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On the local closure of clones on countable sets

Erhard Aichinger

Abstract. We consider clones on countable sets. If such a clone has quasigroup
operations, is locally closed and countable, then there is a function f : N → N such

that the n-ary part of C is equal to the n-ary part of Pol Inv[f(n)] C, where Inv[f(n)] C
denotes the set of f(n)-ary invariant relations of C.

1. Results

We investigate clones on infinite sets [10, 11, 5]. For a clone C on A,

its local closure C consists of all those finitary operations on A that can be

interpolated at each finite subset of their domain by a function in C, and we

have C = Pol InvC. Here, as in [10], InvC denotes the set of those finitary

relations on A that are preserved by all functions in C, and for a set R of

relations on A, PolR denotes the set of those finitary operations on A that

preserve all relations in R. A clone is called locally closed if it is equal to its

local closure. C is called a clone with quasigroup operations if there are three

binary operations · , \ , / ∈ C such that 〈A, · , \ , / 〉 is a quasigroup [3, p. 24].

Theorem 1.1 states that a clone with quasigroup operations on a countable set

is either locally closed, or its local closure Pol InvC is uncountable.

Theorem 1.1. Let A be a set with |A| = ℵ0, and let C be a clone with

quasigroup operations on A. If |Pol InvC| ≤ ℵ0, then C = Pol InvC.

This theorem does not hold for clones without quasigroup operations. We

say that C is constantive if it contains all unary constant operations.

Theorem 1.2. There exist a set A with |A| = ℵ0 and a constantive clone C

on A such that |Pol InvC| = ℵ0 and C �= Pol InvC.

For a clone C on A, Inv[m] C denotes the set of m-ary invariant relations

of C. It is well known that a function f lies in Pol Inv[m] C if and only if it

can be interpolated at every m-element subset of its domain by a function in

C; this is discussed, e.g., in [9] and in [4, Lemma 7] and stated in Lemma 3.1.

We write C [n] for the set of n-ary functions in C. Let B be any set, and let

F ⊆ AB . A subset D of B is a base of equality for F if for all f, g ∈ F with

f |D = g|D, we have f = g. Theorem 1.1 can be extended in the following way:
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Theorem 1.3. Let A be a set with |A| = ℵ0, and let C be a clone on A with

quasigroup operations. Then the following are equivalent:

(1) |Pol InvC| ≤ ℵ0.

(2) For each n ∈ N, C [n] has a finite base of equality.

(3) |C| ≤ ℵ0 and ∀n ∈ N ∃k ∈ N : C [n] = (Pol Inv[k] C)[n].

(4) |C| ≤ ℵ0 and C = Pol InvC.

A weaker version of this result was proved in [1]. As an application, we

obtain, e.g., that a countably infinite integral domain R cannot be affine com-

plete: If it is affine complete, then the clone C of polynomial functions of R

satisfies (3), and therefore the unary polynomials have a finite base of equality

D. But f(x) = 0 and g(x) =
∏

d∈D(x − d) show that this is not possible. In

fact, Theorem 1.3 extracts a common idea of several “non-affine completeness”

results [6, 8]. The proofs are given in Section 4.

2. Finite bases of equality

Theorems 1.1 and 1.3 rely on the following observation. In a less general

context, this observation appears in [1, Theorem 2], and large parts of its proof

are verbatim copies from [1] and [2, pp.51-52].

Lemma 2.1. Let A be a set with |A| = ℵ0, let m ∈ N, and let C be a clone on

A with quasigroup operations. If |(Pol InvC)[m]| ≤ ℵ0, then C [m] has a finite

base of equality.

Proof. Let C := Pol InvC. In the case that C
[m]

is finite, its subset C [m] is

also finite. Then for every f, g ∈ C [m] with f �= g, we choose a(f,g) ∈ Am

such that f(a(f,g)) �= g(a(f,g)). Then D := {a(f,g) | f, g ∈ C [m], f �= g} is a

base of equality for C [m]. Hence, we will from now on assume |C [m]| = ℵ0.

