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or a variety of affine vector spaces over a division ring.
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1. Introduction

In this paper we address a MathOverflow question, [2], which asks for a descrip-
tion of the varieties where every algebra is free, as well as a description of the
varieties satisfying the weaker requirement that every finitely generated alge-
bra is free.

Givant classified the varieties where every algebra is free in [4]. He proved
that they are precisely those definitionally equivalent to

• the variety of sets,
• the variety of pointed sets,
• a variety of vector spaces over a division ring, or
• a variety of affine spaces over a division ring.
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In this paper we use different techniques to classify the varieties where every
finitely generated algebra is free. Our result is that if the finitely generated
members of a variety V are free, then V must also be one of these types of
varieties (sets, pointed sets, vector spaces or affine spaces). Hence, if the finitely
generated algebras in V are free, then all algebras in V are free. This gives a
new proof of Givant’s theorem under weaker hypotheses.

In the last section of the paper we discuss some variations on the main
question. First we consider a “large rank” variation: Which varieties have
the property that their finitely generated algebras of sufficiently large rank
are free? That is, for which varieties V is there a finite number k such that
every finitely generated algebra in V requiring more than k generators is free?
We prove the theorem that a locally finite variety with this property must
even have the property that all of its nonsingleton algebras are free, and it
is essentially one of the four types of varieties discussed above. Without the
assumption of local finiteness this theorem fails.

Next we examine a “small rank” variation of the main question: Is there
some n such that, if all (≤n)-generated algebras in a variety are free, then
all finitely generated algebras in the variety are free? The answer to this is
negative. We show that for each positive integer n there exist varieties in
which the algebras generated by at most n elements are free, but the (n + 1)-
generated algebras are not all free.

2. Abelian and affine algebras

Please refer to [3,5,8] for elaboration of the introductory remarks of this sec-
tion.

An algebra A is abelian if it satisfies the term condition, which is the
assertion that if t(x,y) is a term in the language, a,b,u and v are tuples of
elements of A, and

tA(a,u) = tA(a,v),

then

tA(b,u) = tA(b,v).

This property is the same as the property that the diagonal {(a, a) | a ∈ A} of
A × A is the class of a congruence.

An algebra B is affine if it is polynomially equivalent to a module. This
means that there is a ring R and a left R-module structure RB on the universe
B of B such that the polynomial operations of B coincide with the R-module
polynomial operations of RB. (A polynomial operation of an algebra B is an
operation p(x) obtained from a term operation by substituting constants for
some of the variables, i.e., p(x) = tB(x,b) for some term t(x,y) in the language
and some tuple b of elements of B.)

A variety is abelian or affine if its members are. It is a fact that affine
algebras and varieties are abelian, but the converse is false, e.g., unary varieties
are abelian but not affine.
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Abelian varieties that are not affine are poorly understood at present. If
V is a locally finite variety that is abelian but not affine, then it can be proved
that V contains a very “bad” or “structureless” algebra, i.e., one that is def-
initionally equivalent to a matrix power of a two-element set or pointed set.
The procedure for proving this is to first exploit the nonaffineness assumption
to construct a finite “strongly abelian” algebra S ∈ V, and then to examine
a minimal subvariety of the variety HSP(S) generated by S. The structure
of such minimal subvarieties are determined by the classification theorem for
minimal abelian varieties, which can be found in [9,12]. Namely, a minimal
subvariety of a variety generated by a finite strongly abelian algebra is defi-
nitionally equivalent to a matrix power of the variety of sets or the variety of
pointed sets.

These arguments fail at the very first step for varieties that are not locally
finite: it is not known if the construction discussed in the preceding paragraph
yields an algebra S that is strongly abelian. In this section we examine the
construction of S and identify some “strongly abelian-like” properties of S.

First, a congruence θ ∈ Con(A) is strongly abelian if it satisfies the strong
term condition, which is the assertion that if t(x,y) is a term in the language,
a,b, c,u,v are tuples of elements of A with a, b, c θ-related coordinatewise
and u,v θ-related coordinatewise, and

tA(a,u) = tA(b,v),

then

tA(c,u) = tA(c,v).

Now suppose that A is abelian and θ ∈ Con(A) is strongly abelian.
The construction we are concerned with is the following one: Let A(θ) be
the subalgebra of A × A supported by (the graph of) θ, that is, {(a, b) ∈ A2

| a ≡θ b}. Let Δ be the congruence on A(θ) generated by D × D where D =
{(a, a) | a ∈ A} is the diagonal. D is a Δ-class, because A is abelian. Let
S = SA,θ := A(θ)/Δ. Let 0 = D/Δ ∈ S.

If A is a finite member of an abelian variety, then it is possible to prove
that the resulting algebra S is a strongly abelian member of the variety (mean-
ing that all of its congruences are strongly abelian). Without finiteness we do
not know how to prove this. However, we can prove the following.

