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Abstract. The congruence lattices of all algebras defined on a fixed finite
set A ordered by inclusion form a finite atomistic lattice E . We describe
the atoms and coatoms. Each meet-irreducible element of E being deter-
mined by a single unary mapping on A, we characterize completely those
which are determined by a permutation or by an acyclic mapping on
the set A. Using these characterisations we deduce several properties of
the lattice E ; in particular, we prove that E is tolerance-simple whenever
|A| ≥ 4.
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1. Introduction

In 1963, Grätzer and Schmidt proved that every algebraic lattice is isomorphic
to the congruence lattice of some algebra [1]. Since the algebras constructed
by them were infinite, the result immediately raised the question: Does every
finite lattice occur as the congruence lattice of a finite algebra? The problem
remained open till today, and it is usually referred as the finite lattice rep-
resentation problem. It is an abstract representation problem because it asks
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for a solution up to isomorphism. The concrete version is the more involved
question: Given a sublattice E of the partition lattice Eq(A) of all equivalence
relations on a set A, does there exist an algebra on the same base set A, such
that E equals the congruence lattice of this algebra (in [14] such lattices E are
characterized by closure properties).

The subject of the present paper is related to the finite representation
problem in its concrete version. For a fixed finite set A we consider all possible
congruence lattices of algebras with base set A. These congruence lattices
(ordered by inclusion) form itself a lattice E and we are going to investigate
this lattice. An important tool is our knowledge about the lattice L of all
quasiorder lattices of algebras defined on the set A described in [6] (using some
techniques developed previously in the papers [4] and [5]). These two lattices
are strongly interrelated: there is a residual mapping from L to E . Therefore,
in Sect. 3, we investigate on abstract level, how lattice properties (which are
relevant for us) behave under residual mappings (for instance, the coatoms of
E directly can be obtained from the coatoms of L, see Proposition 3.1(iv)).

Based on preliminary results from Sect. 2 and the results of [6] and Sect. 3,
we describe the atoms (∨-irreducible elements), coatoms (Sect. 4) and further
∧-irreducible elements (Sects. 5 and 6) of the lattice E . Finally, in Sect. 7, we
investigate several lattice theoretic properties of E , e.g., it is tolerance simple,
but has no properties related with modularity.

2. Preliminaries

Throughout the paper we fix a base set A (if not stated otherwise, A is assumed
to be finite). Further, let N := {0, 1, 2, . . . } and N+ := N\{0}. For a mapping
f : A → A, we write fa for the image of an element a ∈ A, and fn (n ∈ N)
denotes the n-fold composition of f (by convention, f0 is the identity mapping
idA).

Definition 2.1. Let Eq(A) and Quord(A) denote the set of all equivalence rela-
tions (reflexive, symmetric and transitive) and quasiorders (reflexive and tran-
sitive relations), respectively, on a set A. The least and the greatest quasiorders
(which are in fact equivalences) are Δ := {(x, x) | x ∈ A} and ∇ := A × A. A
unary mapping f : A → A preserves a quasiorder q ∈ Quord(A) (in particular,
an equivalence q = κ ∈ Eq(A)), notation f � q, if

∀x, y ∈ A : (x, y) ∈ q =⇒ (fx, fy) ∈ q.

This fact is also expressed by the following notions and notation: f is an
endomorphism of q (f ∈ End q), q is invariant for or compatible with f , or
q is a quasiorder of (A, f) (q ∈ Quord(A, f)), or κ is a congruence of (A, f)
(κ ∈ Con(A, f)).

The identity idA : A → A : x 	→ x as well as all constant mappings
A → A : x 	→ a are called trivial because just they preserve every qua-
siorder q ∈ Quord(A). For a unary algebra (A,F ), F ⊆ AA, let Con(A,F ) and
Quord(A,F ) be its congruence and quasiorder lattice, respectively, i.e., the
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lattice of all equivalences or quasiorders that are compatible with each f ∈ F .
Moreover, let

E := {Con(A,F ) | F ⊆ AA} and L := {Quord(A,F ) | F ⊆ AA}
denote the lattice of all such congruence lattices and quasiorder lattices, respec-
tively, on A, ordered by inclusion. Instead of Quord(A,F ) and Con(A,F ) we
sometimes write simply Quord F and Con F . Since congruences of an algebra
are characterized by the unary polynomial functions of the algebra, the lattice
E is in fact the lattice of all congruence lattices of arbitrary (not necessarily
unary) algebras on the set A (the same holds for quasiorders and L).

Remark 2.2. The relation � induces (via the operators Con and End) a Ga-
lois connection between unary mappings and equivalence relations on A. The
Galois closures are just the elements (congruence lattices) Con(A,F ) ∈ E and
monoids of the form EndQ (for some set Q ⊆ Eq(A)), in particular, we have

E ∈ E ⇐⇒ E = Con(A,End E) (i.e., E is Galois closed).

The meet in E is the intersection while the join of elements Ei ∈ E (i ∈ I) is
given by

∨
i∈I Ei = Con End

⋃
i∈I Ei.

Clearly, F ⊆ F ′ implies Con(A,F ′) ⊆ Con(A,F ). Thus ∧-irreducibles in
E must be of the form Con(A, f) for a single function f because Con(A,F )
is the intersection of all Con(A, f) with f ∈ F . Analogously, ∨-irreducible (in
case of infinite A, completely ∨-irreducible) elements of E must be of the form
Eκ := Con End κ for a single equivalence relation κ ∈ Eq(A)\{Δ,∇}, because,
for E ∈ E , EndE is the intersection of all End κ and thus Con EndE = E is
the join (in E) of all Con End κ with κ ∈ E.

Notation 2.3. For κ ∈ Eq(A) consider the corresponding partition A/κ into
equivalence classes. If C1={a1, a2, . . . }, C2={b1, b2, . . . }, . . . , Cm={c1, c2, . . .}
are the equivalence classes of κ with at least two elements, then we use the
notation

κ = [a1, a2, . . . ] [b1, b2, . . . ] . . . [c1, c2, . . . ] or

κ = [C1] [C2] . . . [Cm].

All other elements which do not appear in the list form one-element equivalence
classes.

2.4. Here we introduce some special notions for monounary algebras; for a
more general view to monounary algebras we refer to [3].

Let (A, f) be a finite monounary algebra. Let Zf (x) := {f ix | i ∈ N} be
the subalgebra of (A, f) generated by an element x ∈ A. Obviously, we have
a ∈ Zf (x) ⇐⇒ Zf (a) ⊆ Zf (x). We write B ≤ (A, f) if B is (the carrier set
of) a subalgebra of (A, f).

Considering the graph f• := {(a, b) ∈ A2 | b = fa} of f , one can use a
graph theoretic terminology. For a ∈ A, let Kf (a) denote the connected com-
ponent of f• to which a belongs (note that two vertices x, y ∈ A are connected
with respect to f , iff there exist i, j ∈ N with f ix = f jy). A component K
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of f is called nontrivial if it contains at least two elements (thus a trivial
component is just a fixed point).

For a monounary algebra (A, f), the least quasiorder and congruence,
resp., containing a pair (x, y) ∈ A2 is denoted by αf (x, y) and θf (x, y) (prin-
cipal congruence), resp., and we have

αf (x, y) = Δ ∪ {(f ix, f iy) | i ∈ N}tra,
θf (x, y) = Δ ∪ {(f ix, f iy) | i ∈ N}sym tra.

