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Abstract. We construct a countable lattice S isomorphic to a bounded
sublattice of the subspace lattice of a vector space with two non-iso-
morphic maximal Boolean sublattices. We represent one of them as the
range of a Banaschewski function and we prove that this is not the case
of the other. Hereby we solve a problem of F. Wehrung. We study coordi-
natizability of the lattice S. We prove that although it does not contain a
3-frame, the lattice S is coordinatizable. We show that the two maximal
Boolean sublattices correspond to maximal Abelian regular subalgebras
of the coordinatizating ring.
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1. Introduction

In [20] Friedrich Wehrung defined a Banaschewski function on a bounded com-
plemented lattice L as an antitone (i.e., order-reversing) map sending each
element of L to one of its complements, being motivated by the earlier result
of Bernhard Banaschewski that such a function exists on the lattice of all sub-
spaces of a vector space [1]. Wehrung extended Banaschewski’s result by prov-
ing that every countable complemented modular lattice has a Banaschewski
function with Boolean range and that all the possible ranges of Banaschewski
functions with Boolean range on L are isomorphic [20, Corollary 4.8].

Still in [20] Wehrung defined a ring-theoretic analogue of the Bana-
schewski function that, for a von Neuman regular ring R, is closely connected
to the lattice-theoretic Banaschewski function on the lattice L(R) of all finitely
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generated right ideals of R. He made use of these ideas to construct a unit-
regular ring S (in fact of bounded index 3) of size ℵ1 with no Banaschewski
function [21].

Furthermore in [20] Wehrung defined notions of a Banaschewski measure
and a Banaschewski trace on sectionally complemented modular lattices and
he proved that a sectionally complemented lattice which is either modular
with a large 4-frame or Arguesian with a large 3-frame is coordinatizable (i.e.
isomorphic to L(R) for a possibly non-unital von Neumann regular ring R) if
and only if it has a Banaschewski trace. Applying those results, he constructed
a non-coordinatizable sectionally complemented modular lattice, of size ℵ1,
with a large 4-frame [20, Theorem 7.5].

The aim of our paper is to solve the second problem from [20]:

Problem (Problem 2 from [20]). Is every maximal Boolean sublattice of an
at most countable complemented modular lattice L the range of some Ba-
naschewski function on L? Are any two such Boolean sublattices isomorphic?

We construct a countable complemented modular lattice S with two non-
isomorphic maximal Boolean sublattices G and H. We represent G as the range
of a Banaschewski function on S and we prove that H is not the range of any
Banaschewski function. We represent the lattice S as a bounded sublattice of
the subspace lattice of a vector space over an arbitrary field. The lattice S is
constructed as a bounded sublattice of M3[F(κ)]. We prove that there is no
3-frame in the lattice M3[D] for any distributive lattice D. As a consequence
we get that there is no 3-frame in the lattice S. On the other hand we show
that lattices M3[B] are cordinatizated by Boolean powers of the ring of 2 × 2
matrices over a two-element field F2 by a Boolean lattice B. We find a regular
F2-algebra S such that S � L(S) and we show that the maximal Boolean
sublattices G and H correspond to maximal Abelian regular subalgebras of
the algebra S.

2. Basic concepts

We start with recalling same basic notions as well as the precise definition of
a Banaschewski function adopted from [20]. Next we outline Schmidt’s M3[L]
construction, which we then apply to define the bounded modular lattice S

containing a pair of non-isomorphic maximal Boolean sublattices.

2.1. Some standard notions, notation, and terminology

A lattice L is bounded if it has both the least element and the greatest ele-
ment, denoted by 0L and 1L, respectively. A bounded sublattice of a bounded
lattice is a sublattice containing the bounds. Given elements a, b, c of a lattice
L with zero, we will use the notation c = a ⊕ b when a ∧ b = 0L and a ∨ b = c.
A complement of an element a of a bounded lattice L is an element a′ of L
such that a ⊕ a′ = 1L. A lattice L is said to be complemented provided that
it is bounded and each element of L has a (not necessarily unique) comple-
ment. A lattice L is relatively complemented if each of its closed intervals is
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complemented. Note that a relatively complemented lattice is not necessarily
bounded.

We say that a lattice L is uniquely complemented if it is bounded and
each element of L has a unique complement. By a Boolean lattice we mean
a lattice reduct of a Boolean algebra, that is, a complemented distributive
lattice. For the clarity, let us recall the formal definition of a Banaschewski
function [20, Definition 3.1]:

Definition 2.1. Let L be a bounded lattice. A Banaschewski function on L is
a map β : L → L such that both
(1) x ≤ y implies β(x) ≥ β(y), for all x, y ∈ L, and
(2) β(x) ⊕ x = 1L for all x ∈ L,

hold true.

2.2. The M3[L]-construction.

Let L be a lattice. We will call a triple 〈a, b, c〉 ∈ L3 balanced, if it satisfies

a ∧ b = a ∧ c = b ∧ c

and we denote by M3[L] the set of all balanced triples. It is readily seen that
M3[L] is a meet-subsemilattice of the cartesian product L3. However, it is not
necessarily a join-subsemilattice, for one easily observes that the componen-
twise join of balanced triples may not be balanced. The M3[L]-construction
was introduced by Schmidt [18,19] for a bounded distributive lattice L. He
proved [19, Lemma 1] that in this case M3[L] is a bounded modular lattice and
that it is a congruence-preserving extension of the distributive lattice L. This
result was later extended by Grätzer and Schmidt in various directions [6,7].
In particular, in [6] they proved that every lattice with a non-trivial distribu-
tive interval has a proper congruence-preserving extension. This was further
improved by Grätzer and Wehrung in [11], where they introduced a modifi-
cation of the M3[L]-construction, called M3〈L〉-construction. Using this new
idea they proved that every non-trivial lattice admits a proper congruence-
preserving extension.

The lattice constructions M3[L] and M3〈L〉 appeared in the series of
papers by Grätzer and Wehrung [8,9,10,11,12,13,14] dealing with semilattice
tensor product and its related structures, namely the box product and the
lattice tensor product [10, Definition 2.1 and Definition 3.3]. Indeed, M3�L �
M3〈L〉 for every lattice L and M3 ⊗ L � M3[L] whenever L has a zero and
M3⊗L is a lattice (see [14, Theorem 6.5] and [9, Corollary 6.3]). In particular,
the latter is satisfied when the lattice L is modular with zero. Note also, that if
L is a bounded distributive lattice both the constructions M3[L] and M3〈L〉
coincide. In our paper we get by with this simple case.

Let L be a distributive lattice. Given a triple 〈a, b, c〉 ∈ L3, we define

μ〈a, b, c〉 = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) (2.1)

and we set

〈a, b, c〉 = 〈a ∨ μ〈a, b, c〉, b ∨ μ〈a, b, c〉, c ∨ μ〈a, b, c〉〉 . (2.2)
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Using the distributivity of L one easily sees that 〈a, b, c〉 is the least balanced
triple ≥ 〈a, b, c〉 in L3 and that the map 〈−〉 : L3 → L3 determines a clo-
sure operator on the lattice L3 (see [9, Lemma 2.3] for a refinement of this
observation). It is also clear that

a ∨ μ〈a, b, c〉 = a ∨ (b ∧ c),

b ∨ μ〈a, b, c〉 = b ∨ (a ∧ c),

c ∨ μ〈a, b, c〉 = c ∨ (a ∧ b).

A triple 〈a, b, c〉 ∈ L3 is closed with respect to the closure operator if and only
if it is balanced. Therefore the set of all balanced triples, denoted by M3[L],
forms a lattice [9, Lemma 2.1], where

〈a, b, c〉 ∨ 〈a′, b′, c′〉 = 〈a ∨ a′, b ∨ b′, c ∨ c′〉 (2.3)

and
〈a, b, c〉 ∧ 〈a′, b′, c′〉 = 〈a ∧ a′, b ∧ b′, c ∧ c′〉 . (2.4)

By [9, Lemma 2.9] the lattice M3[L] is modular if and only if the lattice
L is distributive. The “if” part of the equivalence is included in the above
mentioned [19, Lemma 1].