Lemma 2.1. Let V be an abelian variety, and suppose that θ is a nontriv-
ial strongly abelian congruence on some A ∈ V. Let S = SA,θ and let
0 = D/Δ ∈ S. The following are true:

(1) S has more than one element.
(2) {0} is a 1-element subuniverse of S.
(3) S has “Property P”: for every n-ary polynomial p(x) of S and every tuple

s ∈ Sn

p(s) = 0 implies p(0) = 0,

where 0 = (0, 0, . . . , 0).
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(4) Whenever t(x1, . . . , xn) is a V-term, and

V |= t(x) = t(y)

where x and y are tuples of not necessarily distinct variables which differ
in the ith position, then the term operation tS(x1, . . . , xn) is independent
of its ith variable.

(5) S has a congruence σ such that the algebra S/σ satisfies (1)–(4) of this
lemma, and S/σ also has a compatible partial order ≤ such that 0 ≤ s
for every s ∈ S/σ.

Proof.
[Item (1)] Since A is abelian, the diagonal D is the class of a congruence on
A×A, namely the congruence generated by D ×D. This congruence restricts
to A(θ) to have D as a class. Since θ is nontrivial, it properly contains D,
so the congruence Δ of A(θ) generated by D × D is proper. Equivalently,
S = A(θ)/Δ is nontrivial.

[Item (2)] Since D is a subuniverse of A(θ), {D/Δ} = {0} is a subuniverse
of S.

[Item (3)] To show that S has Property P, choose p(x) and s ∈ Sn such
that p(s) = 0. Our goal is to show that p(0) = 0.

Express p(x) as tS(x,u) for some term t(x,y) and for some tuple u with
coordinates in S. Also, express the coordinates si and uj of the tuples s and
u as si = (ai, bi)/Δ and uj = (vj , wj)/Δ where (ai, bi), (vj , wj) ∈ θ. Then
p(s) = 0 may be expressed as tA(θ)

(
(a,b), (v,w)

) ∈ D, or

tA(a,v) = tA(b,w).

Since θ is strongly abelian, by the strong term condition we derive that

tA(a,v) = tA(a,w)

holds, which may be expressed as tA(θ)((a,a), (v,w)) ∈ D, or

p(0) = p((a,a)/Δ) = 0.

[Item (4)] Assume for the sake of simplicity that i = 1 in the statement of
(4), that is, V |= t(x,w) = t(y, z). By specializing if necessary we may assume
further that wj , zj ∈ {x, y} for all j. Our goal is to show that tS(x1, . . . , xn) is
independent of its first variable.

Claim 2.2. For any s ∈ S, tS(s, 0, 0, . . . , 0) = 0.

Proof of Claim 2.2. The identity t(x,w) = t(y, z) may be written symbolically
as

t((x, y), (w, z)) ∈ D,

where (x, y) and each (wj , zj) belong to the set {(x, y), (y, x), (x, x), (y, y)}.
Choose s ∈ S and represent it as s = (a, b)/Δ for some pair (a, b) ∈ θ.

Each of the pairs (a, b), (b, a), (a, a), (b, b) belongs to θ, so we may substitute
a’s and b’s for x’s and y’s to obtain that

tA(θ)((a, b), (c,d)) ∈ D,
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where each (cj , dj) is one of the elements of {(a, b), (b, a), (a, a), (b, b)}. Factor-
ing by Δ yields

tS
(
(a, b)/Δ, (c,d)/Δ

)
= tS

(
s, (c,d)/Δ

)
= 0. (2.1)

Now we apply Property P to the polynomial p(y) = tS(s,y) to change the
underlined values in (2.1) to 0. We obtain that tS(s,0) = 0, as desired. �

Recall that S ∈ V is abelian. Therefore, for arbitrary s ∈ S, we may
apply the term condition to

tS(s,0) = tS(0,0) = 0

to obtain

tS(s,u) = tS(0,u)

for any u. This is what it means for tS(x1, . . . , xn) to be independent of its
first variable.

[Item (5)] Let R be the reflexive compatible relation on S generated by
{0}×S. Hence R consists of all pairs (p(0), p(s)) where s is a tuple of elements
of S and p is a polynomial of S. Property P asserts exactly that (x, 0) ∈ R
implies x = 0. The transitive closure R∗ of R also has this property. Therefore
the symmetrization σ := R∗ ∩ (R∗)∪ is a congruence on S and ≤:= R∗/σ is
a compatible partial order on the quotient S/σ. This partial order contains
({0} × S)/(σ × σ), so 0 ≤ s for every s ∈ S/σ.

Note that S/σ satisfies all of the earlier properties. (1) The quotient S/σ
is nontrivial, since S is nontrivial and {0} is a singleton class of σ. (2) {0}/σ
is a singleton subuniverse of the quotient. (3) Property P is easily derivable
from a lower bounded compatible order: 0 ≤ p(0) ≤ p(s) for any s, so p(s) = 0
implies p(0) = 0. (4) The assumption of part (4) of the Lemma statement
depends on V only, while the conclusion is preserved when taking quotients.

