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Categorical equivalence and the Ramsey property for
finite powers of a primal algebra
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Abstract. In this paper, we investigate the best known and most important example
of a categorical equivalence in algebra, that between the variety of boolean algebras
and any variety generated by a single primal algebra. We consider this equivalence
in the context of Kechris-Pestov-Todorčević correspondence, a surprising correspon-
dence between model theory, combinatorics and topological dynamics. We show that
relevant combinatorial properties (such as the amalgamation property, Ramsey prop-
erty and ordering property) carry over from a category to an equivalent category. We
then use these results to show that the category whose objects are isomorphic copies
of finite powers of a primal algebra A together with a particular linear ordering <,
and whose morphisms are embeddings, is a Ramsey age (and hence a Fräıssé age). By
the Kechris-Pestov-Todorčević correspondence, we then infer that the automorphism
group of its Fräıssé limit is extremely amenable. This correspondence also enables
us to compute the universal minimal flow of the Fräıssé limit of the class Vfin (A)
whose objects are isomorphic copies of finite powers of a primal algebra A and whose
morphisms are embeddings.

1. Introduction

In this paper, we investigate the best known and most important example

of a categorical equivalence in algebra, that between the variety of boolean

algebras and any variety generated by a single primal algebra [7, 8] (which is

a finite algebra where all operations are term operations) but in the context

of the Kechris-Pestov-Todorčević correspondence, a surprising correspondence

between model theory, combinatorics and topological dynamics published in

2005 in [9]. For a locally finite countable ultrahomogeneous structure F , the

paper [9] establishes a correspondence between combinatorial properties of

Age(F), the class of finite substructures of F , and dynamical properties of

Aut(F). The main result of [9] states that if F is a locally finite countable

ultrahomogeneous structure, then Aut(F) is extremely amenable if and only if

Age(F) consists of rigid objects and has the Ramsey property. In case Aut(F)

is not extremely amenable, [9] offers a technique to compute its universal
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minimal flow in case the structure F can be expanded by a linear order < in

a particular way.

Our main result claims that the category OVfin(A, <), whose objects are

(isomorphic copies of) finite powers of a primal algebra A together with a par-

ticular linear ordering< and whose morphisms are embeddings, is categorically

equivalent to the category of naturally ordered finite boolean algebras (defined

later in the paper). As a consequence, we immediately get that OVfin(A, <)

is a Ramsey age (and hence a Fräıssé age), whence follows, by the Kechris-

Pestov-Todorčević correspondence, that the automorphism group of its Fräıssé

limit is extremely amenable. The Kechris-Pestov-Todorčević correspondence

also enables us to compute the universal minimal flow of the Fräıssé limit of

the class Vfin(A) whose objects are (isomorphic copies of) finite powers of

a primal algebra A and whose morphisms are embeddings. Note that this

Fräıssé limit belongs to V(A), the variety generated by A.

As our main tools come from category theory, we recall in Section 2 basic

facts of category theory, structural Ramsey theory, Fräıssé theory and the

Kechris-Pestov-Todorčević correspondence. We present the basic notions of

structural Ramsey theory in the language of category theory as it is evident

that the Ramsey property for a class of objects depends not only on the choice

of objects, but also on the choice of morphisms involved (see [3, 11, 13, 15, 19,

20, 10]).

In Section 3, we show that relevant combinatorial properties carry over

from a category to an equivalent category. More specifically, we prove that

the Ramsey property is preserved under categorical equivalence (we consider

two incarnations of the Ramsey property and prove that both are genuine

categorical properties, but this line of thought will not be pursued further in

this paper). As a corollary, we conclude that categorical equivalence preserves

the property of being a Ramsey age. Finally, we show that the ordering prop-

erty is preserved under a particular form of equivalence consisting of a pair

of categorical equivalences: one for the category of base objects and one for

the category of order expansions. These are the three ingredients that are

required to infer the combinatorial and dynamical properties of the class of

finite powers of a primal algebra and the automorphism group of its Fräıssé

limit.

In Section 4, we apply the tools developed in Section 3 to the categorical

equivalence between the variety of boolean algebras and any variety generated

by a single primal algebra to obtain the main results of the paper, as discussed

above.

We close the paper with two appendices. The first one (Section 5) is a spin-

off of Section 3 and investigates the invariance of the Ramsey property under

adjunctions. We show that right adjoints preserve the Ramsey property, while

left adjoints preserve the dual Ramsey property.

The second appendix (Section 6) contains a discussion of Fräıssé limits with

identical automorphism group. The principal motivation for this section is the
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following result from [9] which states that the Ramsey property is invariant

under certain model-theoretic constructions and which is a special case of our

results in Section 3:

Theorem 1.1. [9, Proposition 9.1 (i)] Let K0 be a Fräıssé class in a signature

L0, let L = L0 ∪ {<} and let K, K′ be reasonable Fräıssé order classes in L

that are expansions of K0. Assume that K and K′ are simply bi-definable.

Then K satisfies the Ramsey property if and only if K′ satisfies the Ramsey

property.

2. Preliminaries

2.1. Categories and structures. In order to specify a category C, one

has to specify a class of objects Ob(C), a set of morphisms homC(A,B) for

all A,B ∈ Ob(C), an identity morphism idA for all A ∈ Ob(C), and the

composition of morphisms · so that

• (f · g) · h = f · (g · h), and
• idB · f = f · idA for all f ∈ homC(A,B).

Let Aut(A) denote the set of all invertible morphisms A → A. Recall that an

object A ∈ Ob(C) is rigid if Aut(A) = {idA}.
For A,B ∈ Ob(C) we write A → B to denote that homC(A,B) �= ∅. Note

that morphisms in homC(A,B) are not necessarily structure-preserving map-

pings from A to B, and that the composition · in a category is not necessarily

composition of mappings. We shall see examples later. Instead of homC(A,B)
we write hom(A,B) whenever C is obvious from the context.

In this paper, we are mostly interested in categories of structures. A struc-

ture A = (A,Δ) is a set A together with a set Δ of functions and relations

on A, each having some finite arity. An embedding f : A → B is an injection

f : A → B which respects the functions in Δ, and respects and reflects the

relations in Δ. Surjective embeddings are isomorphisms. A structure A is a

substructure of a structure B (A � B) if the identity map is an embedding of A
into B. Here is some further notation and terminology. A structure A = (A,Δ)

is finite if A is a finite set. The underlying set of a structure A,A1,A∗, . . .
will always be denoted by its roman letter A,A1, A

∗, . . . , respectively. We say

that a structure A = (A,Δ) is ordered if there is a binary relation < in Δ

which linearly orders A. Given a structure A = (A,Δ) and a linear ordering

< on A, we write A< for the structure (A,Δ, <). Moreover, we shall always

write A to denote the unordered reduct of A<. Linear orders denoted by <,

� etc. are irreflexive (strict linear orders), whereas by �, � etc. we denote the

corresponding reflexive linear orders.