2.3. Coordinatizability

A ring R is (von Neumann) regular provided that for each element x ∈ R,
there is y ∈ R with x = xyx. This is equivalent to each (left) right finitely
generated ideal of R being generated by an idempotent. An ideal I of a ring
R is regular if for each element x ∈ I, there is y ∈ I with x = xyx. By [4,
Lemma 1.3], an ideal of a regular ring is regular.

Finitely generated right ideals of a regular ring R form a sectionally
complemented modular lattice [4, Theorem 2.3]. We will denote this lattice by
L(R). Note that for a regular ring the map eR �→ R(1 − e) determines an
anti-isomorphisms from the lattice L(R), of all finitely generated right ideals
of the ring R, to the lattice of all finitely generated left ideals of the ring R
(cf. [4, Theorem 2.5]).

An Abelian regular ring is a ring R whose all idempotents are central.
For various characterizations of Abelian regular rings see [4, Theorem 3.2].
A maximal Abelian regular subalgebra of a regular algebra R is a Abelian
regular subalgebra of R that is not properly contained in any Abelian regular
subalgebra of the ring R.

A lattice, necessarily sectionally complemented modular, is coordinatiz-
able if it is isomorphic to the lattice L(R) for a regular ring R. For a lucid in-
troduction into the problem of coordinatizability of sectionally complemented
modular lattice we refer to [5, Appendix D] and [21]. Here we will limit our-
selves to Jónsson’s coordinatization theorem [15], to our knowledge the most
complete description of coordinatizable lattices.

We say a set X of non-zero elements of a lattice L with zero is independent
provided that for every finite F,G ⊆ X, the equality

∨
F ∧

∨
G =

∨
(F ∩ G)
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holds true. If the lattice L is modular then an n-element set {a1, . . . , an} of
distinct non-zero elements of L is independent if and only if aj+1∧∨j

i=1 ai = 0
for all j = 1, . . . , n−1 (see [5, Theorem IV.1.11]). If the lattice L is distributive,
a subset X ⊆ L\{0} is independent if and only if a ∧ b = 0 for all distinct
a, b ∈ X.

Elements a, b of a bounded lattice L are perspective provided that there
is c ∈ L such that

1 = a ⊕ c = b ⊕ c. (2.5)

The notation a ∼c b means that equalities (2.5) hold true. The notation a ∼ b
means that a ∼c b for some c ∈ L, i.e. that a and b are perspective.

An element a of a lattice L is neutral provided that the sublattice of L
generated by a triple {a, b, c} is distributive for all b, c ∈ L [5, Section III.2].
An ideal I of a lattice L is neutral if it is a neutral element in the ideal lattice
of L. An n-frame in a lattice L is a pair

〈〈ai | i = 0, . . . , n − 1〉, 〈ci | i = 1, . . . , n − 1〉〉
of families of elements of L such that the set {a0, . . . , an−1} is independent
and a0 ∼ci ai for all i = 1, . . . , n − 1. An n-frame is large if the neutral ideal
generated by a0 is the entire L. In particular, an n-frame such that

∨n−1
i=0 ai = 1

is large.

Theorem 2.2. (Jónsson’s coordinatization theorem [15]) A modular comple-
mented lattice L that has a large n-frame for some n ≥ 4 or that is Arguesian
and has a large n-frame with n ≥ 3 is coordinatizable.

2.4. Stone duality and Boolean powers

In this section we follow [2, Chapter IV,§§4-5]. For topological notions we refer
to [3]. A Boolean space is a compact Hausdorff topological space with a basis
consisting of clopen (i.e. closed and open) subsets. Let B be a Boolean lattice.
We denote by B∗ the collection of all ultrafilters on B. For each a ∈ B we set

Na := {u ∈ B∗ | a ∈ u}. (2.6)

The collection of all Na, a ∈ B, is a basis of a topology on B∗, and B∗ equipped
with this topology is a Boolean space called the Stone space of B.

All clopen subsets of a topological space T form a sulattice, denoted
by T∗, of the Boolean lattice of all subsets of T. Every Boolean lattice B

is isomorphic to B∗∗ via the map a �→ Na and every Boolean space T is
homeomorphic to T∗∗ via x �→ {N ∈ T∗ | x ∈ N}.

Let A be an algebra and B a Boolean lattice. We equip the set A with the
discrete topology and we denote by A[B]∗ the set of all continuous functions
from the Boolean space B∗ to A. By [2, Lemma IV.5.2], A[B]∗ is a subuniverse
of the Cartesian power AB∗

. We denote by A[B]∗ the subalgebra of AB∗
with

the universe A[B]∗ and we will call the subalgebra the Boolean power of A by
B.
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3. The lattice

Fix an infinite cardinal κ. As it is customary, we identify κ with the set of all
ordinals of cardinality less than κ. Let us denote by P(κ) the Boolean lattice
of all subsets of κ and set

F(κ) := {X ⊆ κ | X is finite or κ\X is finite}.

It is well-known that F(κ) is a bounded Boolean sublattice of P(κ).
Given sets X, Y , the notation X ≤fin Y means that X\Y is finite. Clearly

≤fin is a quasiorder on the class of all sets. We define

E = {〈A,B,C〉 ∈ F(κ)3 | C ≤fin A ∪ B}.

Since for all A,A′, B,B′, C, C ′ we have that

(C ∪ C ′)\((A ∪ A′) ∪ (B ∪ B′)) ⊆ (C\(A ∪ B)) ∪ (C ′\(A′ ∪ B′)), (3.1)

the set E is closed under finite joins. Both 0F(κ)3 = 〈∅, ∅, ∅〉 and 1F(κ)3 =
〈κ, κ, κ〉 clearly belong to E, thus we conclude that E forms a bounded join-
subsemilattice of F(κ)3.

Let S := E∩M3[F(κ)] denote the set of all balanced triples from E. Since
A ∩ C = B ∩ C for every balanced triple 〈A,B,C〉, we have that

S = {〈A,B,C〉 ∈ M3[F(κ)] | C ≤fin A}
= {〈A,B,C〉 ∈ M3[F(κ)] | C ≤fin B}.

(3.2)

Note that since for a balanced triple 〈A,B,C〉 the equality A∩C = μ〈A,B,C〉
holds true, we get from (3.2) that

S = {〈A,B,C〉 ∈ M3[F(κ)] | C ≤fin μ〈A,B,C〉}. (3.3)

Lemma 3.1. The set S forms a bounded sublattice of the lattice M3[F(κ)].

Proof. Observe that

C\(A ∪ B) = (C ∪ μ〈A,B,C〉)\(A ∪ B ∪ μ〈A,B,C〉),
for all 〈A,B,C〉 ∈ F(κ)3. Therefore the join-semilattice E is closed under the
operation μ. It follows that S forms a bounded join-subsemilattice of M3[F(κ)].
It remains to prove that S is closed under finite meets. However, this is a
consequence of the inequality

(C ∩ C ′)\(A ∩ A′) ⊆ (C\A) ∪ (C ′\A′),

that holds for all sets A,A′, C, C ′. �

As discussed in Section 2, since the lattice F(κ) is distributive, the lattice
M3[F(κ)] is modular. Observe that the mapping A �→ 〈A,A,A〉 embeds F(κ)
into S, from which we deduce that

|F(κ)| ≤ |S| ≤ |F(κ)3|.
Since the size of both F(κ) and F(κ)3 is κ, we get that |S| = κ. Let us sum
up these observations in the following corollary to Lemma 3.1.

Corollary 3.2. For κ = ω0, the lattice S is countable infinite.
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Remark 3.3. Note that unlike S, the lattice E is not a meet-subsemilattice of
F(κ)3. Indeed, both 〈κ, ∅, κ〉 , 〈∅, κ, κ〉 ∈ E while 〈κ, ∅, κ〉∧〈∅, κ, κ〉 = 〈∅, ∅, κ〉 /∈
E.