�

The properties that have been proved for S = SA,θ and its quotient
S/σ prevent V from being affine. For example, no nontrivial affine algebra can
satisfy Property P: let p(x) = x − s for some s ∈ S\{0}. Then p(s) = 0 while
p(0) �= 0. In fact, this polynomial has no fixed points at all.

Similarly, an affine algebra has no compatible binary reflexive relations
other than equivalence relations. If the compatible partial order in (5) was an
equivalence relation, then it would be discrete. For the discrete order to have
a least element 0, the underlying set could have only one element, contrary to
item (1).

Also, it is not hard to show that a variety that contains an algebra S/σ
satisfying the property described in item (4) cannot satisfy any nontrivial
idempotent Maltsev condition, while affine varieties satisfy strong idempotent
Maltsev conditions (they in fact have a Maltsev-term). These observations
justify the following definition.
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Definition 2.3. An algebra S is called an affine obstruction if it contains an
element 0 such that conditions (1)–(4) of Lemma 2.1 hold for S and the variety
V generated by S.

Theorem 2.4. The following are equivalent for an abelian variety V.
(1) V is not affine.
(2) V satisfies no nontrivial idempotent Maltsev condition.
(3) V contains an algebra that has a nontrivial strongly abelian congruence.
(4) V contains an affine obstruction.

Proof. [(1) ⇒ (2)] (First proof.) We argue the contrapositive, so assume that V
satisfies a nontrivial idempotent Maltsev condition. By [8, Theorem 4.16 (2)],
congruence lattices of algebras in V omit pentagons with certain specified
abelian intervals. Since V is abelian, all intervals in congruence lattices of
members are abelian. Hence there are no pentagons in congruence lattices of
members of V, which means that V is congruence modular. In this context it
is known that abelian varieties are affine (see [3]).

[(1) ⇒ (2)] (Second proof.) Again we argue the contrapositive, so assume
that V satisfies a nontrivial idempotent Maltsev condition. By [8, Theo-
rem 3.21], V has a join term. The join term acts as a semilattice operation
on blocks of any rectangular tolerance of an algebra in V. Since every algebra
in V is abelian and there are no nontrivial abelian semilattices, it follows that
rectangular tolerances in V are trivial. (This fact can also be deduced from
[8, Corollary 5.15].) Now by [8, Theorem 5.25], it follows that V satisfies an
idempotent Maltsev condition that fails in the variety of semilattices. By [10,
Theorem 4.10], V is affine.

[(2) ⇔ (3)] This is part of [8, Theorem 3.13].
[(3) ⇒ (4)] If V contains an algebra A with a nontrivial strongly abelian

congruence θ, then it contains S = SA,θ := A(θ)/Δ, which is an affine obstruc-
tion by Lemma 2.1.

[(4) ⇒ (1)] Here it suffices to prove that an affine obstruction for V
prevents V from being affine. This was explained right after the proof of
Lemma 2.1. �

3. Varieties whose finitely generated members are free

In this section we investigate the class of varieties whose finitely generated
members are free. This class of varieties is closed under definitional equivalence.
The symbol V will be used only to denote some nontrivial member of this class.
We shall divide our analysis of this class into two cases: the subclass of varieties
with no 0-ary function symbols versus the subclass of varieties with at least
one 0-ary function symbol.

We shall prove that if the finitely generated members of V are free, then
V must be definitionally equivalent to the variety of sets, pointed sets, vector
spaces over a division ring, or affine spaces over a division ring. It is obvious
that each of these varieties has the property that its finitely generated members
are free.
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3.1. Varieties without constants

First we will consider the case when V has no 0-ary function symbols. We
may write the m-generated free algebra in V as FV(m), or as FV(X) for some
m-element set X.

Theorem 3.1. Assume that V is a nontrivial variety such that the finitely gen-
erated algebras in V are free. If V has no 0-ary function symbols, then V is
definitionally equivalent to the variety of sets or to a variety of affine spaces
over a division ring.

Proof. If V has no 0-ary function symbols, then FV(∅) is empty. FV(1) is the
only candidate for the 1-element algebra in V. Hence V is idempotent.

It follows from the standard proofs of Magari’s Theorem (see, e.g., [1,
Theorem 10.13]) that every nontrivial variety has a finitely generated simple
member. A free algebra FV(X) over X = {x1, x2, . . . } cannot be simple if
|X| > 2, since there are noninjective homomorphisms εi : FV(X) → FV(y, z)
defined on generators by

xj �→
{

y, if j = i,
z, else.

(3.1)

If V is idempotent, then FV(X) cannot be simple for |X| < 2, either. Thus,
in our situation FV(2) is the only candidate for a finitely generated simple
member of V.

