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Abstract. Distributive Hilbert algebras with infimum, or DH∧-algebras for short,
are algebras with implication and conjunction, in which the implication and the con-
junction do not necessarily satisfy the residuation law. These algebras do not fall
under the scope of the usual duality theory for lattice expansions, precisely because
they lack residuation. We propose a new approach, that consists of regarding the
conjunction as the additional operation on the underlying implicative structure. In
this paper, we introduce a class of spaces, based on compactly-based sober topologi-
cal spaces. We prove that the category of these spaces and certain relations is dually
equivalent to the category of DH∧-algebras and ∧-semi-homomorphisms. We show
that the restriction of this duality to a wide subcategory of spaces gives us a duality
for the category of DH∧-algebras and algebraic homomorphisms. This last duality
generalizes the one given by the author in 2003 for implicative semilattices. More-
over, we use the duality to give a dual characterization of the main classes of filters
for DH∧-algebras, namely, (irreducible) meet filters, (irreducible) implicative filters
and absorbent filters.

1. Introduction

The classical Stone representation theory for distributive lattices leans on

the fact that any distributive lattice is isomorphic to the lattice of compact

and open subsets of a spectral space, that is, a sober space with a base of com-

pact open sets closed under finite intersections [26]. Further generalizations of

this approach lead to dualities for distributive meet-semilattices [6, 8, 20], im-

plicative semilattices [4], Hilbert algebras [7] and Hilbert algebras with supre-

mum [9]. What they all have in common is that they provide representations

in terms of compactly-based sober spaces. Other interesting results on gener-

alizations of Stone duality are the papers [15], [14], and [11]. We refer to this

class of dualities as spectral-like dualities.

A different approach, initiated by Priestley [25], leads to a representation

in terms of ordered Hausdorff topological spaces. Although both approaches

have been followed to generalize the pioneering work on representation of
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Boolean algebras with operators [23], the latter can be considered to be ad-

vantageous [19], especially in view of recent developments of the theory of

canonical extensions (see [18] and its references). The key point of this theory,

called extended Priestley duality, is to represent n-ary (dual) quasioperators

by means of n+1-ary relations.

One of the strengths of Stone/Priestley duality is mainly that it allows

us to use topological tools in the study of logic. Duality theory in logic has

been proven to be a fruitful field of study from which, among other results,

completeness with respect to Kripke-style semantics of a wide range of non-

classical logics has been proven.

Recall that Hilbert algebras represent the algebraic counterpart of the im-

plicative fragment of Intuitionistic Propositional Logic. It is well known that

every poset 〈X,≤〉 with greatest element 1 induces a structure of Hilbert al-

gebra defining an implication → on X as follows: a → b = 1 when a ≤ b, and

a → b = b when a � b. This example allows us to define Hilbert algebras on

semilattices or lattices which are not implicative semilattices or Heyting alge-

bras. For instance, the Boolean lattice with four elements and the implication

given by the order is a Hilbert algebra with bounded distributive lattice reduct

that is not a Heyting algebra. These examples motivate the study of Hilbert

algebras with lattice operations. We note that these classes of enriched Hilbert

algebras are subclasses of BCK-algebras with lattice operations considered by

P. M. Idziak in [22] (see also [3]). In this paper, we will consider mainly

Hilbert algebras where the induced order is a distributive meet-semilattice.

In this class of algebras, the conjunction and the implication define the same

order, but these operations need not be related by the residuation law. We call

these algebras distributive Hilbert algebras with infimum (or DH ∧-algebras for

short). The lack of residuation forces us to search for a completely different

route for a topological representation of this class of algebras.

Our results are supported by already existing dualities for distributive meet-

semilattices and Hilbert algebras. These dualities have the characteristic that

the duals are pairs of the form 〈X,κ〉, where κ is a base for a topology τκ on

X satisfying certain additional properties. This strategy is also used in other

works. For example, in [11] (see also [14]), a generalization of the classical

Stone duality was established proving that there exists a dual equivalence

between the category of ideal-distributive posets with the so-called ∧-stable
ideal-continuous maps and the category of pairs 〈X,B〉, where B is a fixed base

of a sober topology on X, and B is meet-dense in the collection of all compact

open sets. The morphisms in this category preserve the distinguished bases

under inverse images. Another interesting example is the equivalence between

the category of T1-spaces with a distinguished base and a certain category of

conditionally up-complete, algebraic and maximized posets proved in [15].

In this paper, we provide a spectral-like duality for two categories based

on DH ∧-algebras. A parallel study involving a Priestley-style duality for the

same categories is being developed in a forthcoming paper.
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The strategy consists of looking at the meet operation as an additional

operation on the underlying Hilbert algebra, instead of what is customary,

namely looking at the implication as an additional operation on the (semi)-

lattice structure. Accordingly, the meet is represented by a subset satisfying

certain conditions, instead of being represented by a relation.

The organization of the paper goes as follows. In Section 2, we present

the preliminaries and we establish the basic notational conventions. Particu-

larly, we recall the spectral-like duality for distributive meet-semilattices given

in [6] and [20] (see also [13]), the spectral-like duality for Hilbert algebras

developed in [7] and [9], and we introduce the class of DH ∧-algebras. In Sec-

tion 3, we examine different notions of filters associated with a DH ∧-algebra,

and the relations between them, that yield the keypoint of our representation

strategy. In Section 4, we present the duality for objects, where duals of DH ∧-

algebras are certain spectral-like spaces augmented with a subset that satisfies

some conditions. In Section 5, we extend the duality to morphisms between

DH ∧-algebras. Following [7], we deal with two different notions of morphism,

namely, the usual algebraic notion of homomorphism and a weaker notion

related to that of semi-homomorphism between Hilbert algebras. Then two

categories are defined and the dual equivalences of these categories are proved.

As was pointed out to us by the referee, the principal new approach in paper [6]

was the consideration of relations as morphisms between DS-spaces instead

of functions, but such approaches were investigated already before this paper

appeared, one typical instance being the paper by Hofmann and Watson [21].