4. A Banaschewski function on S

In this section we define a Banaschewski function β : S → S and describe,
element-wise, its range G.

Lemma 4.1. The map β : S → S defined by

β 〈A,B,C〉 := 〈κ\A, κ\(B ∪ C), κ\(A ∪ B ∪ C)〉 , (4.1)

for all 〈A,B,C〉 ∈ S, is a Banaschewski function on S. Consequently, S is a
complemented modular lattice.

Proof. First we prove that S contains the range of the map β. Observe that if
we put A′ := κ\A and B′ := κ\(B ∪ C), then β 〈A,B,C〉 = 〈A′, B′, A′ ∩ B′〉.
Since F(κ) is a Boolean lattice, the sets A′, B′ and A′ ∩ B′ all belong to F(κ).
Furthermore, we have that

A′ ∩ B′ = μ〈A′, B′, A′ ∩ B′〉 = μβ 〈A,B,C〉.
In particular, (A′ ∩ B′)\μβ 〈A,B,C〉 = ∅, whence β 〈A,B,C〉 ∈ S.

It is clear from (4.1) that the map β is antitone. Finally, we check that

1S = 〈κ, κ, κ〉 = 〈A,B,C〉 ⊕ β 〈A,B,C〉 , for all 〈A,B,C〉 ∈ S.

It follows immediately from the definition of β that

〈A,B,C〉 ∧ β 〈A,B,C〉 = 〈∅, ∅, ∅〉 = 0S.

To prove that 〈A,B,C〉 ∨ β 〈A,B,C〉 = 1S, let us verify that

κ = μ〈A ∪ (κ\A), B ∪ (κ\(B ∪ C)), C ∪ (κ\(A ∪ B ∪ C))〉. (4.2)

Note that each element of κ that is not contained in C belongs to B ∪
(κ\(B ∪ C)). Together with A ∪ (κ\A) = κ, we get that (4.2) holds, which
concludes the proof. �

Lemma 4.2. Let G denote the range of the Banaschewski function β : S → S.
Then

G = {〈A,B,A ∩ B〉 | A,B ∈ F(κ)}
and the mapping

〈A,B,A ∩ B〉 �→ 〈A,B〉 (4.3)
determines an isomorphism from G onto the Boolean lattice F(κ) × F(κ).

Proof. While proving Lemma 4.1, we have observed that
G ⊆ {〈A,B,C〉 ∈ S | C = A ∩ B}

= {〈A′, B′, A′ ∩ B′〉 | A′, B′ ∈ F(κ)}.
(4.4)

It is straightforward that β(β 〈A′, B′, A′ ∩ B′〉) = 〈A′, B′, A′ ∩ B′〉, so the lat-
tice G is equal to the right-hand side of (4.4). Finally, it is readily seen that
the correspondence (4.3) determines an isomorphism G → F(κ) × F(κ). �
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It was noted in [20] that if the range of a Banaschewski function on a
lattice L is Boolean, then it is a maximal Boolean sublattice of L. Thus we
derive from Theorem 4.2 that G is a maximal Boolean sublattice of S.

5. The counter-example

In the present section, we construct another maximal Boolean sublattice H of
the lattice S. We show that the lattices H and G are not isomorphic and we
prove directly that the lattice H is not the range of any Banaschewski function
on S.

Lemma 5.1. The assignment 〈A,C〉 �→ g 〈A,C〉 := 〈A,A ∩ C,C〉 defines a
bounded lattice embedding g : F(κ)×F(κ) → M3[F(κ)]. In particular, the range
of g is a bounded Boolean sublattice of M3[F(κ)] isomorphic to F(κ) × F(κ).

Proof. It is clear from the definition of the map g that it is injective and that its
range is included in M3[F(κ)]. Further, for any A,A′, C, C ′ ⊆ κ, the equality

g 〈A,C〉 ∧ g 〈A′, C ′〉 = g 〈A ∩ A′, C ∩ C ′〉
holds by (2.4), while

g 〈A,C〉 ∨ g 〈A′, C ′〉 = g 〈A ∪ A′, C ∪ C ′〉 (5.1)

can be easily deduced from (2.2) to (2.3). Finally, observe that g 〈κ, κ〉 =
〈κ, κ, κ〉 and g 〈∅, ∅〉 = 〈∅, ∅, ∅〉, which concludes the proof. �

For any A,C ∈ F(κ), we say that 〈A,C〉 is finite if both A and C are
finite, and we say that 〈A,C〉 is co-finite if both κ\A and κ\C are finite. Let
us write A ≈ C if 〈A,C〉 is either finite or co-finite. Note that there are pairs
A,C ∈ F(κ) such that 〈A,C〉 is neither finite nor co-finite; namely, A ≈ C if
and only if the symmetric difference (A\C) ∪ (C\A) is finite.

Lemma 5.2. The set

A = {〈A,C〉 ∈ F(κ) × F(κ) | A ≈ C}
forms a bounded Boolean sublattice of F(κ) × F(κ).

Proof. Let 〈A,C〉 , 〈A′, C ′〉 ∈ A. If at least one of them is finite, then the
pair 〈A ∩ A′, C ∩ C ′〉 is clearly finite as well. If both 〈A,C〉 and 〈A′, C ′〉 are
co-finite, then so is 〈A ∩ A′, C ∩ C ′〉. In either case, 〈A ∩ A′, C ∩ C ′〉 ∈ A.

If at least one of 〈A,C〉, 〈A′, C ′〉 is co-finite, then 〈A ∪ A′, C ∪ C ′〉 is co-
finite, while if both 〈A,C〉 and 〈A′, C ′〉 are finite, then so is 〈A ∪ A′, C ∪ C ′〉.
In particular, we have that 〈A ∪ A′, C ∪ C ′〉 ∈ A when 〈A,C〉 , 〈A′, C ′〉 ∈ A.

We have shown that A is a sublattice of F(κ) × F(κ). To complete the
proof, observe that 〈∅, ∅〉 is finite and 〈κ, κ〉 is co-finite and that the unique
complement in F(κ) × F(κ) of each 〈A,C〉 ∈ A, namely 〈κ\A, κ\C〉 belongs
to A. �

Lemma 5.3. The g-image H = g(A) of A is a bounded Boolean sublattice of S.
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Proof. Due to Lemmas 5.1 and 5.2, H is a bounded Boolean sublattice of
M3[F(κ)]. Thus in view of Lemma 3.1, it suffices to verify that H ⊆ S, that
is, that C\(A ∩ C) is finite for every 〈A,C〉 ∈ A. This is clear when 〈A,C〉 is
finite. If 〈A,C〉 is co-finite, then C\(A ∩ C) = C\A ⊆ κ\A is finite and we are
done. �

Observe that if 〈A,B,C〉 is a balanced triple then B ⊆ A if and only if
B = A ∩ B = A ∩ C. It follows that

H = {〈A,B,C〉 ∈ S | A ≈ C and B ⊆ A}. (5.2)

Lemma 5.4. Let 〈A,B,C〉 ∈ S\H and let 〈A′, B′, C ′〉 be a complement of
〈A,B,C〉 in S. If B ⊆ A, then B′ �⊆ A′.

Proof. Since 〈A,B,C〉 �∈ H and B ⊆ A, it follows from (5.2) that A �≈ C.
Hence exactly one of the two sets A,C is finite. From B ⊆ A and C\B being
finite we conclude that C and κ\A are both finite. Furthermore from B ⊆ A
and A∩B = B ∩C, we infer that B = B ∩C. It follows that the set B is finite
as well.