Let M be a minimal subvariety of V. M also must contain a finitely
generated simple algebra, and FV(2) is the only one in V up to isomorphism,
so M must contain (and be generated by) FV(2). Every finitely generated
algebra A ∈ M is finitely generated in V, hence is free in V, hence satisfies the
universal mapping property in V relative to some subset X ⊆ A, hence satisfies
the universal mapping property in M relative to the same subset, hence is free
over the same free generating set in M. This shows that M is also a variety
whose finitely generated algebras are free. Also, FM(2) = FV(2).

According to [7, Corollary 2.10], any minimal idempotent variety, like M,
is definitionally equivalent to the variety of sets, the variety of semilattices, a
variety of affine modules over a simple ring, or is congruence distributive.

The variety of semilattices does not have the property that its finitely
generated members are free.

No minimal, congruence distributive, idempotent variety M has the prop-
erty that its finitely generated members are free, as we now explain. If other-
wise, then since FM(x, y)×FM(x, y) is finitely generated (by {x, y}×{x, y}),
it must be isomorphic to FM(m) for some m. Since FM(x, y) × FM(x, y) is
not trivial or simple, we have m > 2. The homomorphisms {εi}m

i=1 described
in (3.1) (with subscript M in place of V) map FM(m) onto the simple algebra
FM(2), and εi has kernel different from that of εj when i �= j. Thus FM(m)
has at least m distinct coatoms of the form ker(εi) in its congruence lattice.
From this it follows that FM(x, y)×FM(x, y) ∼= FM(m), m > 2, has at least 3
coatoms in its congruence lattice. But in a congruence distributive variety, the
square of a simple algebra has exactly two coatoms in its congruence lattice.
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Now consider the case where M is a variety of affine (left) modules over
some ring R. One realization of FM(2) has universe R, generators 0, 1 ∈ R,
and term operations of the form

r1x1 + · · · + rhxh, ri ∈ R,
∑

ri = 1.

Each left ideal of R induces a congruence on this algebra. Since FM(2) is
simple, R can have no nontrivial proper left ideals, hence R must be a division
ring.

We have thus far argued that if V has the property that its finitely gen-
erated members are free, and M is a minimal subvariety of V, then M is defi-
nitionally equivalent to the variety of sets or a variety of affine modules over a
division ring. We now argue that V = M. If this is not the case, then there is a
finitely generated algebra in V\M, which we may assume is A := FV(m). By
its very definition, A has an m-element generating set that is minimal under
inclusion as a generating set. Now let B be the m-generated free algebra in M.
So B also has an m-element minimal generating set. Since B ∈ M, we get that
B ∈ V, but B cannot be isomorphic to A, because A /∈ M. Hence B ∼= FV(n)
for some n �= m. This implies that B has an n-element minimal generating
set as well as an m-element minimal generating set. But M is definitionally
equivalent to the variety of sets or to a variety of affine spaces over a division
ring, so it is not possible for B to have minimal generating sets of different
cardinalities. We conclude that V = M. �

3.2. Varieties with constants

We still assume that V is a nontrivial variety whose finitely generated members
are free. In this subsection we also assume that V has 0-ary function symbols
in its language. In this situation, FV(∅) must be the 1-element algebra in V,
so there is only one constant up to equivalence. We will assume that there is
exactly one constant in the language and use 0 to denote it. In any algebra
A ∈ V the set {0} is the unique 1-element subuniverse of A. We will refer to
0 ∈ A as the zero element of A.

In the situation we are in now, when FV(∅) = {0}, it is FV(1) rather than
FV(2) that is the only candidate for the finitely generated simple algebra of V.
To see this, note that when m is greater than 1, then FV(x1, . . . , xm) has at
least three distinct kernels of homomorphisms onto FV(x), namely the kernels
of the homomorphisms defined on generators by

(1) x1 �→ 0; x2, . . . , xm �→ x,
(2) x1 �→ x; x2, . . . , xm �→ 0, and
(3) x1, x2, . . . , xm �→ x.

To see that the kernels of these homomorphisms are distinct, it suffices to note
that they restrict differently to the set {0, x1, . . . , xm} ⊆ FV(x1, . . . , xm). Thus
FV(m) cannot be simple when m > 1, nor can it be simple when m = 0, hence
FV(1) is the finitely generated simple member of V. This argument also shows
that, if m > 1, then FV(m) has at least 3 coatoms in its congruence lattice.
We record these observations in the next lemma.
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Lemma 3.2. If V is a nontrivial variety with at least one 0-ary function symbol
in its language, and all finitely generated members of V are free, then
(1) FV(∅) has one element.
(2) FV(1) is simple.
(3) FV(m) has at least 3 distinct coatoms in its congruence lattice for every

finite m > 1. �

Later we will need to remember that, from part (3) of this lemma, any
finitely generated, nontrivial, nonsimple member of V has at least 3 distinct
coatoms in its congruence lattice.

