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On the local closure of clones on countable sets

ERHARD AICHINGER

ABSTRACT. We consider clones on countable sets. If such a clone has quasigroup
operations, is locally closed and countable, then there is a function f: N — N such
that the n-ary part of C' is equal to the n-ary part of Pol Invlf M1 ¢ where Invlf (] ¢
denotes the set of f(n)-ary invariant relations of C.

1. Results

We investigate clones on infinite sets [10, 11, 5]. For a clone C on A,
its local closure C consists of all those finitary operations on A that can be
interpolated at each finite subset of their domain by a function in C, and we
have C' = Pol InvC. Here, as in [10], Inv C denotes the set of those finitary
relations on A that are preserved by all functions in C, and for a set R of
relations on A, Pol R denotes the set of those finitary operations on A that
preserve all relations in R. A clone is called locally closed if it is equal to its
local closure. C'is called a clone with quasigroup operations if there are three
binary operations -,\,/ € C such that (A,-,\,/) is a quasigroup [3, p. 24].
Theorem 1.1 states that a clone with quasigroup operations on a countable set
is either locally closed, or its local closure Pol Inv C' is uncountable.

Theorem 1.1. Let A be a set with |A| = Vg, and let C be a clone with
quasigroup operations on A. If |Pol Inv C| < Rq, then C' = Pol Inv C.

This theorem does not hold for clones without quasigroup operations. We
say that C' is constantive if it contains all unary constant operations.

Theorem 1.2. There exist a set A with |A| = Ry and a constantive clone C
on A such that |Pol Inv C| = Rg and C # Pol Inv C.

For a clone C on A, Inv™ € denotes the set of m-ary invariant relations
of C. Tt is well known that a function f lies in Pol Inv™ C' if and only if it
can be interpolated at every m-element subset of its domain by a function in
C; this is discussed, e.g., in [9] and in [4, Lemma 7] and stated in Lemma 3.1.
We write C for the set of n-ary functions in C. Let B be any set, and let
F C AB. A subset D of B is a base of equality for F if for all f,g € F with
flp = g|p, we have f = g. Theorem 1.1 can be extended in the following way:
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Theorem 1.3. Let A be a set with |A| = Ro, and let C be a clone on A with
quasigroup operations. Then the following are equivalent:

(1) |Pol Inv C| < Y.

(2) For each n € N, C™ has a finite base of equality.

(3) |C| <Ng and ¥n € N 3k € N : "l = (Pol Inv" ¢l
(4) |C| < Ng and C =Pol InvC.

A weaker version of this result was proved in [1]. As an application, we
obtain, e.g., that a countably infinite integral domain R cannot be affine com-
plete: If it is affine complete, then the clone C of polynomial functions of R
satisfies (3), and therefore the unary polynomials have a finite base of equality
D. But f(x) =0 and g(x) = [[,cp(z — d) show that this is not possible. In
fact, Theorem 1.3 extracts a common idea of several “non-affine completeness”
results [6, 8]. The proofs are given in Section 4.

2. Finite bases of equality

Theorems 1.1 and 1.3 rely on the following observation. In a less general
context, this observation appears in [1, Theorem 2], and large parts of its proof
are verbatim copies from [1] and [2, pp.51-52].

Lemma 2.1. Let A be a set with |A] = Rg, let m € N, and let C be a clone on
A with quasigroup operations. If |(Pol Inv C)"™| < X, then C™ has a finite
base of equality.