Suppose now that B′ ⊆ A′. Since 〈A,B,C〉 ∧ 〈A′, B′, C ′〉 = 0S, we have
that A ∩ A′ = ∅, whence the set A′ ⊆ κ\A is finite. A fortiori, the set B′ is
also finite due to the assumption that B′ ⊆ A′. As C ′\B′ = C ′ \ (B′ ∩ A′) =
C ′\μ〈A′, B′, C ′〉 is also finite, we conclude that so is C ′. But then

μ〈A ∪ A′, B ∪ B′, C ∪ C ′〉 ⊆ B ∪ B′ ∪ C ∪ C ′

is a finite set, which contradicts the assumption that 〈A,B,C〉∨〈A′, B′, C ′〉 =
〈κ, κ, κ〉 = 1S. �
Corollary 5.5. Every complemented bounded sublattice C of S such that H � C

contains an element 〈A,B,C〉 with B �⊆ A.

Proof. Let 〈A,B,C〉 ∈ C\H and let 〈A′, B′, C ′〉 be one of its complements in
C. Applying Lemma 5.4, we get that either B �⊆ A or B′ �⊆ A′. �
Proposition 5.6. The lattice H is a maximal Boolean sublattice of S.

Proof. Let C be a complemented bounded sublattice of S satisfying H � C.
There is 〈A,B,C〉 ∈ C with B �⊆ A by Corollary 5.5. We can pick a finite
nonempty F ⊆ B\A. Since the triple 〈A,B,C〉 is balanced,

∅ = F ∩ A = F ∩ B ∩ A = F ∩ B ∩ C = F ∩ C. (5.3)

Now observe that both g 〈F, ∅〉 and g 〈∅, F 〉 are in H. Applying (5.1) and (5.3),
we get that

〈A,B,C〉 ∧ (
g 〈F, ∅〉 ∨ g 〈∅, F 〉 )

= 〈A,B,C〉 ∧ g 〈F, F 〉 = 〈∅, F, ∅〉 , (5.4)

while ( 〈A,B,C〉 ∧ g 〈F, ∅〉 ) ∨ ( 〈A,B,C〉 ∧ g 〈∅, F 〉 )
= 〈∅, ∅, ∅〉 . (5.5)

It follows from (5.4) and (5.5) that the lattice C is not distributive, a fortiori
it is not Boolean. �
Proposition 5.7. The sublattice H of S is not the range of any Banaschewski
function on S.
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Proof. The range of a Banaschewski function on S must contain a complement
of each element of S. We show that no complement of 〈κ, ∅, ∅〉 in S belongs to
H.

Suppose the contrary, that is, that there is 〈A,B,C〉 = g 〈A,C〉 ∈ H

satisfying 〈κ, ∅, ∅〉 ⊕ 〈A,B,C〉 = 1S. Then A = A ∩ κ = ∅, and by (5.2) also
B = ∅. Then from B = ∅ and 〈κ, ∅, ∅〉 ∨ 〈A,B,C〉 = 1S, one infers that C = κ.
It follows that 〈A,B,C〉 /∈ S; indeed, C\μ〈A,B,C〉 = C\∅ = κ is not finite.
Thus 〈A,B,C〉 �∈ H, which is a contradiction. �

Remark 5.8. Note that for the particular case of κ = ℵ0, the assertion of
Proposition 5.7 follows from Proposition 5.9 together with [20, Corollary 4.8],
which states that the ranges of two Boolean Banaschewski functions on a
countable complemented modular lattice are isomorphic.

Proposition 5.9. The lattices H and G are not isomorphic.

Proof. In H, every finite element g 〈A,C〉 is a join of a finite set of atoms,
namely

g 〈A,C〉 =

(
∨

α∈A

g 〈{α}, ∅〉
)

∨
⎛

⎝
∨

γ∈C

g 〈∅, {γ}〉
⎞

⎠ ,

and, dually, every co-finite element is a meet of a finite set of co-atoms. On the
other hand, there are elements in F(κ) × F(κ) that are neither finite joins of
atoms nor finite meets of co-atoms. Recall that in Lemma 4.2, we have observed
that the lattice G is isomorphic to F(κ) × F(κ). Therefore the lattices H and
G are not isomorphic. �

6. Representing S in a subspace lattice

Although the construction in the three previous sections was performed for an
infinite cardinal κ, the results of the present section on embedding the lattice
M3[P(κ)] into Sub(V) (namely Theorem 6.4) work just as well for κ finite.
In particular, Proposition 6.5 (an enhancement of [9, Lemma 2.9]) holds for
lattices of any cardinality.

Let F be an arbitrary field and let V denote the vector space over the field
F presented by generators xα, yα, zα, α ∈ κ, and relations xα + yα + zα = 0.
For a subset X of the vector space V we denote by Span(X) the subspace of V
generated by X. Given subspaces of V , say X and Y , we will use the notation
X + Y = Span(X ∪ Y ). Let Sub(V ) denote the lattice of all subspaces of the
vector space V .

For all A,B,C ⊆ κ we put XA = Span({xα | α ∈ A}), Y B = Span({yβ |
β ∈ B}), and ZC = Span({zγ | γ ∈ C}).

We define the map F : P(κ)3 → Sub(V ) by the correspondence

〈A,B,C〉 �→ XA + Y B + ZC . (6.1)

Each of the sets {xα | α ∈ κ}, {yβ | β ∈ κ}, and {zγ | γ ∈ κ} is clearly linearly
independent. It follows that XA∪A′ = XA + XA′ for all A,A′ ⊆ κ and,
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similarly, Y B∪B′ = Y B +Y B′ and ZC∪C′ = ZC +ZC′ for all B,B′, C, C ′ ⊆
κ. A straightforward computation gives the following lemma:

Lemma 6.1. The map F : P(κ)3 → Sub(V ) is a bounded join-homomorphism.

Proof. Clearly F 〈∅, ∅, ∅〉 = 0 and F 〈κ, κ, κ〉 = V . Following the definitions, we
compute F (〈A,B,C〉)+ F (〈A′, B′, C ′〉) = XA +Y B + ZC + XA′ + Y B′ + ZC′

= XA∪A′ +Y B∪B′ +ZC∪C′ = F (〈A ∪ A′, B ∪ B′, C ∪ C ′〉). �
Let G : Sub(V ) → P(κ)3 be a map defined by

W �→ 〈{α | xα ∈ W }, {β | yβ ∈ W }, {γ | zγ ∈ W }〉 ,

for all W ∈ Sub(V ).
It is straightforward that G is a bounded meet-homomorphism and that

it is the right adjoint of F (i.e., replacing the lattice Sub(V ) with its dual, the
maps F and G form a Galois correspondence [17]). Indeed, one readily sees
that

F 〈A,B,C〉 ⊆ W iff 〈A,B,C〉 ≤ G(W ).
The maps F and G induce a closure operator GF on P(κ)3.

Lemma 6.2. The composition GF : P(κ)3 → P(κ)3 is precisely the closure
operator 〈−〉 on P(κ)3 defined by (2.2).

Proof. We shall prove that GF 〈A,B,C〉 = 〈A,B,C〉 for every 〈A,B,C〉 ∈
P(κ)3. By symmetry, it suffices to prove that

{α ∈ κ | xα ∈ F 〈A,B,C〉} = A ∪ (B ∩ C).

Let α ∈ A ∪ (B ∩ C). If α ∈ A, then xα ∈ F 〈A,B,C〉 by the definition (6.1),
while if α ∈ B∩C, then xα = −yα−zα ∈ F 〈A,B,C〉 by (6.1) and the defining
relations of V . It follows that A ∪ (B ∩ C) ⊆ {α ∈ κ | xα ∈ F 〈A,B,C〉}.