Suppose that A ∈ V and a ∈ A\{0}. Then there is a homomorphism
FV(x) → A mapping x �→ a, which cannot be constant (since 0 �→ 0). By the
simplicity of FV(x), this homomorphism must be injective. This shows that a
is a free generator of the subalgebra 〈a〉 ≤ A. We record this as follows:

Lemma 3.3. If V is a nontrivial variety with a 0-ary function symbol 0, and
all finitely generated members of V are free, then any nonzero element of any
algebra in V freely generates a subalgebra isomorphic to FV(x). �

Lemma 3.4. If V is a nontrivial variety with a 0-ary function symbol, and all
finitely generated members of V are free, then FV(x) is abelian.

Proof. In this proof we will abbreviate FV(x) by F.
Let A be the subalgebra of F × F that is generated by (0, x) and (x, 0).

Let η1, η2 ∈ Con(A) be the restrictions to A of the coordinate projection
kernels. Observe that the η1-class of 0A = (0, 0) is the set {0} × F , which is
a subuniverse of A that supports a subalgebra isomorphic to F; hence this
subalgebra is simple. Similarly, the η2-class of 0A, F × {0}, is the universe of
a simple subalgebra of A.

A is generated by (0, x) and (x, 0), so every class of the congruence
Cg

(
(0, 0), (0, x)

)
of A contains an element of F × {0}. As Cg

(
(0, 0), (0, x)

)

is contained in η1, and each η1-class contains exactly one element of F × {0},
it follows that η1 = Cg

(
(0, 0), (0, x)

)
.

This shows that η1 is principal, hence compact, so there is a congruence
μ that is maximal among congruences strictly below η1. Con(A/μ) contains
a 3-element maximal chain 0 = μ/μ ≺ η1/μ ≺ 1. We apply Lemma 3.2 (3)
to A/μ: the algebra A/μ is nontrivial, nonsimple, and a quotient of the 2-
generated algebra A, so it is finitely generated. The lemma guarantees that
Con(A/μ) has at least 3 coatoms. The congruence η1/μ is a coatom, but there
must be at least two other coatoms, say α, β ∈ Con(A/μ).

Since α, β and η1/μ are pairwise incomparable congruences, and η1/μ is
an atom in Con(A/μ), we have α ∧ (η1/μ) = 0 = β ∧ (η1/μ). We also have

(α ∨ β) ∧ (η1/μ) = 1 ∧ (η1/μ) = η1/μ,

so the interval [0, η1/μ] is a meet semidistributivity failure in Con(A/μ). It
follows from basic properties of the commutator that η1/μ is abelian.

Recall that {0} × F is a subuniverse of A that is an η1-class. The con-
gruence μ is strictly smaller than η1 = Cg

(
(0, 0), (0, x)

)
, therefore it does not
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contain {0} × F entirely within a class. Since the subuniverse supported by
{0} × F is isomorphic to F = FV(1), and therefore simple, μ restricts trivially
to this set. This implies that ({0} × F )/μ is a class of η1/μ that supports a
subalgebra of A/μ isomorphic to F. Since η1/μ is abelian, it follows that F is
abelian too. �

Lemma 3.5. If V is a nontrivial variety with a 0-ary function symbol, and all
finitely generated members of V are free, then the nonconstant unary polyno-
mial operations of FV(x) are injective.

Proof. We first show that the nonconstant unary term operations act injec-
tively on F = FV(x). Here we use a symbol, say r, for both an element of
F and also for a unary term operation rF that represents the element r, i.e.,
r = rF(x). If r, s ∈ F , we will use the notation rs for rF(s). Thus, our goal is
to show that if r ∈ F\{0}, then rs = rt implies s = t for all s, t ∈ F .

Let η1, η2,Δ ∈ Con(F×F) be the coordinate projection kernels and the
congruence obtained from collapsing the diagonal. Suppose that r, s, t ∈ F ,
and that rs = rt while s �= t.

By Lemma 3.3 the element (s, t) ∈ F × F freely generates a subalgebra
of F × F that is isomorphic to FV(1), hence it is a simple subalgebra that we
denote by T. Since F is abelian by Lemma 3.4, we have that (s, t) and (0, 0)
are not Δ-related, so Δ|T is trivial. But rs = rt implies that (rs, rt) ≡Δ (0, 0),
so (rs, rt) = (0, 0). This shows that if s �= t and rs = rt, then rs = 0 = rt.
At least one of s and t is not 0, and the situation between s and t has been
symmetric up to this point, so assume that s �= 0.

As before, the element (s, x) generates a simple subalgebra X of F × F,
since x �= 0. The assumption s �= 0 implies that (s, x) and (0, 0) are not η1-
related. Therefore η1|X is trivial. But (rs, rx) ≡η1 (0, 0), so (rs, rx) = (0, 0).
Hence r = rx = 0. This shows that our statement holds for unary term
operations of F.

