A to relations.
Let He(A) be the class of structures isomorphic to relational expansions of A.

We say that a homomorphism h: A — B is strict if R = h=!(RB) for
every R € Li. More formally, if for every relational symbol R € Ly of arity n
we have

A ):R(ao,...,an,]) iff B |: R(h(ao),...7h(an,1)).

Strict homomorphisms appear naturally in abstract algebraic logic [7], see also
[8]. Let Hst (A) be the class of all strict homomorphic images of A.

Theorem 3.1. Let C be a class of L-structures. Then C is

(1) HeS-closed if and only if it is definable by disjunctive universal sentences
whose negative part has no occurrences of relational symbols;

(2) Hst,S-closed if and only if it is definable by disjunctive universal sentences
whose negative part has no occurrences of ==.

Proof. The reasoning here is the same as in the proof of Theorem 2.2. We only
provide characteristic sentences. So the sentences

HeS
Xa=3Xa A e A N W
o € Diag— (A) 3 € DiagtT(A)
7 has no occurrences
of relational symbols

are characteristic for HgS. Note that x™€> may be reduced by adding the
condition in the first big conjunct that ¢ has no occurrences of functional
symbols. Further, the sentences

Xt =3xa N —e A A Y

» € Diag— (A) 1 € Diagt (A)
% has no occurrences
of =~
are characteristic for Hsy,S. O

Corollary 3.2. Let C be a class of L-structures. Then C is HES / Hs,S and
Py /P / (P, Py)-closed if and only if it is definable by first-order disjunctive
universal sentences/ implications / quasi-identities whose negative part has no
occurrences of relational symbols / the equality symbol ==.

Proof. 1t follows by Theorem 3.1 and Lemma 2.3. g

In what follows, every theorem would be accompanied by a statement
like Corollary 3.2. They are derivable in a straightforward way. Thus we omit
them.

There is a type of homomorphism commonly occurring in the literature,
mostly implicitly, with the connection to congruences. We say that a homo-
morphism h: A — B is strong if R® = h(R?) for every R € Lg. More
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precisely, if B = R(bo,...,b,—1), then there are ag,...,a,—1 € A such that
A = R(ag,...,an—1) and h(a;) = b; for all i < n. Informally, if there is a
tuple in a relation of B, then there is a witness of it in A. Note that if 7 is
a congruence on the algebraic reduct of A, then there is a unique structure
A/~ such that a — a/7 is a strong homomorphism from A onto A/y. On
the other side, if h: A — B is a surjective strong homomorphism, then B is
isomorphic to A /v, where « is the kernel of h. Let Hsng(A) be the class of all
strong homomorphic images of A.

It appears that the closure under Hsy, is very restrictive. The following
fact was observed in [2, Section 5, Point (3)]. Our proof falls into the presented
scheme. We say that a disjunctive universal sentence is weak if in its negative
part every variable appears at most once and there are no occurrences of =
nor of functional symbols.

Theorem 3.3. Let C be a class of L-structures. Then C is HsngS-closed if and
only if it is definable by weak disjunctive universal sentences.

Proof. Unlike in the previous proofs we also verify the “if” part. Satisfaction
of every universal sentence is preserved when taking substructures. Thus it is
enough to show the preservation under Hsng. Let us consider a weak disjunctive

universal sentence
o=vX Noi— \/ 1
iel jeJ

and a strong surjective homomorphism h: A — B. Assume that A | o. In
order to verify that B = o we need to consider a valuation v: X — B such
that B = \;c; ¢i[v], and show that B |=\/;; ;[v]. Let us observe that the
exists a valuation p: X — A such that

e = h o :LL7

e for every ¢ € I, we have A = ¢;[u].
Indeed, we may define u as follows. Let X; be the set of variables occurring in
;. Firstly, we define p;: X; — A. Assume that ¢; = R(xg,...,Z,—1). Then
X; ={z0,...,xpn_1}. Since B = R(v(xg),...,v(zy—1)) and h is strong, there
are ag,...,an—1 € A such that A = R(ag,...,an—1) and h(a;) = v(z;) for
1 < n. We put u;(z;) = a;. Since variables zq, ..., x,_1 are mutually distinct,
the definition of p; is correct. Furthermore, since X; N X, = () for i # i/, we
may define pu(z) = p;(x) when € X; for some ¢ € I. Finally, if x is a variable
which does not appear in the negative part of o, then as p(z) we take any
element from h=!(v(x)).

