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Abstract. The variety of representable relation algebras is closed under
canonical extensions but not closed under completions. What variety of
relation algebras is generated by completions of representable relation al-
gebras? Does it contain all relation algebras? It contains all representable
finite relation algebras, and this paper shows that it contains many non-
representable finite relation algebras as well. For example, every Monk
algebra with six or more special elements (called “colors”) is a subal-
gebra of the completion of an atomic symmetric integral representable
relation algebra whose finitely-generated subalgebras are finite.
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1. Introduction and background

This section defines the concepts in the abstract, describes the main result,
and includes a brief review of relevant material concerning relation algebras,
representability, canonical extensions, and completions.

1.1.

A relation algebra A is an algebra of the form

A = 〈A, +, ·, , 0, ;, ,̆ 1,〉 ,
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where 〈A, +, ·, , 0〉 is Boolean algebra, satisfying the identity law,

x;1, = 1, ;x = x,

the exchange law,

x;y · z = 0 ⇐⇒ y · x̆;z = 0 ⇐⇒ x · z ; y̆ = 0,

and the associative law,

x;(y ;z) = (x;y);z.

The element 1, is the identity, 0, = 1, is the diversity, 0 is the zero, and
1 = 0 is the (Boolean) unit. RA is the class of relation algebras, and NA, the
class of non-associative relation algebras, is the class of algebras obtained by
dropping the associative law from this list of membership requirements.

1.2.

The exchange and identity laws are enough to show that non-associative rela-
tion algebras are additive, i.e., distributive laws hold:

x;(y + z) = x;y + x;z,

(y + z);x = y ;x + z ;x,

(x + y)̆ = x̆ + y̆,

and normal (; and ˘ distribute over
∑ ∅ as well, i.e., 0;x = x;0 = 0̆ = 0).

Furthermore, if A ∈ NA is complete (the join of every subset of A exists in A)
then A is also completely additive (; and˘distribute over all non-empty joins,
e.g., (

∑
X )̆ =

∑{x̆ : x ∈ X}).

1.3.

Let H,S, and P be the closure operators that map a class K of algebras to the
classes of algebras isomorphic to subalgebras, homomorphic images, and direct
products of algebras in K, respectively. NA has an equational axiomatization.
To get one, delete the associative law from Tarski’s original ten axioms for
relation algebras; see [29, Definition 1.2] and [33, p. 289, Theorem 314]. By the
easy direction of Birkhoff’s Theorem, NA and RA are closed under the varietal
operators:

HSP(NA) = NA, HSP(RA) = RA.

1.4.

The primordial example of a relation algebra is the algebra Re(U) of all binary
relations on a set U ,

Re(U) =
〈P(U × U), ∪, ∩, , ∅, |, −1, IdU

〉
,

where 〈P(U × U), ∪, ∩, , ∅〉 is the Boolean algebra of all subsets of the Carte-
sian square U × U , and, for all relations R,S ⊆ U × U ,

R|S = {〈u,w〉 : ∃v (〈u, v〉 ∈ R ∧ 〈v, w〉 ∈ S)},

R−1 = {〈u, v〉 : 〈v, u〉 ∈ R},

IdU = {〈u, u〉 : u ∈ U}.
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A Boolean algebra B is atomic if every non-zero element contains an atom (a
non-zero element that contains no other non-zero element). At (B) is the set
of atoms of B. As a Boolean algebra, Re(U) is clearly complete because it is
closed under arbitrary unions. Re(U) is also atomic. The atoms of Re(U) are
the sets of the form {〈u, v〉} with u, v ∈ U .

1.5.

Re(U) is an algebra of binary relations, i.e., the elements are binary relations
and the operations are the usual set-theoretic ones. Re(U) and all its subal-
gebras are algebras of binary relations that are simple (have no non-trivial
homomorphic images), but direct products of algebras of binary relations are
not simple and are easily seen to also be algebras of binary relations. For this
reason the class RRA of representable relation algebras is defined by

RRA = SP{Re(U) : U is a set}.

From its definition, RRA = SPRRA. The central problem was to determine
whether HRRA = RRA. This was proved by Tarski [39] (after having been in-
correctly disproved by Lyndon [26]). By the consequential direction of
Birkhoff’s Theorem, RRA has an equational axiomatization (and Lyndon [27]
constructed the first explicit one).

1.6.

Every Boolean algebra has a canonical extension B+ and a completion Bc.
These constructions are due to the work of (at least) Dedekind, MacNeille,
Stone, and Sikorski (consult [38]). Both extensions are complete. B+ is always
atomic; Bc can go either way. B+ destroys all infinite joins, while Bc preserves
all infinite joins, i.e., if X ⊆ B,X is infinite,

∑
X ∈ B, and

∑
X = ∑

Y for
all finite subsets Y ⊂ X, then the join of X in B+ is strictly smaller than

∑
X,

and the join of X in Bc is the same as
∑

X. Both extensions are isomorphic
under isomorphisms that leave the elements of B unchanged, and they are
both minimal or generated by B in the appropriate sense. These properties
lead to natural descriptions. The elements of Bc can be constructed as subsets
of B, and the elements of B+ can be constructed as sets of subsets of B, that
is, Bc can be found in P(B), while B+ is found at the next level, P(P(B)).
An element of B+ is the join the of atoms below it, and each atom is the meet
of the elements of B lying above it, so every element of B+ is the join of some
meets of some subsets (ultrafilters, actually) of B. If we identify an element
of B with the set of elements of B lying below it, then the elements of Bc

missing from B are provided by those subsets of B whose joins are not yet
present in B, so every element of Bc is the join of a subset of B.

1.7.

The next goal was, given a relation (or cylindric) algebra A whose Boolean
part is B, to show that there are relation (or cylindric) algebras A+ and Ac

whose Boolean parts are B+ and Bc, respectively, such that A ⊆ A+ and
A ⊆ Ac. This was done by Jónsson–Tarski [21,22] and Monk [37], respectively,
by extending the operators of A on B to operators on B+ and Bc along the



20 Page 4 of 32 R. D. Maddux Algebra Univers.

lines described above. For example, a unary operator f on B (like conversion
or cylindrification) extends to unary operators fc on Bc and f+ on B+ defined
by

fc(x) =
∑

x≥b∈B

f(b) for x ∈ Bc,

f+(x) =
∑

x≥a∈At(B+)

⎛

⎝
∏

a≤b∈B

f(b)

⎞

⎠ for x ∈ B+.

Binary operators like ; are extended similarly. The key fact is that the axioms
of relation and cylindric algebras are preserved by the extensions, in the sense
that an equation holding for the operators on B also holds for the extended
operators on Bc and B+. Consequently cylindric and relation algebras are
closed under the formation of canonical extensions and completions.

1.8.

Tarski’s result that HRRA = RRA now becomes significant, for it might have
been possible to show RRA is also closed under canonical extensions and com-
pletions by showing that equational axioms for RRA are preserved, just as they
are for relation and cylindric algebras. Jónsson–Tarski [21,22] and Monk [37]
proved that positive equations (ones not containing complementation) are pre-
served; this is enough for closure of RA under (−)+ and (−)c, but fails on RRA.
Instead Monk proved RRA is closed under canonical extensions by a detour
through cylindric algebras.

Monk’s method used a descending chain of classes (each class contains
the next) beginning with RA, converging on RRA (the intersection of the chain
is RRA), and consisting of relation algebras obtained as definitional reducts
of cylindric algebras of ever increasing finite dimension (see (5.2) below). A
representable relation algebra A belongs to every class in the chain, but the
classes in the chain are closed under canonical extensions by the closure of
finite dimensional cylindric algebras under canonical extensions and the close
connections between cylindric algebras and their relation algebraic reducts,
so A ∈ RRA because it belongs to every class in a chain converging on the
representable algebras.

Monk’s unpublished proof was reported in McKenzie’s thesis [34]; the first
published proof appeared in [28, Theorems 6(3), 8, 10], using a similar detour;
see [33, §24, §52].

1.9.

One might have expected that RRA is also closed under completions, perhaps
because it is a simpler situation, but it turns out that the causal link goes
the other way around: if a variety of monotone bounded lattice expansions is
closed under completions, then it is closed under canonical extensions [9]. RRA
is a naturally occurring example of a canonical variety of Boolean algebra with
operators that is not closed under completions, as was proved by Hodkinson
[18].
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An earlier example of an equation from [25] suggests why RRA might not
be closed under completions. The complex algebra Cm (G) of a group G is the
Boolean algebra of all subsets of G supplemented with the binary operation of
multiplying subsets (once known as complexes), the unary operation of forming
the inverses of elements of a complex, and the singleton containing just the
identity element of G. The complex algebra a group is a relation algebra that
is simple and integral (the identity element 1, is an atom).

An element of a relation algebra is an equivalence element if it satisfies
the equations asserting that it is transitive and symmetric, so called because
E ⊆ U ×U is an equivalence relation iff E|E ⊆ E = E−1 iff E is an equivalence
element of Re(U). An element H of Cm (G) is a subgroup of G iff H ;H ⊆ H =
H̆, i.e., H is an equivalence element of Cm (G),

Let Z be the group of integers under addition. Cm (Z) is large, but it
has a countable subalgebra R generated by its atoms. The subalgebra R is
dense in Cm (Z), i.e., every non-empty element of Cm (Z) contains an element
of R (an atom, in fact), and Cm (Z) is complete. This is enough to insure that
Cm (Z) is the completion of R. The elements of R are only the finite subsets
of Z and their complements. Consequently, R satisfies an equation (from [25])
that says every equivalence element (subgroup) is either ∅ or 1, or G. That
equation fails in Cm (Z), because Z has non-trivial subgroups that are neither
finite nor cofinite.

These phenomena occur in Hodkinson’s proof and in this paper: complete
atomic relation algebras have strange elements that prevent representability
(sometimes by forming a finite non-representable relation algebra), yet their
countable atom-generated subalgebras are representable.

1.10.

We have arrived at a chain of varieties

RRA ⊆ RA ⊆ NA,

where NA and RA are closed under S,H,P, (−)+, and (−)c, while RRA is
closed under S,H,P, and (−)+, but not closed under (−)c. Let RRAc be the
class of completions of representable relation algebras,

RRAc = {Ac : A ∈ RRA},

and let V = HSPRRAc be the variety of relation algebras generated by RRAc.

Problem 1.1. (1) Is V = RA? (2) Is V finitely axiomatizable? (3) Is V closed
under canonical extensions? (4) Is V closed under completions? (5) Is mem-
bership in V decidable for finite algebras? (6) Does V contain any algebras
that are not weakly representable (as defined in [20])?

All the algebras in RRAc are complete, so RRA ⊆ RRAc, but RRA ⊆
SRRAc simply because every relation algebra is a subalgebra of its completion.
SRRAc is the class named in the title of this paper. Finite relation algebras are
completions only of themselves, so every finite algebra in RRAc is in RRA. This
paper shows that there are also many finite non-representable relation algebras
in SRRAc, thus making a contribution to Problem 1.1 (1) in the direction of
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showing V = RA. On the other hand, some finite relation algebras have no
proper simple extensions and are therefore neither representable nor in RRAc;
see [8] for examples. These are candidates for relation algebras that are not in
V .