Here Ψsym = Ψ ∪ Ψ−1 denotes the symmetric closure and Ψtra the transitive
closure of a binary relation Ψ ⊆ A × A.

We now collect some properties for functions f, g ∈ AA with Con(A, f) ⊆
Con(A, g).

Lemma 2.5. Let f, g ∈ AA be nontrivial and Con(A, f) ⊆ Con(A, g). Then we
have

(i) ∀x, y ∈ A : (x, y) ∈ κ ∈ Con(A, f) =⇒ (gx, gy) ∈ κ,
in particular we have (gx, gy) ∈ θf (x, y) and θg(x, y) ⊆ θf (x, y).

(ii) Let B be a subalgebra of (A, f). Then either B is also a subalgebra of
(A, g) or g is constant on B, where the constant does not belong to B.

Proof. (i) is clear since f � κ implies g � κ what follows from the assumption
Con(A, f) ⊆ Con(A, g).
(ii): For a subalgebra B, εB := Δ ∪ B × B belongs to Con(A, f). Let x ∈ B.
If g is not constant on B, then there exists y ∈ B such that gx �= gy. Because
(x, y) ∈ εB , by (i) we have (gx, gy) ∈ εB\Δ, in particular gx ∈ B. Thus B is
closed under g. If g is constant on B and B is not a subalgebra of (A, g), then
the constant cannot be an element of B. �

Remark 2.6. The property in Lemma 2.5(i) completely characterizes the con-
tainment of the congruence lattices. We have for f, g ∈ AA:

Con(A, f) ⊆ Con(A, g) ⇐⇒ ∀x, y ∈ A : (gx, gy) ∈ θf (x, y).

In preparation of the next proposition we need the following lemma.

Lemma 2.7. Let f be a permutation of prime power order pm with at least two
cycles of length pm. Then End Con(A, f) = End Quord(A, f).

Proof. The inclusion ⊇ is always true. To show ⊆, let h /∈ End Quord(A, f).
Thus there exist � ∈ Quord(A, f) with h � � � and therefore some principal
quasiorder αf (x, y) which is not preserved by h for some (x, y) ∈ �. We must
show h /∈ End Con(A, f). Assume on the contrary that h ∈ End Con(A, f)
or, equivalently, Con(A, f) ⊆ Con(A, h). Without loss of generality we can
assume (hx, hy) /∈ αf (x, y) (because there must exist (u, v) ∈ αf (x, y) with
(hu, hv) /∈ αf (u, v) ⊆ αf (x, y), one can use (u, v) instead of (x, y)).

If x, y belong to the same cycle of the permutation f , then αf (x, y) =
θf (x, y) (cf. [2, Lemma 3.1]) and we have h � � θf (x, y), a contradiction. Thus
we may assume x ∈ C1, y ∈ C2 where C1, C2 are different cycles of f of
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length pk1 and pk2 , resp. Moreover, w.l.o.g. assume k1 ≥ k2. Then we have
α := αf (x, y) = Δ∪{(f ix, f iy) | 0 ≤ i ≤ pk1−1} and θ := θf (x, y) = α∪α−1∪β
where β := {(f ix, f jx) | i, j ∈ {0, 1, . . . , pk1 − 1}, j ≡ i (mod pk2)}; note that
β ⊆ C1 × C1.

We distinguish the following cases (recall h � θ and hence (hx, hy) ∈ θ\α):
Case 1: (hx, hy) ∈ α−1, i.e., (hx, hy) = (f iy, f ix) ∈ C2 × C1 for some

i. By Lemma 2.5(ii), h is constant f ix on A\C1 ≤ (A, f) and constant f iy
on A\C2 ≤ (A, f). If there exists c ∈ A\(C1 ∪ C2), then f ix = hc = f iy,
a contradiction. Thus A = C1 ∪ C2, i.e., C1 and C2 must be two cycles of
length pm. But then h does not preserve θf (x, fy) since (hx, hy) = (f iy, f ix) /∈
θf (x, fy) = [x, fy][fx, f2y] . . . [f ix, f i+1y] . . . , a contradiction.

Case 2: (hx, hy) ∈ β, hence (hx, hy) ∈ C1 × C1. In particular we have
|C1| > 1, i.e., k1 ≥ 1. Further, by Lemma 2.5(ii), h is constant hy ∈ C1 on
A\C1 ≤ (A, f).

If k1 = k2 = m, then (hx, hy) ∈ (C1×C1)∩θf (x, y) ⊆ Δ, a contradiction.
If k2 < m, then there exists a cycle C of length pm which is distinct

from C1. Let x0 ∈ C. Then each block of θf (x0, x) contains exactly one element
of C1, hence (hx0, hx) = (hy, hx) /∈ θf (x0, x), a contradiction to h � θf (x0, x) ∈
Con(A, f).

As we obtain a contradiction in both cases, we have h /∈ End Con(A, f).
�

Proposition 2.8. Let f, g ∈ AA be nontrivial such that Con(A, f) ⊆ Con(A, g)
and let f be a permutation of prime power order pm with at least two cycles
of length pm. Then there exists k ∈ {1, . . . , pm − 1} such that g = fk.

Proof. Con(A, f) ⊆ Con(A, g) is equivalent to g ∈ End Con(A, f), thus g ∈
End Quord(A, f) by Lemma 2.7, consequently Quord(A, f) ⊆ Quord(A, g).
From [6, Proposition 2.5(b)] we conclude ∃k ∈ N+ : g = fk. Clearly k can be
chosen less than pm since fpm

= idA. �

3. Residual mappings and ∧-irreducibles

We shall strongly use results about the lattice L of quasiorder lattices for
the investigation of the lattice E of congruence lattices. However, we want
to separate those connections which are of pure lattice theoretic nature (and
which are—from our point of view—of its own interest). This is done in this
section. Based on the observation that Φ: L → E : Q 	→ Q∩Eq(A) is a residual
mapping, we consider this case in a general setting.

Let L and E be arbitrary lattices which, for simplicity, here are assumed
to be finite, the least and largest elements are denoted by 0L, 0E and 1L, 1E . A
mapping ϕ : L → E is called residual if it is a ∧-homomorphism (and therefore
also monotone with respect to the lattice orders) and ϕ(1L) = 1E (cf. e.g., [7]
or [8]).

The following proposition shows that then the ∧-irreducible elements of
E , in particular coatoms, can be constructed from the ∧-irreducible elements
of L.
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Proposition 3.1. Let ϕ : L → E be a surjective residual mapping.
(i) Let m ∈ E be a ∧-irreducible element in E. Then ϕ−1(m) �= ∅ and each

q ∈ L which is maximal in ϕ−1(m) is ∧-irreducible in L.
(ii) Let m ∈ E and let each q ∈ L with ϕ(q) = m be ∧-irreducible in L. Then

m is ∧-irreducible in E.
(iii) Assume

ϕ(x) = 1E =⇒ x = 1L for all x ∈ L. (†)
Then for each coatom m ∈ E there exists a coatom in q ∈ L such that
ϕ(q) = m.

(iv) Assume condition (†) above and

ϕ(q) ≤ ϕ(q′) =⇒ ϕ(q) = ϕ(q′) for all coatoms q, q′ ∈ L. (‡)
Then ϕ(q) is a coatom in E if q is a coatom in L. Moreover, the set of
all coatoms of E is {ϕ(q) | q coatom in L}.