2.2. Adjunction, equivalence and isomorphism of categories. A pair

of functors F : C � D :G is an adjunction provided there is a family of iso-

morphisms ΦC,D : homD(F (C),D) ∼= homC(C, G(D)) natural in both C and D.
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We say that F is left adjoint to G and G is right adjoint to F . Every adjunc-

tion F : C � D : G gives rise to two natural transformations η : IDC → GF

and ε : FG → IDD referred to as unit and counit, respectively, satisfying

the so-called unit-counit identities εF · Fη = idF and Gε · ηG = idG. If

f : F (C) → D and g : C → G(D) are morphisms in D and C, respectively, then

Φ(f) = G(f) · ηC and Φ−1(g) = εD · F (g).

Categories C and D are isomorphic if there exist functors E : C → D

and H : D → C such that H is the inverse of E. A functor E : C → D is

isomorphism-dense if for every D ∈ Ob(D) there is a C ∈ Ob(C) such that

E(C) ∼= D.

Categories C and D are equivalent if there exist functors E : C → D and

H : D → C, and natural isomorphisms η : IDC → HE and ε : IDD → EH. We

say that H is a pseudoinverse of E and vice versa. It is a well-known fact that

a functor E : C → D has a pseudoinverse if and only if it is full, faithful and

isomorphism-dense. If E has a pseudoinverse then C and D are equivalent.

Clearly, categorical equivalence is a particular form of adjunction.

A skeleton of a category is a full, isomorphism-dense subcategory in which

no two distinct objects are isomorphic. It is easy to see that (assuming (AC))

every category has a skeleton. It is also a well-known fact that two categories

are equivalent if and only if they have isomorphic skeletons. Categories C and

D are dually equivalent if C and Dop are equivalent.

2.3. The Ramsey property for categories. We say S = M1∪· · ·∪Mk is

a k-coloring of S if Mi ∩Mj = ∅ whenever i �= j. Equivalently, a k-coloring

of S is a mapping χ : S → {1, 2, . . . , k}. We shall use both points of view as

we find appropriate.

Given a category C define ∼A on hom(A,B) by: for f, f ′ ∈ hom(A,B) we
let f ∼A f ′ if f ′ = f · α for some α ∈ Aut(A). Then let(

B
A

)
= hom(A,B)/∼A.

In case C is a category whose objects are structures and morphisms are

embeddings,
(B
A
)
corresponds to all the subobjects of B isomorphic to A (see

[11, 12]). For an integer k � 2 and A,B, C ∈ Ob(C) we write C −→ (B)Ak to

denote that A → B → C and for every k-coloring
(C
A
)
= M1 ∪ · · · ∪Mk, there

is an i ∈ {1, . . . , k} and a morphism w : B → C such that w ·
(B
A
)
⊆ Mi. (Note

that w · (f/∼A) = (w · f)/∼A for f/∼A ∈
(B
A
)
.)

We write C hom−→ (B)Ak to denote that A → B → C in C and for every k-

coloring hom(A, C) = M1∪· · ·∪Mk, there is an i ∈ {1, . . . , k} and a morphism

w : B → C such that w · hom(A,B) ⊆ Mi.

A category C has the Ramsey property for objects if for every integer k � 2

and all A,B ∈ Ob(C) such that A → B there is a C ∈ Ob(C) such that

C −→ (B)Ak . A category C has the Ramsey property for morphisms if for every
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integer k � 2 and all A,B ∈ Ob(C) such that A → B there is a C ∈ Ob(C)

such that C hom−→ (B)Ak .
In a category of finite ordered structures, all the relations ∼A are trivial

and the two Ramsey properties coincide. Therefore, we say that a category

of finite ordered structures and embeddings has the Ramsey property if it has

the Ramsey property for morphisms.

Example 2.1. The category FSI of finite sets and injective maps has the

Ramsey property for objects. This is just a reformulation of the Finite Ramsey

Theorem [16]:

For all positive integers k, a, m there is a positive integer n such that

for every n-element set C and every k-coloring of the set
(
C
a

)
of all a-

element subsets of C there is an m-element subset B of C such that
(
B
a

)
is monochromatic.

A category C has the dual Ramsey property for objects (morphisms) if Cop

has the Ramsey property for objects (morphisms).

Example 2.2. The category FSS of finite sets and surjective maps has the

dual Ramsey property for objects. This is just a reformulation of the Finite

Dual Ramsey Theorem [4]:

For all positive integers k, a, m there is a positive integer n such that for

every n-element set C and every k-coloring of the set
[
C
a

]
of all partitions

of C with exactly a blocks there is a partition β of C with exactly m

blocks such that the set of all partitions from
[
C
a

]
which are coarser than

β is monochromatic.

We can show that the Ramsey property for objects and the Ramsey property

for morphisms are closely related for categories where all the morphisms are

monic (that is, left cancellable; compare with [20]). The assumption of rigidity

below was pointed out in [11].

Proposition 2.3. Let C be a category where morphisms are monic. If C

has the Ramsey property for morphisms, then all the objects in C are rigid.

Consequently, a category C has the Ramsey property for morphisms if and only

if all the objects in C are rigid and C has the Ramsey property for objects.

Proof. Assume that A ∈ Ob(C) is not rigid and let α ∈ Aut(A) be an auto-

morphism of A such that α �= idA. In order to show that C does not have the

Ramsey property for morphisms, take any C ∈ Ob(C) and let us show that

C �−→ (A)A2 .
Let 〈α〉 be the cyclic group generated by α. Then |〈α〉| � 2 because α �= idA.

Let 〈α〉 act on hom(A, C) by hα = h · α. The orbits of this action are of the

form h · 〈α〉, where h ∈ hom(A, C). It follows that |h · 〈α〉| = |〈α〉| � 2 because

h is monic.

Let χ : hom(A, C) → 2 be any coloring of hom(A, C) such that χ assumes

both colors on each orbit of the action of 〈α〉 on hom(A, C). Then for every
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w : A → C we have that |χ(w · homC(A,A))| � |χ(w · 〈α〉)| = 2 because

w · 〈α〉 ⊆ w · hom(A,A) and χ assumes both colors on each orbit. �

The following are easy lemmas:

Lemma 2.4. (a) If C hom−→ (B)Ak and B1 → B, then C hom−→ (B1)
A
k .

(b) If C −→ (B)Ak and B1 → B, then C −→ (B1)
A
k .

(c) If C hom−→ (B)Ak and C → D, then D hom−→ (B)Ak .
(d) If C −→ (B)Ak and C → D, then D −→ (B)Ak .

Lemma 2.5. Let C be a category whose morphisms are monic. If C has

the Ramsey property for morphisms (objects) and D is a full subcategory of

C such that Ob(D) is cofinal in Ob(C), then D has the Ramsey property for

morphisms (objects).