Finally, in the last section, a topological characterization of the main classes

of filters is given.

2. Preliminaries

2.1. Basic notation and terminology. We denote by ω the set of natural

numbers and by ∅ the empty set. For X a set and Y ⊆ X, we denote by

Y c the complement of Y , namely {x ∈ X : x /∈ Y }. For a binary relation

R ⊆ X1 × X2 between sets X1 and X2, and for any x1 ∈ X1, we denote by

R(x1) the set {x2 ∈ X2 : (x1, x2) ∈ R}, and for any Y ⊆ X2, we denote

by R−1(Y ) the set {x1 ∈ X1 : ∃y ∈ Y ((x1, y) ∈ R)}. For sets X1, X2, X3,

functions f : X1 −→ X2, g : X2 −→ X3 and relations R ⊆ X1 × X2 and

S ⊆ X2 ×X3, the composition is denoted by g ◦ f and S ◦R, respectively.

Let 〈X,≤〉 be a poset. A subset Y ⊆ X is an up-set when for every y ∈ Y

and every x ∈ X, if y ≤ x, then x ∈ Y . Down-sets are defined order-dually.

By P↑(X) we denote the collection all up-sets of 〈X,≤〉. For any Y ⊆ X,

we denote by ↑Y (resp. ↓Y ) the up-set (resp. down-set) generated by Y , i.e.,

{x ∈ X : ∃y ∈ Y (y ≤ x)} (resp. {x ∈ X : ∃y ∈ Y (x ≤ y)}). If Y is a singleton

{x}, then we write ↑x and ↓x instead of ↑{x} and ↓{x}, respectively.
Let X = 〈X, τ〉 be a topological space. As usual, we shall refer to it by X.

We denote by O(X) (resp. C(X)) the collection of open (resp. closed) subsets of
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X and by KO(X) the collection of open and compact subsets ofX. For Y ⊆ X,

we denote by cl(Y ) the closure of Y , i.e., the least closed set that contains Y .

Recall that a subset Y of X is saturated provided it is an intersection of open

sets. The saturation of a subset Y of X is the least saturated set that contains

Y , and we denote it by sat(Y ). If Y is a singleton {x}, then we write cl(x) and

sat(x) instead of cl({x}) and sat({x}), respectively. We also recall that the

specialization pre-order of 〈X, τ〉 is given by x �X y if and only if x ∈ cl(y).

When 〈X, τ〉 is T0, the pre-order � is an order. A nonempty subset Y ⊆ X

is irreducible provided for any Y1, Y2 ∈ C(X), if Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1

or Y ⊆ Y2. The space X is sober when each closed irreducible subset is the

closure of a unique point.

Distributive meet-semilattices. A meet-semilattice with top element is an

algebra A = 〈A,∧, 1〉 of type (2, 0) such that the operation ∧ is idempotent,

commutative, associative, and a ∧ 1 = a for each a ∈ A. As usual, the binary

relation ≤ defined by a ≤ b if and only if a ∧ b = a is a partial order. In what

follows we shall use semilattice, instead of meet-semilattice with top element.

An order ideal of a semilattice A is a non-empty up-directed down-set of A,

i.e., a down-set I with ∅ �= I ⊆ A such that whenever a, b ∈ I, there exists

c ∈ I such that a, b ≤ c. We denote by Id(A) the collection of all order ideals

of A. Notice that all principal down-sets are order ideals.

A meet filter of a semilattice A is a non-empty up-set closed under the

meet operation, i.e., an up-set F ⊆ A such that 1 ∈ F and a∧ b ∈ F whenever

a, b ∈ F . Notice that all principal up-sets are meet filters. A meet filter F is

proper when F �= A. We denote by Fi(A) the collection all meet filters of A.

The set Fi(A) is closed under arbitrary intersections, so for each B ⊆ A, we

denote by �B〉〉 the least meet filter that contains B. We call �B〉〉 the meet

filter generated by B. It is well known that

�B〉〉 =
{
a ∈ A :

∧
F ≤ a, for some finite subset F ⊆ B

}
.

Notice that for each a ∈ A, �a〉〉 = ↑a. We consider the bounded lattice

Fi(A) := 〈Fi(A),∩,∨, A, {1}〉, in which the meet operation is given by forming

intersection and the join operation is given by the meet filter generated by

the union. We say that a meet filter F is ∧-irreducible when it is a meet

irreducible element of the lattice Fi(A). We denote by X̂(A) the collection of

∧-irreducible meet filters of A.

Definition 2.1. A semilattice A is distributive if for each a, b, c ∈ A with

a ∧ b ≤ c, there exist a′, b′ ∈ A such that a ≤ a′, b ≤ b′ and c = a′ ∧ b′.

A representation theorem for distributive semilattices may be obtained

from [20], where Grätzer defines distributive semilattices as a general frame-

work to discuss topological representations of distributive lattices. Elementary

properties of distributive semilattices are studied in [20] and [8], one being that

a semilattice A is distributive if and only if the lattice of meet filters Fi(A)
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is distributive. We recall that a filter F of A is a ∧-irreducible meet filter iff

F c ∈ Id(A).

The following lemma is an analogue of Birkhoff’s Prime Filter Lemma. We

note that this Lemma and the next Lemma 2.5 are special instances of a

general Separation Lemma due to Banaschewski and Erné in [1].

Lemma 2.2. (∧-irreducible Meet Filter Lemma) Let A be a distributive semi-

lattice. Let F ∈ Fi(A) and I ∈ Id(A) be such that F ∩ I = ∅. Then there is

G ∈ X̂(A) such that F ⊆ G and G ∩ I = ∅.

Let A be a semilattice. Let a ∈ A with a �= 1. The element a is meet

irreducible when for all b, c ∈ A, if a = b∧ c, then a = b or a = c, and a is meet

prime when for all b, c ∈ L, if b ∧ c ≤ a, then b ≤ c or c ≤ a. It is well known

that prime and irreducible elements coincide for any distributive semilattice.