In order to prove the opposite inclusion, take any ξ ∈ κ\A satisfying
xξ ∈ F 〈A,B,C〉; if there is none, there is nothing to prove. We need to show
that then ξ ∈ B ∩ C. Certainly

xξ =
∑

α∈A

aαxα +
∑

β∈B

bβyβ +
∑

γ∈C

cγzγ (6.2)

for suitable aα, bβ , and cγ ∈ F such that all but finitely many of them are
zero. We set aα = 0 for α /∈ A, bβ = 0 for β /∈ B, and cγ = 0 for γ /∈ C. Since
zγ + xγ + yγ = 0 for every γ ∈ κ, it follows from (6.2) that

xξ =

⎛

⎝
∑

α∈A

aαxα −
∑

γ∈C

cγxγ

⎞

⎠ +

⎛

⎝
∑

β∈B

bβyβ −
∑

γ∈C

cγyγ

⎞

⎠ . (6.3)

It easily follows from the defining relations of V that {xα, yα | α ∈ κ} forms a
basis of V . Thus, applying (6.3) we get that

aξ − cξ = 1 and bξ − cξ = 0. (6.4)

Since by our assumption ξ /∈ A, we get from (6.2) that aξ = 0. Substituting
to (6.4) we get that bξ = cξ = −1, hence ξ ∈ B ∩ C. This concludes the proof
that A ∪ (B ∩ C) ⊇ {α ∈ κ | xα ∈ F 〈A,B,C〉}. �
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The next lemma shows that F � M3[P(κ)] preserves meets. Note that
with Lemma 6.1, this means that F � M3[P(κ)] is a lattice embedding of
M3[P(κ)] into the lattice Sub(V ).

Lemma 6.3. Let 〈A,B,C〉 , 〈A′, B′, C ′〉 ∈ M3[P(κ)] be balanced triples. Then

F 〈A,B,C〉 ∩ F 〈A′, B′, C ′〉 = F 〈A ∩ A′, B ∩ B′, C ∩ C ′〉 .

Proof. Since, by Lemma 6.1, F is a join-homomorphism, it is monotone, whence
F 〈A ∩ A′, B ∩ B′, C ∩ C ′〉 ⊆ F 〈A,B,C〉 ∩ F 〈A′, B′, C ′〉. Thus it remains to
prove the opposite inclusion.

Let v ∈ F 〈A,B,C〉 ∩ F 〈A′, B′, C ′〉 be a non-zero vector. Then v can be
expressed as

v =
∑

α∈A

aαxα +
∑

β∈B

bβyβ +
∑

γ∈C

cγzγ

=
∑

α∈A′
a′

αxα +
∑

β∈B′
b′
βyβ +

∑

γ∈C′
c′
γzγ .

(6.5)

Consider such an expression of v with

|{α | aα �= 0}| + |{β | bβ �= 0}| + |{γ | cγ �= 0}| (6.6)

minimal possible. Put aα = 0 for α /∈ A, bβ = 0 for β /∈ B, and cγ = 0 for
γ /∈ C. By symmetry, we can assume that aα �= 0 for some α ∈ A. Suppose for
a contradiction that α /∈ A′. Since the triple 〈A′, B′, C ′〉 is balanced, B′ ∩C ′ ⊆
A′, whence α /∈ B′ ∩C ′. Without loss of generality we can assume that α /∈ B′.
If all aα, bα, and cα were non-zero, we could replace cαzα with −cαxα − cαyα

and reduce the value of the expression in (6.6) which is assumed minimal
possible. Thus either bα = 0 or cα = 0 (recall that we assume that aα �= 0).
We will deal with these two cases separately. If bα = 0, then the equality

aαxα + cαzα = c′
αzα (6.7)

must hold true. Since xα and zα are linearly independent, it follows from (6.7)
that aα = 0 which contradicts our choice of α. The remaining case is when
cα = 0. Under this assumption we have that

aαxα + bαyα = c′
αzα.

It follows that

aαxα = c′
αzα − bαyα = −c′

αxα − (c′
α + bα)yα. (6.8)

Since xα and yα are linearly independent, we infer from (6.8) that aα = −c′
α =

bα. Then we could reduce the value of (6.6) by replacing aαxα + bαyα with
c′
αzα in (6.5). This contradicts the minimality of (6.6). �

Combining Lemmas 6.1, 6.2, and 6.3, we conclude:

Theorem 6.4. The restrictions F � M3[P(κ)] : M3[P(κ)] → Sub(V ) and, a
fortiory, F � S : S → Sub(V ) are bounded lattice embeddings. In particular,
the lattice S is isomorphic to a bounded sublattice of the subspace lattice of a
vector space.
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It is well-known that a distributive lattice L embeds (via a bounds-pre-
serving lattice embedding) into the lattice P(κ), where κ is the cardinality
of the set of all maximal ideals of L. Such embedding induces an embedding
M3[L] ↪→ M3[P(κ)] (cf. Lemma 3.1). By Theorem 6.4, the lattice M3[P(κ)]
embeds into the lattice Sub(V ) for a suitable vector space V (note again that
we now also admit finite κ). Since the lattice Sub(V) is Arguesian, so are
M3[P(κ)] and M3[L].

On the other hand, [9, Lemma 2.9] states that a lattice L is distributive
if and only if M3[L] is modular. Hence, if M3[L] is modular, it follows that
L is distributive, and, by the above argument, M3[L] is even Arguesian. We
have thus proven the following strengthening of [9, Lemma 2.9]:

Proposition 6.5. Let L be a lattice. Then L is distributive iff the lattice M3[L]
is modular iff M3[L] is Arguesian. If this is the case, then M3[L] can be
embedded into the lattice of all subspaces of a suitable vector space over any
given field.

7. Non existence of 3-frames

In this section we prove that there is no 3-frame in the lattice M3[D] for
any distributive lattice D. As a consequence, we cannot apply the Jónsson’s
coordinatization theorem in order to prove coordinatizability of any of these
lattices, in particular, of the lattices M3[F(κ)] and S.

Lemma 7.1. Let D be a distributive lattice. Then for each 〈a1, a2, a3〉 ∈ D3,
the equality

μ〈a1, a2, a3〉 = μ〈a1, a2, a3〉.
holds true.

Proof. First observe that for all 1 ≤ k < l ≤ 3 we have that

ak ∧ al ≤
∨

1≤i<j≤3

(ai ∧ aj) = μ〈a1, a2, a3〉. (7.1)

By (2.2) we have the equalities

μ〈a1, a2, a3〉 = μ〈a1 ∨ μ〈a1, a2, a3〉, a2 ∨ μ〈a1, a2, a3〉, a3 ∨ μ〈a1, a2, a3〉〉
=

∨

1≤i<j≤3

((ai ∨ μ〈a1, a2, a3〉) ∧ (aj ∨ μ〈a1, a2, a3〉)).

Since the lattice D is distributive,

(ai ∨ μ〈a1, a2, a3〉) ∧ (aj ∨ μ〈a1, a2, a3〉) = (ai ∧ aj) ∨ μ〈a1, a2, a3〉,
for all 1 ≤ i < j ≤ 3. Applying (7.1), we conclude that

μ〈a1, a2, a3〉 =
∨

1≤i<j≤3

((ai ∧ aj) ∨ μ〈a1, a2, a3〉) = μ〈a1, a2, a3〉. �

With regard to (2.3), we conclude from Lemma 7.1 that
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Corollary 7.2. If D is a distributive lattice, then

μ(a ∨ b) = μ〈a1 ∨ b1, a2 ∨ b2, a3 ∨ b3〉,
for all a = 〈a1, a2, a3〉 , b = 〈b1, b2, b3〉 ∈ M3[D].

Lemma 7.3. Let D be a distributive lattice and a = 〈a1, a2, a3〉 and b =
〈b1, b2, b3〉 elements of M3[D]. If a ∧ b = 0, then

μ(a ∨ b) = μa ∨ μb ∨
⎛

⎝
(

3∨

i=1

ai

)
∧

⎛

⎝
3∨

j=1

bj

⎞

⎠

⎞

⎠ .

Proof. Applying Corollary 7.2 and using the distributivity of D, we compute
that

μ(a ∨ b) = μ〈a1 ∨ b1, a2 ∨ b2, a3 ∨ b3〉 =
∨

1≤i<j≤3

((ai ∨ bi) ∧ (aj ∨ bj))

=
∨

1≤i<j≤3

((ai ∧ aj) ∨ (bi ∧ bj) ∨ (ai ∧ bj) ∨ (aj ∧ bi)).