1.11.

As a partial positive answer to Problem 1.1 (1), it will be shown in this paper
that every finite Monk algebra with six or more colors is in SRRAc. Monk
algebras are relation algebraic versions of cylindric algebras used by Monk
[36] to prove that classes of finite-dimensional representable cylindric algebras
are not finitely axiomatizable. Monk algebras are relation algebras that are
symmetric (satisfy x̆ = x for all x) and integral (1, is an atom and all other
atoms are called diversity atoms because they are included in 0,). The simplest
Monk algebras are the ones defined next.

Definition 1.2. For 4 ≤ q ∈ ω,Mq is the finite symmetric integral relation
algebra with q atoms e0 = 1,, e1, · · · , eq−1 such that if a, b are distinct diversity
atoms then a;b = 0, and a;a = a. The q − 1 diversity atoms of Mq are called
the colors of Mq.

The relation algebras Mq were first constructed in [30]; Mq was called
Eq ({2, 3}) in [32, Definition 2.4, Problem 2.7]. In the notation of [33], M4 =
6265 and M5 = 30093013. M4 is isomorphic to a subalgebra of the complex
algebra of the 13-element cyclic group Z13, and M4 has exactly two other
representations, both on 16-element sets. These happen to be the two good
3-colorings of K16; see [23]. It is likely that Mq is representable for all q ≥ 4;
see [29, Problem 2.7]. This has been shown for several hundred small values of
q; see [1] and [24].

1.12.

Mq can also be described by cycles and atom structures, which are defined for
algebras in NA. The atom structure [29, Definition 3.2] of an algebra A ∈ NA
is

At (A) = 〈At (A) , C, ˘, I〉
where At (A) is the set of atoms of A, C is the set of triples of atoms 〈x, y, z〉
such that x;y ≥ z, ˘ is the restriction of the converse operation of A to the
atoms of A (possible since converses of atoms are atoms), and I = {x : 1, ≥
x ∈ At (A)}. In every NA, C is the union of sets of the form

[x, y, z] = {〈x, y, z〉, 〈x̆, z, y〉, 〈y, z̆, x̆〉, 〈y̆, x̆, z̆〉, 〈z̆, x, y̆〉, 〈z, y̆, x〉}, (1.1)

where x, y, z ∈ At (A). Such sets are called cycles. If 1, is an atom of A, then the
cycle [x, y, z] is said to be an identity cycle if 1, ∈ {x, y, z}, and a diversity cycle
otherwise. If A is symmetric, then a diversity cycle [x, y, z] is said to be a 1-
cycle, 2-cycle, or 3-cycle if the cardinality |{x, y, z}| is 1, 2, or 3, respectively.
For example, the cycles of Mq are all the 2-cycles and 3-cycles, but none of
the 1-cycles.
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1.13.

The complex algebra of the structure 〈A,C, ˘, I〉, where A is a set, C is a
ternary relation on A, ˘ is a unary operation on A, and I ⊆ A, is the Boolean
algebra of all subsets of A supplemented with I as a distinguished element, the
unary complex converse operation defined by X̆ = {x̆ : x ∈ X} for all X ⊆ A,
and the complex relative multiplication defined by

X ;Y = {z : ∃x ∈ X, ∃y ∈ Y, 〈x, y, z〉 ∈ C} (1.2)

for all X,Y ⊆ A. Every complete atomic NA is isomorphic to the complex
algebra of its atom structure [29, Theorem 3.13(2)]. For example, if U is any
set, then Re(U) is equal (hence isomorphic) to the complex algebra of the
structure 〈A,C, ˘, I〉, where

A = {〈u, v〉 : u, v ∈ U},
C = {〈〈u, v〉 , 〈v, w〉 , 〈u,w〉〉 : u, v, w ∈ U},

〈u, v〉̆ = 〈v, u〉 for all u, v ∈ U,

I = {〈u, u〉 : u ∈ U}.

1.14.

The most general definition of Monk algebra would be a finite relation algebra
that has some Mq as a subalgebra. Here we restrict the definition to those al-
gebras that can be obtained from Mq by a process known as “splitting atoms”,
after the analogy between this and the process called “splitting elements” in
cylindric algebras; see [10, p. 386, p. 390].

To “split an atom” in a relation algebra is (omitting some details) to
create a copy of that atom, add the copy to the atom structure of the relation
algebra, and extend the ternary relation of that atom structure to a larger
ternary relation that has all the triples of the old ternary relation plus all those
triples obtainable from them by replacing some or all occurrences of the chosen
atom with its copy. If the chosen atom meets certain minimal conditions (see
[3]) it is called “splittable” and the complex algebra of the extended structure
is a relation algebra. Repetition of this process produces algebras “obtained
by splitting”.

Definition 1.3 (Andréka–Maddux–Németi [3]). Let A and B be atomic relation
algebras. We say that A is obtained from B by splitting if B ⊆ A, every atom
x of A is contained in an atom ξ(x) of B, called the cover of x, and for all
x, y ∈ AtA, if x, y ≤ 0, then

x;y =

{
ξ(x);ξ(y) · 0, if x = y̆

ξ(x);ξ(y) if x = y̆.
(1.3)

Definition 1.4 (Andréka–Maddux–Németi [3, Example 6]). A Monk algebra is
an atomic symmetric integral relation algebra obtained by splitting from some
Mq, 4 ≤ q ∈ ω.
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1.15.

Monk [36] invented a method for constructing non-representable cylindric al-
gebras. He used it to prove that the variety CAn of n-dimensional cylindric
algebras has no finite equational axiomatization. The basic idea will be de-
scribed here for relation algebras. Monk [35] had already shown RRA is not
a finitely based variety by a related method, so perhaps this was his starting
point, prior to working out the cylindric algebraic details.

Let A be a finite integral relation algebra, not necessarily symmetric.
Suppose A extends Mq, 4 ≤ q ∈ ω. In general, a finite integral relation algebra
is representable iff if is isomorphic to a subalgebra of Re(U) for some set
U . Suppose A ∈ RRA. Then A can be embedded in Re(U) by an injective
homomorphism

ϕ : A → P(U × U).

For any u, v ∈ U ,

〈u, v〉 ∈ U × U = ϕ(1) = ϕ

⎛

⎝
∑

a∈At(Mq)

a

⎞

⎠ =
⋃

a∈At(Mq)

ϕ(a),

so 〈u, v〉 ∈ ϕ(a) for some atom a that is uniquely determined by the pair 〈u, v〉.
For any atom a of Mq, ϕ(a) is a symmetric relation, hence

〈u, v〉 ∈ ϕ(x) ⇐⇒ 〈v, u〉 ∈ ϕ(x)

and we may let ϕ(x) be the color of the subset {u, v}. The color is a diversity
atom just in case u and v are distinct. The color of {u} is 1,. A monochromatic
triangle is a set {u, v, w} ⊆ U with three elements such that {u, v}, {v, w},
and {u,w} all have the same color, say a ∈ At (Mq). Translated back to
ordered pairs and ϕ, this implies 〈u, v〉 , 〈v, w〉 , 〈u,w〉 ∈ ϕ(a), hence 〈u,w〉 ∈
ϕ(a · a;a) = ∅, contradicting the fact that a · a;a = 0 in Mq because Mq has
no 1-cycles. Thus the edge-coloring, with q colors, of the complete graph on
vertex set U has no monochromatic triangles, i.e., the edge-coloring is good
according to [4]. But then |U | ≤ q!

∑q
k=0

1
k! by [4, Proposition 19.3.1]. This

bound originates with [7] and is a special case of the Finite Ramsey Theorem.
However, the number of atoms in A is a lower bound on the size of U .

Indeed, for any fixed element u ∈ U there is, for each diversity atom a ∈ At (A),
at least one v ∈ U such that 〈u, v〉 ∈ ϕ(a), because 〈u, u〉 ∈ ϕ(1,) ⊆ ϕ(a;a) =
ϕ(a)|ϕ(a), and distinct atoms a, b yield distinct elements, for if 〈u, v〉 ∈ ϕ(a)
and 〈u,w〉 ∈ ϕ(b), then 〈v, w〉 ∈ ă;b ≤ 0, since a = b. There must be at least
|At (A) | additional elements in U besides u, so we have

|At (A) | ≤ |U | ≤ q!
q∑

k=0

1
k!

.

The number of atoms in A and q are essentially independent parameters, sub-
ject only to the requirement that the former is bigger than the latter. The
number of atoms in A can be increased by splitting without changing the fact
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that Mq ⊆ A. Eventually the inequalities above are violated, and the contra-
diction shows that A /∈ RRA. If we know nothing more about the structure
of A than Mq ⊆ A, then perhaps A /∈ SRRAc. But if we start with Mq and
get A by splitting, then A is a Monk algebra, according to Definition 1.4, so
by Corollary 4.8, A ∈ SRRAc whenever Mq has six or more colors. Note that
A must have enough atoms that A /∈ RRA for this to be interesting, because
if A ∈ RRA then A ∈ RRAc. Indeed, it is suspected that Mq ∈ RRAc for all
q ≥ 4.

2. Special extensions

Assume A is a Monk algebra obtained from Mq by splitting. Consider a sub-
algebra E ⊆ Mq ⊆ A. Then the Monk algebra A extends its subalgebra E in a
way that, for want of a better name, we simply call “special”.

Definition 2.1. If A and E are finite symmetric integral relation algebras, then
A is said to be a special extension of E if E ⊆ A and for all diversity atoms
0, ≥ a, b, c ∈ At (E),
(1) if not (a = b = c) and a;b ≥ c then x;y ≥ c whenever a ≥ x ∈ At (A)

and b ≥ y ∈ At (A),
(2) if a;a ≥ a then x;y · a = 0 whenever a ≥ x, y ∈ At (A).

Every finite symmetric integral relation algebra is a special extension of
itself. Every finite symmetric integral relation algebra is also a special extension
of its minimum subalgebra, the one whose atoms are 1, and 0,.

Lemma 2.2. Every Monk algebra obtained from Mq by splitting is a special
extension of every subalgebra of Mq.

Proof. Assume Mq ⊆ A, 4 ≤ q,A is a Monk algebra obtained from Mq by
splitting, and ξ(x) is the atom of Mq containing the atom x of A. Consider a
subalgebra E ⊆ Mq ⊆ A and diversity atoms 0, ≥ a, b, c ∈ At (E).

To show part (1) of Definition 2.1, we assume not (a = b = c), a;b ≥
c, a ≥ x ∈ At (A), and b ≥ y ∈ At (A). We want to prove x;y ≥ c. Note that
x ≤ ξ(x) ≤ a and y ≤ ξ(y) ≤ b. There are two cases. If ξ(x) = ξ(y) then
ξ(x);ξ(y) = 0, by Definition 1.2, and x = y, so by Definition 1.3,

x;y = ξ(x);ξ(y) · 0, = 0, ≥ c,

as desired. Assume ξ(x) = ξ(y). Then a = b since a and b are atoms of E with
a non-empty intersection, hence a = b = c by the assumption not (a = b = c).
Since a and c are distinct atoms, a ≥ c. By Definitions 1.2 and 1.3 we get

x;x = ξ(x);ξ(x) = ξ(x) ≥ a ≥ c,

and if x = y then

x;y = ξ(x);ξ(y) · 0, = ξ(x);ξ(x) · 0, ≥ c.