A categorical duality for distributive semilattices and homomorphisms pre-

serving top was studied in [6], where dual objects are called DS-spaces. Recall

that a DS-space [6, Definition 14] is a topological space X = 〈X, τ〉 such that:

(DS1) The collection KO(X) of open and compact subsets of X forms a basis

for the topology τ ,

(DS2) 〈X, τ〉 is sober.

Remark 2.3. As a corollary of the duality for distributive semilattices and

homomorphisms preserving top, there exists a duality between the following

categories. On the one hand, the category of distributive join-semilattices with

least element whose morphism are prime-ideal continuous maps. On the other

hand, the category of algebraic distributive lattices whose morphism are frame

homomorphisms preserving compactness (see [13, Section 5] for the details).

Let X be a DS-space. Consider the family D(X) := {U : U c ∈ KO(X)},
which is closed under finite intersection. In [20], it is proven that D(X) :=

〈D(X),∩, X〉 is a distributive semilattice, called the dual distributive semilat-

tice of X.

Let A = 〈A,∧, 1〉 a distributive semilattice. Recall that X̂(A) is the set of

all ∧-irreducible meet filters of A. Consider the map σA : A −→ P↑(X̂(A))

defined by σA(a) = {P ∈ X̂(A) : a ∈ P}. In [20] (see also [6]), it is proven

that {σA(a)c = X̂(A)− σA(a) : a ∈ A} is a base for a topology τA on X̂(A).

Moreover, 〈X̂(A), τA〉 is shown to be a DS-space, called the dual DS-space

of A.

If X is a DS-space, then it is homeomorphic to 〈X̂(D(X)), τD(X)〉 by means

of the map ε̂ : X → X̂(D(X)), given by ε̂ (x) = {U ∈ D(X) : x ∈ U}. If A is

a distributive semilattice, then it is isomorphic to D(X̂(A)) by means of the

map σA.

Hilbert algebras. In this subsection, we recall the representation theory for

Hilbert algebras.
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Definition 2.4. A Hilbert algebra is an algebra A = 〈A,→, 1〉 of type (2, 0)

in which

(1) a → (b → a) = 1,

(2) (a → (b → c)) → ((a → b) → (a → c)) = 1,

(3) a → b = 1 = b → a implies a = b.

In [12], Diego proves that the class of Hilbert algebras is a variety. It is

easy to check that the binary relation ≤A defined on a Hilbert algebra A by

a ≤A b if and only if a → b = 1 is a partial order on A with top element 1.

This order is called the natural order on A. When the context is clear, we

omit the subscript of ≤A. Let us recall that the class of Hilbert algebras is a

subclass of BCK-algebras (see [10, page 165]).

Let A be a Hilbert algebra. An implicative filter (or deductive system) of

A is a subset P ⊆ A such that 1 ∈ P and if a, a → b ∈ P , then b ∈ P . Notice

that implicative filters are up-sets, and all principal up-sets are implicative

filters. We denote by Fi→(A) the collection of implicative filters of A. The

set Fi→(A) is closed under arbitrary intersections, so for any B ⊆ A, there

exists the least implicative filter that contains B. We call this implicative

filter the implicative filter generated by B and we denote it by 〈B〉. Notice

that for all a ∈ A, 〈a〉 = ↑a. The algebra Fi→(A) := 〈Fi→(A),∩,∨, A, ∅〉, in
which ∨ is given by the implicative filter generated by the union, is a bounded

distributive lattice (see [12] or [24] for more details on implicative filters in

Hilbert algebras). We say that an implicative filter P of A is →-irreducible

when it is a meet irreducible element of the lattice Fi→(A). Since the lattice

Fi→(A) is distributive, meet irreducible and meet prime elements of Fi→(A)

coincide. Thus, an implicative filter P of A is irreducible iff P c ∈ Id(A). We

denote by X(A) the collection of →-irreducible implicative filters of A.

We note that Lemma 2.5 is a special case of a general Separation Lemma

due to Banaschewski and Erné in [1] (for a proof for Hilbert algebras, see [4]).

Lemma 2.5. (Irreducible Implicative Filter Lemma) Let A be a Hilbert alge-

bra. Let P ∈ Fi→(A) and I ∈ Id(A) be such that P ∩ I = ∅. Then there is

Q ∈ X(A) such that P ⊆ Q and Q ∩ I = ∅.

Let X be a set and let κ ⊆ P(X). A topological space with a fixed base κ

is denoted by 〈X, τκ〉 or directly by 〈X,κ〉. We note that the topology τκ is

completely determinate for the base κ. Recall that an H-space is a pair 〈X,κ〉
where κ is a base of compact open sets for a sober topology τκ on X satisfying

the condition:

(H) for every U, V ∈ κ, sat(U ∩ V c) ∈ κ.

For an H-space 〈X,κ〉, we consider the family Dκ(X) := {U : U c ∈ κ}, and
we define a binary operation ⇒ on it given by U ⇒ V = (sat(U ∩ V c))c.

By Condition (H), this operation is well defined, and in [9] (see also [7]), it

is proven that Dκ(X) := 〈Dκ(X),⇒, X〉 is a Hilbert algebra, called the dual

Hilbert algebra of X. If 〈X,κ〉 is an H-space, then the topology τκ is T0, and
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so its specialization pre-order is a partial order. We deal with its dual order,

which we denote by ≤X , or by ≤ when the context is clear. Then we have

that for all x ∈ X, cl(x) = ↑x, and for all U ⊆ X, sat(U) = ↓U , with respect

to the order ≤.

Let A be a Hilbert algebra. We consider the map ϕA : A −→ P↑(X(A))

defined by

ϕA(a) = {P ∈ X(A) : a ∈ P}.

For convenience, we omit the subscript of ϕA, when no confusion is possible.

In [7], it is proven that the family κA := {ϕ(a)c : a ∈ A} is a base for a

topology τκA
on X(A). Moreover, 〈X(A), κA〉 is an H-space, called the dual

H-space of A. The dual of the specialization order of this space is the inclusion

relation. We note that for each x ∈ X(A), cl(x) = ↑x, and every closed subset

Y of X(A) is an up-set. We note that ↑ and ‘up-set’ refer to inclusion, instead

of the the specialization order.