Since A | o and A = A,c; @ilp], we have A = v;[u] for some j € J.
Hence, since h is a homomorphism, we have B |= 1;[h o p]. This shows that
B = VjeJ Y[v].

Let us move to the “only if” part. As previously, we just present charac-
teristic sentences. Let

A° = AU{(R,aq,...,an_1,%) | R € Ly of arity n, ag,...,an_1 € A,
A = R(ag,...,an-1), i <n},
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where U denotes disjoint union. Let X9 be a superset of X4 of variables of
cardinality |A°|. Let us extend the mapping w4 to a bijection 7% : A° — Xg.
Let £4: A° — A be the mapping given by £4((R, ao,-..,an-1,%)) = a; and
€a(a) =afor a € A. Let pa: X — A be given by pa = 40 (7). Then
the sentences

n, s (o)
XRS F=3X5 /\ 2
() € AL(X3)
AW p(pa(z))

A A\ R(%((R.a,0),....7%((R.a,n — 1))
A=R(a)
are characteristic for HspngS. ]

Let us argue that the closure under HspgS is a restrictive condition. As-
sume that our fixed language L is finite and has only relational symbols. Then
there are only finitely many subvarieties (HSP-closed classes, i.e., classes de-
fined by identities) of Struc(L). Indeed, there are, up to logical equivalence,
only finitely many identities in L. Hence considering varieties for relational
structures is not interesting. What we gain when we shift to HsngSP-closed
classes? Actually, not too much. There are still only finitely many such classes.

In order to see this let us recall the notion of relative subdirect irreducibil-
ity. Let C be a S-closed subclass of Struc(L) and S be a structure in C. We
say that S is C-subdirectly irreducible if for every embedding e: S — [],c; Ay,
where A; € C, there is a projection 7y : Hie] A; — A, such that the com-
position 7, o e: S — Ay is an embedding. We say that S is Hsng-subdirectly
irreducible if S is HsngSP(S)-subdirectly irreducible. Then S is C-subdirectly
irreducible for some HsngSP-closed class C iff it is Hsng-subdirectly irreducible.
Recall also a known fact that if C is a quasivariety (SPPy-closed class) then
every algebra in C embeds into a product of C-subdirectly irreducible algebras
[10, Theorem 3.1.1]. Every Hsng and P-closed class is Py-closed. Hence every
HsngSP-closed class C is a quasivariety and the recalled fact may be applied to
C. We thus infer that every structure embeds into a product of Hsyg-subdirectly
irreducible structures.

The next proposition shows that if L is finite and has no functional sym-
bols, then there are, up to isomorphism, only finitely many Hsng-subdirectly
irreducible L-structures. Consequently, by the conclusion from the previous
paragraph, there are only finitely many Hs,gSP-closed classes for such L.

Proposition 3.4. Assume that L has only relational symbols and that their ari-
ties are bounded by m. Assume that S is a Hsng-subdirectly irreducible structure
in L. Then |S| < max(m + 1,2).

Proof. Let A be a structure in L. Then every equivalence relation v on A
induces the strong homomorphism n,: A — A/v; a — a/v. For every pair
a,b of distinct elements of A let 7,5, be an equivalence relation on A such
that (a,b) ¢ a and |A/a| = 2. For every R € Lg of arity n and every tuple
a = (ag,...,an—1) such that A & R(ag,...,an—1) let yrz be the equivalence



26 Page 8 of 12 M. M. Stronkowski Algebra Univers.

relation given by (A - {ao, tht a’n—l})2 U {(a07a0)7 ey (an—l, an_l)}. Then
|A/vRal <n+ 1. We have