Let a0, a1, a2, . . . and f0, f1, f2, . . . be complete enumerations of Am and C
[m]

,

respectively. Furthermore, we abbreviate the set {ai | i ≤ r} by A(r). Seeking

a contradiction, we suppose that there is no finite base of equality for C [m]. We

shall construct a sequence (nk)k∈N0
of non-negative integers and a sequence

(gk)k∈N0
of elements of C [m] with the following properties:

(1) ∀k ∈ N0 : gk|A(nk) �= fk|A(nk),

(2) ∀k ∈ N0 : nk+1 > nk,

(3) ∀k ∈ N0 : gk+1|A(nk) = gk|A(nk).

We construct the sequences inductively. We choose g0 ∈ C [m] such that

g0 �= f0, and n0 ∈ N0 minimal with g0(an0
) �= f0(an0

). If we have already

constructed gk and nk, we construct gk+1 and nk+1 as follows: in the case

that gk|A(nk) �= fk+1|A(nk), we set gk+1 := gk and nk+1 := nk + 1. In the case

gk|A(nk) = fk+1|A(nk), we first show that there exists a function h ∈ C [m] with

gk|A(nk) = h|A(nk) and h �= fk+1. (2.1)
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Suppose that, on the contrary, every h ∈ C [m] with gk|A(nk) = h|A(nk) satisfies

h = fk+1. In this case, gk = fk+1, and therefore fk+1 ∈ C [m]. We will show

next that A(nk) is a base of equality of C [m]. To this end, let r, s ∈ C [m]

with r|A(nk) = s|A(nk). We define t(x) := r(x)\(s(x) ·fk+1(x)). Then for every

x ∈ A(nk), we have t(x) = r(x)\(r(x)·fk+1(x)) = fk+1(x) = gk(x). Hence, t =

fk+1. Therefore, for every x ∈ Am, we have r(x)\(s(x) · fk+1(x)) = fk+1(x),

thus s(x) · fk+1(x) = r(x) · fk+1(x), and therefore (s(x) · fk+1(x))/fk+1(x) =

(r(x) · fk+1(x))/fk+1(x)), which implies s(x) = r(x). Thus, r = s, which

completes the proof that A(nk) is a base of equality of C [m], contradicting

the assumption that no such base exists. Hence, there is h ∈ C [m] that satis-

fies (2.1). Continuing in the construction of gk+1, we set gk+1 := h, and we

choose nk+1 to be minimal with h(ank+1
) �= fk+1(ank+1

).

Since for every a ∈ Am, the sequence (gk(a))k∈N0
is eventually constant,

we may define a function l : Am → A by l(a) := limk→∞ gk(a). We will now

show that l ∈ C
[m]

. The clone C contains exactly those functions that can be

interpolated at every finite subset of their domain with a function in C. Hence,

we show that l can be interpolated at every finite subset B of Am by a function

in C. Since
⋃

i∈N0
Ai = Am, there is k ∈ N such that B ⊆ A(nk). Since

l|A(nk) = gk|A(nk), the function gk ∈ C [m] interpolates l at B. We conclude

that the function l lies in C
[m]

. Thus, l is equal to fk for some k ∈ N0. Since

l|A(nk) = gk|A(nk) and gk|A(nk) �= fk|A(nk), we obtain l|A(nk) �= fk|A(nk), a

contradiction. Hence, C [m] has a finite base of equality. �

Lemma 2.2 (cf. [7, Lemma 1] and [1, Proposition 2]). Let C be a clone on the

set A, let n ∈ N, let D be a finite base of equality for C [n], and let k := |D|+1.

Then C [n] = (Pol Inv[k] C)[n].

Proof. Let l ∈ (Pol Inv[k] C)[n]. Then l can be interpolated at every subset of

An with at most k elements by a function in C [n]. Hence, there is f ∈ C [n]

such that f |D = l|D. If f = l, then l ∈ C [n]. In the case f �= l, we take y ∈ An

such that f(y) �= l(y). Now we choose g ∈ C [n] such that g|D∪{y} = l|D∪{y}.

Then f(y) �= g(y) and f |D = g|D, contradicting the assumption that D is a

base of equality for C [n]. �

3. A compactness property for local interpolation

For two sets A and B, a set of functions F ⊆ AB , and k ∈ N, the set Lock F
is defined as the set of those functions that can be interpolated at every subset

of B with at most k elements by a function in F [9]. If C is a clone, and

F = C [m] is its m-ary part, then Lock(C
[m]) is the set of m-ary functions on

A that preserve the k-ary relations in InvC.