For part (2) of Definition 2.1, we assume a ≥ x, y ∈ At (A) and a;a ≥ a.
We wish to show that x;y · a = 0. Again there are two cases. If ξ(x) = ξ(y)
then ξ(x);ξ(y) = 0, by Definition 1.2, and x = y, so by Definition 1.3, x;y =
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ξ(x);ξ(y) · 0, = 0, ≥ a, hence x;y · a = 0. Assume ξ(x) = ξ(y) = u. Note that
x+y ≤ u ≤ a ≤ 0,, and a cannot be the atom u of Mq because the assumption
a;a ≥ a fails for all diversity atoms of Mq by Definition 1.2. Since a is not an
atom of Mq, a is the join of two or more atoms of Mq, hence there is some atom
v ∈ At (Mq) such that u = v ≤ a, hence u ≥ v. By Definitions 1.2 and 1.3,
either x;y = u ;u = u ≥ v or x;y = u ;u ·0, = u ·0, ≥ v, so 0 = x;y ·v ≤ x;y ·a,
as desired. �

Lemma 2.2 suggests that we consider an arbitrary subalgebra E of Mq.
Every subalgebra contains 1,, but 1, is an atom in Mq, so it is an atom in E as
well. Thus E is integral, but E is also symmetric since it is a subalgebra of a
symmetric algebra. The diversity atoms of E are disjoint and join up to 0,, so
they partition the diversity atoms of Mq. In every relation algebra, the relative
product a;b of distinct diversity atoms a, b of E is included in 0,. On the other
hand, in this case we have a;b ≥ 0, because there are atoms x, y of Mq such
that a ≥ x, b ≥ y, and a;b ≥ x;y = 0, by Definition 1.2. Every diversity atom
of a ∈ E satisfies either a;a = 1 or a;a = a, for if a is an atom of Mq (as well
as E) then a;a = a by Definition 1.2, while if a is not an atom of Mq, then it
is the join of two or more atoms of Mq, say a ≥ e1 + e2, so

a;a ≥ (e1 + e2);(e1 + e2)
= e1 ;e1 + e1 ;e2 + e2 ;e1 + e2 ;e2
= e1 + 0, + 0, + e2 Definition 1.2
= 1.

Every subalgebra of Mq can therefore be characterized by just two parameters:
α, the number of diversity atoms a satisfying a;a = a, and β, the number of
diversity atoms satisfying a;a = 1. The number of atoms in the subalgebra
is 1 + α + β. The only restrictions on these parameters are α + 2β < q and
0 < α + β.

3. An infinite atom structure from two finite algebras

In this section we use an arbitrary finite symmetric non-associative relation
algebra A in which 1, is an atom and its subalgebra E to construct a complete
atomic algebra CE(A) ∈ NA that has subalgebras isomorphic to A and E. To
define a complete atomic NA, as in the following definition, it is enough to
describe its atom structure.

Definition 3.1. Assume E ⊆ A ∈ NA are finite symmetric non-associative
relation algebras, and 1, is an atom of A. Then CE(A) is a complete atomic
NA with this atom structure: the atoms of CE(A) are 1, and the ordered pair
x(i) for every diversity atom x of A and every index i ∈ ω,

At (CE(A)) = {1,} ∪ {x(i) : 0, ≥ x ∈ At (A) , i ∈ ω}, (3.1)

the converse of every atom is itself, if T ⊆ ω3 is defined for i, j, k ∈ ω by

T (i, j, k) ⇐⇒ (i ≤ j = k) ∨ (j ≤ k = i) ∨ (k ≤ i = j),
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and ξ(x) is the atom of E containing the atom x of A, then the cycles of CE(A)
are, for all 0, ≥ x, y, z ∈ At (A) and i, j, k ∈ ω,

[1,, 1,, 1,], [1,, x(i), x(i)], (3.2)

[x(i), y(j), z(k)] if x;y ≥ z ∧ (ξ(x) = ξ(y) = ξ(z) ⇒ T (i, j, k)). (3.3)

For any a ∈ A and n ∈ ω, define the element J(a, n) of CE(A) by

J(a, n) =
∑

{x(i) : 0, · a ≥ x ∈ At (A) , n ≤ i ∈ ω} +
∑

{1, : 1, ≤ a}. (3.4)

If x is an atom of A, formula (3.4) takes the simpler form

J(x, n) =

{∑{x(i) : n ≤ i ∈ ω} if x ≤ 0,

1, if x = 1,
. (3.5)

Lemma 3.2. Assume 0, ≥ x, y ∈ At (A) , i, j ∈ ω, and i = j.
(1) If ξ(x) = a then

x(i) ;x(i) = J(0, · a · x;x, 0) +
∑

{z(k) : k ≤ i, a · x;x ≥ z ∈ At (A)} + 1,,

x(i) ;x(j) = J(0, · a · x;x, 0) +
∑

{z(max(i,j)) : a · x;x ≥ z ∈ At (A)},

(2) If ξ(x) = ξ(y) then

x(i) ;y(j) = J(x;y, 0) =
∑ {

z(k) : x;y ≥ z ∈ At (A) , k ∈ ω
}
,

(3) If x = y and ξ(x) = ξ(y) = a then

x(i) ;y(j) = J(0, · a · x;y, 0) +
∑

{z(max(i,j)) : a · x;y ≥ z ∈ At (A)},

x(i) ;y(i) = J(0, · a · x;y, 0) +
∑

{z(k) : k ≤ i, a · x;y ≥ z ∈ At (A)}.

Start with a finite symmetric integral relation algebra A in which every
diversity atom is splittable in the sense of [3]. Let Aω ⊇ A be the relation
algebra obtained by splitting every diversity atom a ∈ At (A) into ω pieces
a(0), a(1), · · · so that a =

∑
i∈ω a(i). Splitting produces the maximum set of

cycles in the extension Aω ⊇ A that are consistent with containing A as a
subalgebra. Let E ⊆ A be a subalgebra of A. From the atom structure of Aω

we obtain a new atom structure whose complex algebra is, in fact, isomorphic
to CE(A), by deleting all the diversity cycles [a(i), b(j), c(k)] of Aω which have
the property that all the atoms in the cycle lie below the same atom of E,
and T (i, j, k) fails to hold. This leaves only a thin remnant of the cycles of
Aω that we would classify as 1-cycles of E (because their atoms all lie below
a single atom of E). The set of 1-cycles produced by splitting is significantly
reduced by imposing the thinning condition T (i, j, k). Those cycles of A that
are covered by 1-cycles of E are thinly reproduced in CE(A), while the 2- and
3-cycles of A that are covered by 2- or 3-cycles of E are split into as many cycles
as possible. Treating 1-, 2-, and 3-cycles differently in various combinations,
either thinning or splitting each type of cycle, gives six more constructions
that perhaps should be examined with regard to Problem 1.1(1).
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Lemma 3.3. A is isomorphic, by a �→ J(a, 0), to a subalgebra A′ of CE(A),

A ∼= A′ ⊆ CE(A).

Proof. Define the function ϕ : A → CE(A) by ϕ(a) = J(a, 0) for all a ∈ A.
For a key part of the proof that ϕ embeds A into CE(A), assume 0, ≥ x, y ∈
At (A). We wish to prove that ϕ(x);ϕ(y) and ϕ(x;y) contain the same diversity
atoms of CE(A). (Proofs for the other parts, involving preservation by ϕ of the
Boolean structure and identity element, are fairly easy.)

Consider an arbitrary diversity atom z(k) ∈ At (CE(A)), where 0, ≥ z ∈
At (A) , k ∈ ω. Assume z(k) ≤ ϕ(x);ϕ(y). Then there are u, v ∈ At (CE(A))
such that z(k) ≤ u ;v, ϕ(x) ≥ u ∈ At (CE(A)), and ϕ(y) ≥ v ∈ At (CE(A)).
By (3.5) there are some i, j ∈ ω such that u = x(i) and v = y(j). But then
[x(i), y(j), z(k)] is a cycle of CE(A), so x;y ≥ z in A, which implies z(k) ≤
J(x;y, 0), hence z(k) ≤ ϕ(x;y). The argument is reversible. �

CE(A) satisfies all the axioms for relation algebras except possibly the
associative law, so CE(A) ∈ NA. Here is a computational lemma needed several
times later.

Lemma 3.4. Assume A is a special extension of E, a, b are distinct diversity
atoms of E, and u, v are diversity atoms of CE(A). If u ≤ J(a, 0) and v ≤
J(b, 0) then u ;v = J(a;b, 0). In particular, if a;b = 0,, then u ;v = 0,.

Proof. From u ≤ J(a, 0) and v ≤ J(b, 0) we have x(i) = u, y(j) = v, x ≤ a =
ξ(x), and y ≤ b = ξ(y), for some x, y ∈ At (A) and i, j ∈ ω. The covers of
x and y are different because x ≤ ξ(x) = a = b = ξ(y) ≥ y. Lemma 3.2(2)
applies in this case and says that x(i) ;y(j) = J(x;y, 0). Note that x;y ≤ a;b.
Since A is a special extension of E, we deduce from Definition 2.1(1) that every
atom of E below a;b is also below x;y, hence x;y = a;b. We conclude that
u ;v = x(i) ;y(j) = J(x;y, 0) = J(a;b, 0). If a;b = 0,, then u ;v = J(0,, 0), but
J(0,, 0) is the diversity element 0, of CE(A), so u ;v = 0,. �

4. Embedding Monk algebras

Theorem 4.1 below shows that when A is a special extension of E and R is the
subalgebra of CE(A) generated by the atoms of CE(A), the finitely generated
subalgebras of R are finite. Suppose A is a Monk algebra obtained from Mq

by splitting and E is a subalgebra of Mq:

E ⊆ Mq ⊆ A. (4.1)

By Lemma 2.2, A is a special extension of E, so Theorem 4.1 applies to A
and E. We show in Theorem 4.7(1)–(2) below that if, in addition, E has a
flexible trio (see Definition 4.5) then R is representable because every finitely
generated subalgebra of R is included in a finite subalgebra of R that has
the 1-point extension property (see Definition 4.4). In example (4.1), if 7 ≤ q
(Mq has at least six colors) then Mq has a subalgebra E with a flexible trio,
so R ∈ RRA by Theorem 4.7(1)–(2). We show in Theorem 4.7(3) that if A
has no 1-cycles then the completion of R is not representable. Theorem 4.7(3)
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applies to A because Monk algebras have no 1-cycles. Corollary 4.8 accordingly
says that every finite Monk algebra with six or more colors is a subalgebra of
the non-representable completion of an atomic representable relation algebra
whose finitely-generated subalgebras are finite.