Proof. (i): Let m ∈ E be ∧-irreducible. Then ϕ−1(m) = {q′ ∈ L | ϕ(q′) = m}
is nonempty because ϕ is surjective. Let q be maximal in ϕ−1(m). Then q is
the meet of ∧-irreducible elements, say q = q1 ∧ . . . ∧ qs with ∧-irreducible
qi ∈ L (i ∈ {1, . . . , s}). It follows m = ϕ(q) = ϕ(q1) ∧ . . . ∧ ϕ(qs). Because m
is ∧-irreducible there exists i ∈ {1, . . . , s} such that m = ϕ(qi). Since q ≤ qi
and q was chosen maximal with respect to ϕ(q) = m, we have q = qi, i.e., it is
∧-irreducible.
(ii): Let m = m1 ∧ m2 for some m1,m2 ∈ E. Since ϕ is surjective, there exist
qi ∈ L with ϕ(qi) = mi, i ∈ {1, 2}. Let q := q1 ∧ q2. Then ϕ(q) = ϕ(q1 ∧ q2) =
ϕ(q1) ∧ ϕ(q2) = m1 ∧ m2 = m and q must be ∧-irreducible by assumption.
Consequently, there is i ∈ {1, 2} with q = qi, thus m = ϕ(q) = ϕ(qi) = mi,
i.e., m is ∧-irreducible.
(iii): Since L is finite, by (i) there exists a maximal ∧-irreducible q ∈ L with
ϕ(q) = m. If q were not a coatom then there would exist a q′ ∈ L with q <
q′ < 1L. By the maximality property of q, we get ϕ(q′) > m, thus ϕ(q′) = 1E
(since m is coatom) and by the assumption from (iii) we would get q′ = 1L, a
contradiction.
(iv): Let q ∈ L be a coatom. Then ϕ(q) �= 1E because of (†). Thus there exists
some coatom m in E with ϕ(q) ≤ m. By (iii) there exists a coatom q′ in L such
that ϕ(q′) = m. Then ϕ(q) ≤ ϕ(q′) and with (‡) we get that ϕ(q) = ϕ(q′) = m
is a coatom in E. This together with (iii) shows that {ϕ(q) | q coatom in L}
is the set of all coatoms of E. �
Remark 3.2. Concerning Proposition 3.1(i), since L is finite, for any q′ ∈
ϕ−1(m) there exists a maximal (and therefore ∧-irreducible) q with q′ ≤ q ∈
ϕ−1(m).

Application 3.3. There are many applications of residual mappings in various
contexts, in particular in connection with the unique corresponding residuated
mapping (establishing a “covariant Galois connection”). However, for this pa-
per the only example which we need is the above mentioned residual mapping

Φ: L → E : Q 	→ Q ∩ Eq(A) ,
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(recall L := {Quord(A,F ) | F ⊆ AA} and E := {Con(A,F ) | F ⊆ AA} from
Definition 2.1). Clearly, Φ(Quord(A,F )) = Con(A,F ) ∈ E . The next Lemma
shows that the assumptions (†) and (‡) in Proposition 3.1(iii),(iv) are satisfied
for this example. Notice that Eq(A) and Quord(A) are the greatest elements
of the lattices E and L, respectively.

Lemma 3.4. (i) For Q ∈ L, Φ(Q) = Eq(A) implies Q = Quord(A).
(ii) For coatoms Q,Q′ in L, Φ(Q) ⊆ Φ(Q′) implies Φ(Q) = Φ(Q′).

Proof. (i): It is well known that trivial functions (idA and the constants, say
C) are the only mappings which preserves all equivalence relations. Thus we
have

Q = Quord EndQ ⊇ Quord End Φ(Q)

= Quord End Eq(A) = Quord({idA} ∪ C) = Quord(A).

(ii): This will follow immediately from Proposition 4.8 proved below. �

Note that the coatoms of E and L are of the form Con(A, f) and
Quord(A, f) for some specific f (they are of type (I)–(III) as we shall see
in Theorem 4.3). Thus from Proposition 3.1(iv) we immediately get:

Corollary 3.5. {Con(A, f) | Quord(A, f) is a coatom in L} is the set of all
coatoms of E. �

We close this section with two results which shall turn out to be useful
later. For an element C of a lattice E let [C〉E := {C ′ ∈ E | C ≤ C ′} denote
the principal filter generated by C.

Lemma 3.6. For C ∈ E and Q := Quord EndC we have Φ−1([C〉E) = [Q〉L.

Proof. Recall that

C ∈ E ⇐⇒ Con EndC = C and Q′ ∈ L ⇐⇒ Quord EndQ′ = Q′.

Now, if Q′ ∈ [Q〉L then Φ(Q′) ∈ [Φ(Q)〉E = [C〉E since Φ is order preserving
and Φ(Q) = Eq(A) ∩ Quord EndC = Con EndC = C. Thus Q′ ∈ Φ−1([C〉E).
Conversely, if Q′ ∈ Φ−1([C〉E), then C ⊆ Φ(Q′) ⊆ Q′ and we get Q =
Quord EndC ⊆ Quord EndQ′ = Q′, i.e., Q′ ∈ [Q〉L. �

Corollary 3.7. For F ⊆ AA we have End Quord(A,F ) = End Con(A,F ) if and
only if Φ−1([Con(A,F )〉E) = [Quord(A,F )〉L.

Proof. Let Q := Quord(A,F ) and C := Con(A,F ). Then we have C = Φ(Q) ⊆
Q. If EndQ = EndC then Q = Quord EndQ = Quord EndC and we get
Φ−1([C〉E) = [Q〉L from Lemma 3.6. Conversely, assume Φ−1([C〉E) = [Q〉L
and let Q′ := Quord EndC. Then Φ(Q′) = Con EndC = C, thus Q′ ∈
Φ−1([C〉E). Consequently, Q′ ∈ [Q〉L, i.e., Q ⊆ Q′ = Quord EndC, and we
get EndQ ⊇ End Quord EndC ⊇ EndC ⊇ EndQ (the latter inclusion follow
from C ⊆ Q), hence EndQ = EndC. �
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4. Atoms and coatoms of E
In this section we are going to describe the atoms (∨-irreducibles) and coatoms
of E . The case |A| = 2 is trivial. Then E consists only of one lattice, namely
Con(A,AA) = Con(A, idA) = Eq(A) = {Δ,∇}. Therefore, in the following we
assume always |A| ≥ 3.

The ∨-irreducibles are easily described. In the following theorem, A may
be an arbitrary, not necessarily finite, set.

Theorem 4.1. The completely ∨-irreducibles of E are exactly the congruence
lattices of the form

Eκ := Con(A,End κ) = {Δ, κ,∇} (∗)

where κ ∈ Eq(A)\{Δ,∇} is an arbitrary equivalence relation. Moreover, each
∨-irreducible is an atom in E, i.e. the lattice E is atomistic.

Proof. Completely ∨-irreducibles must be of the form Eκ as noted in Re-
mark 2.2. The characterization (∗) follows immediately from [12, Corollary
2.5], where it is shown that Quord(A,End κ) = {Δ, κ,∇} (and therefore it is
equal to Con(A,End κ)) for any equivalence relation κ. Clearly, such lattices
are atoms in E and therefore ∨-irreducible, since {Δ,∇} is the only proper
sublattice. �

Remark 4.2. For L ∈ E let

At(L) := {Eκ | Eκ ⊆ L, κ ∈ Eq(A)} = {Eκ | κ ∈ L\{Δ,∇}}
be the set of atoms contained in L. It is natural to ask which sets of atoms
are of the form At(L) for some L ∈ E . Equivalently, for given E ⊆ Eq(A), we
may ask for At(Con(A,End E)). Formally we put

[E] := {Δ,∇} ∪ At(Con(A,End E))

because then E 	→ [E] is a closure operator which is well known: [E] coin-
cides with the Galois closures of the Galois connection End− Inv as well as of
Pol − Inv restricted to equivalence relations (because Con F = Inv F ∩Eq(A)),
cf. [11] or [10], and can be explicitly described by so-called graphical compo-
sitions as shown by H. Werner in [14].