Lemma 3.1 (cf. [9, p. 31, Theorem 4.1]). Let C be a clone on the set A, and

let k,m ∈ N. Then Lock(C
[m]) = (Pol Inv[k] C)[m] = (Pol Inv[k](C [m]))[m].
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Theorem 1.3. Let A be a set with |A| = ℵ0, and let C be a clone on A with

quasigroup operations. Then the following are equivalent:

(1) |Pol InvC| ≤ ℵ0.

(2) For each n ∈ N, C [n] has a finite base of equality.

(3) |C| ≤ ℵ0 and ∀n ∈ N ∃k ∈ N : C [n] = (Pol Inv[k] C)[n].

(4) |C| ≤ ℵ0 and C = Pol InvC.

A weaker version of this result was proved in [1]. As an application, we

obtain, e.g., that a countably infinite integral domain R cannot be affine com-

plete: If it is affine complete, then the clone C of polynomial functions of R

satisfies (3), and therefore the unary polynomials have a finite base of equality

D. But f(x) = 0 and g(x) =
∏

d∈D(x − d) show that this is not possible. In

fact, Theorem 1.3 extracts a common idea of several “non-affine completeness”

results [6, 8]. The proofs are given in Section 4.

2. Finite bases of equality

Theorems 1.1 and 1.3 rely on the following observation. In a less general

context, this observation appears in [1, Theorem 2], and large parts of its proof

are verbatim copies from [1] and [2, pp.51-52].

Lemma 2.1. Let A be a set with |A| = ℵ0, let m ∈ N, and let C be a clone on

A with quasigroup operations. If |(Pol InvC)[m]| ≤ ℵ0, then C [m] has a finite

base of equality.

Proof. Let C := Pol InvC. In the case that C
[m]

is finite, its subset C [m] is

also finite. Then for every f, g ∈ C [m] with f �= g, we choose a(f,g) ∈ Am

such that f(a(f,g)) �= g(a(f,g)). Then D := {a(f,g) | f, g ∈ C [m], f �= g} is a

base of equality for C [m]. Hence, we will from now on assume |C [m]| = ℵ0.

Let a0, a1, a2, . . . and f0, f1, f2, . . . be complete enumerations of Am and C
[m]

,

respectively. Furthermore, we abbreviate the set {ai | i ≤ r} by A(r). Seeking

a contradiction, we suppose that there is no finite base of equality for C [m]. We

shall construct a sequence (nk)k∈N0
of non-negative integers and a sequence

(gk)k∈N0
of elements of C [m] with the following properties:

(1) ∀k ∈ N0 : gk|A(nk) �= fk|A(nk),

(2) ∀k ∈ N0 : nk+1 > nk,

(3) ∀k ∈ N0 : gk+1|A(nk) = gk|A(nk).

We construct the sequences inductively. We choose g0 ∈ C [m] such that

g0 �= f0, and n0 ∈ N0 minimal with g0(an0
) �= f0(an0

). If we have already

constructed gk and nk, we construct gk+1 and nk+1 as follows: in the case

that gk|A(nk) �= fk+1|A(nk), we set gk+1 := gk and nk+1 := nk + 1. In the case

gk|A(nk) = fk+1|A(nk), we first show that there exists a function h ∈ C [m] with

gk|A(nk) = h|A(nk) and h �= fk+1. (2.1)
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For countable sets A, we obtain the following result.

Theorem 3.2. Let A be a set with |A| ≤ ℵ0, and let C be a clone on A with

quasigroup operations such that |C [m]| ≤ ℵ0. If
⋂

k∈N Lock(C
[m]) = C [m], then

there exists n ∈ N such that Locn(C
[m]) = C [m].

Proof. By Lemma 3.1 and the assumptions,

C [m] =
⋂
k∈N

Lock(C
[m]) =

⋂
k∈N

(Pol Inv[k] C)[m] = (Pol InvC)[m].