The conclusion that CE(A) /∈ RRA can be obtained without
Theorem 4.7 (3) in case the Monk algebra A is non-representable, which hap-
pens if the number of atoms is large compared to the number of colors. In
this case the completion of R is non-representable simply because it has a
non-representable subalgebra isomorphic to the non-representable Monk alge-
bra A, so CE(A) ∈ RRAc and A ∈ SRRAc.

In Theorem 4.1 we only assume the extension E ⊆ A is special. In Theo-
rem 4.7 we also consider what happens when, in addition, E has a flexible trio
and A has no 1-cycles.

Theorem 4.1. Assume A and E are finite symmetric integral relation algebras
and A is a special extension of E:

E ⊆ A.

Let R ⊆ CE(A) be the subalgebra of CE(A) generated by At (CE(A)).
(1) R is countable, atomic, symmetric, integral, and generated by its atoms.
(2) CE(A) and R have the same atom structure.
(3) CE(A) is isomorphic to the complex algebra of the atom structure of R.
(4) CE(A) is the completion of R.
(5) There are subalgebras E′ ∼= E and A′ ∼= A such that

E′ ⊆ A′ ⊆ CE(A).

(6) Every finitely generated subalgebra of R is finite.

Proof. Parts (1)–(4) require only the assumption that CE(A) is complete and
atomic and R is the subalgebra of CE(A) generated by the atoms of CE(A).
Everything in parts (1)–(4) is either obvious or very easy to prove; see [29,
Theorem 3.13] for part (3). Part (4) holds because CE(A) is complete and R
is dense in CE(A). Part (5) was proved in Lemma 3.3. The assumption that A
is a special extension of E is needed only for the following Lemma 4.2, which
is used to prove part (6).

Lemma 4.2. For every n ∈ ω, there is a subalgebra of CE(A) whose set of
atoms is

Zn = {1,} ∪ {x(i) : 0, ≥ x ∈ At (A) , n > i ∈ ω} (4.2)

∪ {J(a, n) : 0, ≥ a ∈ At (E)}.

Proof. The elements of Zn are disjoint and their join is 1, so the set of joins of
subsets of Zn is closed under the Boolean operations of CE(A) and, under those
operations, forms a Boolean algebra whose set of atoms is Zn. The converse of
everything in Zn is again in Zn because conversion is the identity function on
CE(A). What remains is to show the relative product u ;v of any two elements
u, v ∈ Zn is the join of a subset of Zn. For this it is enough to show that
every element w ∈ Zn is contained in or disjoint from u ;v. This is clearly true
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whenever u = 1, or v = 1, or w is itself an atom of CE(A), so we may assume
w = J(a, n), for some a ∈ At (E), and u + v ≤ 0,. We will show that if u ;v has
nonempty intersection with J(a, n) then u ;v contains J(a, n).

Suppose u ;v · J(a, n) = 0, where 0, ≥ u, v ∈ Zn, 0, ≥ a ∈ At (E). Then
there are x, y, z ∈ At (A) and i, j, k ∈ ω such that x(i) ≤ u, y(j) ≤ v, z(k) ≤
J(a, n), and x(i) ;y(j) ≥ z(k). For both cases below, note that ξ(z) = a and
n ≤ k by (3.4), and x;y ≥ z by (3.3).
Case 1. not (ξ(x) = ξ(y) = ξ(z)). From x;y ≥ z we get x;y · ξ(z) = 0 since
0 = z ≤ ξ(z), hence x;y ≥ ξ(z) = a by Definition 2.1(1) and ξ(z)a ∈ At (E).
The implication in (3.3) has a false hypothesis and therefore holds trivially
in this case for every atom of A below a. It follows by (3.3) and (3.4) that
x(i) ;y(j) ≥ J(a, 0) ≥ J(a, n).
Case 2. ξ(x) = ξ(y) = ξ(z) = a. In this case, by x(i) ;y(j) ≥ z(k) and (3.3) we
have T (i, j, k). By T (i, j, k) and n ≤ k, either j < n ≤ i = k, i < n ≤ j = k,
or n ≤ k ≤ i = j, hence either u = J(a, n) and v = y(j), or u = x(i) and
v = J(a, n), or u = v = J(a, n), respectively. Since CE(A) is symmetric,
the first two cases are really the same, and for them it is enough to prove
x(i) ;J(a, n) ≥ J(a, n) assuming i < n. In the third case it enough to show
x(n) ;J(a, n) ≥ J(a, n), for then J(a, n);J(a, n) ≥ J(a, n) follows by x(n) ≤
J(a, n). We will do both inclusions together.

Suppose w(l) ≤ J(a, n) where n ≤ l ∈ ω and w ≤ a = ξ(w). From
x;y ≥ z and ξ(x) = ξ(y) = ξ(z) = a we get a;a · a = 0, but x ≤ a and w ≤ a,
so x;w · a = 0 by Definition 2.1(2). We may therefore choose an atom t ∈ A
such that t ≤ x;w · a. By assumption i < n ≤ l, hence T (i, l, l) and T (n, l, l).
From ξ(t) = a, T (i, l, l), and T (n, l, l), we conclude that [x(i), t(l), w(l)] and
[x(n), t(l), w(l)] are cycles of CE(A) by (3.3). Noting that t(l) ≤ J(a, n) since
t ≤ a and n ≤ l, we have

w(l) ≤ x(i) ;t(l) · x(n) ;t(l) ≤ x(i) ;J(a, n) · x(n) ;J(a, n).

Since this holds for all atoms w(l) below J(a, n), we have proved

J(a, n) ≤ x(i) ;J(a, n) · x(n) ;J(a, n).

We have shown that every product of two elements of Zn is the join of a subset
of Zn. It follows that u ;v =

∑{w : u ;v ≥ w ∈ Zn} for all u, v ∈ Zn. Hence,
for all U, V ⊆ Zn, we have

∑
U ;

∑
V =

∑{u ;v : u ∈ U, v ∈ V }
=

∑{∑{w : u ;v ≥ w ∈ Zn} : u ∈ U, v ∈ V }
=

∑{w : u ;v ≥ w ∈ Zn, u ∈ U, v ∈ V }
∈ {∑ X : X ⊆ Zn}.

Therefore {∑X : X ⊆ Zn} is closed under relative multiplication and is a
subalgebra of CE(A). �

The subalgebras mentioned in Lemma 4.2 may contain elements that
do not appear in the subalgebra R generated by the atoms of CE(A). For
example, let A be a finite symmetric non-associative relation algebra in which



Vol. 79 (2018) Subcompletions of representable relation algebras Page 15 of 32 20

1, is an atom, there are at least two diversity atoms, and the atom structure
has all 1-cycles, no 2-cycles, and no 3-cycles, i.e., for distinct diversity atoms
a, b, a;a = 1, + a and a;b = 0. Let E = A. Since the only cycles in A are
1-cycles, (3.3) implies that the relative product of any two atoms of CE(A) is
empty or an atom. Therefore R is the subalgebra whose elements are joins of
either finitely many, or else cofinitely many, atoms. For every diversity atom
a ∈ At (A) and every n ∈ ω, J(a, n) is an element of Zn but it is not in
R because it is the join of an infinite and coinfinite set of atoms of CE(A)
(for which we need to know there are at least two diversity atoms in A). In
particular, J(a, 0) is an atom of E′ = A′ that is not in R.

We return to the proof of Theorem 4.1. Suppose F is a finitely generated
subalgebra of R. Since R is itself generated by At (CE(A)), there is a finite set
of atoms X ⊆ At (CE(A)) such that F is contained in the subalgebra of CE(A)
generated by X. Since X is finite and At (CE(A)) ⊆ ⋃

n∈ω Zn, we may choose
a sufficiently large n ∈ ω so that X ⊆ Zn. By Lemma 4.2, F is contained in
the subalgebra {∑X : X ⊆ Zn} of CE(A) generated by Zn. This subalgebra
is finite since its set of atoms is the finite set Zn, so F is also finite. Hence (6)
holds. �

As it happens, every finitely-generated subalgebra of CE(A) (not just R)
is also finite, even if the extension E ⊆ A is not special. To prove this, one
argues that for every finite subset F of CE(A) there is some n ∈ ω and some
finite partition P of {i : n ≤ i ∈ ω} such that

{1,} ∪ {x(i) : x ∈ At (A) , n > i ∈ ω} ∪ {∑{x(i) : i ∈ P} : x ∈ At (A) , P ∈ P}
is the set of atoms of a subalgebra of CE(A) that contains F . The remaining
details of this proof are omitted since this fact is not needed and it is also
not in itself enough to prove Lemma 4.2. On the other hand, changing E to A
in (4.2) yields a special case that is easy to prove and needed later.

Lemma 4.3. Assume A ⊇ E are finite symmetric integral relation algebras. For
every n ∈ ω,

{1,} ∪ {x(i) : 0, ≥ x ∈ At (A) , n > i ∈ ω} ∪ {J(a, n) : 0, ≥ a ∈ At (A)}. (4.3)

is the set of atoms of a subalgebra of CE(A).

Proof. The proof is similar to, but simpler than, the proof of Lemma 4.2. The
closure of the set of joins of subsets of (4.3) under relative multiplication is an
immediate consequence of Lemma 3.2(1)–(3). �

For the next theorem we need some definitions. A relation algebra has
the 1-point extension property if, loosing speakly, every “finite partial repre-
sentation” μ can be extended by one point wherever this is needed. We make
this precise as follows.

Definition 4.4. For any k ∈ ω and any atomic relation algebra A, Bk(A) is the
set of functions μ : k × k → At (A) that satisfy the following conditions.

(1) μi,i ≤ 1, for all i < k,
(2) μ̆i,j = μj,i for all i, j < k,
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(3) μi,l ;μl,j ≥ μi,j for all i, j, l < k.

The elements of Bk(A) are called basic matrices. A matrix μ satisfies the
identity condition if, for all l,m < k, μl,m ≤ 1, iff l = m. The algebra A
has the 1-point extension property if, assuming μ ∈ Bk(A), μ satisfies the
identity condition, x, y are diversity atoms of A, i, j < k, and μi,j ≤ x;y, there
is a basic matrix μ′ ∈ Bk+1(A) satisfying the identity condition such that
μ′

i,k = x, μ′
k,j = y, and μl,m = μ′

l,m for all l,m < k.

Definition 4.5. An atom a of a symmetric integral relation algebra is said to
be flexible atom if a;a = 1 and x;a = 0, for all diversity atoms x distinct from
a. Three diversity atoms a, b, c of a symmetric integral relation algebra A are
said to be a flexible trio if

a;a = b;b = c;c = 1, (4.4)

a;b = a;c = b;c = 0,, (4.5)

and, for every atom x /∈ {1,, a, b, c},

x;a = x;b = 0, ∨ x;a = x;c = 0, ∨ x;b = x;c = 0,. (4.6)

Having a flexible atom is a sufficient condition for representability on an
infinite set; see Comer [6, 5.3] or [31, Theorem 6]. Since every proper subalgebra
of Mq has at least one atom a satisfying a;a = 1 and this atom is flexible by
Definition 1.2, every proper subalgebra of Mq is representable. Theorem A.1
(relegated to “Appendix A”) shows that having a flexible trio is also sufficient
for representability on an infinite set. The Flexible Atom Conjecture states
that every finite symmetric integral relation algebra with a flexible atom is
representable on a finite set. This has been proven in some special cases [2],
and suggests a similar problem.