Now we generalize our conclusion from unary term operations to unary
polynomial operations of F.

Assume that p(x) = tF(x,u) for some term t and some tuple u. If p(a) =
p(b), then

tF(a,u) = tF(b,u).

F is abelian by Lemma 3.4, therefore the last displayed equality is equivalent
to

tF(a,0) = tF(b,0),

by the term condition. This shows that the unary polynomial p(x) = tF(x,u)
has the same kernel as the “twin” unary term operation tF(x,0). But such
kernels have been shown to be trivial or universal in the first part of this proof,
so they remain so here. I.e., any nonconstant unary polynomial operation acts
injectively on F. �

Now we are prepared to prove the main result of this subsection.
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Theorem 3.6. Assume that V is a nontrivial variety such that the finitely gen-
erated algebras in V are free. If V has at least one 0-ary function symbol, then
V is definitionally equivalent to either the variety of pointed sets or a variety
of vector spaces over a division ring.

Proof. Let M be a minimal subvariety of V. By the same argument we used
in Theorem 3.1, M also has the property that its finitely generated algebras
are free. We first prove the theorem for M, then lift the result to V, as we did
in Theorem 3.1.

All the lemmas proved for V in this subsection hold for M. In particular,
(i) M has only one 0-ary function symbol, up to equivalence, which we

denote by 0;
(ii) {0} is the unique 1-element subalgebra in every member of M, and
(iii) the unique finitely generated simple algebra in M, up to isomorphism, is

FM(1) = FV(1).
By the minimality of M, M = HSP(FM(1)), and the free algebras of M
therefore lie in SP(FM(1)). This latter class contains all the free algebras of
M, hence contains all of the finitely generated members of M, hence generates
M as a universal class:

M = SPU (SP(FM(1))) = SPPU (FM(1)). (3.2)

By Lemma 3.4, FM(1) is abelian, hence from (3.2) we deduce that M is an
abelian variety.

As a first case, assume that M is affine. It follows from facts (i) and (ii)
above and [11, Lemma 4.3] that M is definitionally equivalent to a variety
of left R-modules for some ring R. One realization of FM(1) has universe R,
generator 1, and term operations of the form

r1x1 + · · · + rhxh, ri ∈ R.

Each left ideal of R induces a congruence on this algebra. Since FM(1) is
simple, R can have no nontrivial proper left ideals, hence R must be a division
ring.

For the remaining case we may assume, from Theorem 2.4, that M has
an affine obstruction S (see Definition 2.3). The element of S referred to as
0 in Definition 2.3 is a singleton subuniverse of S, therefore fact (ii) ensures
that it must be the element named by our constant symbol 0. It is easy to
see that any nontrivial subalgebra of an affine obstruction S which contains 0
is again an affine obstruction (i.e., inherits properties (1)–(4) of Lemma 2.1).
Since we know from Lemma 3.3 that every nontrivial 1-generated subalgebra
of S is isomorphic to FM(1), we conclude that FM(1) has Property P.

Claim 3.7. FM(1) has size 2.

Proof of Claim 3.7. Assume otherwise that there are distinct nonzero elements
a, b in FM(1). The congruence Cg(a, b) is nontrivial, hence by the simplicity of
FM(1) there is a unary polynomial p(x) of FM(1) such that p(a) = 0 �= p(b),
or the same with a and b interchanged. But p(a) = 0 implies p(0) = 0, by
Property P, showing that (a, 0) is a nontrivial pair in ker(p). On the other
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hand (a, b) is a pair not in ker(p). This contradicts Lemma 3.5, which shows
that unary polynomials of FM(1) are constant or injective. �

Claim 3.7, together with earlier information, yields that FM(1) is a 2-
element, nonaffine, abelian algebra with a singleton subalgebra named by a
constant. There is one such algebra up to definitional equivalence, namely the
2-element pointed set. (The simplest way to affirm this is to refer to Post’s
classification of 2-element algebras, but one does not need a result of such
depth to make this conclusion.)

Since M is generated by FM(1), which is equivalent to a pointed set, it
follows that M is definitionally equivalent to the variety of pointed sets in the
case we are considering.

We have shown that M is definitionally equivalent to a variety of vector
spaces over a division ring or the variety of pointed sets. We now argue that
V = M using the same type of argument used in Theorem 3.1.

If V �= M, there is a finitely generated algebra in V\M, which we may
assume is A := FV(m). Then A has an m-element generating set that is
minimal under inclusion as a generating set. Let B be the m-generated free
algebra in M. The algebra B also has an m-element minimal generating set.
But B ∈ M, so B ∈ V, and B cannot be isomorphic to A, so B ∼= FV(n)
for some n �= m. This implies that B has an n-element minimal generating
set as well as an m-element minimal generating set. But there does not exist
a vector space nor a pointed set that has minimal generating sets of different
cardinalities. We conclude that V = M. �

4. Discussion

Throughout this paper our arguments depended on some strong but odd
assumptions, namely that a 1-element V-algebra is free and that a finitely
generated simple V-algebra is free. One might wonder whether anything can
be proved for varieties where only the “large” finitely generated algebras are
assumed to be free. Specifically, one might ask what can be said about the
varieties V satisfying the following property: There exists a natural number k
such that every finitely generated algebra in V is either free or can be generated
by ≤ k elements.