A/Yap E a/Vap #b/Vap and A/yra E ~R(ao/Yra:- - 0n-1/VRa)-
This yields that A embeds into the product

H Afvep X H A/vra

A axb A}~ R(a)

of structures each of which is a strong homomorphic image of A and has the
carrier of size at most max(m + 1, 2). O

However, it is not difficult to see that there are denumerably many
HsngSPu-closed classes if the language has no functional neither relational sym-
bols. Indeed for every n > 0 the sentence

On =VZo,...,Tn o1 VToR LTIV - VITn_1~ T,

expresses “there are at most n elements”. Thus they are mutually logically
nonequivalent. Also, there are continuum many quasivarieties generated by
simple graphs [5, Theorem 2].

Example 3.5. Let us discuss transitivity and anti-reflexivity for binary re-
lations. Both properties are commonly expressed by quasi-identities without
occurrences of & in the negative part. In order to see that it is impossible to
express them by weak quasi-identities, let us consider a structure A = (4, R)
where A = {a,b,c,d} and R = {(a,b), (¢c,d)}. Let v = {(b,¢), (¢,b)} U D and
§ = {(a,d), (d,a), (b,c),(c,b)} U D, where D is the diagonal in A%. Then the
strong homomorphic image A /v is not transitive and A /4§ is not antisymmet-
ric.

We have the same situation in case of ordered algebras. Let us consider or-
dered semigroups. Let N = (N, 4, <) be the structure of natural numbers with
the standard addition and order. Then for a congruence v on (N, +) the strong
homomorphic image N/~ is transitive but it does not have to be antisymmet-
ric. Indeed, it is antisymmetric iff v has at most one nontrivial class. Also tran-
sitivity is not preserved by strong homomorphisms for ordered semigroup. Let
S = (N*, +, C) be a structure, where + is the standard componentwise addition
and be the order C is given in the following way: (1o, r1,72,73) C (S0, $1, S2, 83)
iff ro4+1r1 =80+ 81, r2o+71r3 =35+ s3and r; < sq, rg < s3. It is a least order
on N* which is compatible with the addition and such that eq < e;, es < es,
where e; is the quadruple with three Os and with 1 in the 7’coordinate. Let
v be the congruence on (N%, +) generated by (e1,ez). Then in S/v we have
eo/v CE e1/y = ea/vy C e3/v. But, since eq/v = {ep}, es/v = {e3} and not
eo C e3, we do not have e/~ C e3 /.

The restrictive character of HsngS leads us to the following question. Is
there a notion weaker than strict homomorphism and stronger than strong
homomorphism which corresponds to disjunctive universal sentences without
occurrences of &~ nor of functional symbols in the negative part but allowing
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repetitions of variables? In particular, what condition on strong homomor-
phisms ensures that transitivity and antisymmetry are preserved? The answer
is provided by the next theorem.

We say that a homomorphism h: A — B is uniformly strong if there is
an embedding e: B — A" of the relational reduct of B into the relational
reduct of A such that hoe is the identity mapping on B. The intuition behind
this definition is that for a uniformly strong homomorphism h: A — B for all
tuples in the relations of B there are witnesses for them given in a uniform
way. More formally, if B = R(b,...,b,—1), then A = R(e(by),...,e(bp_1)).
Note that for relational structures uniformly strong homomorphisms are just
retractions. Hence HysngS = S and no new theorem is obtained in this case.
Let Hysng(A) be the class of uniformly strong homomorphic images of A. As
in Theorems 2.2 and 3.1, we obtain the following fact.

Theorem 3.6. Let C be a class of L-structures. Then C is HysngS-closed if and
only if it is definable by disjunctive universal sentences without occurrences of
~ and functional symbols in their negative part.

3.2. Restrictions on the positive part and on both parts

Note that the situation is not symmetric in the following sense. For every
disjunctive universal sentence there is a logically equivalent disjunctive uni-
versal sentence without functional symbols and repetitions of variables in the
positive part and without equations of the form z ~ y in the negative part.
Thus, considering restrictions on the positive part, we only provide analogs of
Theorems 2.2 and 3.1.