Problem 4.6 (Flexible Trio Conjecture). Show that every finite symmetric
integral relation algebra with a flexible trio is representable on a finite set.

If each of a, b, and c is a flexible atom then a, b, c is a flexible trio. For
example, if q ≥ 7 and the diversity atoms of Mq are grouped into three twos
plus the rest, the resulting subalgebra has three flexible atoms that together
make up a flexible trio. It can also happen that a, b, c is a flexible trio while
none of a, b, c is flexible. For example, the symmetric integral relation algebra
with seven atoms 1,, a, b, c, d, e, f and all diversity cycles except [a, d, d], [b, e, e],
and [c, f, f ] has no flexible atoms, but a, b, c is a flexible trio. (This is probably
the unique smallest example among symmetric integral relation algebras.)

In Monk algebras with at least six colors there are at least three pairs of
diversity atoms, so Theorem 4.7 below applies to them. However, many other
algebras also satisfy its hypotheses. For an example, let A be the symmet-
ric integral relation algebra whose atoms are 1,, a1, a2, a3, b1, b2, b3, c1, c2, c3,
and whose diversity cycles consist of none of the 1-cycles, all of the 2-cycles,
and all the 3-cycles except [a1, a2, a3], [b1, b2, b3], and [c1, c2, c3]. Let E be the
subalgebra of A whose atoms are 1,, a = a1 + a2 + a3, b = b1 + b2 + b3,
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and c = c1 + c2 + c3. Then A is a special extension of E, a, b, c is a flexi-
ble trio of E, and A has no 1-cycles, so Theorem 4.7 applies, but A is not
a Monk algebra (in the narrow sense of Definition 1.4). More than 3000 ad-
ditional examples can be obtained by deleting any or all of the following 2-
cycles: [a1, a2, a2], [a2, a3, a3], [a1, a1, a3], [b1, b2, b2], [b2, b3, b3], [b1, b1, b3], [c1, c2,
c2], [c2, c3, c3], [c1, c1, c3], and restoring any or all of the deleted 3-cycles, but at
least one of the 2- or 3-cycles must be deleted to insure A is not a Monk alge-
bra of Definition 1.4. This scheme retains enough 2-cycles that the extension
is always special.

Theorem 4.7. Assume E ⊆ A are finite symmetric integral relation algebras,
A is a special extension of E, and E has a flexible trio. If R is the subalgebra
of CE(A) generated by At (CE(A)), then
(1) every finitely generated subalgebra of R is contained in a subalgebra of

CE(A) that has the 1-point extension property,
(2) R is representable,
(3) if A has no 1-cycles, i.e., u ;u · u = 0 whenever 1, = u ∈ At (A), then the

completion of R is not representable.

Proof. Suppose F is a finitely generated subalgebra of R. By the argument
at the end of the proof of Theorem 4.1, there is some n ∈ ω such that F is
contained in the subalgebra Zn of CE(A) with atoms At (Zn) = Zn; see (4.2).
Let a, b, c be a flexible trio of E. We will show that J(a, n), J(b, n), J(c, n) is a
flexible trio of Zn. Consider the product of the first two elements of the trio.
Note that J(a, n);J(b, n) ≤ 0, since J(a, n) and J(b, n) are disjoint atoms of
Rn. We have

J(a, n);J(b, n) =
∑

{u ;v : J(a, n) ≥ u ∈ At (CE(A)) ,

J(b, n) ≥ v ∈ At (CE(A))}
but every disjunct u ;v in this last join is 0, by Lemma 3.4 and the assump-
tion a;b = 0,, so J(a, n);J(b, n) = 0,. Similarly, J(a, n);J(c, n) = 0, =
J(b, n);J(c, n). Thus (4.5) holds.

For (4.6), consider a diversity atom of Rn that is not one of J(a, n), J(b, n),
or J(c, n). It is either an atom of CE(A) or an atom of Rn with the form J(d, n),
where d is a diversity atom of E distinct from a, b, c.

We first consider J(d, n). Now d multiplies to 0, with two of a, b, c by (4.6),
say a;d = b;d = 0,. Choose atoms x, y of A with x ≤ a and y ≤ d. Then
J(a, n);J(d, n) ≤ 0, since J(a, n) and J(d, n) are disjoint, and

J(a, n);J(d, n) ≥ x(n) ;y(n),

but x(n) ;y(n) = 0, by Lemma 3.4 because a;d = 0,, so J(a, n);J(d, n) = 0,.
Similarly J(b, n);J(d, n) ≥ 0,, so the atom J(d, n) multiplies to 0, with two of
J(a, n), J(b, n), J(c, n), as desired.

Next consider a diversity atom u of CE(A). It has the form u = x(i)

for some diversity atom x of A and some i < n. We claim that the product
of ξ(x) with (at least) two elements in the trio a, b, c is 0,, say a;ξ(x) =
b;ξ(x) = 0,. This follows from (4.6) if ξ(x) is a diversity atom distinct from
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a, b, c, but if ξ(x) is one of a, b, c, then it follows from (4.5). Choose an atom
a ≥ y ∈ At (A). Then x(i) ;J(a, n) ≥ x(i) ;y(n) = 0, by a;d = 0, and Lemma 3.4.
Similarly x(i) ;J(b, n) = 0,, so the atom u = x(i) multiplies to 0, with two of
J(a, n), J(b, n), J(c, n), as desired. This finishes the proof of (4.6) for J(a, n),
J(b, n), J(c, n).

For (4.4), we will prove J(a, n);J(a, n) = 1 from a;a = 1. Assume u =
x(i) ∈ At (CE(A)) , 0, ≥ x ∈ At (A), and i ∈ ω. Then x ≤ 1 = a;a =

∑{y ;z :
a ≥ y, z ∈ At (A)} so there are atoms a ≥ y, z ∈ At (A) such that x ≤ y ;z.
Note that ξ(y) = ξ(z) = a. Choose any j such that max(i, n) ≤ j ∈ ω.
Then T (i, j, j) holds, so [x(i), y(j), z(j)] is a cycle of CE(A) by (3.3), hence
u = x(i) ≤ y(j) ;z(j) ≤ J(a, n);J(a, n). This shows J(a, n);J(a, n) = 1, and we
obtain J(b, n);J(b, n) = 1 = J(c, n);J(c, n) similarly from b;b = c;c = 1.

This completes the proof that J(a, n), J(b, n), J(c, n) is a flexible trio of
Zn. By Theorem A.1 below, Zn has the 1-point extension property and is there-
fore representable. Every finitely generated subalgebra of R is representable,
hence R is representable since RRA is a variety. Thus parts (1) and (2) hold.

For part (3), assume that u ;u · u = 0 whenever 1, = u ∈ At (A). By
Theorem 4.1(4), we need to show CE(A) is not representable. Suppose that ρ
is a representation of CE(A) sending elements of CE(A) to binary relations on
U . Since CE(A) is infinite, U must also be infinite. The diversity relation on U
is partitioned into finitely many symmetric binary diversity relations, namely
ρ(J(a, 0)) with 1, = a ∈ At (A). Because the relations are symmetric, this
partition may be viewed as a partition of the two-element subsets of U into
finitely many parts, so by Ramsey’s Theorem, there is some diversity atom a
of A and some infinite subset H ⊆ U such that all pairs of distinct elements
of H are in ρ(J(a, 0)). Since A has no 1-cycles,

ρ(J(a, 0))|ρ(;J(a, 0)) ∩ ρ(J(a, 0)) = ρ(J(a, 0);J(a, 0) · J(a, 0)) = ρ(0) = ∅,

hence there cannot even be a three-element subset of U whose diversity pairs
are all in ρ(J(a, 0)), so we have a contradiction. �

Corollary 4.8. If A is a finite Monk algebra with six or more colors then A ∈
SRRAc. In fact, A is a subalgebra of the completion of a representable relation
algebra R ∈ RRA such that

(1) R is a countable, atomic, symmetric, integral relation algebra that is gen-
erated by its atoms,

(2) every finitely generated subalgebra of R is contained in a finite subalgebra
of R with the 1-point extension property,

(3) the completion of R has the same atom structure as R, is isomorphic to
the complex algebra of the atom structure of R, and is not representable.

The smallest example to which these considerations apply is M7. This
algebra is a Monk algebra with six colors and no 1-cycles, obtained from itself
by splitting. By the method of Comer [5], M7 ∈ RRA because M7 has represen-
tations on sets containing 97, 157, and 277 elements. But M7 = Mc

7 since M7

is finite, so M7 ∈ RRAc ⊆ SRRAc. Thus the first conclusion of Corollary 4.8
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holds for rather simple reasons, but from the rest of Corollary 4.8 we get a
non-representable completion of a representable relation algebra.

Suppose the diversity atoms of M7 are e1, . . . , e6. Let a1 = e1 +e2, a2 =
e3 + e4, and a3 = e5 + e6. Then A is a special extension of the subalgebra
E whose atoms are 1,, a1, a2, a3, and a1, a2, a3 is a flexible trio of individually
flexible atoms in E. CE(M7) is the non-representable completion of the atomic
representable subalgebra of CE(M7) generated by At (CE(M7)). In the next
section we compute the exact degree of non-representability of CE(M7).

5. Cylindric algebras

CAn is the class of n-dimensional cylindric algebras; see [10, 1.1.1]. Given a
cylindric algebra D ∈ CAn of dimension n ≥ 3, the relation algebraic reduct
Ra (D) is defined in [11, Definition 5.3.7] and is a relation algebra if n ≥ 4 by
[11, Theorem 5.3.8]. For any class K ⊆ CAn with 3 ≤ n, let RaK be the class
of relation algebraic reducts of subalgebras of neat 3-dimensional reducts of
algebras in K:

RaK = Ra∗SNr3K. (5.1)

By [11, 5.3.9, 5.3.16, 5.3.17], we have

RRA =
⋂

n∈ω

RaCAn+4 ⊆ · · · ⊆ RaCA5 ⊆ RaCA4 = RA. (5.2)

Every non-representable relation algebra lies somewhere on this chain. The
location of the example CE(M7) is determined by the main result in this
section, which implies

CE(M7) ∈ RaCA7 ∼RaCA8. (5.3)

Definition 5.1. Assume A ∈ NA is atomic and k ≤ ω. Two basic matrices μ and
μ′ in Bk(A) agree up to i if μl,m = μ′

l,m whenever i = l,m ∈ k, and they agree
up to i, j if μl,m = μ′

l,m whenever i, j = l,m ∈ k. We say that M ⊆ Bk(A) is
an k-dimensional relational basis for A if
(1) for every atom a ∈ At (A) there is a basic matrix μ ∈ M such that

μ0,1 = a,
(2) if μ ∈ M, i, j < k, x, y ∈ AtA, μi,j ≤ x;y, and i, j = l < k, then there is

some μ′ ∈ M such that μ and μ′ agree up to l, μ′
i,l = x, and μ′

l,j = y.
For any i, j < k let

T k
i (A) = { 〈μ, μ′〉 ∈ Bk(A) × Bk(A) : μ and μ′ agree up to i } ,

Ek
i,j(A) = { μ ∈ Bk(A) : μi,j ≤ 1, } .