2.4. Fräıssé theory. For a countable structure M, the class of all finitely

generated substructures of M is is denoted by Age(M) and is called the age

of M. A class K of finite structures is an age if there is countable structure

M such that K = Age(M). It is a well-known result that a class K of finite

structures is an age if and only if the following hold:

• K is an abstract class (that is, it is closed for isomorphisms);

• there are at most countably many pairwise nonisomorphic structures in

K,

• K has the hereditary property (HP): if A ∈ K and B ↪→ A then B ∈ K;

and

• K has the joint embedding property (JEP): for all A,B ∈ K there is a

C ∈ K such that A ↪→ C and B ↪→ C.
An age K is a Fräıssé age (= Fräıssé class = amalgamation class) if K sat-

isfies the amalgamation property (AP): for all A,B, C ∈ K and embeddings

f : A ↪→ B and g : A ↪→ C, there exist D ∈ K and embeddings f ′ : B ↪→ D and

g′ : C ↪→ D such that f ′ ◦ f = g′ ◦ g.
A countable structure M is ultrahomogeneous if partial isomorphisms be-

tween finite substructures lift to an automorphism of the entire structure. In

other words, for any tuple a from M, the orbit of a under Aut(M) is defined

by the quantifier-free type of a. An Lω1,ω formula is a formula built out of

basic relations, countable conjunctions/disjunctions and negations (called a

simple formula in [9].) In general, the orbit of a finite tuple is defined by a

quantifier-free Lω1,ω-formula, using Scott sentences.

For every Fräıssé age K, there is a unique (up to isomorphism) countable

ultrahomogeneous structure A such that K = Age(A). We say that A is the

Fräıssé limit of K, denoted FlimK. For further model theoretic background,

see [6].

If K is a Ramsey class of finite ordered structures which is closed under

isomorphisms and taking substructures, and has the joint embedding property,
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then K is a Fräıssé age [11]. In that case, we say that K is a Ramsey age. So,

every Ramsey age is a Fräıssé age.

2.5. The Kechris-Pestov-Todorčević correspondence. Let G be a topo-

logical group. Its action on X is a mapping · : G×X → X such that 1 · x = x

and g · (f · x) = (gf) · x. We also say that G acts on X. A G-flow is a

continuous action of a topological group G on a topological space X. A sub-

flow of a G-flow · : G × X → X is a continuous map ∗ : G × Y → Y where

Y ⊆ X is a closed subspace of X and g ∗ y = g · y for all g ∈ G and y ∈ Y . A

G-flow G ×X → X is minimal if it has no proper closed subflows. A G-flow

u : G×X → X is universal if every compact minimal G-flow G×Z → Z is a

factor of u. It is a well-known fact that for a compact Hausdorff space X there

is, up to isomorphism of G-flows, a unique universal minimal G-flow, usually

denoted by G � M(G).

A topological group G is extremely amenable if every G-flow · : G×X → X

on a compact Hausdorff space X has a fixed point, that is, there is an x0 ∈ X

such that g ·x0 = x0 for all g ∈ G. Since Sym(A) carries naturally the topology

of pointwise convergence, permutation groups can be thought of as topolog-

ical groups. For example, it was shown in [14] that Aut(Q, <) is extremely

amenable while Sym(A), the group of all permutations on A, is not, for a

countably infinite set A. In [9], the authors show the following.

Theorem 2.6. [9, Theorem 4.7] Let G be a closed subgroup of Sym(F ) for a

countable set F . Then G is extremely amenable if and only if G = Aut(F) for

a countable homogeneous structure F whose age has the Ramsey property and

consists of rigid elements.

Let LO(A) be the set of all linear orders on A and let G be a closed subgroup

of Sym(A). The set LO(A) with the standard product topology is a compact

Hausdorff space and the action of G on LO(A) given by x <g y if and only if

g−1(x) < g−1(y) is continuous. This action is usually referred to as the logical

action of G on LO(A).

Let C be a category of finite structures and embeddings, and C∗ a category

of finite ordered structures and embeddings. We say that C∗ is an order

expansion of C (cf. [9]) if

• for every structure A< = (A,Δ, <) ∈ Ob(C∗), we have that A = (A,Δ) ∈
Ob(C), and

• the forgetful functor U : C∗ → C, which acts on objects by U(A,Δ, <) =

(A,Δ) and on morphisms by U(f) = f , is surjective on objects.

An order expansion C∗ of C is reasonable (cf. [9]) if for all A,B ∈ Ob(C),

every embedding f : A ↪→ B and every A< ∈ Ob(C∗) such that U(A<) = A,

there is a B� ∈ Ob(C∗) such that U(B�) = B and f is an embedding of A<

into B�. It is easy to show that if C∗ is a reasonable expansion of C and C∗

has (HP), resp. (JEP) or (AP), then C has (HP), resp. (JEP) or (AP) (cf. [9]);

consequently, if Ob(C∗) is a Fräıssé age, then so is Ob(C).
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Let C∗ be an order expansion of C. We say that C∗ has the ordering

property over C if the following holds: for every A ∈ Ob(C), there is a B ∈
Ob(C) such that A< ↪→ B� for all A<,B� ∈ Ob(C∗) such that U(A<) = A
and U(B�) = B. We say that B is a witness of the ordering property for A.

Theorem 2.7. [9, Theorem 10.8] Let K∗ be a Fräıssé age which is a reasonable

order expansion of a Fräıssé age K. Let F be the Fräıssé limit of K, let F� be

the Fräıssé limit of K∗, let G = Aut(F) and X∗ = G ·� (in the logical action

of G on LO(F )). Then the logical action of G on X∗ is the universal minimal

flow of G if and only if the class K∗ has the Ramsey property, as well as the

ordering property with respect to K.

3. The Ramsey property, Fräıssé classes and order expansions under

categorical equivalence

In this section, we set the stage for the results in Section 4. First, we

prove that the Ramsey property for objects as well as the Ramsey property for

morphisms are preserved under categorical equivalence (proving thus that both

are genuine categorical properties, but this line of thought will not be pursued

further in this paper). As a corollary, we conclude that categorical equivalence

preserves the property of being a Ramsey age. Finally, we show that the

ordering property is preserved under a particular form of equivalence consisting

of a pair of categorical equivalences: one for the category of base objects and

one for the category of order expansions. These are the three ingredients that

are required to infer the combinatorial and dynamical properties of the class

of finite powers of a primal algebra and the automorphism group of its Fräıssé

limit.

Theorem 3.1. Let C and D be equivalent categories. Then C has the Ramsey

property for objects (morphisms) if and only if D does.

In particular, if C and D are dually equivalent and one of them has the Ram-

sey property for morphisms (objects), the other has the dual Ramsey property

for morphisms (objects).