Unfortunately there is a seemingly-unclassifiable collection of varieties for
which FV(j) ∼= FV(k) for some j < k. For any given j < k the varieties with
this property represent a filter in the lattice of interpretability types. In such
varieties every finitely generated algebra can be generated by ≤ k elements, so
the conditions of the question are satisfied. This suggests that there is no nice
classification of the varieties V satisfying the property above.

However, if we restrict our attention to locally finite varieties, then we
can prove the following.

Theorem 4.1. Let V be a nontrivial locally finite variety. If there exists a nat-
ural number k such that every finitely generated algebra in V is either free or
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can be generated by ≤ k elements, then every nonsingleton algebra in V is free.
In fact, V is definitionally equivalent to

(1) the variety of sets,
(2) the variety of pointed sets,
(3) a variety of vector spaces over a finite field, or
(4) a variety of affine spaces over a finite field.

Caveat: While in the earlier part of the paper our “pointed sets” and
“vector spaces” each had a (unique) 0-ary term operation, in this theorem we
allow the constants of the algebras in cases (2) and (3) to be constant 0-ary
term operations or constant 1-ary term operations. If these constants are 1-
ary term operations and there are no constant 0-ary term operations, then no
1-element algebra of the variety is free, but all the other algebras are free.

Proof. First observe that any variety satisfying the hypotheses of the theorem
must be a minimal variety. For if M is a minimal subvariety of V, then the
sequence (FM(p))p∈ω consists of algebras in V whose sizes increase with p, and
which require more generators as p increases. It follows from the hypotheses
of the theorem that some tail end of this sequence is cofinal in the sequence
(FV(q))q∈ω. Hence the algebras in the first sequence generate the same variety
as the algebras in the second sequence, i.e., M = V.

By local finiteness, the hypotheses on V ensure that there are at most
finitely many (say C) isomorphism types of finitely generated non-free algebras
in V. Local finiteness ensures that FV(n) cannot be m-generated if m < n.
Hence if n ≥ C, it follows that there are n + 1 free algebras that can be
generated by ≤ n elements (FV(0), . . . ,FV(n)) and C non-free algebras that
can be generated by ≤ n elements, hence a total of n + C algebras in V that
can be generated by ≤ n elements. This says precisely that the G-spectrum
of V satisfies GV(n) = n + C whenever n ≥ C. (The G-spectrum of a locally
finite variety V is the function whose value at n is the number of isomorphism
types of algebras in V that can be generated by ≤ n elements.)

It is known that a locally finite variety V whose G-spectrum GV(n) is
bounded above by a polynomial function of n must be abelian ([6, Theo-
rem 8.15]). So at this point we know that our variety V is a locally finite,
minimal, abelian variety. These have been classified in [9,12,13]. Such vari-
eties are definitionally equivalent to either a matrix power of the variety of
sets, a matrix power of a variety of pointed sets (note the caveat between the
theorem statement and the start of the proof), or to an affine variety over
a finite simple ring where each member has a singleton subuniverse. We will
complete the proof of the theorem by examining the clones of such algebras.

Let S be a strictly simple generator of our locally finite, minimal, abelian
variety V. It follows from the results in [9,12,13] that S is isomorphic to an
algebra that is term equivalent to (i.e., has the same underlying set and the
same non-nullary term operations as) one of the following algebras:

(i) A = (2; ∅)[d] (d ≥ 1), the d-th matrix power of the 2-element set 2 =
{0, 1};
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(ii) A = (2; 0)[d] (d ≥ 1), (the d-th matrix power of the 2-element pointed
set (2; 0);

(iii) an affine reduct A of a finite simple module M such that A has the same
ring as M.

In each one of these cases, the fact that S generates V implies that

|FV(n)| = |Clon(A)| for every n ≥ 1,

where Clon(A) denotes the set of n-ary term operations of A (the n-ary sort
of the clone of A). Thus, if V satisfies the assumptions of the theorem, then
the (increasing) sequence of all sizes of finite algebras in V must have the same
tail end as the sequence (|Clon(A)|)0<n<ω. To finish the proof of the theorem,
we have to deduce from this condition that

• d = 1 in cases (i) and (ii), and
• A is a 1-dimensional vector space or affine space over a finite field in

case (iii).