We say that M ⊆ BkA is a k-dimensional cylindric basis for A if
(3) if a, b, c ∈ At (A), and a ≤ b;c, then there is a basic matrix μ ∈ M such

that μ01 = a, μ02 = b, and μ21 = c,
(4) if μ, μ′ ∈ M, i, j < k, i = j, and μ agrees with μ′ up to i, j, then there is

some μ′′ ∈ M such that μ′′ agrees with μ up to i, and μ′′ agrees with μ′

up to j, i.e., 〈μ′′, μ〉 ∈ T k
i (A) and 〈μ′′, μ′〉 ∈ T k

j (A),
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(5) if μ ∈ M and i, j < k then μ[i/j] ∈ M, where [i/j](m) = m if i = m < k,
and [i/j](i) = j.

For every M ⊆ Bk(A), let

Ca (M) = Cm
(
〈M, Ti, Eij〉i,j<k

)
(5.4)

be the complex algebra of the relational structure 〈M, Ti, Eij〉i,j<k, as defined
in [10, 2.7.33], where Eij = Ek

i,j(A) ∩ M and Ti = T k
i (A) ∩ (M × M) for all

i, j < k.

Theorem 5.2. Assume 4 ≤ r ∈ ω,A = Mr+3, and the atoms of A are

e0 = 1,, e1, e2, e3, e4, e5, e6, . . . , er+2.

Then A is a special extension of a subalgebra E whose r atoms are

a0 = e0 = 1,, a1 = e1 + e2, a2 = e3 + e4, a3 = e5 + e6,

a4 = e7, . . . , ar−1 = er+2,

and a1, a2, a3 is a flexible trio of E, so by Theorems 4.1 and 4.7, the atom-
generated subalgebra of the complete atomic relation algebra CE(A) is an atomic
atom-generated symmetric integral representable relation algebra with finite
finitely-generated subalgebras. Furthermore, if 3 ≤ n ≤ r + 3 then
(1) Bn(CE(A)) is an n-dimensional cylindric basis for CE(A),
(2) Ca (Bn(CE(A))) is a complete atomic n-dimensional cylindric algebra,
(3) CE(A) is isomorphic to the relation algebraic reduct of Ca (Bn(CE(A)))

and CE(A) ∈ RaCAn,
(4) Ca (Bn(CE(A))) /∈ SNrnCAr+4.

Proof. By [32, Theorem 7], in order to prove Bn(CE(A)) is a cylindric ba-
sis for CE(A) it is enough to show, given n − 2 pairs of diversity atoms
u1, v1, . . . , un−2, vn−2 of CE(A), that

∏

1≤i≤n−2

ui ;vi = 0. (5.5)

We will find a diversity atom w, such that w is included in every product
ui ;vi, 1 ≤ i ≤ n − 2. Any product ui ;vi that is equal to 0, or 1 imposes no
restriction on our choice of w. We therefore assume that none of the products
is 0, or 1, i.e., 0, = ui ;vi = 1 whenever 1 ≤ i ≤ n − 2. Consequently, for every
product ui ;vi we know that there cannot be distinct atoms a, b ∈ At (E) such
that ui ≤ J(a, 0) and vi ≤ J(b, 0), because we would obtain ui ;vi = J(a;b, 0)
from a = b by Lemma 3.4, and a computation in E shows a;b = 0, since a = b,
forcing ui ;vi = 0, in CE(A), contrary to our assumption that no product is
0, or 1. Therefore, there is a function f : {1, . . . , n − 2} → {1, . . . , r − 1} such
that

ui + vi ≤ J(af(i), 0) for all i ∈ {1, . . . , n − 2}. (5.6)

Suppose some index j ∈ {1, . . . , r − 1} is not in the range of f . Consider any
product ui ;vi with 1 ≤ i ≤ n − 2. Let k = f(i) and note that k = j. There are
atoms x, y ∈ At (A) such that
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x + y ≤ ak = ξ(x) = ξ(y), ui ≤ J(x, 0), vi ≤ J(y, 0). (5.7)

Since k = j, ak ≥ aj . By Lemma 3.2(1), (3) and (5.7), ui ;vi ≥ J(0, · ak · x;y, 0).
If x = y then x;y = 0, in A, so

ui ;vi ≥ J(0, · ak · x;y, 0) = J(0, · ak, 0) ≥ J(aj , 0). (5.8)

If x = y then x;y = x ≥ ak in A, so ak · x;y = ak, and again we have (5.8). By
the way, we’ve shown

if j = f(i) then ui ;vi ≥ J(aj , 0). (5.9)

Since (5.8) holds for every i, we obtain much more than (5.5), in fact,

0 = J(aj , 0) ≤
n−2∏

i=1

ui ;vi. (5.10)

We therefore assume that f is surjective.
Next we show that either (5.5) holds or f is actually maps two distinct

indices onto each of the atoms a1, a2, and a3, i.e., those atoms of E that are
the join of two atoms of A. We prove this only for a1. Since 1 is in the range
of f , we’ll suppose, for specificity and simplicity of notation, that 1 = f(1),
i.e., u1 + v1 ≤ J(a1, 0). We wish to show that 1 = f(i) for some i = 1, so we
assume this does not happen, i.e., assume 1 = f(i) for all i ∈ {2, · · · , n − 2}.
Now a1 = e1 + e2, so there are atoms x, y ∈ {e1, e2} and indices k, l ∈ ω such
that x + y ≤ a1, u1 = x(k), and v1 = y(l). Let m = max(k, l). Notice that
T (k, l,m) holds and Mr+3 contains the 2-cycles [e1, e1, e2] and [e1, e2, e2]. It
follows by (3.3) that

e(k)1 ;e(l)1 ≥ e(m)
2 ,

e(k)1 ;e(l)2 = e(k)2 ;e(l)1 ≥ e(m)
1 + e(m)

2 ,

e(k)2 ;e(l)2 ≥ e(m)
1 .

We may therefore let w = e(m)
2 if x = y = e1, w = e(m)

1 if x = y = e2, and
either w = e1 or w = e2 if x = y. In every case, u1 ;v1 ≥ w. For products
other than u1 ;v1, note that if 2 ≤ i ≤ n − 2, then by our assumption we have
1 = f(i), hence by (5.9), ui ;vi ≥ J(a1, 0) ≥ w. This shows w ≤ ∏n−2

i=2 ui ;vi,
which, together with w ≤ u1 ;v1, gives us (5.5).

At this point we know that either we are done as we have proved (5.5),
or else f maps at least one index from {1, . . . , n − 2} onto each of the indices
in {4, . . . , r−1}, and f maps at least two indices from {1, . . . , n−2} onto each
of the indices in {1, 2, 3}. From |{1, . . . , n−2}| = n−2, |{4, . . . , r−1}| = r−4,
and |{1, 2, 3}| = 3, we have n − 2 ≥ r − 4 + 2 · 3 = r + 2, but our restriction
on r is n ≤ r + 3, a contradiction. Therefore we do in fact know that (5.5)
holds, as desired. This shows Bn(CE(A)) is a cylindric basis for CE(A) and
completes the proof of part (1). Parts (2) and (3) follow from part (1) by [32,
Theorem 10].

For part (4), assume to the contrary that Ca (Bn(CE(A))) ⊆ NrnD
for some D ∈ CAr+4. We get a contradiction by finding a subalgebra F of
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Ca (Bn(CE(A))) which is not in SNrnCAr+4. From Theorem B.1 with p = r+3
we get

Ca (B3(F)) /∈ SNr3CAp+1 = SNr3CAr+4. (5.11)

For this we choose an arbitrary finite parameter N ∈ ω and make it big
enough. For this fixed N there is a finite subalgebra F of CE(A) whose atoms
are 1,, e(j)i and J(ei, N) for 1 ≤ i ≤ r + 2 and j < N . This finite subalgebra
F has a subalgebra isomorphic to Mr+3, whose atoms are 1, and J(ei, 0) for
1 ≤ i ≤ r + 2. By Theorem B.1 below, a finite extension of Mr+3 with enough
atoms satisfies (5.11). By choosing N large enough, the extension F of Mr+3

has enough atoms. �
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Appendix A. A representation result

The next theorem was invoked in the proof of Theorem 4.7.

Theorem A.1. Assume A is an atomic symmetric integral relation algebra con-
taining a flexible trio. Then A has the 1-point extension property and A ∈ RRA.

Proof. Once it has been shown that A has the 1-point extension property,
it follows from some additional observations about the behavior of identity
elements that the set Bk(A) of basic k-by-k matrices of atoms of A is a rela-
tional basis for A whenever k ≥ 3; see Definition 5.1. Then A ∈ RAk for all
k ≥ 3 because A is atomic and has a k-dimensional relational basis, hence,
A ∈ ⋂

k≥3 RAk = RRA by [33, Theorems 415, 418]. In fact, when A is finite
(as in the proof of Theorem 4.1) it is easy to prove directly from the 1-point
extension property that A has a representation on an infinite set.

Assume that a, b, c is a flexible trio of A. We show that there is a function
f such that for any diversity atoms x and y, we have f(x, y) ∈ {a, b, c} and

x;f(x, y) = y ;f(x, y) ≥ 0,. (A.1)

For an arbitrary diversity atom x, consider the set

Γx = {z : x;z ≥ 0,, 0, ≥ z ∈ At (A)}. (A.2)

If x ∈ {a, b, c} then a, b, c ∈ Γx by (4.5). If x /∈ {a, b, c} then by (4.6), {a, b, c}∩
Γx has at least two elements. Consequently, if y is another, possibly different,
diversity atom of A, then, since Γx and Γy are subsets of the 3-element set
{a, b, c} and they each contain at least two elements, they must intersect. We
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choose a value in the intersection as f(x, y). There are several ways to do this.
We pick this one—
(1) if a ∈ Γx ∩ Γy then f(x, y) = a,
(2) if a /∈ Γx ∩ Γy and b ∈ Γx ∩ Γy then f(x, y) = b,
(3) if a /∈ Γx ∩ Γy and b /∈ Γx ∩ Γy then f(x, y) = c.
It is obvious from (A.2) that (A.1) holds in the first two cases. We need to
show (A.1) also holds in the third case (3), i.e., that under the assumptions
a /∈ Γx ∩ Γy and b /∈ Γx ∩ Γy we have c ∈ Γx ∩ Γy. But if c /∈ Γx ∩ Γy then
we would conclude that Γx ∩ Γy is empty, since it is a subset of {a, b, c} that
excludes each of a, b, and c by our assumptions, contrary to the observations
made above.