Proof. Let us prove the statement in case of objects since the proof in case

of morphisms is analogous. Let E : C → D and H : D → C be functors

that constitute the equivalence between C and D, and let η : IDC → HE and

ε : IDD → EH be the accompanying natural isomorphisms. Assume that D

has the Ramsey property, and let us show that C has the Ramsey property

(the other direction is analogous). Take any positive integer k and let A → B
in C. Then E(A) → E(B) in D, so there is a C ∈ Ob(D) such that

C −→ (E(B))E(A)
k . (3.1)
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Let us show that H(C) −→ (B)Ak in C. Note first that B → H(C) because

E(B) → C, whence B ∼= HE(B) → H(C). Let(
H(C)
A

)
= M1 ∪ · · · ∪Mk

be an arbitrary k-coloring. Let ME
i = {E(f)/∼E(A) : f/∼A ∈ Mi}. Then it

is easy to show that (
EH(C)
E(A)

)
= ME

1 ∪ · · · ∪ME
k

is a k-coloring. Having in mind that εC : C → EH(C) is an isomorphism, we

have that (
C

E(A)

)
= ε−1

C · ME
1 ∪ · · · ∪ ε−1

C · ME
k

is also a k-coloring. From (3.1), we know that there is a w : E(B) → C and a

color i such that

w ·
(
E(B)
E(A)

)
⊆ ε−1

C · ME
i . (3.2)

Let w∗ = H(w) · ηB : B → H(C) and let us show that

w∗ ·
(
B
A

)
⊆ Mi. (3.3)

Take any u/∼A ∈
(B
A
)
. Then

w∗ · (u/∼A) = (w∗ · u)/∼A = (H(w) · ηB · u)/∼A
= (H(w) ·HE(u) · ηA)/∼A = H(w) · (HE(u)/∼HE(A)) · ηA

because η : IDC → HE is natural. On the other hand, (3.2) implies

H(w) ·
(
HE(B)
HE(A)

)
⊆ H(ε−1

C ) · MHE
i ,

where

MHE
i = {HE(f)/∼HE(A) : E(f)/∼E(A) ∈ ME

i }
= {HE(f)/∼HE(A) : f/∼A ∈ Mi}.

So, there is an m/∼A ∈ Mi such that

w∗·(u/∼A) = H(w) · (HE(u)/∼HE(A)) · ηA
= H(ε−1

C ) · (HE(m)/∼HE(A)) · ηA = (H(ε−1
C ) ·HE(m) · ηA)/∼A.

In order to complete the proof of (3.3), it suffices to note that H(ε−1
C )·HE(m)·

ηA = m because every dual equivalence is a special dual adjunction. Therefore,

w∗ · (u/∼A) = m/∼A ∈ Mi. �

Example 3.2. The category FSI of finite sets and injective maps is dually

equivalent to the category FBAS of finite boolean algebras and surjective

homomorphisms (Stone duality). Since FSI has the Ramsey property for

objects (Example 2.1), it follows that the category FBAS has the dual Ramsey

property for objects.



168 D. Mašulović and L. Scow Algebra Univers.

Let us make this statement explicit. For A,B ∈ Ob(FBAS), let Surj(B,A)

denote the set of all surjective homomorphisms B � A. Define ≡A on

Surj(B,A) as follows: for f, f ′ ∈ Surj(B,A), we let f ≡A f ′ if f ′ = α ◦ f

for some α ∈ Aut(A).

As in the Example 2.2, the fact that FBASop has the Ramsey property for

objects takes the following form: for every integer k � 2 and all finite boolean

algebras A and B such that Surj(B,A) �= ∅, there is a finite boolean algebra

C such that for every k-coloring

Surj(C,A)/≡A = M1 ∪ · · · ∪Mk,

there is an i ∈ {1, . . . , k} and a surjective homomorphism w ∈ Surj(C,B)
satisfying (Surj(B,A)/≡A) ◦ w ⊆ Mi. Since Surj(B,A)/≡A corresponds to

congruences Φ of B such that B/Φ ∼= A, the above statement can be reformu-

lated as follows:

Let Con(B) denote the set of congruences of an algebra B, and for alge-

bras A and B of the same type let

Con(B,A) = {Φ ∈ Con(B) : B/Φ ∼= A}.

For every finite boolean algebra B, every Φ ∈ Con(B), and every k � 2,

there is a finite boolean algebra C such that for every k-coloring of

Con(C,B/Φ), there is a congruence Ψ ∈ Con(C,B) such that the set of all

the congruences from Con(C,B/Φ) which contain Ψ is monochromatic.

Example 3.3. By Hu’s theorem [7, 8], every variety generated by a primal

algebra is categorically equivalent to the variety of boolean algebras. In par-

ticular, the category FBA whose objects are finite boolean algebras and mor-

phisms are embeddings is equivalent to the category Vfin(A) whose objects

are finite algebras in the variety V (A) generated by a primal algebra A and

morphisms are embeddings. Therefore, Theorem 3.1 and Example 3.2 imply

that the category Vfin(A) has the Ramsey property for objects for every pri-

mal algebra A. In other words, we have the following Ramsey theorem for

finite algebras in the variety generated by a primal algebra:

For every primal algebra A, for all S, T ∈ Vfin(A) such that S ↪→ T and

every k � 2, there is a U ∈ Vfin(A) such that U −→ (T )Sk .

We treat this topic in more detail in Section 4.

Corollary 3.4. Let C and D be equivalent categories whose objects are struc-

tures and embeddings are morphisms.

(a) If one of the two categories has (AP), then so does the other.

(b) If one of the two categories has (JEP), then so does the other.

(c) If C is a Ramsey age and D has (HP), then D is also a Ramsey age.

Proof. (a): Let E : C → D and H : D → C be functors that constitute the

equivalence between C and D, and let η : IDC → HE and ε : IDD → EH be

the accompanying natural isomorphisms. Assume that D has (AP), and let
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f : A ↪→ B and g : A ↪→ C be two embeddings inC. Then E(f) : E(A) ↪→ E(B)
and E(g) : E(A) ↪→ E(C) are embeddings in D, so there is a D ∈ Ob(D) and

embeddings u : E(B) ↪→ D and v : E(C) ↪→ D such that u ◦ E(f) = v ◦ E(g).

Then the diagram

H(D)
��

H(u)

� �

HE(C)
� �

H(v)
��

��
HE(g)

� � HE(A) � 	

HE(f)
�� HE(B)

C

ηC

��

�� g
� � A

ηA

��

� 	 f �� B

ηB

��

commutes, because H is a functor and η is natural.

(b): This is similar to (a).