If O is a unary class operator, then O~! is the unary class operator given
by: A € 071(B) iff B € O(A). For instance, Hz 'S is a very common operation
in graph theory. It is there the operation of taking (not necessarily induced)
subgraphs.

Theorem 3.7. Let C be a class of L-structures. Then C is

(1) H™S-closed if and only if it is definable by negative disjunctive universal
sentences (see Gorbunov, Kravchenko [11, Theorem 1.1] for the first-
order case);

(2) HEls—closed if and only if it is definable by disjunctive universal sentences
whose positive part is a disjunction of equations of variables (see [15,
Appendiz] for such quasi-identities).

(3) Hsy—1S-closed if and only if it is definable by disjunctive universal sen-
tences without occurrences of ~ and functional symbols in their positive
part;

Proof. We provide characteristic sentences for Points (2) and (3). So the sen-
tences

X:';ls =3dXy /\ ﬁWA(a) N?TA(b) A /\ P

AlEarxb 1 € Diagt (A)
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are characteristic for HEIS and

Hg.'S
s 3x, A ~R(raag),...,malan)) A N\ @
Al R(ao,--,an—1) 1 € Diagt (A)
are characteristic for H;S. (The definition of 74 in on Page 3.) O

We may also put restrictions on both sides. The following theorem sum-
marizes such results, together with theorems presented till now. For a unary
class operator O let R(O) be given as in the table below. Here | is the isomor-
phic image class operator.

) R(0O)

I 0

He relational symbols

HStr ~

Husng ~, functional symbols

Hsng ~, functional symbols, repetitions of variables
H any symbols

Theorem 3.8. Let O; € {|, He, Hsr, H} and Oy € {|, He, Hsqr, Husng, Hsng, H}.
Then a class of L-structures OIIOZS—closed if and only if it is definable by
disjunctive universal sentences without occurrences of R(O1) in the positive
part and without occurrences of R(O3) in the negative part.

With every pair of unary class operators O1, O in Theorem 3.8 in the
table there are connected additional statements analogical to Corollary 3.2
which concern the closure under P and Py. Thus in total, we obtain (4 x 6 —
1) x4—17 = 75 statements. We subtract 1 since the case when O; = O, = H is
trivial (we obtain the class of all L-structures). We subtract 17 since whenever
a class is Hspg and P-closed, then it is Py-closed, and whenever it is H~1-closed,
then it is P-closed (for example a HsngH_l-closed class is PPy-closed).

The proofs of statements which where not considered earlier fall into the
same schema but have more complicated details. Let us finish the paper with
an example of such reasoning.

Proof. (Sample proof) We argue for the HHg,'S unary class operator. We check
that the sentences
HHg,'S
Xa T =3Xa /\ 2
@ € Diag™ (A)
¢ has no occurrences of ~

are characteristic for HHS_;S. So let us assume that there are homomorphisms
h: C — A and g: C — B such that h is surjective and g is strict. Let v: X4 —
B be a valuation such that v(m4(a)) = g(c), where ¢ is any element from
h=1(a). Then B = —¢[v] for every ¢ € Diag™(A) without occurrences of ~.

—1
Thus B = X:HS“S.
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For the inverse implication, assume that v: X4 — B is a valuation such
that B = ¢[v] for every ¢ € Diag™ (A) without occurrences of ~. We want to
find homomorphisms h: C — A and g: C — B such that A is surjective and
g is strict. Let the algebraic reduct C*9 of C be the algebra of terms with
variables in X 4. Let h: C*9 — A9 be a unique algebraic homomorphism
extending (m4)~!. Similarly, let g: C%9 — B9 be a unique algebraic homo-
morphism extending v. We uniquely define the relational reduct of C in 1such
a way that g is a strict homomorphism. Then, by assumption on X:HS"S, h

is a homomorphism. For the HStrHS_tiS—case one may also consult [8, Lemma
5]. O
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