For the 1-point extension property, assume k ∈ ω, μ ∈ Bk(A), μ satisfies
the identity condition, x, y are diversity atoms of A, and μi,j ≤ x;y for some
fixed i, j < k. We will show that μ has a 1-point extension μ′ ∈ Bk+1(A)
defined by the conditions μ ⊆ μ′, μ′

i,k = x = μ′
k,i, μ

′
k,j = y = μ′

j,k, μ′
k,k = 1,,

and if k > l = i, j then

μ′
l,k = μ′

k,l = f(x, y).

First note that these conditions are consistent when i = j, for in that case we
have 0 = μi,i ≤ 1, · x;y by the identity condition, hence 0 = x̆;1, · y = x · y, so
x = y since they are atoms. To show that μ′ is a basic matrix in Bk+1(A), note
that Definition 4.4(1) holds because μ ⊆ μ′ and μ′

k,k = 1,, and Definition 4.4(2)
holds trivially since A is symmetric. For Definition 4.4(3), by definitions and
(A.1) we have

x;μ′
k,l = 0, = y ;μ′

k,l. (A.3)

Having chosen μ′
k,l to be either a or b or c according to f , we must check for

each l < k whether the first two crucial cycle equations below hold, and finally
whether the third equation holds for those points l,m < k where l = m and
{l,m} ∩ {i, j} = ∅.

μi,l ≤ μ′
i,k ;μ′

k,l i.e., [μ′
i,k, μ′

k,l, μi,l] is a cycle,

μj,l ≤ μ′
j,k ;μ′

k,l i.e., [μ′
j,k, μ′

k,l, μj,l] is a cycle,

μl,m ≤ μ′
l,k ;μ′

k,m i.e., [μ′
l,k, μ′

k,m, μl,m] is a cycle.

The first two equations hold by (A.3) (their right sides are 0,). For the third
equation, first note that μ′

l,k = μ′
k,m because the value depends only on x and

y, not on l or m. The right side of the third equation is therefore a;a or b;b
or c;c, but a;a = b;b = c;c = 1, so the third equation holds. �

Appendix B. A non-representation result

The next theorem was invoked in the proof of Theorem 5.2(4).

Theorem B.1. Assume
(1) E ⊆ A ∈ NA,
(2) E is finite and symmetric, 1, ∈ At (E), and E has p ≥ 3 atoms,
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(3) E has no 1-cycles: u ;u · u = 0 if 0, ≥ u ∈ At (E),
(4) A is finite and symmetric, 1, ∈ At (A), and some diversity atom of E is

the join of at least pp−1 atoms of A.

Then A is not a subalgebra of the relation algebraic reduct of any (p + 1)-
dimensional cylindric algebra, i.e.,

A /∈ SRaCAp+1, (B.1)

and the 3-dimensional cylindric algebra of A is not a subalgebra of the neat
3-reduct of any (p + 1)-dimensional cylindric algebra, i.e.

Ca (B3(A)) /∈ SNr3CAp+1. (B.2)

Proof of (B.1). Let the atoms of E be 1, = a0, a1, . . . , ap−1, where p ≥ 3 and
a1 is a diversity atom of E which is the join of at least pp−1 atoms of A. Let
ξ(x) be the atom of E containing x ∈ At (A). We refer to ξ(x) as the color of
x (or cover, as in the definition of splitting).

Assume, for the sake of obtaining a contradiction, that A ⊆ Ra (D) for
some D ∈ CAp+1. All the elements of A, in particular all the atoms, are 2-
dimensional elements of D, i.e.,

At (A) ⊆ Nr2D. (B.3)

If 1 < q ≤ p+1 and x ∈ D, we say x is q-color-ordered if ξ(u) = ξ(v) whenever
u, v ∈ At (A) , 0 ≤ i < j < k < q, and x ≤ s0i s

1
ju · s0i s1kv. The element x ∈ D

is q-covered if there are atoms ui,j ∈ At (A) for 0 ≤ i < j < q such that
x ≤ ∏

0≤i<j<q s
0
i s

1
jui,j , in which case the atoms ui,j are said to be a q-covering

of x. The atoms in a q-covering of a non-zero x ∈ D are unique, for if there are
further atoms vi,j ∈ At (A) , 0 ≤ i < j < q, such that x ≤ ∏

0≤i<j<q s
0
i s

1
jvi,j ,

then, since substitution is a complete Boolean endomorphism by [10, 1.5.3],
we have

0 = x ≤
∏

0≤i<j<q

s0i s
1
jui,j ·

∏

0≤i<j<q

s0i s
1
jvi,j

=
∏

0≤i<j<q

s0i s
1
j (ui,j · vi,j),

but if ui,j = vi,j then, since distinct atoms are disjoint, a zero occurs with a
contradiction ensuing. Thus ui,j = vi,j whenever 0 ≤ i < j < q.

We will construct by induction for each dimension from q = 2 up to
q = p + 1 a set Sq ⊆ NrqD such that

(1) Sq has at least pp+1−q elements,
(2) every x ∈ Sq is q-covered, q-color-ordered, and non-zero, and x ≤ s1ja1

for 0 < j < q,
(3) cq−1x = cq−1y if x, y ∈ Sq,
(4) ξ(u) = ξ(v) if u, v ∈ At (A) , x, y ∈ Sq, x ≤ s0q−2s

1
q−1u, and y ≤ s0q−2s

1
q−1v,

(5) u = v if u, v ∈ At (A) , x, y ∈ Sq, x ≤ s1q−1u, y ≤ s1q−1v, and x = y,
(6) u = v if 0 < j < k < q, u, v ∈ At (A) , x ∈ Sq, and x ≤ s1ju · s1kv.
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Let S2 = {x : a1 ≥ x ∈ At (A)}.
Note that S2 ⊆ Nr2D by (B.3). Obviously S2 has property (1) since there

are at least pp−1 atoms below a1. Let x ∈ S2. Then x is 2-covered by itself
(take u0,1 = x), x is 2-color-ordered because the hypotheses in the definition
of q-color-ordered are never met (q = 2 is too small), and x is not zero because
it is an atom of A. For the last part of property (2), note that if 0 < j < q = 2
then j = 1, and x ≤ a1 by the definition of S2, so x ≤ a1 = s11a1 = s1ja1.
Therefore S2 has property (2). Since A is integral and x ∈ S2 is non-zero, we
have x;1 = 1, so

1 = x;1 = c2(s12x · s021) definition of ; in Ra (D)

= c2s
1
2x [10, 1.5.3]

= c1s
2
1x [10, 1.5.9(i)]

= c1x [10, 1.5.8(i)], c2x = x

It follows that property (3) holds for S2. For property (4), note that since
q = 2, s0q−2s

1
q−1 is the identity mapping, hence the hypotheses are u, v ∈

At (A) , x, y ∈ S2, x ≤ u, and y ≤ v, which imply x = u and y = v since u, v, x, y
are atoms. We wish to show ξ(u) = ξ(v), i.e., ξ(x) = ξ(y), but this is true by
the definition of S2. Since q = 2, the substitution s1q−1 is the identity mapping,
hence the hypotheses of property (5) are u, v ∈ At (A) , x, y ∈ Sq, x ≤ u, y ≤ v,
and x = y. But these hypotheses imply u = x = y = v, so the conclusion holds
trivially. Thus S2 has property (5). Finally, S2 has property (6) because the
hypotheses cannot hold when q = 2.

Suppose we have a set Sq ⊆ NrqD with properties (1)–(6) such that
q ≥ 2. Choose an arbitrary but fixed w ∈ Sq, and let Sw

q = Sq ∼{w}. We will
obtain a function h that sends every x ∈ Sw

q to a (q + 1)-dimensional element
h(x) ∈ Nrq+1D, and will choose Sq+1 to be a subset of the range of h.

For every x ∈ Sw
q , we have cqx = x and cqw = w since x,w ∈ Sq ⊆ NrqD,

so

0 = w property (2)

= w · cq−1w [10, 1.1.1(C2)]

= w · cq−1x property (3)

= w · cq−1s
q
q−1x [10, 1.5.8(i)], cqx = x

= w · cqs
q−1
q x [10, 1.5.9(i)]

= cq(w · sq−1
q x) [10, 1.1.1(C3)], cqw = w

= cq

(
w · sq−1

q x · s0q−1s
1
q (1)

)
[10, 1.5.3]

= cq

⎛

⎝w · sq−1
q x · s0q−1s

1
q

⎛

⎝
∑

y∈At(A)

y

⎞

⎠

⎞

⎠ A is finite

=
∑

y∈At(A)

cq

(
w · sq−1

q x · s0q−1s
1
q(y)

)
[10, 1.5.3, 1.2.6]
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The distributive law holds in all Boolean algebras whenever all the joins and
meets involved are finite, so

0 = w =
∏

x∈Sw
q

⎛

⎝
∑

y∈At(A)

cq

(
w · sq−1

q x · s0q−1s
1
q(y)

)
⎞

⎠

=
∑

f : Sw
q →At(A)

⎛

⎝
∏

x∈Sw
q

cq

(
w · sq−1

q x · s0q−1s
1
q(f(x))

)
⎞

⎠ .

Consequently there must be some function f : Sw
q → At (A) such that

0 =
∏

x∈Sw
q

cq

(
w · sq−1

q x · s0q−1s
1
q(f(x))

)
. (B.4)

Let f be such a function. From our chosen f we define additional functions
g, h : Sw

q → D and an element z ∈ D as follows.

g(x) = w · sq−1
q x · s0q−1s

1
q(f(x)) for all x ∈ Sw

q , (B.5)

z =
∏

x∈Sw
q

cq (g(x)) , (B.6)

h(x) = g(x) · z for all x ∈ Sw
q . (B.7)

Let R = {h(x) : x ∈ Sw
q }. We will show that R itself has properties (2),

(3), (5), and (6). Consequently every subset of R also has these properties. We
will partition R into disjoint subsets that have property (4) and prove that
at least one of them must be large enough to also have property (1). We take
Sq+1 to be any such subset of R.

To see that R has property (3), we observe that cqh(x) = cqh(y) for all
x, y ∈ Sw

q , because

cqh(x) = cq(g(x) · z) (B.7)

= cq(g(x)) · z [10, 1.1.1(C3)], cqz = z by (B.6)

= z (B.6)

It follows that h(x) = 0 for every x ∈ Sq, since z = 0 by (B.4). This is part of
property (2). For the last part of property (2), we want to show h(x) ≤ s1j (a1)
whenever 0 < j < q + 1 and x ∈ Sq. We have h(x) ≤ g(x) ≤ w · sq−1

q x by
definitions (B.7) and (B.5), so there are two cases. First, assume 0 < j < q.
From w ∈ Sq and property (2) for Sq we get w ≤ s1ja1, so h(x) ≤ s1ja1. Suppose
j = q. In this case we have x ≤ s1ka1 for 0 < k < q by property (2) for Sq

since x ∈ Sq. In particular, x ≤ s1q−1a1. If q > 2 then cq−1a1 = a1 since a1 is
2-dimensional, so h(x) ≤ sq−1

q s1q−1a1 = s1qa1 by [10, 1.5.11(i)], while if q = 2,
then h(x) ≤ sq−1

q s1q−1a1 = s12s
1
1a1 = s1qa1. We get the rest of property (2) by

showing h(x) is (q + 1)-color-ordered and (q + 1)-covered for every x ∈ Sw
q .