If 〈X,κ〉 is an H-space, then it is homeomorphic to 〈X(Dκ(X)), κD(X)〉 by
means of the map εX : X → X(Dκ(X)), given by

εX (x) = {U ∈ Dκ(X) : x ∈ U} .

If A is a Hilbert algebra, then ϕA establishes an isomorphism between A and

DκA
(X(A)).

In [7], two different categories with Hilbert algebras as objects were consid-

ered: On the one hand, the usual algebraic category, with algebraic homomor-

phisms as morphisms, and on the other hand, a category with a weaker notion

of morphism, namely maps h : A1 −→ A2 that preserve the top element and

such that h(a → b) ≤ h(a) → h(b) for all a, b ∈ A. The latter are called

→-semi-homomorphisms, and in [7], it is proven that they dually correspond

to binary relations R ⊆ X1×X2 between two H-spaces 〈X1, κ1〉 and 〈X2, κ2〉,
satisfying the following conditions:

(HR1) R−1(U) ∈ κ1, for every U ∈ κ2,

(HR2) R(x) is a closed subset of 〈X2, κ2〉, for all x ∈ X1.

Such relations are called H-relations [7, Definition 3.2]. If h : A1 −→ A2 is a

semi-homomorphism between Hilbert algebras, then Rh ⊆ X(A2) × X(A1),

given by: (P,Q) ∈ Rh if and only if h−1[P ] ⊆ Q, is an H-relation between

the corresponding dual H-spaces. Moreover, for a given H-relation between

H-spaces, R ⊆ X1 ×X2, the map �R : Dκ2
(X2) −→ Dκ1

(X1), defined by

�R(U) := {x ∈ X1 : R(x) ⊆ U},

is a →-semi-homomorphism between the corresponding dual Hilbert alge-

bras. Recall that the dual of homomorphisms between Hilbert algebras are

H-relations R ⊆ X1 ×X2 satisfying the condition:

(HF) If (x, y) ∈ R, then there exists z ∈ X1 such that x ≤ z and R(z) = cl(y).
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Such relations are called functional H-relations in [7], where it is proven that

the correspondence between→-semi-homomorphisms andH-relations restricts

to homomorphisms and functional H-relations, respectively.

Hilbert algebras with infimum. Now we define the class of Hilbert alge-

bras, where the order given by the implication defines the structure of a meet

semilattice.

Definition 2.6. An algebra A = 〈A,→,∧, 1〉 of type (2, 2, 0) is a Hilbert

algebra with infimum or H∧-algebra if

(1) 〈A,→, 1〉 is a Hilbert algebra,

(2) 〈A,∧, 1〉 is a meet semilattice with top element 1,

(3) for all a, b ∈ A, a → b = 1 iff a ∧ b = a.

Notice that by Condition (3) in the previous definition, we have that the

natural order given by the implication and the order given by the semilattice

coincide. In [17], it is proven that the class of H∧-algebras is a variety. We

note that this result also follows from results given by P. M. Idziak in [22] for

BCK-algebras with lattice operations.

Example 2.7. In any semilattice 〈A,∧, 1〉, it is possible to define the structure
of Hilbert algebra with infimum if we take the implication → given by

x → y =

{
1, if x ≤ y,

y, otherwise.

We call such an operation the implication defined by the order on A.

Example 2.8. Implicative semilattices (see [10]), also called Hertz algebras

or Brouwerian semilattices, are Hilbert algebras with infimum in which the

implication is the right residuum of the meet operation, or equivalently, in

which the following equation holds:

(PA) a → (b → (a ∧ b)) = 1.

The next example shows that the class of implicative semilattices is strictly

included in the class of H∧-algebras.

Example 2.9. Let A = {0, a, b, 1} be the four-element Boolean lattice con-

sidered as a distributive meet-semilattice 〈A,∧, 1〉 with top element 1. Con-

sider on A the implication defined by the order ≤ . Then we have that

A = 〈A,→,∧, 1〉 is an H∧-algebra. We can see that → does not preserve

meets in the second coordinate, since

0 = a → (a ∧ b) �= (a → a) ∧ (a → b) = b,

and thus it is not an implicative semilattice.

Definition 2.10. We say that an H∧-algebra A = 〈A,→,∧, 1〉 is distributive
(or a DH ∧-algebra) when the underlying semilattice 〈A,∧, 1〉 is distributive.
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Notice that any non-distributive semilattice augmented with the implication

defined by the order is a Hilbert algebra with infimum that is not distribu-

tive. Therefore, the class of DH ∧-algebras is strictly included in the class of

H∧-algebras. It is well known that the same way the lattice reduct of a Heyt-

ing algebra is distributive, the semilattice reduct of an implicative semilattice

is distributive, so the class of implicative semilattices is included in the class

of DH ∧-algebras. Notice that it follows from Example 2.9 that this inclusion

is strict.

Lemma 2.11. Let A be an H∧-algebra. Then for all a, b, c ∈ A, we have

a → (b → c) ≤ (a ∧ b) → c.

Proof. Let a, b, c ∈ A. From a∧ b ≤ a we get a → (b → c) ≤ (a∧ b) → (b → c).

From a ∧ b ≤ b, we get b → c ≤ (a ∧ b) → c, and so

(a ∧ b) → (b → c) ≤ (a ∧ b) → ((a ∧ b) → c) = (a ∧ b) → c,

and we are done. �

3. Filters in H∧-algebras

In an H∧-algebra A, we distinguish two classes of filters. On the one

hand, we have the collection of implicative filters Fi→(A) associated with the

(→, 1)-reduct of A. On the other hand, we have the collection of meet filters

Fi(A) associated with the (∧, 1)-reduct of A. Both classes of filters play an

important role in the representation of H∧-algebras. In the present section,

we study the relations between these classes; in addition, one more notion of

filter is considered.