Now we describe the coatoms.

Theorem 4.3. The coatoms of E are exactly the congruence lattices of the form
Con(A, f) where f ∈ AA satisfies

(I) f is nontrivial and f2 = f , or
(II) f is nontrivial, f2 is a constant, say 0, and |[0]ker f | ≥ 3, or

(III) fp = idA for some prime p such that the permutation f has at least two
cycles of length p.

Remark. It can happen that different functions f from the theorem give the
same coatom. This explicitly will be clarified in Proposition 4.8. The theorem
describes three types of functions, the graphs of which are shown in Fig. 1 (all
labeled elements are mandatory, all others are optional). Moreover, there are



Vol. 79 (2018) The lattice of congruence lattices Page 9 of 23 4

type I

type II

type III

a

z b

z

u b

a

b0

b1

a0

ap−1 bp−1a1

Figure 1. The graphs of functions of type I, II and III

functions which define coatoms but which are of none of the types (I)–(III), e.g.,
on A = {0, 1, 2} we get a coatom Con(A, f) = Con(A, g) for f : 1 	→ 0 	→ 0,
2 	→ 2 and g : 1 	→ 2 	→ 0 	→ 2 where f is of type (I), but g is of no type.

Proof. The coatoms in the lattice L of quasiorder lattices are known from [6,
Theorem 3.1] and can be described exactly as Quord(A, f) for the nontrivial
functions f of the three types (I)–(III). Thus the Theorem immediately follows
from Corollary 3.5. �

Note that the proof is based on Corollary 3.5 which follows from Proposi-
tion 3.1(iv) and needs the condition (‡) in its concrete form in Lemma 3.4(ii).
This will be proved with Proposition 4.8 below. Moreover, in Proposition 4.8
it will be clarified when two different functions of type (I)–(III) give the same
congruence lattice Con(A, f) (by Proposition 3.1(iii) and Lemma 3.4(i) we al-
ready know that each coatom in E must be of the form Φ(Q) = Con(A, f) for
some function f of type (I)–(III)). However, before stating Proposition 4.8 we
need some more notions, notations and a lemma.

4.4. If f ∈ AA is of type (I) and has exactly one nontrivial component Kf (z)
with fixed point z, then let f̂ be defined by

f̂x :=

{
z if fx = x

x otherwise,

see Fig. 2. If f ∈ AA is of type (II) with two-element image f [A] = {u, z},
where z shall denote the fixed point, then let f̂ be defined by

f̂x :=

{
z if fx = u

u otherwise.
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b′b

a a′

f̂

z

z u

z

a′a

b b′
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b′

f̂
Type (II)

b

z

a′a

b b′

f
Type (I)

Figure 2. The functions f̂

or
y

y

z z

x
x

Figure 3. The graph of g �{x,y,z} for a g-essential triple (x, z, y)

In all other cases we put f̂ := f . From the Fig. 2 is clear that ˆ̂
f = f , more-

over (A, f) and (A, f̂) have the same principal congruences, thus Con(A, f) =
Con(A, f̂).

Definition 4.5. For a function g ∈ AA of type (I) or (II), respectively, a triple
(x, z, y) of three different elements is called essential for g (or g-essential) if
gx = z = gz and gy = y, or gx = y and gy = z = gz, respectively, see Fig. 3.

Lemma 4.6. Let Con(A, f) ⊆ Con(A, g) for functions f, g ∈ AA, and let three
different elements x, y, z ∈ A satisfy (x, z) ∈ θg(x, y). Then we have:
(a) If f is of type (I), then (x, z, y) or (y, z, x) is f-essential.
(b) If f is of type (II), then (x, y, z) or (x, z, y) or (y, x, z) or (y, z, x) is

f-essential (note that z never appears in the first component of these
triples).

Proof. Because of Lemma 2.5(i) we have (x, z) ∈ θg(x, y) ⊆ θf (x, y). For
functions of type (I) or (II) the only possibilities that all three elements x, y, z
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belong to the same block of θf (x, y) are those mentioned in (a) and (b), cf.
Figs. 3 and 1. �

Remark 4.7. If g ∈ AA is of type (I) or (II), then the g-essential triples
(x, z, y) := (a, z, b) or (x, z, y) := (a, z, u) (notation as in Fig. 1), respectively,
satisfy the condition (x, z) ∈ θg(x, y) from Lemma 4.6.

Proposition 4.8. Let f, g ∈ AA be nontrivial operations of one of the types (I)–
(III) such that Con(A, f) ⊆ Con(A, g). Then g ∈ {f, f̂} if f is of type (I) or
(II), and g = f i for some i ∈ {1, . . . , p − 1} if f is of type (III). In particular
we always have Con(A, f) = Con(A, g).

Proof. If f is of type (III), then from Proposition 2.8 (where functions f of
prime power order pm are considered, here one has to take m = 1) we conclude
that g = fk for some k ∈ {1, . . . , p − 1}. Corresponding to the types of f and
g, there remain altogether 6 cases to consider, denoted by (X,Y ) if f is of type
(X) and g of type (Y ), where X ∈ {I, II} and Y ∈ {I, II, III}. We start with
the cases where f and g have different types. For these cases we shall indicate
elements x, y ∈ A with θg(x, y) �⊆ θf (x, y), a contradiction to Lemma 2.5(i);
e.g., by using Lemma 4.6 or by finding (x, z) ∈ θg(x, y)\θf (x, y).

Case (I, II): Take the g-essential triple (x, z, y) = (a, z, u). By
Lemma 4.6(a) we have that (a, z, u) or (u, z, a) is f -essential. Thus (a, u) /∈
θf (a, z) = [a, z], in contradiction to (a, u) ∈ θg(a, z) ⊆ θf (a, z).

Cases (I, III) and (II, III): Since g is of type (III), there exist ele-
ments a0, b0 with θg(a0, b0) = [a0, b0][a1, b1] . . . [ap−1, bp−1] (see Fig. 1). Be-
cause θg(a0, b0) ⊆ θf (a0, b0) we get that f (as function of type (I) or (II))
must satisfy {fa0, fb0} = {a1, b1} (moreover, p = 2) and θf (a1, b1) = [a1, b1]
(because f2 = f for type (I), and f2a0 = f2b0 = z for f of type (II)); in
particular θf (a1, b1) cannot contain θg(a1, b1) = θg(a0, b0), a contradiction.

Case (II, I): Take the g-essential triple (x, z, y) := (a, z, b). By
Lemma 4.6(b) there exists an f -essential triple (a′, z′, u′) with {a, b, z} =
{a′, u′, z′}. Further, there must exist b′ /∈ {a′, u′, z′} with fb′ = z′. Note that
θf (x, b′) consists only of 2-element blocks for each x ∈ {a′, u′, z′} = {a, b, z}.
Therefore, θg(a, b′) = [a, b′, z] if gb′ = b′, or θg(b, b′) = [b, b′, gb′] if gb′ �= b′,
cannot be contained in θf (a, b′) or θf (b, b′), respectively, a contradiction.