From x ∈ Sw
q and property (2) for Sq we know x is q-covered, so there are

atoms xi,j ∈ At (A) such that
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x ≤
∏

0≤i<j<q

s0i s
1
j (xi,j). (B.8)

Of course, we also know w ∈ Sq, so there is a q-covering wi,j ∈ At (A) , 0 ≤
i < j < q, of w as well, where

w ≤
∏

0≤i<j<q

s0i s
1
j (wi,j). (B.9)

Let

ti,j =

⎧
⎪⎨

⎪⎩

wi,j if 0 ≤ i < j < q

xi,q−1 if 0 ≤ i < q − 1 and j = q

f(x) if i = q − 1 and j = q

(B.10)

We shall see that ti,j is a (q + 1)-covering of h(x). To begin, we prove

sq−1
q x ≤

∏

0≤i<q−1

s0i s
1
q(xi,q−1). (B.11)

Suppose 0 ≤ i < q − 1. Then x ≤ s0i s
1
q−1(xi,q−1) by (B.8). If q = 2 then i = 0,

and x ≤ x0,1 since x is q-covered, so

sq−1
q x = s12x ≤ s12(x0,1) = s00s

1
2(x0,1) = s0i s

1
q(xi,q−1),

while if q > 2 then cq−1xi,q−1 = xi,q−1 since xi,q−1 is 2-dimensional, so

sq−1
q x ≤ sq−1

q s0i s
1
q−1(xi,q−1) [10, 1.5.3]

= s0i s
q−1
q s1q−1(xi,q−1) [10, 1.5.10(iii)]

= s0i s
1
q(xi,q−1) [10, 1.5.11(i)].

Then we have

h(x) ≤
∏

0≤i<j<q+1

s0i s
1
j (ti,j) (B.12)

because

h(x) ≤ g(x) = w · sq−1
q x · s0q−1s

1
q(f(x)) (B.7), (B.5)

≤
∏

0≤i<j<q

s0i s
1
j (wi,j) ·

∏

0≤i<q−1

s0i s
1
q(xi,q−1) · s0q−1s

1
q(f(x)) (B.9), (B.11)

=
∏

0≤i<j<q

s0i s
1
j (ti,j) ·

∏

0≤i<q−1

s0i s
1
q(ti,q) · s0q−1s

1
q(tq−1,q) (B.10)

=
∏

0≤i<j<q+1

s0i s
1
j (ti,j)

so h(x) is (q + 1)-covered.
To show h(x) is (q+1)-color-ordered, we assume 0 ≤ i < j < k < q+1 and

must show ξ(ti,j) = ξ(ti,k). If i < j < k < q then the first case in (B.10) applies
to both ti,j and ti,k, hence ti,j = wi,j and wi,k = ti,k, but ξ(wi,j) = ξ(wi,k)
because w is q-color-ordered, so we have ξ(ti,j) = ξ(ti,k). We may therefore
assume k = q.
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We need to observe before going on that if q > 2, then

w ≤ cq−1w = cq−1x property (3) of Sq

≤ cq−1

⎛

⎝
∏

0≤i<j<q−1

s0i s
1
j (xi,j)

⎞

⎠ [10, 1.2.6], (B.8)

=
∏

0≤i<j<q−1

s0i s
1
j (xi,j) cq−1xi,j = xi,j , q − 1 ≥ 2

By the uniqueness of coverings this tells us that

wi,j = xi,j if 0 ≤ i < j < q − 1. (B.13)

If, in addition to k = q, we have i < j < q − 1, then q > 2 and the first and
second cases of (B.10) apply, so we have ti,j = wi,j and ti,k = ti,q = xi,q−1. But
wi,j = xi,j by (B.13). Also, x is color-ordered, so ξ(xi,j) = ξ(xi,q−1), which is
equivalent to ξ(ti,j) = ξ(ti,k) by the previous equations.

The final case is that i < j = q − 1 and k = q. The possibilities for i
divide into two sub-cases, i is smaller than q − 2, and i is equal to q − 2. If
0 ≤ i < q − 2 then i < q − 2 < q − 1, so ξ(ti,j) = ξ(wi,q−1) = ξ(wi,q−2) since
w is q-color-ordered by property (2) of Sq, and ξ(xi,q−2) = ξ(xi,q−1) since x is
q-color-ordered, but wi,q−2 = xi,q−2 by (B.13), so

ξ(ti,j) = ξ(wi,q−1) j = q − 1, (B.10)

= ξ(wi,q−2) w is q-color-ordered

= ξ(xi,q−2) (B.13)

= ξ(xi,q−1) x is q-color-ordered

= ξ(ti,k) q = k, (B.10)

We are reduced to assuming i = q − 2, hence

ξ(ti,j) = ξ(wq−2,q−1) i = q − 2, j = q − 1, (B.10)

= ξ(xq−2,q−1) property (4) of Sq

= ξ(tq−2,q) (B.10)

= ξ(ti,k) i = q − 2, q = k

We have shown that every h(x) constructed from some x ∈ Sw
q is non-zero,

(q + 1)-covered, and (q + 1)-color-ordered. Thus R and all its subsets have
property (2).

To prove property (5) for R (and its subsets), we assume x, y ∈ Sw
q , h(x) =

h(y), u, v ∈ At (A) , h(x) ≤ s1qu, h(y) ≤ s1qv. We must show u = v. If we have a
q-covering of x as in (B.8), then by (B.12) we get u = x0,q−1 from h(x) ≤ s1qu,
and, similarly, v = y0,q−1 from h(y) ≤ s1qv for some q-covering yi,j of y. Hence
x ≤ s1q−1(x0,q−1) and y ≤ s1q−1(y0,q−1), so, by property (5) for Sq, we know
x0,q−1 = y0,q−1, i.e., u = v, as desired.

To prove property (6) for R (and its subsets), we assume 0 < j < k <
q+1, u, v ∈ At (A) , x ∈ Sw

q , and h(x) ≤ s1ju · s1kv. If k < q, then u = t0,j = w0,j

and v = t0,k = w0,k by (B.12) and (B.10), but w ∈ Sq, so by property (6) for Sq,
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we have w0,j = w0,k, hence u = v. Suppose that k = q. In this case, by (B.12)
and (B.10), we again have u = t0,j = w0,j but this time v = t0,q = x0,q−1.
Hence w ≤ s1ju and x ≤ s1q−1v by (B.8) and (B.9). If j = q − 1 we note
that w = x since x ∈ Sw

q , hence u = v by property (5) for Sq, which gives us
t0,j = t0,q, i.e., u = v. If j < q−1 then v = t0,q = x0,q−1 = x0,j for 0 < j < q−1
by property (6) for Sq, applied this time to x. But x0,j = w0,j = t0,j by (B.13)
and (B.10), so again we have t0,q = t0,j .

We have proved R has properties (2), (3), (5), and (6), and wish to show
that h is one-to-one on Sw

q . Assume x, y ∈ Sw
q and x = y. We want to show

h(x) = h(y). By property (2) for Sq, x and y have q-coverings that include
atoms x0,q−1, y0,q−1 ∈ At (A) satisfying x ≤ s1q−1(x0,q−1) and y ≤ s1q−1(y0,q−1).
By (B.10) and (B.12) these last two equations imply h(x) ≤ s1q(x0,q−1) and
h(y) ≤ s1q(y0,q−1). From x = y we conclude by property (5) for Sq that x0,q−1 =
y0,q−1. Distinct atoms are disjoint, so if h(x) = h(y) then

h(x) = h(x) · h(y)

≤ s1q(x0,q−1) · s1q(y0,q−1)

= s1q(x0,q−1 · y0,q−1)

= s1q(0) = 0,

contradicting property (2) (which has already been shown).
Now we want to choose a subset Sq+1 of R with property (4) that contains

at least pp+1−(q+1) elements. We partition R and let Sq+1 be the largest piece.
Recall from (B.12) that h(x) ≤ s0q−1s

1
q(f(x)) for every x ∈ Sw

q , and f(x) has
color ξ(f(x)) ∈ At (E). For every color ai we get a piece of R, namely

Ri = {h(x) : x ∈ Sw
q , ξ(f(x)) = ai}.

Note that R is the disjoint union of the pieces, the number of pieces is at most
p, and R has at least pp+1−q elements because h is one-to-one and Sw

q has more
than pp+1−q elements. Consequently some piece has at least pp+1−q/p = pp−q

elements in it, and we let Sq+1 be any such piece. Thus Sq+1 has property (1).
Every piece has property (4), so in particular Sq+1 has this property. Finally, as
a subset of R,Sq+1 has all the other properties. This completes the construction
of the sets Sq.

Consider what happens when q = p + 1. We may choose some x ∈ Sp+1

because Sp+1 has at least one element, by property (1). Then x is (p + 1)-
covered, (p+1)-color-ordered, and non-zero by property (2). Let x have (p+1)-
covering xi,j ∈ At (A) for 0 ≤ i < j < p + 1.

Consider the set {ξ(xi,p) : 0 ≤ i < p} ⊆ At (E). Note that ξ(x0,p) = a1 =
1, since x0,p ≤ a1 by property (2). We can also show ξ(xi,p) = 1, for 0 < i < p
because we have, by the covering of x, x ≤ s1i (x0,i) · s0i s1p(xi,p) · s1p(x0,p) so it
follows by [17, Lemma 10] that [x0,i, xi,p, x0,p] is a cycle, i.e., x0,i ;xi,p ≥ x0,p.
If ξ(xi,p) = 1, then xi,p = 1, and we would get x0,i = x0,p, contradicting
property (6), which says x0,i = x0,p for 0 < i < p. Thus we know ξ(xi,p) is a
diversity atom of E for 0 ≤ i < p.
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The number of diversity atoms in E is p − 1, but the size of the index
set {i : 0 ≤ i < p} is p. Therefore some atom is repeated, i.e., there are
0 ≤ i < j < p such that ξ(xi,p) = ξ(xj,p). By the (p + 1)-color-ordering of
x, ξ(xi,j) = ξ(xi,p). Let u = ξ(xi,j) = ξ(xi,p) = ξ(xj,p). We proved above that
u = 1,. By the covering of x and property (2) we have 0 = x ≤ s0i s

1
j (xi,j) ·

s0j s
1
p(xj,p) · s0i s1p(xi,p), hence by the definition of u and [17, Lemma 10] we have

0 = u ;u · u. Since u = 1,, this contradicts the assumption that E has no such
diversity atom as the u we have found. �

Proof of (B.2). Assume to the contrary that Ca (B3(A)) ∈ SNr3CAp+1. Then,
by (5.1),

A ∼= Ra (Ca (B3(A))) ∈ Ra∗SNr3CAp+1 = RaCAp+1,

hence A ∈ SRaCAp+1, contradicting part (B.1). �
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