Proof. Let C := Pol InvC. In the case that é[m] is finite, its subset CI™ is
also finite. Then for every f,g € CI™ with f # g, we choose acgg) € A™
such that f(a(sq)) # 9(a(sg))- Then D = {agsq) | f,g € C™, f # g} is a
base of equality for CI™. Hence, we will from now on assume \é[m” = No.
Let ag,a1,a9,... and fo, f1, f2, ... be complete enumerations of A™ and é[m],
respectively. Furthermore, we abbreviate the set {a; | i < r} by A(r). Seeking
a contradiction, we suppose that there is no finite base of equality for CI"). We
shall construct a sequence (ny)ren, of non-negative integers and a sequence
(gr)ren, of elements of C™ with the following properties:

(1) Vk € No : gkl atn) # frlam)

(2) Vk € Ng : ngy1 > ng,

(3) Yk € No @ grrilamg) = 9rlawm)-

We construct the sequences inductively. We choose g € C™ such that
go # fo, and ng € Ny minimal with go(an,) # fo(an,). If we have already
constructed gr and ng, we construct grp+1 and ngyq as follows: in the case
that gr|a(n,) 7 frs1lame)s we set gry1 := gr and npy1 == ng + 1. In the case
9kl A(ny) = fet1la(n,), we first show that there exists a function h € cll with

gklam) = Ml am,) and h # fip1. (2.1)
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Suppose that, on the contrary, every h € Cl'"™ with gkl A(n) = Pl Aa(n,) satisfies
h = fur1. In this case, gr = fur1, and therefore fr11 € CI™. We will show
next that A(ny) is a base of equality of Cl". To this end, let r,s € C[™
with 7 4(n,) = 8|a(n,). We define t(z) := r(z)\(s(x) - fr41(z)). Then for every
x € A(ng), we have t(z) = r(@)\(r(x)- fr+1(x)) = fr+1(z) = gr(x). Hence, t =
frt+1. Therefore, for every x € A™, we have r(z)\(s(z) - fi+1(2)) = fes1(x),
thus s(z) - fer1(x) = r(x) - frr1(z), and therefore (s(x) - fit1(x))/ fet1(z) =
(r(x) - fet1(x))/ fet1(x)), which implies s(z) = r(x). Thus, r = s, which
completes the proof that A(ng) is a base of equality of C™, contradicting
the assumption that no such base exists. Hence, there is h € CI"™ that satis-
fies (2.1). Continuing in the construction of giy1, we set gg+1 := h, and we
choose ny41 to be minimal with hA(an,,,) # frr1(@n,,,)-

Since for every a € A™, the sequence (gi(a))ken, is eventually constant,
we may define a function I: A™ — A by Il(a) := limg— 0 gr(a). We will now
show that I € C™. The clone C contains exactly those functions that can be
interpolated at every finite subset of their domain with a function in C. Hence,
we show that [ can be interpolated at every finite subset B of A™ by a function
in C. Since [J;cn, Ai = A™, there is k € N such that B C A(ny). Since
U a(mg) = 9klA(ny), the function gp € C™! interpolates [ at B. We conclude

that the function [ lies in é[m]. Thus, [ is equal to f for some k € Ny. Since

Uamy) = gklamy) and gelam,) # felan,), we obtain l|am,) # frlacn,), a
contradiction. Hence, C" has a finite base of equality. O

Lemma 2.2 (cf. [7, Lemma 1] and [1, Proposition 2]). Let C be a clone on the
set A, letn € N, let D be a finite base of equality for C™, and let k := |D|+1.
Then CI" = (Pol Invl¥ )],

Proof. Let [ € (Pol Inv[¥ C)[™. Then I can be interpolated at every subset of
A" with at most k elements by a function in C[™. Hence, there is f € C"
such that f|p =1I|p. If f =1, then I € C!"]. In the case f # I, we take y € A™
such that f(y) # I(y). Now we choose g € CI"l such that glpuiyy = lbpugyy-
Then f(y) # g(y) and f|p = g|p, contradicting the assumption that D is a
base of equality for C[™, (]

3. A compactness property for local interpolation

For two sets A and B, a set of functions F C A”, and k € N, the set Loc, F
is defined as the set of those functions that can be interpolated at every subset
of B with at most k elements by a function in F' [9]. If C is a clone, and
F = O™ is its m-ary part, then Locy(Cl"™) is the set of m-ary functions on
A that preserve the k-ary relations in Inv C'.