Let A be an H∧-algebra. It is easy to prove that all meet filters of A

are also implicative filters. Indeed, let F ∈ Fi(A) and a, a → b ∈ F . Then

a ∧ b = a ∧ (a → b) ∈ F , and thus a ∧ b ≤ b ∈ F . Clearly, 1 ∈ F since it

is a non-empty up-set. Therefore, we have Fi(A) ⊆ Fi→(A). Moreover, the

following relation between →-irreducible implicative filters and ∧-irreducible
meet filters holds for any H∧-algebra.

Proposition 3.1. Let A be an H∧-algebra. Then X(A) ∩ Fi(A) ⊆ X̂(A).

Proof. This is immediate. �

The next proposition gives a characterization of distributive H∧-algebras

by means of the relation between →-irreducible implicative filters and ∧-irre-
ducible meet filters.

Proposition 3.2. An H∧-algebra A is distributive iff X̂(A) ⊆ X(A).

Proof. Assume that A is distributive and let P ∈ X̂(A). On the one hand,

we have that P ∈ Fi→(A). Since P is a ∧-irreducible meet filter and P c is an

order ideal, we conclude that P ∈ X(A).
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Let now A be an H∧-algebra such that X̂(A) ⊆ X(A). Since the (→, 1)-

reduct of A is a Hilbert algebra, we obtain that P c is an order ideal for all

P ∈ X̂(A). Thus, by [5, Theorem 10], the (∧, 1)-reduct of A is a distributive

semilattice, so A is a DH ∧-algebra, as required. �

Corollary 3.3. Let A be a DH ∧-algebra. Then

(1) X(A) ∩ Fi(A) = X̂(A).

(2) For each P ∈ X(A), there exists Q ∈ X̂(A) such that Q ⊆ P , i.e.,

X(A) = ↑X̂(A).

Proof. (1): This follows from Proposition 3.1 and Proposition 3.2.

(2): Let P ∈ X(A). As P is not empty, there exists a ∈ P . So, ↑a∩P c = ∅,
and as P c is an order-ideal, by Lemma 2.2, there exists Q ∈ X̂(A) such that

a ∈ Q and Q ⊆ P . �

We note that the inclusion X̂(A) ⊆ X(A) in Proposition 3.2 may be strict,

as the following example shows.

Example 3.4. Consider the DH ∧-algebra given in Example 2.9. Let us denote

by Fab the implicative filter ↑({a, b}) = {a, b, 1}. It is easy to see that Fi(A)

is the collection of principal up-sets. Moreover, Fi→(A) is Fi(A) together

with Fab. It is not difficult to check that Fab ∈ X(A), but since it is not closed

under meet, Fab /∈ X̂(A). Hence, we have: X̂(A) � X(A).

Finally, we mention one more notion of filter for H∧-algebras, that was

introduced in [17]. This notion corresponds to the notion of logical filter for

the logic H∧ defined in [17]. Although these filters do not play any role in

the representation of DH ∧-algebras, we will obtain a dual characterization of

them in the last section of the paper.

Definition 3.5. Let A be an H∧-algebra. An implicative filter H of A is

absorbent if for all a ∈ A and b ∈ H, a → (a ∧ b) ∈ H.

We denote by Ab(A) the collection of all absorbent filters of A. It is easy

to prove that Ab(A) ⊆ Fi(A). Indeed, let a, b ∈ H ∈ Ab(A). Clearly, P is an

up-set and moreover a → (a∧ b) ∈ H. Since H is an implicative filter, we have

a ∧ b ∈ H.

Notice that Ab(A) is closed under arbitrary intersections, so for B ⊆ A, we

may consider the least absorbent filter that contains B. Unlike the case of meet

filters or implicative filters, we do not have an alternative characterization of

the absorbent filter generated by a set. But we have the following proposition,

that will be used later on.

Proposition 3.6. For all F ∈ Fi(A), F ∈ Ab(A) if and only if for all a ∈ A,

〈F ∪ ↑a〉 is a meet filter.

Proof. Let F ∈ Ab(A) and let a ∈ A. If a ∈ F , there is nothing to prove, so

suppose a /∈ F . We claim that

〈F ∪ ↑a〉 ∈ Fi(A).
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For this, we need only show 〈F∪↑a〉 is closed under meets, so let b, c ∈ 〈F∪↑a〉.
As F �= ∅, we may assume that there are b0, . . . , bn, c0, . . . , cm ∈ F ∪ ↑a such

that b0 → (· · · (bn → b) · · · ) = 1 and c0 → (· · · (cm → c) · · · ) = 1. By Lemma

2.11, this implies (b0∧ · · · ∧ bn) → b = 1 and (c0 ∧ · · · ∧ cm) → c = 1. Then we

have b0 ∧ · · · ∧ bn ∧ c0 ∧ · · · ∧ cm ≤ b ∧ c. Since b0, . . . , bn, c0, . . . , cm ∈ F ∪ ↑a
and F and ↑a are both closed under meets, we have d1 ∈ F and d2 ∈ ↑a such

that b0 ∧ · · · ∧ bn ∧ c0 ∧ · · · ∧ cm = d1 ∧ d2 ≤ b ∧ c. Moreover, by definition of

an absorbent filter, d2 → (d1 ∧ d2) ∈ F ⊆ 〈F ∪ ↑a〉. Since d2 ∈ ↑a ⊆ 〈F ∪ ↑a〉,
by definition of an implicative filter, we obtain d1 ∧ d2 ∈ 〈F ∪↑a〉, as required.