Now Lemma 2.1 yields a finite base of equality for C [m], and now by Lemma 2.2,

there is n ∈ N such that C [m] = (Pol Inv[n] C)[m] = Locn(C
[m]). �

For an arbitrary m-ary operation f on the set A, we say that the property

I(f, n, C) holds if f can be interpolated by a function in C at each subset of

Am with at most n elements. Theorem 3.2 yields the following compactness

property: if C is a countable clone with quasigroup operations, if A is count-

able, and if ∀f ∈ AAm

: ((∀k ∈ N : I(f, k, C)) ⇒ f ∈ C) holds, then there is a

natural number n ∈ N such that ∀f ∈ AAm

: (I(f, n, C) ⇒ f ∈ C) holds.

4. Proofs of the theorems from Section 1

Proof of Theorem 1.3. (1)⇒(2): Let n ∈ N. Since (Pol InvC)[n] ⊆ Pol InvC,

we have |(Pol InvC)[n]| ≤ ℵ0. Lemma 2.1 now yields a finite base of equality

for C [n].

(2)⇒(3): Let n ∈ N, and let D ⊆ An be a finite base of equality for C [n].

We set k := |D|+ 1 and obtain C [n] = (Pol Inv[k] C)[n] from Lemma 2.2. The

mapping ϕ : C [n] → AD, f �→ f |D is injective, therefore |C [n]| ≤ ℵ0. Since for

every n ∈ N, we have |C [n]| ≤ ℵ0, we have |C| ≤ ℵ0.

(3)⇒(4): Let n ∈ N, and let k be taken from (3). Then we have that

(Pol InvC)[n] ⊆ (Pol Inv[k] C)[n] = C [n].

(4)⇒(1): This is obvious. �

Proof of Theorem 1.1. The statement of Theorem 1.1 is given by the implica-

tion (1)⇒(4) of Theorem 1.3. �

Proof of Theorem 1.2. Let A := N0, and let p(x) := x mod 2 for all x ∈ N0.

For a ∈ N0, we define ga : N0 → N0 by

ga(x) :=

{
p(x) if x < a,

x if x ≥ a,

with ca(x) := a for all x ∈ N0. Let M := {ga | a ∈ N0} ∪ {ca(x) | a ∈ N0}. We

will first show that 〈M, ◦, g0〉 is a submonoid of 〈N0
N0 , ◦, idN0

〉. To this end, it is
sufficient to show that ga ◦gb ∈ M for all a, b ∈ N0. Since g0 = g1 = g2 = idN0

,

we may assume a ≥ 3 and b ≥ 3. We will show

ga(gb(x)) = gmax(a,b)(x) for all x ∈ N0. (4.1)
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If x < b, then ga(gb(x)) = ga(p(x)) = p(p(x)) = p(x) = gmax(a,b)(x). If x ≥ b

and x < a, then ga(gb(x)) = ga(x); since in this case b ≤ a, so ga(x) =

gmax(a,b)(x). If x ≥ a and x ≥ b, then ga(gb(x)) = ga(x) = x = gmax(a,b)(x).

From (4.1), we deduce that M is closed under composition. Now let C be

the clone on N0 that is generated by M ; this clone consists of all functions

(x1, . . . , xn) �→ m(xj) with n, j ∈ N, m ∈ M and j ≤ n. Let C := Pol InvC.

Next, we show

p ∈ C. (4.2)

To prove (4.2), we show that p can be interpolated at every finite subset B of

N0 by a function in C. Let a := max(B). Then ga+1|B = p|B . This completes

the proof of (4.2). Now we show

C
[1]

= C [1] ∪ {p}. (4.3)

We only have to establish ⊆. It is helpful to write down the list of values of

some of the functions in M ∪ {p}.

c3 333333 . . .

c2 222222 . . .

c1 111111 . . .

c0 000000 . . .

p 010101 . . .

id 012345 . . .

g3 010345 . . .

g4 010145 . . .

g5 010105 . . .

Let f ∈ C
[1]

with f �= p, and let k ∈ N0 be minimal with f(k) �= p(k). Let

g ∈ C [1] be such that g|{0,...,k} = f |{0,...,k}. We distinguish three cases.

Case k = 0: Then g(0) �= 0, and therefore g = cg(0). If f = cg(0), we have

f ∈ C. If f �= cg(0), we let y be minimal with f(y) �= g(0). We interpolate

f at {0, y} by a function h ∈ C. This function h is not constant and satisfies

h(0) �= 0. Such a function does not exist in C, therefore the case f �= cg(0)
cannot occur.