Now we continue with the cases where f and g are of the same type.
Case (I, I): Let (a, z, b) be an g-essential triple. By Lemma 4.6(a), we

have only the following two possibilities:

fa = z and fb = b (∗)

or fb = z and fa = a. (∗∗)

Clearly this must hold for each essential triple of g. We show that (∗) implies
g = f and (∗∗) implies f = ĝ. Let c ∈ A\{a, b, z} arbitrary.

Consider case (∗): If gc = c, take the g-essential triple (a, z, c) for which
only case (∗) is possible (since fa = z), i.e., fc = c = gc. If gc �= c, take the
g-essential triple (c, gc, b) (provided that gc �= b) or (c, gc, z) (if gc = b) for
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which again case (∗) must hold (since fb = b and fz = z), i.e., fc = gc, too.
Altogether f = g.

Now consider case (∗∗): If gc = c, take the g-essential triple (a, z, c) for
which only case (∗∗) is possible (since fa = a), i.e., fc = z. If gc = z �= c, take
the essential triple (c, z, b) for which again case (∗∗) must hold (since fb = z),
i.e., fc = c. The case gc /∈ {c, z} cannot appear because then we would have
[a, c][z, gc] = θg(a, c) ⊆ θf (a, c) = [a, c, fc], a contradiction. Thus altogether
we have f = ĝ.

Case (II, II): Let (a, z, u) be a g-essential triple. So the triples (x, z′, y) =
(a, z, u) and (x, z′, y) = (a, u, z) satisfy the assumptions of Lemma 4.6(b),
consequently neither z nor u can be in the first component of the corresponding
f -essential triples. Thus there remain only the following two possibilities:

fa = u and fu = z = fz (∗)

or fa = z and fz = u = fu. (∗∗)

Clearly this must hold for each essential triple of g. We show that (∗) implies
g = f and (∗∗) implies f = ĝ (equivalently, g = f̂).

Consider case (∗): Since fz = z is the unique fixed point of f , for each g-
essential triple (a′, z, u′) we get case (∗), i.e. (a′, z, u′) is f -essential and thus f
and g agree on all essential triples. If b does not belong to an g-essential triple,
then gb = z and θg(a, b) = [a, b][u, z]. From θg(a, b) ⊆ θf (a, b) = [a, b][u, fb] we
conclude fb = z; altogether f = g.

Consider now case (∗∗): Since fu = u is the unique fixed point of f but
fz = u is not a fixed point, for each g-essential triple (a′, z, u′) we must have
case (∗∗), i.e. (a′, u′, z) is f -essential, in particular u′ = u and fa′ = z. If b
does not belong to an g-essential triple, then gb = z and θg(a, b) = [a, b][u, z].
From θg(a, b) ⊆ θf (a, b) = [a, b][z, fb] we conclude fb = u; hence f = ĝ. �

5. ∧-irreducible Con(A, f) in E with permutation f

The coatoms are ∧-irreducible in E . Now we want to deal with ∧-irreducible
congruence lattices in general. They all must be of the form Con(A, f) for a
single f and we have:

Proposition 5.1. Let Con(A, f) be a ∧-irreducible element in E. Then there
exists g ∈ AA such that Quord(A, g) is ∧-irreducible in L and Con(A, f) =
Con(A, g), Quord(A, f) ⊆ Quord(A, g).

Proof. The proof directly follows from Proposition 3.1(i) and Remark 3.2 ap-
plied to the residual mapping Φ, cf. Application 3.3 (the role of m, q, r in
Proposition 3.1(i) and Remark 3.2 here is played by Con(A, f),Quord(A, g),
Quord(A, f)). �

We shall describe first the ∧-irreducibles for permutations f and, in the
next section, for acyclic f .
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For permutations f the ∧-irreducible quasiorder lattices Quord(A, f) are
known. They are described in [6, Theorem 3.2]: f is either a transposition or
of the form as given in Theorem 5.4 below. We first exclude the transpositions:

Lemma 5.2. Let f ∈ AA be a transposition (|A| ≥ 3). Then Con(A, f) is not
∧-irreducible.

Proof. If f ∈ AA is a transposition, then there are elements 0, 1 ∈ A such
that f0 = 1, f1 = 0 and fx = x for x ∈ A\{0, 1}. Let g0, g1 ∈ AA be
the nontrivial functions defined by g00 = g01 = 0, g10 = g11 = 1 and all
x ∈ A\{0, 1} are fixed point for g0 and g1. Then, for the principal congruences,
we have θf (x, y) = θg0(x, y) = θg1(x, y) = [x, y] for all x, y ∈ A with the
only exceptions θf (0, x) = θf (1, x) = θg0(1, x) = θg1(0, x) = [0, 1, x] for all
x ∈ A\{0, 1}. Note θf (0, x) �= θg0(0, x) and θf (1, x) �= θg1(1, x). Therefore
Con(A, f) � Con(A, gi), i ∈ {0, 1} and Con(A, f) = Con(A, g0) ∩ Con(A, g1).

�

The following proposition deals with those functions which will play a
crucial role in the next theorem.

Proposition 5.3. Let |A| ≥ 3 and let f ∈ Sym(A) be a permutation of prime
power order pm with at least two cycles of length pm. Then the principal filter

[ Con(A, f)〉E := {E ∈ E | Con(A, f) ⊆ E}
is a chain. Moreover, each element of this chain is ∧-irreducible (except the top
element Eq(A)) and is of the form Con(A, g), where g = fk for some k ∈ N+.

Proof. Given f as indicated we know from [6, Theorem 4.2 and 4.3] that the
principal filter [Quord(A, f)〉L is a chain. From Lemma 2.7 and Corollary 3.7
we conclude Φ([Quord(A, f)〉L) = [Con(A, f)〉E , consequently [Con(A, f)〉E
is also a chain, therefore each element (except Eq(A)) of this chain is ∧-
irreducible and thus of the form Con(A, g). By Proposition 2.8 each nontrivial
g with Con(A, f) ⊆ Con(A, g) is of the form g = fk. �

Theorem 5.4. A congruence lattice Con(A, f) with a nontrivial permutation f
is ∧-irreducible in E if and only if f is of prime power order pm with at least
two cycles of length pm.

Proof. “⇐” was proved in Proposition 5.3.
“⇒”: Let f be a permutation such that Con(A, f) is ∧-irreducible. By Propo-
sition 5.1 there exists g ∈ AA such that Quord(A, g) is ∧-irreducible in L
and

(∗) Quord(A, f) ⊆ Quord(A, g), (∗∗) Con(A, f) = Con(A, g).

As shown in [6, Lemma 2.4(iv)]), from (∗) follows that each subalgebra
of (A, f) is also a subalgebra of (A, g), while from (∗∗) and Lemma 2.5(ii)
(interchange the roles of f and g) follows that each subalgebra of (A, g) with
at least two elements is also a subalgebra of (A, f) (since f is a permutation,
it cannot be constant on two elements).
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At first we show that g is also a permutation. Let x, y ∈ A such that
x �= y. Since cycles (what coincides with components) of f are subalgebras of
(A, f) and thus also of (A, g), Kf (x) �= Kf (y) implies gx ∈ Kf (x), gy ∈ Kf (y),
hence gx �= gy. Thus let x, y belong to the same cycle of f and assume gx = gy.
Then from (∗∗) and Lemma 2.5(i) (here the roles of f and g are interchanged)
we conclude (fx, fy) ∈ θg(x, y) = [x, y], thus {fx, fy} = {x, y} is a subalgebra
of (A, f) and therefore {x, y} ≤ (A, g) (as mentioned above). Thus w.l.o.g. we
can assume gx = gy = x. Let z ∈ A\{x, y} and let C be the cycle of f which
contains z. Then {x} ∪ C is a subalgebra(with at least 2-elements) of (A, g)
but not of (A, f) (since fx = y /∈ {x} ∪ C), a contradiction.