(c): This follows from (a), (b), and Theorem 3.1. �

Unlike (AP) and (JEP), which describe properties of a class of structures

with no reference to other classes of structures, (HP) describes a property of

a class of structures in relation to another, ambient class of structures. This

ambient class of structures is usually implicit in the exposition. For example,

the statement that the class Kn of all finite Kn-free graphs has (HP), where

n � 3 is fixed, implicitly assumes that Kn is considered as a subclass of the

class G of all finite graphs. Although such a requirement can be expressed

in terms of category theory, we refrained from doing so in order to keep the

exposition concise. For a possible treatment of Fräıssé theory without the

(HP), requirement we refer the reader to [20].

Theorem 3.5. Let C∗ be a reasonable order expansion of C with the forgetful

functor U : C∗ → C : A< �→ A, where f �→ f , and let D∗ be a reasonable

order expansion of D with the forgetful functor V : D∗ → D : A< �→ A, where

f �→ f . Assume that E∗ : C∗ � D∗ : H∗ is a categorical equivalence of C∗ and

D∗, that E : C � D : H is a categorical equivalence of C and D, and that the

following diagrams commute:

C∗ E∗
��

U

��

D∗

V

��

C∗

U

��

D∗

V

��

H∗
��

C
E

�� D C D
H

��

Then C∗ has the ordering property over C if and only if D∗ has the ordering

property over D.

Proof. Assume that C∗ has the ordering property over C and let us show

that D∗ has the ordering property over D. Take any A ∈ Ob(D). Then



170 D. Mašulović and L. Scow Algebra Univers.

H(A) ∈ Ob(C), so by the ordering property, there is a B ∈ Ob(C) which is a

witness of the ordering property for H(A). Let us show that E(B) ∈ Ob(D)

is a witness of the ordering property for A. Take any A<,B� ∈ Ob(D∗) such
that V (A<) = A and V (B�) = E(B) and let us show that A< ↪→ B�.

Let us first show that H∗(A<) ↪→ H∗(B�). Note first that UH∗(A<) =

HV (A<) = H(A) and that UH∗(B�) = HV (B�) = HE(B) ∼= B. Since

C∗ is a reasonable order expansion of C, there is a B≺ ∈ Ob(C∗) such that

B≺ ∼= H∗(B�) and U(B≺) = B. Since C∗ has the ordering property over C

and B is a witness of the ordering property for H(A), we have that H∗(A<) ↪→
B≺ ∼= H∗(B�). Therefore, A<

∼= E∗H∗(A<) ↪→ E∗H∗(B�) ∼= B�. �

4. Primal algebras

Let B be a finite boolean algebra and let A = {a1, a2, . . . , an} be the set of

atoms of B. Every linear order < on A, say ai1 < ai2 < · · · < ain , induces a

linear order on B as follows. Take x, y ∈ B; let x = δ1 ·ai1 ∨δ2 ·ai2 ∨· · ·∨δn ·ain
and y = ε1 · ai1 ∨ ε2 · ai2 ∨ · · · ∨ εn · ain be the representations of x and y,

respectively, where εs, δs ∈ {0, 1} and with the convention that 0 · b = 0 while

1·b = b for b ∈ B. We then say that x � y if there is an s such that δs < εs, and

δt = εt for all t > s. In other words, � is the antilexicographic ordering of the

elements of B with respect to <. The choice of the antilexicographic ordering

induced by < is motivated by the fact that the antilexicographic ordering of

a boolean algebra is a linear ordering on the algebra that extends the initial

ordering on the atoms (that is, ai < aj implies ai � aj). A linear ordering � of

a finite boolean algebra B is natural [9] if there is a linear ordering < on atoms

of the algebra such that � is the antilexicographic ordering of the elements

of B with respect to < . Let OFBA denote the category whose objects are

finite boolean algebras together with a natural linear order and morphisms are

embeddings.

This notion easily generalizes to arbitrary powers of finite algebras. Let A
be a finite algebra and let < be an arbitrary linear order on A. For every

n ∈ N this linear order induces the antilexicographic order � on An as follows:

(x1, . . . , xn) � (y1, . . . , yn) if there is an s such that xi = yi for i > s and

xs < ys. For every permutation π of {1, 2, . . . , n} we also have a linear order�π

defined by (x1, . . . , xn) �π (y1, . . . , yn) if (xπ(1), . . . , xπ(n)) � (yπ(1), . . . , yπ(n)).

Let � and �π denote the reflexive versions of � and �π, respectively.

Let A be a primal algebra. (Recall that every primal algebra is finite and

has at least two elements.) It is a well-known fact (see [1] for details on the

structure of a variety of algebras generated by a primal algebra) that if A is

a primal algebra and n,m ∈ N, a mapping f : An → Am is a homomorphism

from An to Am if and only if there exist i1, . . . , im ∈ {1, . . . , n} such that

f(x1, . . . , xn) = (xi1 , . . . , xim). Moreover, f is an embedding if and only if f

is injective if and only if {i1, . . . , im} = {1, . . . , n}.
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Lemma 4.1. Let A be a primal algebra, let < be a linear order on A and

let � be the induced antilexicographic order. Take any n,m ∈ N, any per-

mutation π of {1, . . . , n} and any permutation σ of {1, . . . ,m}. The mapping

f : An → Am is a homomorphism from An
�π

to Am
�σ

if and only if there

exist i1, . . . , im ∈ {1, . . . , n} such that f(x1, . . . , xn) = (xi1 , . . . , xim) and the

numbers js = π−1(iσ(s)), s ∈ {1, . . . ,m}, have the following properties:

(1) jm = n;

(2) for all s < m, if js = k < n, then {k + 1, . . . , n} ⊆ {js+1, . . . , jm}.

Proof. Note, first, that (2) is equivalent to the following: if js = k is the

last appearance of k in the sequence (j1, j2, . . . , jm) then {js+1, . . . , jm} =

{k+1, . . . , n}. Note that {j1, . . . , jm} = {d, . . . , n} where d = min{j1, . . . , jm}.
(⇒): Since f is a homomorphism from An

�π
to Am

�σ
, we know that there

exist i1, . . . , im ∈ {1, . . . , n} such that f(x1, . . . , xn) = (xi1 , . . . , xim), and that

(xπ(1), . . . , xπ(n)) � (yπ(1), . . . , yπ(n)) implies

(xiσ(1)
, . . . , xiσ(m)

) � (yiσ(1)
, . . . , yiσ(m)

).

Let js = π−1(iσ(s)) for s ∈ {1, . . . ,m}, so that iσ(s) = π(js) for all s.

Let us show that jm = n, that is, iσ(m) = π(n). Suppose this is not the

case and let iσ(m) = π(k) for some k < n. Take any a, b ∈ A so that a < b and

consider the n-tuples

x = (xπ(1), . . . , xπ(k), . . . , xπ(n)) = (a, a, . . . , a, b
kth place

↑
, a, . . . , a),

y = (yπ(1), . . . , yπ(k), . . . , yπ(n)) = (a, a, . . . , a, a
kth place

↑
, a, . . . , b).