Since a and b are balanced triples, μa = ai ∧ aj and μb = bi ∧ bj for all
1 ≤ i < j ≤ 3. Thus

μ(a ∨ b) =
∨

1≤i<j≤3

(μa ∨ μb ∨ (ai ∧ bj) ∨ (aj ∧ bi))

= μa ∨ μb ∨
∨

1≤i<j≤3

((ai ∧ bj) ∨ (aj ∧ bi)).
(7.2)

From a ∧ b = 0 we get that ai ∧ bi = 0, for all i = 1, 2, 3. Substituting to (7.2)
we get that

μ(a ∨ b) = μa ∨ μb ∨
∨

1≤i≤j≤3

((ai ∧ bj) ∨ (aj ∧ bi)) = μa ∨ μb ∨
3∨

i=1

3∨

j=1

(ai ∧ bj).

Applying the distributivity of D again we conclude that

μ(a ∨ b) = μa ∨ μb ∨
⎛

⎝
(

3∨

i=1

ai

)
∧

⎛

⎝
3∨

j=1

bj

⎞

⎠

⎞

⎠ . �

Lemma 7.4. Let D be a bounded distributive lattice and a = 〈a1, a2, a3〉 , b =
〈b1, b2, b3〉 ∈ M3[D]. If a ⊕ b = 1, then

μa ⊕
3∨

j=1

bj = 1.

Proof. Since trivially

μb ∨
⎛

⎝
(

3∨

i=1

ai

)
∧

⎛

⎝
3∨

j=1

bj

⎞

⎠

⎞

⎠ ≤
3∨

j=1

bj ,
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we infer from Lemma 7.3 that

1 = μ(a ⊕ b) = μa ∨ μb ∨
⎛

⎝
(

3∨

i=1

ai

)
∧

⎛

⎝
3∨

j=1

bj

⎞

⎠

⎞

⎠ ≤ μa ∨
3∨

j=1

bj ≤ 1. (7.3)

Since a ∧ b = 0, we have that μa ≤ ai ≤ bi, for all i = 1, 2, 3. Since the lattice
D is distributive, we conclude that

0 =
3∨

j=1

(μa ∧ bj) = μa ∧
3∨

j=1

bj . (7.4)

Combining (7.3) and (7.4) we get the desired equality μa ⊕ ∨3
j=1 bj = 1. �

Lemma 7.5. Let D be a bounded distributive lattice and a = 〈a1, a2, a3〉, a′ =
〈a′

1, a
′
2, a

′
3〉 perspective elements of M3[D]. If a ∧ a′ = 0, then

μa = μa′ and μ(a ∨ a′) =
3∨

i=1

ai =
3∨

i=1

a′
i.

Proof. Let b = 〈b1, b2, b3〉 be a common complement of a and a′. It follows
from Lemma 7.4 that both μa and μa′ are complements of

∨3
j=1 bj . Since com-

plements in a distributive lattice are unique, we get that μa = μa′. Similarly
we get that both

∨3
i=1 ai and

∨3
i=1 a′

i are complements of μb, hence they are
equal. From these equalities we infer that

μa = μa′ ≤
3∨

i=1

a′
i =

3∨

i=1

ai.

Applying Lemma 7.3 we conclude that

μ(a ∨ a′) =
3∨

i=1

ai =
3∨

i=1

a′
i. �

Proposition 7.6. There is no 3-frame in the lattice M3[D], for any bounded
distributive lattice D.

Proof. Suppose that there are elements a = 〈a1, a2, a3〉 ,a′ = 〈a′
1, a

′
2, a

′
3〉, and

a′′ = 〈a′′
1 , a′′

2 , a′′
3〉 of M3[D] such that a ∼ a′, a ∼ a′′ and the family 〈a,a′,a′′〉

is independent. Then μ(a ∨ a′) =
∨3

i=1 ai =
∨3

i=1 a′′
i due to Lemma 7.5. It

follows that a ∨ a′ ≥ a′′ which contradicts the independence of the family
〈a,a′,a′′〉. �

Corollary 7.7. There is no 3-frame in the lattice M3[B], for any Boolean lattice
B. In particular, neither the lattices M3[F(κ)] nor the lattice S has a 3-frame.

Remark 7.8. This remark is due to the anonymous referee. He pointed out that
the main results of Sections 6 and 7 can be obtained by a simpler argument
using the representation of a distributive lattice as a subdirect product of the
two-element lattice 2. Namely, it is well-known that a distributive lattice D is
a subdirect power of 2. In particular, there is an index set I and an embedding
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ϕ : D ↪→ 2I such that the composition πi◦ϕ : D → 2 with the canonical projec-
tion πi : 2I → 2 is a surjective homomorphism for all i ∈ I. The map ϕ induces
the embedding M3[D] → M3[2I ] given by 〈a, b, c〉 �→ 〈ϕ(a), ϕ(b), ϕ(c)〉. Ob-
serving that M3[2] � M3 we get isomorphisms M3[2I ] � M3[2]I � M3

I .
Thus we have an embedding Φ: M3[D] ↪→ M3

I . It is straightforward to see
that the composition of Φ with the ith canonical projection M3

I → M3

is a surjective homomorphism M3[D] → M3. Therefore M3[D] is a subdi-
rect power of M3. The lattice M3 embeds into the subspace lattice of the
2-dimensional vectors space V over an arbitrary field. Let ψ : M3 ↪→ SubV

be such an embedding. Then MI
3 embeds into SubV (I) (here V (I) denotes the

direct sum of copies of V ) via the mapping (ai)i∈I �→ ⊕
i∈I ψ(ai). The restric-

tion of the map to M3[D] is an embedding of M3[D] into SubV (I). Clearly,
if D is bounded, the embedding can be chosen bounds-preserving. This gives
the main results of Section 6.

Let D be a bounded lattice. Observe that the embedding Φ: M3[D] ↪→
M3

I preserves the bounds. It follows that the Φ-image of a 3-frame would be a
3-frame in M3

I . Let i ∈ I and πi : M3
I → M3 be the corresponding canonical

projection. The πi image of the 3-frame in M3
I would be a 3-frame in M3.

However, it is easy to see that there is no 3-frame in M3. Consequently, there
is no 3-frame in M3[D]. Thus we get Proposition 7.6.

8. Coordinatizability

We prove that despite of non-existence of 3-frames, the lattice M3[B] is co-
ordinatizated for any Boolean lattice B. It is isomorphic to L(M [B]∗), the
lattice of all finitely generated right ideals of the Boolean power of the ring M ,
the ring of 2×2 matrices over the two-element field, by the Boolean lattice B.
Modifying this construction we show that the lattice S introduced in Section 3
is coordinatizable as well.

Let the notation M stand for the ring of all 2 × 2-matrices over the two-
element field F2. It is well known that the matrix ring over a regular ring is
regular, in particular, the ring M is regular (cf. [4, Theorem 1.7]). We put

e1 :=
(

1 0
0 0

)
, e2 :=

(
0 0
1 1

)
, and e3 :=

(
0 1
0 1

)
.

There are exactly eight idempotents in the ring M , namely 0, 1, e1, e2, e3, 1 −
e1, 1−e2, and 1−e3, and there are exactly three proper non-zero right ideals of
M , namely e1M = (1−e3)M , e2M = (1−e1)M , and e3M = (1−e2)M . Thus
the lattice L(M) is isomorphic to the five-element modular non-distributive
lattice M3 (see Figure 1).

We denote by Idemp(R) the set of all idempotents of a ring R. We are
going to make use of the next elementary lemma.

Lemma 8.1. Let R be a ring and e, f ∈ Idemp(R). Then

ef = f ⇐⇒ fR ⊆ eR.
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Figure 1. The lattice L(M)

Proof. (⇐) If fR ⊆ eR, then f ∈ eR and so f = er for some r ∈ R. It follows
that ef = eer = er = f . (⇒) Conversely, ef = f implies that f ∈ eR. We get
readily that fR ⊆ eR. �

We equip the set Idemp(R) with a quasi-order ≤e defined as follows:
f ≤e e provided that ef = f , for all e, f ∈ Idemp(R). Further, we denote by
≡e the corresponding equivalence relation on Idemp(R), i.e., e ≡e f if and
only if both e ≤e f and f ≤e e, for all e, f ∈ Idemp(R).