Case k = 1: Then g(1) �= 1. By examining the functions in M , we see

that g = c0. If f = c0, we have f ∈ C. If f �= c0, we let y be minimal with

f(y) �= 0. Interpolating f at {0, 1, y} by h ∈ C, we obtain a function h ∈ C

with h(0) = h(1) = 0 and h(y) �= 0. Such a function does not exist in C; this

contradiction shows f = c0 and therefore f ∈ C.

Case k ≥ 2: Then g = gk. If f = gk, then f ∈ C. If f �= gk, we choose

y minimal with f(y) �= gk(y) and interpolate f at {0, 1, . . . , k} ∪ {y} by a

function h ∈ C. Again, such a function is not available in C, and therefore

f = gk ∈ C.

Thus, every f ∈ C
[1]

with f �= p is an element of C. By its definition, C

contains all constant unary operations in N0. Since C preserves the relation
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For countable sets A, we obtain the following result.
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ρ = {(a, b, c, d) ∈ A4 | a = b or c = d}, C also preserves ρ. Therefore, by [10,

Lemma 1.3.1(a)], every function in C is essentially unary and hence of the form

l(x1, . . . , xn) = f(xj) with n ∈ N, j ∈ {1, . . . , n}, and f ∈ C
[1]

= M ∪ {p}.
This implies that C is countable. The function p witnesses C �= C. �

5. Constantive clones

In constantive clones, a finite base of equality for the functions of arity m

yields finite bases of equality for all other arities. This will allow us to refine

Theorem 1.3.

Lemma 5.1. Let C be a clone on the set A, let m ∈ N, and let D ⊆ Am be

a base of equality for C [m]. Then the projection of D to the first component

π1(D) is a base of equality for C [1].

Proof. Let f, g ∈ C [1] with f |π1(D) = g|π1(D). Let f1(x1, . . . , xm) := f(x1)

and g1(x1, . . . , xm) := g(x1). Then for every (d1, . . . , dm) ∈ D, we have

f1(d1, . . . , dm) = f(d1) = g(d1) = g1(d1, . . . , dm), and therefore f1 = g1,

which implies f = g. �

Lemma 5.2. Let A be a set, let C be a constantive clone on A, and let D ⊆ A

be a base of equality for C [1]. Then for every n ∈ N, Dn is a base of equality

for C [n].

Proof. We proceed by induction on n. If n = 1, D1 = D is a base of equality

of C [1] by assumption. For the induction step, let n ≥ 2, and suppose that

Dn−1 is a base of equality for C [n−1]. Let f, g ∈ C [n] and assume f |Dn = g|Dn .

We first show

f |A×Dn−1 = g|A×Dn−1 . (5.1)

Let (a, d2, . . . , dn) ∈ A × Dn−1, and define f1(x) := f(x, d2, . . . , dn) and

g1(x) := g(x, d2, . . . , dn) for x ∈ A. Then f1, g1 ∈ C [1] and f1|D = g1|D.

Hence, f1 = g1, and thus f(a, d2, . . . , dn) = f1(a) = g1(a) = g(a, d2, . . . , dn),

which completes the proof of (5.1).

We prove f = g. Let (b1, . . . , bn) ∈ An; for all x2, . . . , xn ∈ A, de-

fine f2(x2, . . . , xn) := f(b1, x2, . . . , xn) and g2(x2, . . . , xn) := g(b1, x2, . . . , xn).

By (5.1), f2|Dn−1 = g2|Dn−1 , and thus by the induction hypothesis, f2 = g2.

Thus, f(b1, . . . , bn) = g(b1, . . . , bn). �

Hence, for constantive clones we can give the following slight refinement of

Theorem 1.3.

Theorem 5.3. Let A be a set with |A| = ℵ0, let C be a constantive clone on A

with quasigroup operations, and let m ∈ N. Then the following are equivalent:

(1) |(Pol InvC)[1]| ≤ ℵ0.

(2) C [1] has a finite base of equality.

(3) C [m] has a finite base of equality.
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(4) |C| ≤ ℵ0 and ∃d ∈ N ∀n ∈ N : C [n] = (Pol Inv[d
n+1] C)[n].

(5) |C| ≤ ℵ0 and ∀n ∈ N ∃k ∈ N : C [n] = (Pol Inv[k] C)[n].