Lemma 3.1 (cf. [9, p. 31, Theorem 4.1]). Let C be a clone on the set A, and
let k,m € N. Then Locg(Cl™) = (Pol Invl¥l €)Im] = (Pol Inv!¥ (Clm]))lm],
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For countable sets A, we obtain the following result.

Theorem 3.2. Let A be a set with |A] < Xg, and let C be a clone on A with
quasigroup operations such that |CI™| < Ro. If oy Lock (CM) = CI™ then
there exists n € N such that Loc, (C"™) = O™l

Proof. By Lemma 3.1 and the assumptions,

Cm = () Locg(C!™) = () (Pol Inv!¥ €)I™) = (Pol Inv €)™
keN keN

Now Lemma 2.1 yields a finite base of equality for C!"), and now by Lemma 2.2,
there is n € N such that C" = (Pol Invl™ C)l™ = Loc,, (Cl™). O

For an arbitrary m-ary operation f on the set A, we say that the property
I(f,n,C) holds if f can be interpolated by a function in C at each subset of
A™ with at most n elements. Theorem 3.2 yields the following compactness
property: if C' is a countable clone with quasigroup operations, if A is count-
able, and if Vf € AA™ : (Vk e N: I(f,k,C)) = f € C) holds, then there is a
natural number n € N such that Vf € A4™ : (I(f,n,C) = f € C) holds.

4. Proofs of the theorems from Section 1

Proof of Theorem 1.3. (1)=(2): Let n € N. Since (Pol Inv C)[" C Pol Inv C,
we have |(Pol Inv C)["]| < Xy. Lemma 2.1 now yields a finite base of equality
for .

(2)=(3): Let n € N, and let D C A" be a finite base of equality for C'".
We set k := |D| + 1 and obtain CI"l = (Pol Invl*) €)[") from Lemma 2.2. The
mapping ¢: C" — AP, f — f|p is injective, therefore |C1™]| < Ry. Since for
every n € N, we have |C["| < Ry, we have |C] < R.

(3)=(4): Let n € N, and let k be taken from (3). Then we have that
(Pol Inv C)" C (Pol Inv* )l = ¢l

(4)=-(1): This is obvious. O

Proof of Theorem 1.1. The statement of Theorem 1.1 is given by the implica-
tion (1)=-(4) of Theorem 1.3. O

Proof of Theorem 1.2. Let A := Ny, and let p(x) := 2 mod 2 for all x € Ny.
For a € Ny, we define g,: Ng — Ny by

() p(z) ifz<a,
o(T) =
g T if z > a,

with ¢q(z) := a for all z € Ng. Let M :={g, | a € No}U{ca(z) | a € No}. We
will first show that (M, o, go) is a submonoid of (NONO, o,idy,). To this end, it is
sufficient to show that g, 0g, € M for all a,b € Ny. Since go = g1 = g2 = idy,,
we may assume a > 3 and b > 3. We will show

9a(96(2)) = Gmax(a,p)(x) for all z € N. (4.1)
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If  <b, then gq(gs(2)) = ga(p(x)) = p(p(2)) = P(T) = gmax(ap)(z). 2 >b
and ¢ < a, then g,(gs(z)) = ga(z); since in this case b < a, so g.(z) =
gmax(a,b)(x)' If 2 > a and z > b, then go(gp(z)) = go(z) = 2 = Ymax(a,b) ().
From (4.1), we deduce that M is closed under composition. Now let C' be
the clone on Ny that is generated by M; this clone consists of all functions
(z1,...,2,) — m(x;) with n,j € N, m € M and j < n. Let C := Pol Inv C.
Next, we show

peC. (4.2)

To prove (4.2), we show that p can be interpolated at every finite subset B of
Ny by a function in C. Let a := max(B). Then g,+1|/p = p|p. This completes
the proof of (4.2). Now we show

= ey (). (4.3)

We only have to establish C. It is helpful to write down the list of values of
some of the functions in M U {p}.

cs 333333...
co 222222 ...
ey 111111...
co  000000. ..
p 010101...
id 012345. ..
g3 010345...
g4 010145. ..
g5 010105...