Then x � y but (xiσ(1)
, . . . , xiσ(m)

) � (yiσ(1)
, . . . , yiσ(m)

) as xiσ(m)
= xπ(k) =

b > a = yπ(k) = yiσ(m)
, a contradiction.

Let us now show that (2) holds for the sequence (j1, . . . , jm). Suppose, to

the contrary, that there is an s < m such that js = k < n but {k+1, . . . , n} �⊆
{js+1, . . . , jm}. Take the largest l ∈ {k+1, . . . , n} \ {js+1, . . . , jm}. Note that

l � n−1 as jm = n. Take any a, b ∈ A so that a < b, and consider the n-tuples

x = (xπ(1), . . . , xπ(k), . . . , xπ(n)) = (a, . . . , a, b
kth place

↑
, a, . . . , a, a

lth place
↑
, a, . . . , a),

y = (yπ(1), . . . , yπ(k), . . . , yπ(n)) = (a, . . . , a, a
kth place

↑
, a, . . . , a, b

lth place
↑
, a, . . . , a).

Then x � y but, having in mind that iσ(s) = π(js) = π(k),

(xiσ(1)
, . . . , xiσ(s)

, . . . , xiσ(m)
) = (. . . , b

sth place
↑
, a, . . . , a, a, . . . , a︸ ︷︷ ︸
no index equals π(l)

)

� (. . . , a
sth place

↑
, a, . . . , a, a, . . . , a︸ ︷︷ ︸
no index equals π(l)

)

= (yiσ(1)
, . . . , yiσ(s)

, . . . , yiσ(m)
),

which is a contradiction.
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(⇐): Let f : An → Am be a mapping with f(x1, . . . , xn) = (xi1 , . . . , xim) for

some i1, . . . , im ∈ {1, . . . , n}, and assume that the numbers js = π−1(iσ(s)), for

s ∈ {1, . . . ,m}, satisfy (1) and (2). Then f is clearly a homomorphism fromAn

to Am, so let us show that f is monotone. Take x1, . . . , xn, y1, . . . , yn ∈ A such

that (xπ(1), . . . , xπ(k), . . . , xπ(n)) � (yπ(1), . . . , yπ(k), . . . , yπ(n)). Then there is

a t such that xπ(q) = yπ(q) for all q > t and xπ(t) < yπ(t). Let us show that

(xπ(j1), . . . , xπ(jm)) � (yπ(j1), . . . , yπ(jm)). (4.1)

If min{j1, . . . , jm} > t, then equality holds in (4.1). Suppose, therefore, that

min{j1, . . . , jm} � t. Then t ∈ {j1, . . . , jm} because of (2). Let js be the last

appearance of t in the sequence (j1, . . . , jm). Then we have {js+1, . . . , jm} =

{t+ 1, . . . , n}, whence follows that strict inequality holds in (4.1).

Therefore, (4.1) holds. The choice of the indices js ensures that (4.1) is

equivalent to (xiσ(1)
, . . . , xiσ(m)

) � (yiσ(1)
, . . . , yiσ(m)

). �

Let A be a primal algebra and let < be a linear order on A. LetOVfin(A, <)

be the category whose objects are isomorphic copies of structures An
�π

where

n ∈ N and π is a permutation of {1, . . . , n}, and whose morphisms are embed-

dings.

Theorem 4.2. Let A be a primal algebra and let < be a linear order on A.

Then OVfin(A, <) is categorically equivalent to OFBA.

Proof. Every finite boolean algebra together with a natural linear ordering is

clearly isomorphic to 2n
�π

where 2 is the two-element boolean algebra whose

base set is 2 = {0, 1}, n ∈ N, and π is a permutation of {1, . . . , n} which

encodes the initial ordering of the atoms. Hence, OFBA = OVfin(2 ,≺),

where ≺ is the usual ordering 0 ≺ 1 of 2 .

Let B be the full subcategory of OFBA spanned by the countable set of

objects
{
2n
�π

: n ∈ N, π is a permutation of {1, 2, . . . , n}
}
, and let C be

the full subcategory of OVfin(A, <) spanned by the countable set of objects{
An
�π

: n ∈ N, π is a permutation of {1, 2, . . . , n}
}
. Clearly, B and C are

skeletons of OFBA and OVfin(A, <), respectively, so in order to show that

OFBA and OVfin(A, <) are equivalent it suffices to show that B and C

are isomorphic. Let F : B → C be a functor such that F (2n
�π

) = An
�π

and which takes a morphism f : 2n → 2m : (x1, . . . , xn) �→ (xi1 , . . . , xim) to

f ′ : An → Am : (x1, . . . , xn) �→ (xi1 , . . . , xim). Lemma 4.1 ensures that F is

well defined and bijective on morphisms, so F is clearly an isomorphism of B

and C. Therefore, the categories OFBA and OVfin(A, <) are equivalent. �

Theorem 4.3. Let A be a primal algebra and let < be a linear order on A.

Then

(1) OVfin(A, <) is a Ramsey age and

(2) the automorphism group of its Fräıssé limit is extremely amenable.
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Proof. (1): Let us first show that OVfin(A, <) has (HP). Take any Am
�σ

and any embedding f : An
� ↪→ Am

�σ
. Let i1, . . . , im be indices such that

f(x1, . . . , xn) = (xi1 , . . . , xim) and {i1, . . . , im} = {1, . . . , n}. Thus, we have

that (x1, . . . , xn) 	 (y1, . . . , yn) if and only if (xi1 , . . . , xim) �σ (yi1 , . . . , yim).

Let us show that there is a permutation π of {1, . . . , n} with 	 = �π. For

s ∈ {1, . . . , n}, let As = {t ∈ {1, . . . ,m} : iσ(t) = s}. Note that {A1, . . . , An}
is a partition of {1, . . . ,m} because {i1, . . . , im} = {1, . . . , n}. Let π be a

permutation of {1, . . . , n} such that maxAπ(1) < maxAπ(2) < · · · < maxAπ(n)

(note that m ∈ Aπ(n)), and define (j1, . . . , jm) as follows: js = k if and only

if s ∈ Aπ(k). Then it is easy to verify that π(js) = iσ(s) for all s and that

(j1, . . . , jm) satisfies (1) and (2) of Lemma 4.1. So, Lemma 4.1 ensures that f

is a homomorphism, and hence an embedding, of An
�π

into Am
�σ

.

Let us show that 	 = �π. On the one hand, (x1, . . . , xn) �π (y1, . . . , yn)

is equivalent to (xi1 , . . . , xim) �σ (yi1 , . . . , yim) because f : An
�π

↪→ Am
�σ

.