Thus g is a permutation. Therefore, from [6, Proposition 2.5(b)] and ∧-
irreducibility of Quord(A, g) we get that g is a permutation of prime power
order pm with at least two cycles of length pm or that g is a transposition.
Since Con(A, g) = Con(A, f) is ∧-irreducible, g cannot be a transposition by
Lemma 5.2. From (∗∗) and Proposition 2.8 (interchange the role of f and g)
we get f = gk for some k ∈ N+. From (∗∗) we further conclude that p cannot
divide k (since Con(A, gp) � Con(A, g)). Therefore f and g generate the same
cyclic subgroup, in particular f also has order pm and at least two cycles of
length pm, and we are done. �

6. ∧-irreducible Con(A, f) in E with acyclic f

In this section we deal with acyclic algebras (A, f). For an acyclic f ∈ AA and
x ∈ A let tf (x) := min{n ∈ N | fnx = fn+1x} denote the so-called depth of x
(after n times applying f to x one gets a fixed point) and let

t̄(F ) := max{tf (x) | x ∈ A}
(this is the length of a longest “tail” in the graph of f).

6.1. For a nontrivial, acyclic function f ∈ AA we consider the following con-
ditions (cf. Fig. 4):

(a) There exist distinct elements 0, 1, 2, 0′, 1′, 2′ ∈ A such that f2 = 1, f1 =
f0 = 0 and f2′ = 1′, f1′ = f0′ = 0′,

0′

1′

0

2 2′

1

(a)

2 2′

(b)

1 1′

0

Figure 4. The action of f on the elements in conditions 6.1(a),(b)



Vol. 79 (2018) The lattice of congruence lattices Page 15 of 23 4

b1

c0

b1 b1 b1

0
c0

b1

0

b1

c00

1

0

f g1 g2......

0 ...
...
...

2

...
......

...

...

2

2

0

1 1

...
...

Figure 5. Functions with Con(A, f) = Con(A, g1) ∩ Con(A, g2)
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Figure 6. Functions with Con(A, f) = Con(A, g1) ∩ Con(A, g2)

(b) f is connected (i.e., it has only one component) and there exist distinct
elements 0, 1, 2, 1′, 2′ ∈ A such that f2 = 1, f2′ = 1′, f1′ = f1 = f0 = 0.

Proposition 6.2. Let f ∈ AA be nontrivial and acyclic such that f is not of
type (I), not of type (II) and satisfies neither condition 6.1(a) nor (b). Then
Con(A, f) is ∧-reducible.

Proof. If t̄(f) = 1 then f is of type (I). Thus we can assume t̄(f) ≥ 2. We
distinguish the following cases:

Case 1: f has at least two components.
Then (b) trivially does not hold. If (a) fails to hold, then f has exactly one
component, say K, with elements of depth 2 while all other components have
elements of depth at most 1. In particular there are at least two fixed points,
say 0 ∈ K and 0′. Therefore f is of the form as given in Fig. 5 (the shadowed
part is K).

We define the functions g1 and g2 as follows (see Fig. 5):

g1x :=

{
fx if x ∈ K,

0 otherwise.
g2x :=

{
0 if x ∈ K,

fx otherwise.

Case 2: f has only one component with fixed point, say 0.
Then (a) trivially does not hold. If (b) fails to hold then all elements x with
tf (x) = 2 map to the same element, say 1, of depth 1.

Case 2a: If t̄(f) = 2, then there is only one element of depth 1, because
otherwise f would be of type (II) what is excluded by assumption. Therefore
f is of the form as given in Fig. 6.
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Figure 7. Functions with Con(A, f) = Con(A, g1) ∩ Con(A, g2)

We define the functions g1 and g2 as follows (see Fig. 6):

g1x :=

{
0 if x = 0,

1 otherwise.
g2x :=

{
1 if x = 1,

0 otherwise.

Case 2b: If t̄(f) ≥ 3 then f must be of the form as given in Fig. 7.
We define the functions g1 and g2 as follows (see Fig. 7):

g1x :=

{
1 if tf (x) ≥ 2,

0 otherwise.
g2x :=

{
0 if tf (x) = 2,
fx otherwise.

In all cases the functions g1, g2 are nontrivial and it is easy to check that
these functions satisfy Con(A, f) � Con(A, gi) (i ∈ {1, 2}) and Con(A, f) =
Con(A, g1) ∩ Con(A, g2). In fact, using the Figs. 5, 6 and 7, we can check
(gix, giy) ∈ θf (x, y), therefore Con(A, f) ⊆ Con(A, gi) by Remark 2.6; more-
over the inclusions are strict (e.g., for Case 1 we have [1, b1] = θg1(1, b1) �=
θf (1, b1) = [1, b1][0, 0′]). Further, θf (x, y) = θg1(x, y)∨θg2(x, y) for all x, y ∈ A
(e.g., for Case 1 we have θf (2, b1) = [2, b1][1, 0, 0′] = [2, b1][1, 0] ∨ [2, b1][0, 0′] =
θg1(2, b1) ∨ θg2(2, b1), cf. Fig. 5). Consequently, Con(A, f) = Con(A, g1) ∩
Con(A, g2). Thus (A, f) is ∧-reducible. �

Proposition 6.3. Let f ∈ AA be acyclic such that f is not of type (I), not of type
(II) and does satisfy either condition 6.1(a) or (b). Let Con(A, f) � Con(A, g)
for g ∈ AA. Then we have �1 ∈ Con(A, g) for the equivalence relation �1 :=
[0, 2].

Proof. Assume �1 /∈ Con(A, g) and we shall show that this leads to a contra-
diction. If f satisfies (b), it is convenient to put formally 0′ := 0.
We have t̄(f) ≥ 2, because t̄(f) = 1 means that f is of type (I).

Claim 1: {0, 1, 2} ≤ (A, g).
In fact, if {0, 1, 2} were not a subalgebra, then (by Lemma 2.5(ii)) g would be
constant on {0, 1, 2}. Thus �1 = [0, 2] = θg(0, 2) ∈ Con(A, g), a contradiction.

Claim 2: {0, 1} ≤ (A, g).
Assume that {0, 1} is not a subalgebra. Then g must be constant on {0, 1}
(by Lemma 2.5(ii)) where the constant is outside {0, 1}. Because of Claim 1
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we get g0 = g1 = 2 and g2 ∈ {0, 1, 2}. The values g2 ∈ {0, 2} cannot appear
(otherwise �1 = [0, 2] ∈ Con(A, g)), thus it remains g2 = 1. Since {0, 0′, 1, 1′} ≤
(A, f), again by Lemma 2.5(ii) g must be constant 2 on these elements, in
particular g1′ = 2. Consequently (1, 2) = (g2, g1′) ∈ θf (2, 1′) = [2, 1′][1, 0′, 0],
a contradiction (see Fig. 4).

Claim 3: We have {0} ≤ (A, g), i.e. g0 = 0.
If g0 �= 0, then g0 = 1 (by Claim 2). Because 1 /∈ {0, 0′, 1′, 2′} ≤ (A, f)
(recall 0′ = 0 in case (b)) and by Lemma 2.5(ii) g must be constant 1 on
these elements, in particular g2′ = 1. Thus (g2, 1) = (g2, g2′) ∈ θf (2, 2′) =
[2, 2′][1, 1′][0, 0′] implies g2 = 1 according to Claim 1. Consequently θg(0, 2) =
[0, 2] = �1, a contradiction. Thus g0 = 0.