For the converse, let F ∈ Fi(A) be such that for all a ∈ A, 〈F ∪ ↑a〉 is a

meet filter. We show that F is absorbent. Let b ∈ F and a ∈ A. We prove

that a → (a ∧ b) ∈ F . Notice first that 〈F ∪ ↑a〉 = 〈F ∪ {a}〉. As a ∈ ↑a and

b ∈ F , we have by hypothesis that a∧ b ∈ 〈F ∪↑a〉. Now we use the definition

of a generated implicative filter, and we get that there are c0, . . . , cn ∈ F , for

some n ∈ ω, such that c0 → (c1 → (· · · (cn → (a → (a ∧ b))) · · · )) = 1. But

this implies that a → (a ∧ b) ∈ F , as required. �

4. Representation theorem for DH ∧-algebras

In this section, we shall define spectral-like dual objects of DH ∧-algebras,

called DH ∧-spaces, and we shall prove that any DH ∧-algebra can be repre-

sented by means of a DH ∧-space. Recall that if 〈X, τ〉 is a topological space

and Y is a subset of X, then the family {U ∩ Y : U ∈ T} of subsets of Y is a

topology for Y called the relative topology inherited from 〈X, τ〉, or the sub-

space topology on Y . If Y is equipped with the subspace topology, then it is a

topological space in its own right, and is called a subspace of 〈X, τ〉. Subsets

of topological spaces are usually assumed to be equipped with the subspace

topology unless otherwise stated.

Definition 4.1. A DH ∧-space is a triple 〈X,κ, X̂〉 such that X̂ is a subset

of X, and

(DH ∧1) 〈X,κ〉 is an H-space,

(DH ∧2) X̂ is a DS-space under the subspace topology inherited from the

topology τκ of the H-space 〈X,κ〉,
(DH ∧3) κ =

{
(↑V )c : V ∈ D(X̂)

}
.

Remark 4.2. Let 〈X,κ, X̂〉 be a DH ∧-space. We need to be careful when

dealing with complements, since we are working with two spaces at the same

time. From now on we establish the following convention: complements V c

always refer to the set X. Therefore, the complement of V ⊆ X̂ with respect

to X̂ is V c ∩ X̂.

On the other hand, since X̂ ∈ D(X̂), by condition (DH ∧3), we have

(↑X̂)c = ↑(X ∩ X̂)c = ∅. Thus, X = ↑(X ∩ X̂) = ↑X̂.
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Now we are left to define an operation on Dκ(X) = {U : U c ∈ κ} that aims

to represent the meet operation. The following proposition will be useful for

this purpose. Notice that by the definition of generated subspace, the family

{U ∩ X̂ : U ∈ κ} is a base for the subspace X̂.

Proposition 4.3. Let 〈X,κ, X̂〉 be a DH ∧-space.

(1) U c = ↑(U c ∩ X̂), for each U ∈ κ.

(2) (↑(U c
1 ∩ · · · ∩ U c

n ∩ X̂))c ∈ κ, for every finite subset {U1, . . . , Un} of κ.

(3) KO(X̂) = c.

Proof. (1): Let U ∈ κ. Then by condition (DH ∧3), there exists V ∈ D(X̂)

such that U = (↑V )c. So, ↑(U c ∩ X̂) = ↑((↑V ) ∩ X̂) = ↑(V ∩ X̂) = ↑V = U c.

(2): Let U1, . . . , Un∈ κ. Then there exist V1, . . . , Vn ∈ D(X̂) such that

U1 = (↑V1)
c, . . . , Un = (↑Vn)

c. So,

(↑(U c
1 ∩ · · · ∩ U c

n ∩ X̂))c = (↑((↑V1) ∩ · · · ∩ (↑V1) ∩ X̂))c

= (↑(V1 ∩ · · · ∩ V1 ∩ X̂))c = (↑(V1 ∩ · · · ∩ V1))
c ∈ κ.

(3): Note that {U ∩ X̂ : U ∈ κ} =
{
X̂ ∩ (↑V )c : V c ∈ KO(X̂)

}
= KO(X̂),

because V = X̂ ∩ (↑V )c for each V c ∈ KO(X̂). �

For any DH ∧-space 〈X,κ, X̂〉, the structure 〈D(X̂),∩, X̂〉 is a distributive

semilattice, where by Proposition 4.3, D(X̂) = {U∩X̂ : U ∈ Dκ(X)}. Item (2)

of Proposition 4.3 guarantees that we can lift to Dκ(X) the meet operation

on D(X̂) given by intersection, and come up with a binary operation � on

Dκ(X), given by

U � V = ↑(U ∩ V ∩ X̂).

It is not difficult to see that 〈Dκ(X),�, X〉 is isomorphic to 〈D(X̂),∩, X̂〉
by means of the map γ : Dκ(X) −→ D(X̂), given by γ(U) = U ∩ X̂. Clearly, γ

is a surjective map such that γ(X) = X̂, and from Proposition 4.3, it follows

that it is injective. Moreover, from U, V ∈ Dκ(X) being up-sets and by item

(2) of Proposition 4.3, we get

γ(U � V ) = (↑(U ∩ V ∩ X̂)) ∩ X̂ = U ∩ V ∩ X̂ = γ(U) ∩ γ(V ).

Proposition 4.4. Let 〈X,κ, X̂〉 be a DH∧-space. Then for all U, V ∈ Dκ(X),

U ⇒ V = X if and only if U � V = U .

Proof. Let U, V ∈ Dκ(X). By definition of⇒, we have that U ⇒ V = X if and

only if U ⊆ V . Then we show that U ⊆ V if and only if U � V = U . By item

(1) of Proposition 4.3, if U ⊆ V , then U �V = ↑(U ∩V ∩ X̂) = ↑(U ∩ X̂) = U .

The converse is immediate because U �V = ↑(U ∩V ∩X̂)⊆ ↑(V ∩X̂) = V . �

Corollary 4.5. Let 〈X,κ, X̂〉 be a DH∧-space. Then 〈Dκ(X),⇒,�, X〉 is a

DH ∧-algebra.
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Given a DH ∧-space 〈X,κ, X̂〉, the DH ∧-algebra 〈Dκ(X),⇒,�, X〉 will be

called the dual DH ∧-algebra of X.

Now we provide a construction that shows that any DH ∧-algebra A is

(isomorphic to) the dual DH ∧-algebra of some DH ∧-space.