Let f € 6[1] with f # p, and let k¥ € Ny be minimal with f(k) # p(k). Let
g € C be such that glo,...k.3 = fl{o,....k}- We distinguish three cases.

Case k = 0: Then g(0) # 0, and therefore g = ¢4y If f = c4(0), we have
f e C. If f# cyo), we let y be minimal with f(y) # g(0). We interpolate
f at {0,y} by a function h € C. This function h is not constant and satisfies
h(0) # 0. Such a function does not exist in C, therefore the case f # cy(o)
cannot occur.

Case k = 1: Then ¢(1) # 1. By examining the functions in M, we see
that g = ¢g. If f = ¢y, we have f € C. If f # ¢y, we let y be minimal with
f(y) # 0. Interpolating f at {0,1,y} by h € C, we obtain a function h € C
with h(0) = k(1) = 0 and h(y) # 0. Such a function does not exist in C; this
contradiction shows f = ¢g and therefore f € C.

Case k > 2: Then g = g. If f = gi, then f € C. If f # gi, we choose
y minimal with f(y) # gr(y) and interpolate f at {0,1,...,k} U {y} by a
function A € C. Again, such a function is not available in C, and therefore
=g €C.

Thus, every f € 6[1] with f # p is an element of C. By its definition, C
contains all constant unary operations in Ny. Since C preserves the relation
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p={(a,b,c,d) € A* | a =0bor c=d}, C also preserves p. Therefore, by [10,
Lemma 1.3.1(a)], every function in C is essentially unary and hence of the form
Wz1,...,2n) = f(z;) withn € N, j € {1,...,n}, and f € o = M U {p}.
This implies that C' is countable. The function p witnesses C # C. (]

5. Constantive clones

In constantive clones, a finite base of equality for the functions of arity m
yields finite bases of equality for all other arities. This will allow us to refine
Theorem 1.3.

Lemma 5.1. Let C be a clone on the set A, let m € N, and let D C A™ be
a base of equality for C"™. Then the projection of D to the first component
71(D) is a base of equality for C\.,

Proof. Let f,g € CMM with [y = 9leipy- Let fi(x,...,2m) = f(21)
and ¢g1(x1,...,%m) := g(x1). Then for every (di,...,dn,) € D, we have
fl(dl,...,dm) = f(dl) = g(dl) = gl(dl,...,dm), and therefore fl = g1,
which implies f = g¢. O

Lemma 5.2. Let A be a set, let C' be a constantive clone on A, and let D C A
be a base of equality for C!Y. Then for every n € N, D™ is a base of equality
for O,

Proof. We proceed by induction on n. If n = 1, D! = D is a base of equality
of CMWl by assumption. For the induction step, let n > 2, and suppose that
D" 1 is a base of equality for C"~1. Let f, g € C!") and assume flpr = g|pn.
We first show

flaxpr—1 = glaxpr-1. (5.1)
Let (a,da,...,d,) € A x D""' and define fi(z) = f(,da,...,d,) and
g1(x) = g(x,da,...,d,) for £ € A. Then fi,q1 € C'Yl and fi|p = gilp.
Hence, f; = g1, and thus f(a,ds,...,d,) = fi(a) = g1(a) = g(a,ds, ..., dy),
which completes the proof of (5.1).

We prove f = g. Let (by,...,b,) € A™; for all xa,...,2, € A, de-
fine fo(xa,...,2n) := f(b1,22,...,2,) and ga(za,...,2,) = g(b1, T2, ..., Tp).
By (5.1), fa|pn-1 = g2|pn-1, and thus by the induction hypothesis, fo = go.
Thus, f(b1,.-.,bn) = g(b1,...,bn). |

Hence, for constantive clones we can give the following slight refinement of
Theorem 1.3.