Claim 4: g and f agree on {0, 1, 2}.
Because g0 = 0 (by claim 3), the values g2 ∈ {0, 2} cannot appear (otherwise
�1 = [0, 2] ∈ Con(A, g)). Thus g2 = 1 (by Claim 1). It remains to prove
g1 = 0. If g1 �= 0 then g1 = 1 (by Claim 2). Thus (1, g2′) = (g1, g2′) ∈
θf (1, 2′) = [1, 2′][0, 1′, 0′] what implies either g2′ = 2′ or g2′ = 1, the former
gives the contradiction (1, 2′) = (g2, g2′) ∈ θf (2, 2′) = [2, 2′][1, 1′][0, 0′] and the
latter gives the contradiction (0, 1) = (g0, g2′) ∈ θf (0, 2′) = [0, 0′, 1′, 2′]. Thus
g1 = 0.

Claim 5: g and f agree on {0′, 1′, 2′}.
From (1, g2′) = (g2, g2′) ∈ θf (2, 2′) = [2, 2′][1, 1′][0, 0′] we conclude g2′ ∈
{1, 1′}. However g2′ = 1 gives the contradiction as seen in Claim 4. Con-
sequently g2′ = 1′. Thus {0′, 1′, 2′} is a subalgebra of (A, g) (since g2′ ∈
{0′, 1′, 2′} ≤ (A, f)). Further, (0, g1′) = (g1, g1′) ∈ θf (1, 1′) = [1, 1′][0, 0′]
gives g1′ ∈ {0′, 0}, thus g1′ = 0′ = f1′ (note g1′ must belong to the sub-
algebra {0′, 1′, 2′}). Finally, (0, g0′) = (g0, g0′) ∈ θf (0, 0′) = [0, 0′] implies
g0′ = 0′ = f0′ (note g0′ must belong to the subalgebra {0′, 1′}).

Claim 6: We have Zf (x) ≤ (A, g), i.e. Zg(x) ⊆ Zf (x), for each x ∈ A.
If f satisfies 6.1(b), then 0 ∈ Zf (x) ≤ (A, f), and with Lemma 2.5(ii) and
g0 = 0 we get Zf (x) ≤ (A, g).
If f satisfies 6.1(a), then B := {0} ∪ Zf (x) and B′ := {0′} ∪ Zf (x) are subal-
gebras of (A, f) and g0 = 0, g0′ = 0′. Thus they are also subalgebras of (A, g)
(due to Lemma 2.5(ii)), consequently the intersection B ∩ B′ = Zf (x) is also
a subalgebra of (A, g).

Claim 7: g = f .
Because of Claim 4 and 5 we have to show gx = fx for each x ∈ A\
{0, 1, 2, 0′, 1′, 2′}. If x is a fixed point of f , then Zf (x) = {x} and from Claim 6
we get gx = x = fx. Thus let tf (x) ≥ 1. Without loss of generality we can
assume 1 /∈ Zf (x) (otherwise interchange the role of 1 and 1′). We have

(1, gx) = (g2, gx) ∈ θf (2, x)

=

{
[2, x][1, fx][0, f2x, . . . , fkx] if tf (x) ≥ 2,

[2, x][0, 1, fx] if tf (x) = 1.

If tf (x) ≥ 2 we conclude gx ∈ {1, fx} and get gx = fx (since 1 /∈ Zg(x)).
If tf (x) = 1, then we conclude gx ∈ {0, 1, fx}. Moreover, by assumption we
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have x /∈ {0, 1, fx} and, by Claim 6 we get gx ∈ Zf (x) = {x, fx}. Thus
gx ∈ {x, fx} ∩ {0, 1, fx} = {fx}.
From Claim 7 we get Con(A, f) = Con(A, g), a contradiction. �

Theorem 6.4. A congruence lattice L = Con(A, f) with an acyclic f ∈ AA is
∧-irreducible in E if and only if f is of type (I) or (II) or satisfies the condition
6.1(a) or (b).

Proof. Note that Con(A, f) is a coatom for functions f of type (I) or (II), and
therefore ∧-irreducible. So we need not consider these cases in the following.

“⇒”: follows from Proposition 6.2
“⇐”: From Proposition 6.3 we conclude that

�1 ∈
⋂

{Con(A, g) | Con(A, f) � Con(A, g)}.

Since θf (0, 2) = [0, 1, 2] we have �1 /∈ Con(A, f) and the above intersection
cannot be equal to Con(A, f). Therefore Con(A, f) is ∧-irreducible. �

7. Some lattice theoretical properties of E
At first we consider the problem how many coatoms (atoms, resp.) do we need
such that their meet (join, resp.) in E gives the least (greatest, resp.) element
of E . We assume throughout that |A| ≥ 3.

Proposition 7.1. There are two or three coatoms in the lattice E whose meet
is 0E . More precisely, for |A| > 4, there are two coatoms Con(A, f) and
Con(A, g) such that Con(A, f) ∩ Con(A, g) = {Δ,∇}. For |A| ≤ 4, three
coatoms are necessary (and sufficient) for this property.

Proof. Since Con(A, f) = Eq(A) ∩ Quord(A, f) is a coatom in E if and only
if Quord(A, f) is a coatom in L (cf. Corollary 3.5, Proposition 4.8), the result
mainly follows from the corresponding result in [6, Proposition 6.2]. In that
paper for |A| > 5 there are indicated two permutations f and g of type (III),
for |A| = 5 three permutations of type (III), for |A| = 4 one permutation of
type (III) and two functions of type (I) and for |A| = 3 three functions of
type (I). Now, with E instead of L, in case A = {1, . . . , n} for n = 5 also two
functions (e.g., of type (II)) suffice, e.g., f4 = 2, f5 = 3, f2 = f3 = f1 = 1
and g1 = 4, g2 = 5, g4 = g5 = g3 = 3. It can be checked easily that two
coatoms are not sufficient for n ∈ {3, 4}. �

Proposition 7.2. There are three atoms in E whose join is 1E . More precisely,
there are three equivalence relations κ1, κ2, κ3 such that Eκ1 ∨ Eκ2 ∨ Eκ3 =
Eq(A).

Proof. By a result of L. Zádori [15] there exist equivalence relations κ1, κ2,
κ3 such that End{κ1, κ2, κ3} = {idA}. This implies

Eκ1 ∨ Eκ2 ∨ Eκ3 = Con End(Eκ1 ∪ Eκ2 ∪ Eκ3) = Con{idA} = Eq(A).

(For notation Eκ see Theorem 4.1.) �
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Now we look for tolerances of the lattice E . Because tolerance simplicity
implies interesting properties of a lattice (see, e.g., [9]), we looked for this
property for the lattice E and got an affirmative result in Theorem 7.6 below.

At first we collect some notions, notations and facts which for clearer
understanding we shall present on abstract level (for an arbitrary lattice V
instead of our lattice E).

7.3. Let V be a lattice with the order and covering relation denoted by ≤ and
≺, respectively. If V is a bounded lattice (in particular, if it is finite), its least
and greatest elements are denoted by 0V and 1V .