On the other hand, we have that (x1, . . . , xn) 	 (y1, . . . , yn) is equivalent

to (xi1 , . . . , xim) �σ (yi1 , . . . , yim) because f : An
� ↪→ Am

�σ
. Thus 	 = �π.

Therefore, OVfin(A, <) has (HP).

Now, OVfin(A, <) is categorically equivalent to OFBA (Theorem 4.2),

OFBA is a Ramsey age [9] and OVfin(A, <) has (HP); thus, Corollary 3.4

yields that OVfin(A, <) is a Ramsey age.

(2) This follows from Theorem 2.6. �

We shall now apply Theorem 2.7 to the classes OVfin(A, <) and Vfin(A),

where A is a primal algebra; let < be a linear order on A. Let us first show

that the former is a reasonable order expansion of the latter.

Lemma 4.4. Let A be a primal algebra and let < be a linear order on A.

Then OVfin(A, <) is a reasonable order expansion of Vfin(A).

Proof. Let f : An ↪→ Am be an embedding, and let i1, . . . , im be indices such

that f(x1, . . . , xn) = (xi1 , . . . , xim) and {i1, . . . , im} = {1, . . . , n}. Take any

permutation π of {1, 2, . . . , n} and let us find a permutation σ of {1, 2, . . . ,m}
such that f is an embedding of An

�π
into Am

�σ
. For an arbitrary s ∈ {1, . . . , n},

let As = {t ∈ {1, . . . ,m} : π(s) = it}. Note that {A1, . . . , An} is a partition of

{1, . . . ,m} because {i1, . . . , im} = {1, . . . , n}.
Let σ be any permutation of {1, . . . ,m} such that σ−1(A1) = {1, . . . , k1},

σ−1(A2) = {k1 + 1, . . . , k2}, . . . , σ−1(An) = {kn−1 + 1, . . . ,m}, and define

(j1, . . . , jm) as follows: j1 = · · · = jk1
= 1, jk1+1 = · · · = jk2

= 2, . . . ,

jkn−1+1 = · · · = jm = n. Then it is easy to verify that π(js) = iσ(s) for all

s and that (j1, . . . , jm) satisfies (1) and (2) of Lemma 4.1. Now, Lemma 4.1

ensures that f is a homomorphism, and so an embedding, ofAn
�π

intoAm
�σ

. �

Theorem 4.5. Let A be a primal algebra with < a linear order on A. Let F
be the Fräıssé limit of Vfin(A), let F� be the Fräıssé limit of OVfin(A, <), let

G = Aut(F) and X∗ = G ·� (in the logical action of G on LO(F )). Then the

logical action of G on X∗ is the universal minimal flow of G.
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Proof. The class OVfin(A, <) is a Ramsey age by Theorem 4.3, while The-

orem 3.5 ensures that OVfin(A, <) has the ordering property over Vfin(A).

(The categorical equivalences in question are FBA � Vfin(A) and OFBA �
OVfin(A, <) established in Example 3.3 and Theorem 4.2.) The statement

now follows by Theorem 2.7. �

5. Appendix 1: The Ramsey properties under adjunctions

In this section, we discuss Ramsey properties in adjunctions and prove

that right adjoints preserve the Ramsey property for morphisms, while left

adjoints preserve the dual of the Ramsey property for morphisms. The status

of the Ramsey properties for objects is delicate and is preserved by right,

respectively, left adjoints under additional assumptions on the automorphism

groups of objects of the form F (C) and G(D).

Theorem 5.1. Let F : C � D : G be an adjunction.

(a) If D has the Ramsey property for morphisms, then so does C.

(b) If C has the dual Ramsey property for morphisms, then so does D.

Proof. It suffices to prove (a) as the proof of (b) is dual. Let Φ be the natural

isomorphism between the hom-sets.

Take k � 2 and A,B ∈ Ob(C) such that A → B. Then F (A) → F (B).
Since D has the Ramsey property for morphisms, there is a C ∈ Ob(D) such

that C hom−→ (F (B))F (A)
k . Let us show that G(C) hom−→ (GF (B))Ak . Take any

k-coloring hom(A, G(C)) = M1 ∪ · · · ∪Mk. By applying Φ−1 and noting that

Φ−1(hom(A, G(C))) = hom(F (A), C), we obtain

hom(F (A), C) = Φ−1(M1) ∪ · · · ∪ Φ−1(Mk).

Since Φ is bijective, the above is actually a k-coloring of hom(F (A), C), so
there is an i and a morphism w : F (B) → C such that

w · hom(F (A), F (B)) ⊆ Φ−1(Mi).

After applying G and multiplying by ηA from the right, we have

G(w) ·G(hom(F (A), F (B))) · ηA ⊆ G(Φ−1(Mi)) · ηA.

Loosely speaking, for any set of morphismsM, we have thatG(M)·η = Φ(M),

so the above relation transforms to

G(w) · Φ(hom(F (A), F (B))) ⊆ Φ(Φ−1(Mi)),

or, equivalently, G(w) · hom(A, GF (B)) ⊆ Mi. This completes the proof that

G(C) hom−→ (GF (B))Ak .
Since ηB : B → GF (B), Lemma 2.4 (a) ensures that G(C) hom−→ (B)Ak . There-

fore, C has the Ramsey property for morphisms. �
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The analogous statement for objects need not be true in general because, in

general, the unit and the counit do not consist of isomorphisms. The follow-

ing lemma provides a sufficient condition for adjunctions to preserve Ramsey

property for objects but the additional condition we impose is rather strong.

Lemma 5.2. Let F : C � D : G be an adjunction.

(a) Assume that Aut(F (A)) = F (Aut(A)) for all A ∈ Ob(C). If D has the

Ramsey property for objects, then so does C.

(b) Assume that Aut(G(B)) = G(Aut(B)) for all B ∈ Ob(D). If C has the

dual Ramsey property for objects, then so does D.

Proof. Again, we shall focus on (a) because the proof of (b) is dual. The proof

of (a), however, is analogous to the proof of (a) in Theorem 5.1 provided we

can show that

Φ

((
B

F (A)

))
=

(
G(B)
A

)
,

or, equivalently, Φ
(
hom(F (A),B)/∼F (A)

)
= hom(A, G(B))/∼A.

This relation clearly follows from

Φ(f/∼F (A)) = Φ(f)/∼A for all f ∈ hom(F (A),B). (5.1)

Let us show (5.1).

(⊆): Take f ∈ hom(F (A),B) and g ∈ Φ(f/∼F (A)). Then g = Φ(f · α) for
some α ∈ Aut(F (A)), and then g = G(f) ·G(α) · ηA. Since α ∈ Aut(F (A)) =

F (Aut(A)), there is a β ∈ Aut(A) such that α = F (β), so

g = G(f) ·G(α) · ηA = G(f) ·GF (β) · ηA
= G(f) · ηA · β = Φ(f) · β ∈ Φ(f)/∼A,

with the third equality because η is natural.