Let A be a DH ∧-algebra. Let 〈X(A), κA〉 be the dual H-space of 〈A,→, 1〉.
As κA is a base for a topology τκA

on X(A), we have that the family,

{U ∩ X̂(A) : U ∈ κA} = {ϕ(a)c ∩ X̂(A) : a ∈ A},

is a base for the induced topology τX̂(A) on X̂(A). But as

ϕ(a)c ∩ X̂(A) = {G ∈ X̂(A) : a /∈ G} = σ(a)c,

for each a ∈ A, we have that τX̂(A) = τA, i.e., 〈X̂(A), τX̂(A)〉 =
〈
X̂(A), τA

〉

is the dual DS-space of 〈A,∧, 1〉.

Proposition 4.6. Let A be a DH ∧-algebra. Then ϕ(a) = ↑σ(a), for each

a ∈ A.

Proof. Let P ∈ X(A). Assume that a ∈ P . As P c is an order ideal such that

a /∈ P c, we have by Lemma 2.2, there exists Q ∈ X̂(A) such that a ∈ Q ⊆ P .

So, Q ∈ σ(a) and Q ⊆ P . Hence, P ∈ ↑σ(a). As σ(a) ⊆ ϕ(a) and ϕ(a) is an

up-set, ↑σ(a) ⊆ ϕ(a). �

Theorem 4.7. Let A be a DH∧-algebra. Then
〈
X(A), κA, X̂(A)

〉

is a DH ∧-space and the map ϕ : A −→ P↑(X(A)) is an isomorphism between

the DH ∧-algebras A and < Dκ(X(A)),⇒,�, X(A) >.

Proof. That 〈X(A), κA, X̂(A)〉 is a DH ∧-space follows from the previous

proposition and the spectral-like duality for Hilbert algebras and distributive

semilattices, as was already remarked. It also follows that ϕ is an isomor-

phism of Hilbert algebras 〈A,→, 1〉 and 〈DκA
(X(A)),⇒, X(A)〉. Moreover, it

follows from the definition and item (2) of Proposition 4.6, that

ϕ(a) � ϕ(c) = ↑(ϕ(a) ∩ ϕ(c) ∩ X̂(A)) = ϕ(a ∧ c).

Thus, ϕ is an isomorphism of meet semilattices. �

Given a DH ∧-algebra A, the DH ∧-space 〈X(A), κA, X̂(A)〉 will be called

the dual DH ∧-space of A.

Recall that given a DH ∧-space 〈X,κ, X̂〉, by the results on duality for

Hilbert algebras, the map

εX : X −→ X(Dκ(X)), given by εX(x) = {U ∈ Dκ(X) : x ∈ U},

is a homeomorphism between the H-spaces 〈X,κ〉 and 〈X(Dκ(X)), κDκ(X)〉.
Moreover, by the duality for distributive semilattices, we get that the map

ε̂X̂ : X̂ −→ X̂(D(X̂)), given by

ε̂X̂(x) = {U ∈ D(X̂) : x ∈ U} = {V ∩ X̂ : x ∈ V ∈ Dκ(X)} = γ[εX(x)],
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is a homeomorphism between the DS-spaces X̂ and X̂(D(X̂)).

Theorem 4.8. Let 〈X,κ, X̂〉 be a DH ∧-space. Then εX [X̂] = X̂(D(X̂)).

Proof. Notice that γ[εX [X̂]] = ε̂X̂ [X̂] = X̂(D(X̂)) = γ[X̂(D(X̂))]. Since

γ is an isomorphism between 〈Dκ(X),�, X〉 and D(X̂), we conclude that

εX [X̂] = X̂(D̂(X)). �

5. Categorical duality

We now extend the topological representation studied in the previous sec-

tion to a dual equivalence of categories. Following the same approach as in [7],

we consider two different categories with DH ∧-algebras as objects. The mor-

phisms we consider are of algebraic homomorphisms, and a weaker notion

that naturally extends the notion of →-semi-homomorphism between Hilbert

algebras introduced in [5].

Definition 5.1. A semi-homomorphism between two DH ∧-algebras A1 and

A2 is a map h : A1 −→ A2 such that for all a, b ∈ A1,

(1) h(11) = 12,

(2) h(a →1 b) ≤ h(a) →2 h(b),

(3) h(a ∧1 b) = h(a) ∧2 h(b).

If moreover h satisfies h(a) →2 h(b) ≤ h(a →1 b), then it is called a homomor-

phism.

Recall that we call →-semi-homomorphism those maps between Hilbert

algebras that satisfy conditions (1) and (2) in previous definition. Thus, a

semi-homomorphism is a →-semi-homomorphism and it is a homomorphism

with respect to the meet.

Definition 5.2. A relation R ⊆ X1 × X2 is a DH ∧-morphism between the

DH ∧-spaces 〈X1, τκ1
, X̂1〉 and 〈X2, τκ2

ˆ, X2〉 if R is an H-relation between the

H-spaces 〈X1, τκ1〉 and 〈X2, τκ2〉, and (DH ∧M) R(x) = ↑(R(x)∩X̂2), for every

x ∈ X̂1.

By the spectral-like duality for Hilbert algebras, for any DH ∧-morphism

R ⊆ X1 × X2 between the DH ∧-spaces 〈X1, κ1, X̂1〉 and 〈X2, κ2
ˆ, X2〉, the

function �R : Dκ2
(X2) −→ Dκ1

(X1), given by

�R(U) = {x ∈ X1 : R(x) ⊆ U},

is a →-semi-homomorphism of Hilbert algebras. We also get (see [7, Example

3.1] that for a DH ∧-space 〈X,κ, X̂〉, the order ≤ on X, given by the dual

of the specialization order, is a functional H-relation. Notice that for all

x ∈ X̂, ↑x = ↑(↑x ∩ X̂). Therefore, the relation ≤ also satisfies the condition

(DH ∧M), and hence it is a DH ∧-morphism. Furthermore, it follows easily

that �≤ = idDκ(X). It is also easy to see that for all DH ∧-spaces 〈Xi, τκi , X̂i〉
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with 1 ≤ i ≤ 3, and for all DH ∧-morphisms R ⊆ X1 ×X2 and S ⊆ X2 ×X3,

we have that �S◦R = �R ◦�S .