Suppose that R is a regular ring. Let ιR : Idemp(R) → L(R) be the
map given by the correspondence e �→ eR. It follows from Lemma 8.1 that
the kernel of the map ιR coincides with the the equivalence relation ≡e and
the quotient Idemp(R)/ ≡e is order-isomorphic to the set L(R) ordered by
inclusion. Since L(R) is a lattice, Idemp(R)/ ≡e has finite suprema and infima,
and the lattices L(R) and Idemp(R)/ ≡e are isomorphic.

The following lemma is a trivial consequence of the preceding two para-
graphs. We leave the details of the proof to the reader.

Lemma 8.2. Let L be a lattice and R a regular ring. Suppose that there is a
surjective map ε : Idemp(R) → L such that

e ≤e f ⇐⇒ ε(e) ≤ ε(f), for all e, f ∈ Idemp(R). (8.1)

Then ker ε = ker ιR is equal to ≡e and the lattice L is isomorphic to L(R) via
the composition1 ιR ◦ ε−1 : L → L(R).

Note that in the ring M introduced above, we have e1 ≡e 1 − e3, e2 ≡e

1 − e1, and e3 ≡e 1 − e2, and the idempotents e1, e2, and e3 are pairwise
incomparable. Recall from Section 2.4 that the Boolean power M [B]∗ of the
ring M by a Boolean lattice B is the set of all continuous functions from the
Stone space of B to M equipped with the discrete topology.

1 Purists would object that the composition ιR ◦ ε−1 sends an element a ∈ L to a singleton
set {eR}, where e is any idempotent from the ≡e-block ε−1(a). For the sake of simplicity
we identify the singleton set {eR} with its element eR .
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Lemma 8.3. Let B be a Boolean lattice. If a ring R is regular, then the Boolean
power R[B]∗ is regular as well.

Proof. For each a ∈ R we pick an element a∗ ∈ R such that a = aa∗a. Given
x ∈ R[B]∗, we define a map x∗ : B∗ → R by the correspondence u �→ x(u)∗,
u ∈ B∗. The x∗-preimage of an element b ∈ R is

⋃{x−1(a) | a∗ = b}, which
is a union of open sets. It follows that the map x∗ is continuous and clearly
x = xx∗x. Therefore R[B]∗ is a regular ring. �

Given elements a, b of a Boolean lattice B, we set a−b := a∧b′, where b′ is
a unique complement of b. Note that an element x ∈ M [B]∗ is an idempotent
if and only if x(u) ∈ Idemp(M) for every u ∈ B∗. For each e ∈ Idemp(M [B]∗)
we set ε(e) := 〈a1, a2, a3〉, where2

Na1 = {u | e(u) ∈ {1, e1, 1 − e3}},
Na2 = {u | e(u) ∈ {1, e2, 1 − e1}},
Na3 = {u | e(u) ∈ {1, e3, 1 − e2}}.

(8.2)

It is clear that ε(e) is a balanced triple with Nμε(e) = {u | e(u) = 1}. Therefore
(8.2) defines a map ε : Idemp(M [B]∗) → M3[B].

Lemma 8.4. Let B be a Boolean lattice. Then the map ε : Idemp(M [B]∗) →
M3[B] defined by (8.2) satisfies property (8.1).

Proof. The implications e ≤e f =⇒ ε(e) ≤ ε(f), e,f ∈ Idemp(M [B]∗), are
seen readily from (8.2). Let e,f ∈ Idemp(M [B]∗) with ε(e) = 〈a1, a2, a3〉 and
ε(f) = 〈b1, b2, b3〉. Suppose that ε(e) ≤ ε(f) and let u ∈ B∗. The inequality
implies that με(e) ≤ με(f), hence e(u) = 1 =⇒ f(u) = 1. From a1 ≤ b1
we infer that e(u) ∈ {e1, 1 − e3} =⇒ f(u) ∈ {1, e1, 1 − e3}. Similarly, from
a2 ≤ b2 we get that e(u) ∈ {e2, 1 − e1} =⇒ f(u) ∈ {1, e2, 1 − e1} and from
a3 ≤ b3 we conclude that e(u) ∈ {e3, 1 − e2} =⇒ f(u) ∈ {1, e3, 1 − e2}.
Therefore e ≤e f . �

Theorem 8.5. Let B be a Boolean lattice. The ring M [B]∗ is regular and

L(M [B]∗) � M3[B].

Proof. The ring M [B]∗ is regular due to Lemma 8.3.
Let b = 〈b1, b2, b3〉 ∈ M3[B]. Note that since b is a balanced triple, each

ultrafilter on B contains at most one element from {bi − μb | i = 1, 2, 3}∪{μb}.
Thus we can define e ∈ Idemp(M [B]∗) by

e(u) :=

⎧
⎪⎨

⎪⎩

1 : if μb ∈ u,

ei : if bi − μb ∈ u,

0 : otherwise,

for all u ∈ B∗. It follows from (8.2) that ε(e) = b, and so ε is a projection.
By Lemma 8.4, the map ε : L(M [B]∗) → M3[B] satisfies (8.1), and so it

is an isomorphism due to Lemma 8.2. �

2 Recall definition (2.6).
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Corollary 8.6. Let L be a bounded lattice. The lattice M3[L] is coordinatizable
if and anly if the lattice L is Boolean.

Proof. If L is Boolean, then the lattice M3[L] is coordinatizable by Theo-
rem 8.5. In order to prove the opposite implication, suppose that the lattice
M3[L] is modular and complemented. We will prove that L is Boolean. By
[9, Lemma 2.9] the lattice M3[L] is modular if and only if the lattice L is dis-
tributive. Thus the lattice L must be distributive. It follows from Lemma 7.4
that L is complemented. Therefore it is a Boolean lattice. �

Let us now turn our attention to the lattice S introduced in Section 3.
Let κ be an infinite cardinal. There are exactly κ principal ultrafilters on F(κ),
each corresponding to an ordinal α ∈ κ, namely uα = {X ∈ F(κ) | α ∈ X}.
Besides there is the only non-principal ultrafilter, f, consisting of all cofinite
subsets of κ. The topological space F(κ)∗ is the one-point compactification of
the discrete space {uα | α ∈ κ}. In particular, the singleton sets {uα}, α ∈ κ,
are open, and neighborhoods of f are of the form F(κ)\{uα | α ∈ F}, where F
runs through all finite subsets of κ.

We put

S := {x ∈ M [F(κ)]∗ | x(f) ∈ {0, 1, e1, 1 − e1}}.
Theorem 8.7. The ring S is regular and L(S) � S.

Proof. Observe that the I := {x ∈ S | x(f) = 0} is an ideal of the ring
M [F(κ)]∗. Since the ring M [F(κ)]∗ is regular due to Lemma 8.3, we get from
[4, Lemma 1.3] that I is a regular ideal. Thus I is a regular ideal of the ring
S and it is easy to see that S/I � F2 × F2. Applying [4, Lemma 1.3] again,
we conclude that the ring S is regular.

Let ε : M [F(κ)]∗ → M3[F(κ)] be the map defined by (8.2). The map ε
satisfies (8.1) due to Lemma 8.4. To conclude that it is an isomorphism, it
remains to prove that ε(Idemp(S)) = S (cf. Lemma 8.2).

Let e ∈ Idemp(S). Then e(f) ∈ {0, 1, e1, 1 − e1}. Since the function
e : F(κ)∗ → M is by definition continuous, it is constant on some neighbor-
hood of f. It follows that the set {α | e(uα) ∈ {e3, 1 − e2}} is finite. We infer
from (8.2) that this set is in fact C\μ〈A,B,C〉, hence the set C\μ〈A,B,C〉 is
finite. Thus ε(Idemp(S)) ⊆ S.