A tolerance of V is a reflexive and symmetric binary relation T ⊆ V × V
compatible with the lattice operations ∧ and ∨. Let Tol(V ) denote all tol-
erances of V . With respect to set-theoretic inclusion the tolerances form an
algebraic lattice (Tol(V ),∩,�) with least element ΔV := {(x, x) | x ∈ V } and
greatest element ∇V := V × V (called trivial tolerances). A lattice V is called
tolerance simple if it has no nontrivial tolerances, i.e., Tol(V ) = {ΔV ,∇V }.

For x, y ∈ V , let T (x, y) denote the least tolerance in Tol(V ) containing
the pair (x, y). Clearly, for each T ∈ Tol(V ), we have T =

⊔{T (x, y) | (x, y) ∈
T}. The following properties are known (see, e.g., [13]) for x, y ∈ V :

T (x ∧ y, y) = T (x, x ∨ y), (7.1)

(0V ,1V ) ∈ T ∈ Tol(V ) =⇒ T = ∇V . (7.2)

A lattice V is called atomistic if every element v ∈ V \{0V } is the join
of some atoms of V . The atoms of V , denoted by At(V ) in the following, play
an important role also in connection with tolerance simplicity. From [8] we
deduce (see also [6, 6.4]) the following: A finite atomistic lattice V satisfying
T (0V , a) = ∇V for every atom a ∈ V , is tolerance simple.

Lemma 7.4. Let V be a finite atomistic lattice. Then we have:
(i) Let a1, a2 ∈ At(V ), a1 �= a2 and let d ∈ V be a coatom such that a1 �≤ d,

a1 �≤ d. Then T (0V , a1) = T (0V , a2).
(ii) If T (0V , a1) = T (0V , a2) for all a1, a2 ∈ At(V ), then V is tolerance

simple.

Proof. (i): Since ai ∧ d = 0 and ai ∨ d = 1 for i = 1, 2, we get

T (0V , ai) = T (d ∧ ai, ai) =(7.1) T (d, d ∨ ai) = T (d,1V ),

consequently, T (0V , a1) = T (0V , a2).
(ii): Since T (0V , a) is the same tolerance for each atom a ∈ At(V ), we will
denote it by α. We have (0V , a) ∈ α for all a ∈ At(V ), consequently (0V ,1V )=
(0V ,

∨
At(V )) ∈ α. From condition (7.2) we get α=∇V , i.e., T (0V , a) = ∇V

for all a ∈ At(V ). As mentioned above in 7.3, this implies tolerance-simplicity
of V . �

Now, instead of the abstract lattice V , we return to the concrete lattice
E . Recall that E is atomistic and At(E) = {Eκ | κ ∈ Eq(A)} where Eκ =
{Δ, κ,∇} (Theorem 4.1). The least and greatest elements are 0E = {Δ,∇}
and 1E = Eq(A). As defined in Notation 2.3, [a, b] denotes the equivalence
relation (on A) with one nontrivial block {a, b}.
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Lemma 7.5. Let κ ∈ Eq(A)\{Δ,∇}. Then there exists (a, b) ∈ κ, a �= b, such
that T (0E , Eκ) = T (0E , E[a,b]).

Proof. Since κ is nontrivial there exist distinct elements a, b, c ∈ A such that
(a, b) ∈ κ but (a, c) /∈ κ. Clearly (a, b) ∈ [a, b] ⊆ κ. Define f ∈ AA via fx := c
if x = a, and fx = x otherwise. Then f = f2 is of type (I) and therefore
Con(A, f) is a coatom in E (cf. Theorem 4.3). Since (fa, fb) = (c, b), the func-
tion f preserves neither κ nor [a, b]. Hence κ, [a, b] /∈ Con(A, f), consequently
the atoms Eκ , E[a,b] are not contained in Con(A, f) and therefore, by applying
Lemma 7.4(i), we obtain T (0E , Eκ) = T (0E , E[a,b]). �
Theorem 7.6. For |A| ≥ 4, the lattice E is tolerance simple.

Proof. In view of Lemma 7.4(ii) it is sufficient to show

T (0E , Eκ1) = T (0E , Eκ2) for all atoms Eκ1 , Eκ2 ,

i.e., for all κ1, κ2 ∈ Eq(A)\{Δ,∇}. Due to Lemma 7.5 we even may re-
strict to equivalence relations of the form κ1 = [a1, b1], κ2 = [a2, b2] for
(a1, b1), (a2, b2) ∈ A2\Δ. If {a1, b1} = {a2, b2}, then E[a1,b1] = E[a2,b2] and
we are done. Hence, w.l.o.g, we can restrict to the following two cases:

Case (a): a1 = a2 and b1 �= b2.
Since |A| ≥ 4 there exists an element c ∈ A\{a1, b1, b2}. Define f ∈ AA by
fx = c if x ∈ {b1, b2} and fx = x otherwise. Then f is of type (I) and Con(A, f)
is a coatom (cf. Theorem 4.3). From the definition immediately follows that f
does not preserve neither κ1 = [a1, b1] nor κ2 = [a2, b2]. Consequently Eκ1 �⊆
Con(A, f), Eκ2 �⊆ Con(A, f) and from Lemma 7.4(i) we conclude T (0E , Eκ1) =
T (0E , Eκ2).

Case (b): {a1, b1} ∩ {a2, b2} = ∅.
Consider the permutation f := (a1a2)(b1b2) (with two cycles of length 2). By
Theorem 4.3, Con(A, f) is a coatom (type (III)) and we have f � � κ1, f � � κ2

and as in case (a) above we get T (0E , Eκ1) = T (0E , Eκ2). �
The investigation of lattice properties around modularity shows that such

properties cannot be expected for E :

Proposition 7.7. For |A| ≥ 4, the lattice E has none of the following properties:
0-modular, 1-modular, lower semimodular, upper semimodular.

Proof. If A has at least 4 elements, say 0, 1, 2, 3, then consider the nontrivial
equivalence relations κ1 = [0, 1, 2], κ2 = [0, 1][2, 3], κ0 = κ1 ∩ κ2 = [0, 1] and
the function f ∈ AA defined by fx = 3 if x = 0, and fx = x otherwise.

We get the sublattice as shown in Fig. 8, e.g., Con(A, f) is a coatom by
Theorem 4.3 and it is easy to check that for Lij := Eκi

∨ Eκj
(0 ≤ i < j ≤ 2)

we have L12 = {Δ, κ0, κ1, κ2,∇} and L0j = {Δ, κ0, κj ,∇} (j = 1, 2). Note
that f does not preserve neither κ0 nor κ1 nor κ2.

Obviously {0E , Eκ1 , L12,Con(A, f),1E} is a sublattice isomorphic to N5.
Thus E is neither 0- nor 1-modular. Further, Con(A, f) ≺ 1E but the meet with
L12 (dashed line) is not a covering; likewise 0E ≺ Eκ1 but the join with Eκ2

(dotted line) is not a covering. Hence E is neither lower nor upper semimodular.
�
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L12

L01 L02

{Δ,∇} = 0E

Eq(A) = 1E

Con(A, f)

E
κ2E

κ0E
κ1

Figure 8. The sublattice of E used in the proof of Proposition 7.7

Remark 7.8. For |A| = 3, Theorem 7.6 and Proposition 7.7 do not remain
valid. In this case, E is the lattice of all subsets of {Δ,∇, θ0, θ1, θ2} containing
Δ,∇, where θi, i ∈ {0, 1, 2}, are the nontrivial equivalence relation on A. Thus
it is a Boolean lattice with 8 elements. Therefore it is modular and it is not
tolerance-simple (it is even not congruence-simple).
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