(⊇): This is analogous to (⊆). �

We thank Christian Rosendal for letting us include the following example

from his unpublished notes.

Example 5.3. (Homogeneous trees.) Here we present an example that shows

the importance of the assumption in Lemma 5.2 (a). Let C be the category

of trees, finite structures in the language {f} where f(a) = b if b is the im-

mediate predecessor of a in the partial tree order. Let D ⊂ C be the class

of homogeneous trees, trees where the branching number at a node is a func-

tion of the level of the node, i.e., for every n < ω, there is some b(n) < ω

such that every node at level n has exactly b(n) immediate successors at level

n+ 1. Let C<, D< be the corresponding categories of finite convexly ordered

trees (structures in the language {f,<} where < gives the linear extension of

the partial tree order, and the immediate successors of each vertex form an

interval with respect to <). It is known that C< has the Ramsey property

for objects/morphisms, see [2] and see [17] for a discussion. In Rosendal’s

notes, it is shown that D has the Ramsey property for objects. This follows



176 D. Mašulović and L. Scow Algebra Univers.

by Lemma 2.5 and [9, Proposition 5.6] as D< is a cofinal full subcategory of

C< and it is order forgetful.

This example illustrates a case where we have an adjunction F : C � D : G

but Φ
(
hom(F (A),B)/∼F (A)

)
= hom(A, G(B))/∼A fails. F takes A ∈ Ob(C)

to the smallest homogeneous tree containing A and G gives the inclusion

of D in C. Consider A as given in Figure 1 and let B = F (A). Then

| hom(F (A),B)/∼F (A)| = 1 but | hom(A, G(B))/∼A| = 4: a map can send

(a1, a2, a3) to any of (c1, c2, c3), (c1, c2, c4), (c1, c3, c4), (c2, c3, c4), up to auto-

morphism of A.

A

a0

a2a1 a3

F (A) = B

c0

c2c1 c3 c4

Figure 1. Unordered trees

Notice that this is also a case where D has the Ramsey property for objects

but C does not. Rosendal provides the example from Figure 1 in his notes.

If we impose an ordering < on all members of C and color copies of A in B
according to whether the pair (a1, a2) occurs < then a3 or vice versa, then we

cannot find a homogeneous copy of B.

6. Appendix 2: Fräıssé limits with identical automorphism group

Here we give categorical language to some results following from [9]. The re-

sults in [9] demonstrate in some cases that two categories with different objects

have essentially the same Ramsey property. Using results in Appendix 1, we

may pin down the underlying functor that is transferring the Ramsey property

between these categories.

First, we recap the definition of the canonical language on ultrahomogeneous

structures as described in [9]. For a closed subgroup G < Sym(N), we can

construct an ultrahomogeneous structure as follows. Let Δh(G) = {Ri | i ∈ I}
where Ri is an n-ary relation corresponding to the orbit Oi of an n-tuple

a ∈ Nn under G. Define M = (N,Δh(G)) so that

M 
 Ri(a) ⇔ a ∈ Oi

Clearly, partial isomorphisms of M extend to automorphisms of M, and so M
is ultrahomogeneous. Moreover, Aut(M) = G. We will call Δh(G) the Hodges

language corresponding to G ((N,Δh(G)) is called the “induced structure as-

sociated to G” in [9]). In the case that G = Aut(A) for some given countable

structure A, we call Δh(G) the Hodges language on A.
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Theorem 2.6 guarantees that for extremely amenable G ≤ Sym(N), MG =

{M | Aut(M) = G and M is ordered by < and ultrahomogeneous} gives a

family of structures with age having the Ramsey property for morphisms.

The canonical relational structure (N,Δh(G)) is in MG, but so are a variety of

structures in functional languages whose description might be more natural.

Consider the family of categories

Γ = {C : C is the category of structures with

Ob(C) = Age(M) for M ∈ MG}

We can now make use of our technology of adjunctions to explain in categor-

ical language why all members C ∈ ΓG must share the Ramsey property for

morphisms.

Theorem 6.1. Let D1,D2 be two categories of finite structures. Suppose

each class of structures is a Fräıssé class and the automorphism groups of the

Fräıssé limits are isomorphic. Then there is a third category of finite structures

C and adjunctions

F1 : C � D1 : G1 and F2 : C � D2 : G2

such that the Gi are inclusions and F2 ◦ G1, F1 ◦ G2 preserve the Ramsey

property for morphisms.

Proof. Let F1,F2 be the Fräıssé limits of the classes Ob(D1),Ob(D2), both

with automorphism group G. We may assume that F1,F2 have the same

underlying set, N. Now let Ob(C) be all finite subsets of N and let the mor-

phisms of C be embeddings in the Hodges language corresponding to G. Now

define Fi : C → Di to take any finite subset A ⊂ N and send it to the clo-

sure of A under the function symbols in the language of Fi. This map is

well-defined and natural by ultrahomogeneity of Fi. Thus, we have an ad-

junction Fi : C � Di : Gi, where Gi is the inclusion functor that “forgets” the

function symbols. By Proposition 2.5, Fi preserves the Ramsey property for

morphisms. By Theorem 5.1, so does Gi. Thus, so do their composites. �

Remark 6.2. It is interesting to note that in the above Theorem, we have

Fi ◦Gi = IDDi but Gi ◦ Fi �= IDDi .

We thank Christian Rosendal for letting us include the example Kr studied

in his unpublished notes. The example Ks is from [18].

Definition 6.3. Consider the following classes of trees as categories with

embeddings as morphisms.

Kr = Age(ω>ω, f,<),

Ks = Age(ω>ω,�,∧, <, {Pn}n),
Kh = Age(ω>ω,Δh(Aut(FlimKr)),

where we have:
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• � is the partial tree order (sequence extension),

• ∧ is the meet in the partial order,

• < is the lexicographic order on sequences (a linear extension of the partial

order),

• Pn is a unary predicate picking out the n-th level of the tree,

• f is a unary function symbol giving the immediate �-predecessor of any

node.

The following is guaranteed by Theorem 2.6.

Corollary 6.4. Kr has the Ramsey property for morphisms if and only if Ks

has the Ramsey property for morphisms.

Proof. The classes are Fräıssé classes, so we may assume that Fs = FlimKs

and Fr = FlimKr share the same underlying set N. Every function and

predicate symbol in Kr is quantifier-free Lω1,ω-definable in the language of

Ks and vice versa. Thus, their automorphism groups have the same orbits on

n-tuples from N, and thus are the same group. �

Remark 6.5. Substructures of Ir are closed under the function symbols in

Is, so we could set up a direct adjunction F : Ks � Kr : G. In other words,

the intermediary category C from Theorem 6.1 can be jettisoned in favor of

the more direct Theorem 5.1.
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