Cases (i)–(ii). Every operation f ∈ Clon(A) has the form

f : (2d)n → 2d,
(
(x0,0, . . . , x0,d−1), . . . , (xn−1,0, . . . , xn−1,d−1)

)

�→ (
f0(xi0,j0), . . . , fd−1(xid−1,jd−1)

)

where, for each �, either f� = id and (i�, j�) is a pair of integers with 0 ≤ i� < n,
0 ≤ j� < d, or we are in case (ii) and f� is the (unary) constant operation with
value 0 and the pair (i�, j�) is irrelevant. It is easy to check that different
choices yield different operations. Hence |Clon(A)| = (nd)d in case (i) and
|Clon(A)| = (nd + 1)d in case (ii).

For every finite set B with 0 ∈ B, the algebra (B; ∅)[d] belongs to the
variety generated by (2; ∅)[d], and the algebra (B; 0)[d] belongs to the variety
generated by (2; 0)[d]. Hence, V contains algebras of sizes md for every m ≥ 1.
Since our assumptions force that the (increasing) sequence of all sizes of finite
algebras in V has the same tail end as the sequence (|Clon(A)|)0<n<ω, we get
that a tail end of the sequence (md)0<m<ω must be a subsequence of a tail
end of the sequence

(
(nd)d

)
0<n<ω

or
(
(nd + 1)d

)
0<n<ω

, according to whether
we are in case (i) or (ii). It is easy to see that in both cases this will hold only
if d = 1.

Case (iii). Let A be an affine reduct of a finite, simple R-module such
that the ring of A is also R. Since we are only interested in the term operations
of A, we may assume without loss of generality that R and M are unital and
M is a faithful R-module. Since M is finite and simple, it follows that there
exist a finite field K and a positive integer d such that R is the ring of d × d
matrices with entries in K, and M is a d-dimensional K-vector space with the
usual action of R as an R-module.
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Since A is an affine reduct of M with the same ring R as M, [12,
Lemma 4.3] implies that there exists a left ideal L of R such that

Clon(A) =

{
n−1∑

i=0

rixi

∣
∣
∣
∣ r0, . . . , rn−1 ∈ R and 1 −

n−1∑

i=0

ri ∈ L

}

for all n ≥ 1.

(4.1)
Thus, |Clon(A)| = |R|n−1|L| = |M |d(n−1)|L| = |A|d(n−1)|L| for all n ≥ 1. The
variety V contains finite algebras of sizes |A|m = |S|m for every m ≥ 1. Now,
if d > 1, then no tail end of the sequence (|A|m)0<m<ω is a subsequence of any
tail end of the sequence (|Clon(A)|)0<n<ω = (|A|d(n−1)|L|)0<n<ω. Therefore
we conclude the same way as before that d = 1. This implies that R = K and
M is a 1-dimensional K-vector space. Hence, either L = K or L = {0}, which
implies by (4.1) that A is term equivalent to either the vector space M, or the
corresponding affine space (i.e., the full idempotent reduct of M). �

Now we turn to the opposite type of question: what can one say about the
varieties for which there is a natural number n such that every (≤n)-generated
algebra is free? If n is large enough, must all algebras in the variety be free?
We show that the answer to this is negative for any natural number n.

Theorem 4.2. For any natural number n there exists a variety with the property
that every (≤n)-generated algebra is free, but some (n + 1)-generated algebra
in the variety is not free.

Proof. An (m+1)-ary (first variable) semiprojection on a set A is an (m+1)-
ary operation s(x0, x1, . . . , xm) on A such that for any a ∈ Am+1 we have

s(a0, a1, . . . , am) = a0

whenever ai = aj for some i �= j. This property can be expressed by identities,
so starting with any variety V we can add an (m + 1)-ary function symbol s
to the language and define Vs to be the variety of all V-algebras expanded by
an (m + 1)-ary (first variable) semiprojection.

The added semiprojection operation acts like first projection on any alge-
bra in Vs that has cardinality at most m. Hence any algebra of size at most
m in Vs is definitionally equivalent to an algebra in V.

If V is the variety of sets, then this construction with m = n yields a
variety Vs in which every algebra that is generated by at most n elements
will be definitionally equivalent to a set, hence will be free. Now let B be the
(n + 1)-element algebra in Vs where s interprets as a first projection, so B is
definitionally equivalent to a set. This algebra is not free, because there exist
(n + 1)-generated algebras in Vs that are not homomorphic images of B. For
example, any (n + 1)-element algebra A in Vs where s is a (first variable)
semiprojection other than a projection has this property.

Similarly, if V is the variety of vector spaces over the 2-element field, and
we let m = 2n, then the (2n +1)-ary semiprojection s acts like first projection
on any algebra in Vs generated by at most n elements. Again, all algebras in
Vs that are generated by at most n elements will be free, but there will be
(n + 1)-generated algebras in Vs that are not free. �
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[11] Szendrei, Á.: On closed classes of quasilinear functions. Czechoslov. Math. J. 30,
498–509 (1980)

[12] Szendrei, Á.: Strongly abelian minimal varieties. Acta Sci. Math. (Szeged) 59,
25–42 (1994)
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