(6) |C| ≤ ℵ0 and C = Pol InvC.

Proof. (1)⇒(2): This is Lemma 2.1.

(2)⇒(3): This is Lemma 5.2.

(3)⇒(2): This is Lemma 5.1.

(2)⇒(4): Let D be a finite base of equality for C [1]. Let n ∈ N, and

set k := |D|n + 1. By Lemma 5.2, Dn is a base of equality for C [n], and

Lemma 2.2 yields C [n] = (Pol Inv[k] C)[n]. Since Dn is a finite base of equality,

the mapping f �→ f |Dn is an injective mapping from C [n] to ADn

, making C [n]

countable. Since C [n] is countable for every n ∈ N, we obtain |C| ≤ ℵ0.

(4)⇒(5): Set k := dn + 1.

(5)⇒(6): Let n ∈ N, and let k be produced by (5). Then we have that

(Pol InvC)[n] ⊆ (Pol Inv[k] C)[n] = C [n].

(6)⇒(1): We have (Pol InvC)[1] ⊆ Pol InvC ⊆ C. �
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6 E. Aichinger Algebra univers.

ρ = {(a, b, c, d) ∈ A4 | a = b or c = d}, C also preserves ρ. Therefore, by [10,

Lemma 1.3.1(a)], every function in C is essentially unary and hence of the form

l(x1, . . . , xn) = f(xj) with n ∈ N, j ∈ {1, . . . , n}, and f ∈ C
[1]

= M ∪ {p}.
This implies that C is countable. The function p witnesses C �= C. �

5. Constantive clones

In constantive clones, a finite base of equality for the functions of arity m

yields finite bases of equality for all other arities. This will allow us to refine

Theorem 1.3.

Lemma 5.1. Let C be a clone on the set A, let m ∈ N, and let D ⊆ Am be

a base of equality for C [m]. Then the projection of D to the first component

π1(D) is a base of equality for C [1].

Proof. Let f, g ∈ C [1] with f |π1(D) = g|π1(D). Let f1(x1, . . . , xm) := f(x1)

and g1(x1, . . . , xm) := g(x1). Then for every (d1, . . . , dm) ∈ D, we have

f1(d1, . . . , dm) = f(d1) = g(d1) = g1(d1, . . . , dm), and therefore f1 = g1,

which implies f = g. �

Lemma 5.2. Let A be a set, let C be a constantive clone on A, and let D ⊆ A

be a base of equality for C [1]. Then for every n ∈ N, Dn is a base of equality

for C [n].

Proof. We proceed by induction on n. If n = 1, D1 = D is a base of equality

of C [1] by assumption. For the induction step, let n ≥ 2, and suppose that

Dn−1 is a base of equality for C [n−1]. Let f, g ∈ C [n] and assume f |Dn = g|Dn .

We first show

f |A×Dn−1 = g|A×Dn−1 . (5.1)

Let (a, d2, . . . , dn) ∈ A × Dn−1, and define f1(x) := f(x, d2, . . . , dn) and

g1(x) := g(x, d2, . . . , dn) for x ∈ A. Then f1, g1 ∈ C [1] and f1|D = g1|D.

Hence, f1 = g1, and thus f(a, d2, . . . , dn) = f1(a) = g1(a) = g(a, d2, . . . , dn),

which completes the proof of (5.1).

We prove f = g. Let (b1, . . . , bn) ∈ An; for all x2, . . . , xn ∈ A, de-

fine f2(x2, . . . , xn) := f(b1, x2, . . . , xn) and g2(x2, . . . , xn) := g(b1, x2, . . . , xn).

By (5.1), f2|Dn−1 = g2|Dn−1 , and thus by the induction hypothesis, f2 = g2.

Thus, f(b1, . . . , bn) = g(b1, . . . , bn). �

Hence, for constantive clones we can give the following slight refinement of

Theorem 1.3.

Theorem 5.3. Let A be a set with |A| = ℵ0, let C be a constantive clone on A

with quasigroup operations, and let m ∈ N. Then the following are equivalent:

(1) |(Pol InvC)[1]| ≤ ℵ0.

(2) C [1] has a finite base of equality.

(3) C [m] has a finite base of equality.
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