It now remains to prove the opposite inclusion. Given 〈A,B,C〉 ∈ S, we
define an idempotent e ∈ M [F(κ)]∗ by

e(u) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if μ〈A,B,C〉 ∈ u,

e1 if A\μ〈A,B,C〉 ∈ u,

1 − e1 if B\μ〈A,B,C〉 ∈ u,

e3 if C\μ〈A,B,C〉 ∈ u,

0 otherwise,

for all u ∈ F(κ)∗. Since 〈A,B,C〉 ∈ S, the set C\μ〈A,B,C〉 is finite by (3.3),
hence C\μ〈A,B,C〉 /∈ f. It follows that e(f) ∈ {0, 1, e1, 1 − e1}, and so e ∈ S.
We infer that S ⊆ ε(Idemp(S)). This concludes the proof. �
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9. Maximal Abelian regular subalgebras

We prove that the maximal Boolean sublattices G and H of the lattice S

from Sections 4 and 5, respectively, correspond to maximal Abelian regular
subalgebras (over the field F2) of S.

Observe that the diagonal matrices, namely 0, 1, e1, and 1 − e1, form a
subalgebra of M , which we denote by G. It is easy to compute by hand that
the elements from M commuting with e1 are exactly the diagonal matrices.
It follows that G is a maximal Abelian regular subalgebra of the F2-algebra
M(cf. [16, Section 4.4]).

Proposition 9.1. Let B be a Boolean lattice and ε : Idemp(M [B]∗) → M3[B]
the map defined by (8.2). Then G[B]∗ is a maximal Abelian regular subalgebra
of M [B]∗, it is commutative, and

ε(Idemp(G[B]∗)) = {〈a, b, a ∧ b〉 | a, b ∈ B}. (9.1)

Proof. The ring G[B]∗ is regular due to Lemma 8.3. (Observe that the equality
Idemp(G[B]∗) = G[B]∗ holds true.)

Since G is commutative, the Boolean power G[B]∗ is commutative as
well. As observed above, G = {a ∈ M | ae1 = e1a}. Thus the range of each
x ∈ M [B]∗ commuting with the constant map B∗ → {e1} must be included in
G. It follows that G[B]∗ is a maximal Abelian regular subalgebra of M [B]∗.

It is clear from (8.2) that ε(e) ∈ {〈a, b, a ∧ b〉 | a, b ∈ B} for every e ∈
Idemp(G[B]∗). Conversely, given a, b ∈ B and an ultrafilter u on B, we set

e(u) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if a ∧ b ∈ u,

e1 if a − b ∈ u,

1 − e1 if b − a ∈ u,

0 otherwise.

Then e ∈ Idemp(G[B]∗) and ε(e) = 〈a, b, a ∧ b〉. This proves (9.1). �

In the case that B = F(κ), we have G[F(κ)]∗ ⊆ S. Thus it follows from
Proposition 9.1 that

Corollary 9.2. The ring G[F(κ)]∗ is commutative, forms a maximal Abelian
regular subalgebra of S, and ε(Idemp(G[F(κ)]∗)) = G, where G is the Boolean
lattice introduced in Section 4.

Put

m :=
(

1 1
1 0

)
∈ M

and observe e3 = me1m
−1. It follows that the subalgebra H = {0, 1, e3, 1−e3}

of M is the image of G under the inner automorphism of M given by x �→
mxm−1, x ∈ M . Consequently, H is a maximal Abelian regular subalgebra
of M and also H[B]∗ is a maximal Abelian regular subalgebra of M [B]∗ for
every Boolean lattice B.
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Proposition 9.3. The intersection H ′ := H[F(κ)]∗ ∩ S is a maximal Abelian
regular subalgebra of S, it is commutative, and ε(Idemp(H ′)) = H, where H

is the Boolean lattice introduced in Section 5.

Proof. Clearly H, and so also H ′, are commutative. Put J = {x ∈ H ′ |
x(f) = 0} and observe that J is isomorphic to a direct sum of copies of F2.
In particular, J is a regular ideal of H ′. Since H ′/J � F2, the algebra H ′ is
regular due to [4, Lemma 1.3].

Given a principal ultrafilter u ∈ F(κ)∗, set

eu(v) :=

{
e3 if v = u,

0 whenever v �= u,

for all v ∈ F(κ)∗. Observe that since eu(f) = 0, we have eu ∈ H ′. Let x ∈ S
be commuting with every element of H ′. Since x commutes with all eu and
H is a maximal Abelian regular subalgebra of M , we have that x(u) ∈ H
for all principal ultrafilters u. Since the map x is continuous, it is constant on
some neighborhood of f, and so x(f) /∈ {e1, 1 − e1}. We conclude that x ∈ H ′.
Therefore H ′ is a maximal Abelian regular subalgebra of S.

Let e ∈ Idemp(H ′) (note that Idemp(H ′) = H ′) and put 〈A,B,C〉 :=
ε(e). We get readily from (8.2) that B ⊆ A. From e(f) ∈ {0, 1} and e being
constant on some neighborhood of f, we conclude that A ≈ C. Therefore
〈A,B,C〉 ∈ H due to (5.2). Thus we have proved that ε(Idemp(H ′)) ⊆ H.

Given 〈A,B,C〉 ∈ H, we define an idempotent e ∈ H[F(κ)]∗ by

e(u) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if B ∈ u,

1 − e3 if A\B ∈ u,

e3 if C\B ∈ u,

0 otherwise,

for every ultrafilter u on F(κ). Since 〈A,B,C〉 ∈ H, both A\B and C\B are
finite, and so e(f) ∈ {0, 1}. It follows that e ∈ S, and so e ∈ H ′. Therefore
H ⊆ ε(Idemp(H ′)). �

Acknowledgements

We thank the anonymous referee for their valuable comments that led to re-
markable improvements of the paper. Following their suggestions we simplified
Section 3 and extended the paper by Sections 7–9.

References

[1] Banaschewski, B.: Totalgeordnete moduln. Arch. Math. 7, 430–440 (1957). (Ger-
man)

[2] Burris, S., Sankappanavar, H.B.: A Course in Universal Algebra. Graduate Texts
in Mathematics, vol. 78. Springer, New-York (1981)
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[6] Grätzer, G., Schmidt, E.T.: A lattice construction and congruence-preserving
extensions. Acta Math. Hung. 66, 275–288 (1995)

[7] Grätzer, G., Schmidt, E.T.: On the independence theorem of related structures
for modular (arguesian) lattices. Stud.Sci. Math. Hungar. 40, 1–12 (2003)

[8] Grätzer, G., Wehrung, F.: Flat semilattices. Colloq. Math. 79, 185–191 (1999)

[9] Grätzer, G., Wehrung, F.: The M3[D] construction and n-modularity. Algebra
Univers. 41, 87–114 (1999)

[10] Grätzer, G., Wehrung, F.: A new lattice construction: the box product. J. Alge-
bra 221, 5893–5919 (1999)

[11] Grätzer, G., Wehrung, F.: Proper congruence-preserving extension of lattices.
Acta Math. Hungar. 85, 169–179 (1999)

[12] Grätzer, G., Wehrung, F.: Tensor product and transferability of semilattices.
Can. J. Math. 51, 792–815 (1999)

[13] Grätzer, G., Wehrung, F.: Tensor product and semilattices with zero, revisited.
J. Pure Appl. Algebra 147, 273–301 (2000)

[14] Grätzer, G., Wehrung, F.: A survey of tensor product and related structures in
two lectures. Algebra Univers. 45, 117–143 (2001)

[15] Jónsson, B.: Representations of complemented modular lattices. Trans. Am.
Math. Soc. 60, 64–94 (1960)

[16] Murphy, G.J.: C∗-Algebras and Operator Theory. Academic Press. Inc, London
(1990)

[17] Ore, Ø.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)

[18] Schmidt, E.T.: Zur Charakterisierung der Kongruenzverbände der Verbände.
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