Theorem 5.3. Let A be a set with |A| = Ng, let C be a constantive clone on A
with quasigroup operations, and let m € N. Then the following are equivalent:
(1) |(Pol Inv C)M] < Ry.

(2) CWM has a finite base of equality.

(3) C™l has a finite base of equality.
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(4) |C| <Rg and 3d € N ¥n € N : Ol = (Pol Iny!@"+1 ¢l
(5) |C| <No and ¥n € N 3k € N : "l = (Pol Inv" )"
(6) |C| < Ng and C =Pol InvC.

Proof. (1)=(2): This is Lemma 2.1.

(2)=-(3): This is Lemma 5.2.
(3)=-(2): This is Lemma 5.1.
(2)=(4): Let D be a finite base of equality for CIl. Let n € N, and
set k := |D|™ + 1. By Lemma 5.2, D" is a base of equality for cl, and
Lemma 2.2 yields C" = (Pol Inv¥! )", Since D™ is a finite base of equality,
the mapping f ~ f|p» is an injective mapping from C1" to AP" making C'"
countable. Since C!" is countable for every n € N, we obtain |C| < Ro.

(4)=(5): Set k:=d" + 1.

(5)=(6): Let n € N, and let k be produced by (5). Then we have that
(Pol Inv C)" C (Pol Inv* )" = ¢l

(6)=(1): We have (Pol Inv )" C Pol InvC C C. O

Acknowledgements. Open access funding provided by Johannes Kepler
University Linz. The author thanks Mike Behrisch for furnishing information
on the reference [9].

REFERENCES

[1] Aichinger, E.: Local polynomial functions on the integers. Riv. Mat. Univ. Parma (5)
6, 169-177 (1997)

[2] Aichinger, E.: The structure of composition algebras. Ph.D. thesis, Johannes Kepler
Universitat Linz (1998). Available at www.algebra.uni-linz.ac.at/~erhard/Diss/

[3] Burris, S., Sankappanavar, H.P.: A course in universal algebra. Springer New York
Heidelberg Berlin (1981)

[4] Eigenthaler, G.: Einige Bemerkungen iiber Clones und interpolierbare Funktionen auf
universellen Algebren. Beitrage Algebra Geom. 15, 121-127 (1983)

[5] Goldstern, M., Pinsker, M.: A survey of clones on infinite sets. Algebra Universalis
59, 365-403 (2008)

[6] Hall, R.R.: On pseudo-polynomials. Mathematika 18, 71-77 (1971)

[7] Hule, H., Nobauer, W.: Local polynomial functions on universal algebras. Anais da
Acad. Brasiliana de Ciencias 49, 365-372 (1977)

[8] Kaarli, K.: Affine complete abelian groups. Math.Nachr. 107, 235-239 (1982)

[9] Poschel, R.: A general Galois theory for operations and relations and concrete
characterization of related algebraic structures, Report 1980, vol. 1. Akademie der
Wissenschaften der DDR, Institut fiir Mathematik, Berlin (1980)

[10] Poschel, R., Kaluznin, L.A.: Funktionen- und Relationenalgebren, Mathematische
Monographien, vol. 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)

[11] Szendrei, A.: Clones in universal algebra. Séminaire de Mathématiques Supérieures
[Seminar on Higher Mathematics], vol. 99. Presses de 'Université de Montréal,
Montreal, QC (1986)

ERHARD AICHINGER

Institute for Algebra, Johannes Kepler University Linz, 4040 Linz, Austria
e-mail: erhard@algebra.uni-linz.ac.at
URL: http://www.jku.at/algebra

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.



	On the local closure of clones on countable sets
	Abstract
	1. Results
	2. Finite bases of equality
	3. A compactness property for local interpolation
	4. Proofs of the theorems from Section 1
	5. Constantive clones
	Acknowledgements
	References