Proposition 5.3. Suppose R ⊆ X1 ×X2 is a DH ∧-morphism between the

DH ∧-spaces 〈X1, τκ1
, X̂1〉 and 〈X2, τκ2

, X̂2〉. Then for all U, V ∈ Dκ2
(X2),

�R(↑(U ∩ V ∩ X̂2)) = ↑(�R(U) ∩�R(V ) ∩ X̂1).

Proof. Let U, V ∈ Dκ2
(X2). First we show the inclusion from left to right.

Let x ∈ �R(↑(U ∩ V ∩ X̂2)). By item (1) of Proposition 4.3, we know that

�R(↑(U ∩ V ∩ X̂2)) = ↑(�R(↑(U ∩ V ∩ X̂2)) ∩ X̂1). Then there is y ∈ X̂1

such that y ∈ �R(↑(U ∩ V ∩ X̂2)) and y ≤ x. By definition, we have that

R(y) ⊆ ↑(U ∩V ∩ X̂2). From U, V being up-sets, it follows that R(y) ⊆ U ∩V ,

i.e., y ∈ �R(U) ∩ �R(V ). From the assumption x ≥ y ∈ X̂1, it follows that

x ∈ ↑(�R(U) ∩�R(V ) ∩ X̂1), as required.

Let us show now the reverse inclusion. Since �R(↑(U∩V ∩X̂2)) is an up-set,

it is enough to show that �R(U) ∩ �R(V ) ∩ X̂1 ⊆ �R(↑(U ∩ V ∩ X̂2)). Let

x ∈ �R(U) ∩ �R(V ) ∩ X̂1, i.e., R(x) ⊆ U ∩ V and x ∈ X̂1. In order to show

that R(x) ⊆ ↑(U ∩ V ∩ X̂2), let y ∈ R(x). By condition (DH ∧M), we know

that R(x) = ↑(R(x)∩ X̂2). Thus, there is y
′ ∈ R(x)∩ X̂2 such that y′ ≤ y. By

assumption, y′ ∈ U ∩V , so, y′ ∈ U ∩V ∩ X̂2, and therefore y ∈ ↑(U ∩V ∩ X̂2).

Hence, we have proved that R(x) ⊆ ↑(U∩V ∩X̂2), i.e., x ∈ �R(↑(U∩V ∩X̂2)),

as required. �

Corollary 5.4. Suppose that R ⊆ X1 ×X2 is a DH ∧-morphism between the

DH ∧-spaces 〈X1, τκ1
, X̂1〉 and 〈X2, τκ2

, X̂2〉. Then �R is a semi-homomor-

phism between the DH ∧-algebras Dκ2(X2) and Dκ1(X1).

Corollary 5.4 provides the dual semi-homomorphism of a DH ∧-morphism.

Before showing how to define a DH ∧-morphism from a semi-homomorphism,

we consider a different class of relations between DH ∧-spaces. Following [7],

we call a DH ∧-morphism functional when it satisfies condition (HF). The next

corollary follows straightforwardly from the above results and the duality for

Hilbert algebras.

Corollary 5.5. Let R ⊆ X1 ×X2 be a DH ∧-functional morphism between the

DH ∧-spaces 〈X1, τκ1
, X̂1〉 and 〈X2, τκ2

, X̂2〉. Then �R is a homomorphism

between the dual DH ∧-algebras of Dκ2(X2) and Dκ1(X1).

Recall that by spectral-like duality for Hilbert algebras, we have that for

any semi-homomorphism h : A1 −→ A2 between DH ∧-algebras A1 and A2,

the relation Rh ⊆ X(A1)×X(A2), given by (P,Q) ∈ Rh iff h−1[P ] ⊆ Q, is an

H-relation between the dual H-spaces of 〈A2,→2, 12〉 and 〈A1,→1, 11〉. It also
follows that for the identity morphism idA : A −→ A for an DH ∧-algebraA, we

have RidA
= ⊆, and for DH ∧-algebras A1,A2,A3 and semi-homomorphisms

h : A1 −→ A2 and g : A2 −→ A3, we have Rg◦h = Rg ◦Rh.

Lemma 5.6. Suppose h : A1 −→ A2 is a semi-homomorphism between the

DH ∧-algebras A1 and A2. Then for any P ∈ Fi(A2), h
−1[P ] ∈ Fi(A1).
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Proof. Let us show that h−1[P ] is a meet filter. Let a ∈ h−1[P ] and b ∈ A1

such that a ≤1 b. Then a →1 b = 11, so 12 = h(11) = h(a →1 b) ≤ h(a) →2

h(b). Therefore, h(a) ≤2 h(b), and by assumption, h(a) ∈ P . As P is an

up-set, so h(b) ∈ P , and so b ∈ h−1[P ]. This shows that h−1[P ] is an up-set.

Let a, b ∈ h−1[P ]. Then h(a), h(b) ∈ P , and since P is a meet filter and

h(a ∧1 b) = h(a) ∧2 h(b), we have h(a ∧1 b) ∈ P . So, a ∧1 b ∈ h−1[P ]. This

shows that h−1[P ] is closed under meets. �

Proposition 5.7. Suppose h : A1 −→ A2 is a semi-homomorphism between

DH ∧-algebras A1 and A2; then Rh ⊆ X(A2)×X(A1) is a DH ∧-morphism.

Proof. Let P ∈ X̂(A2). We prove that Rh(P ) = ↑(Rh(P ) ∩ X̂(A1)). Since

Rh is an H-relation, we know that Rh(P ) is a closed subset of the H-space

〈X(A), κA〉. So, Rh(P ) is an up-set. Thus, ↑(Rh(P ) ∩ X̂(A1)) ⊆ Rh(P ). Let

us show the reverse inclusion. Let Q ∈ Rh(P ), i.e., h−1[P ] ⊆ Q. By Lemma

5.6, h−1[P ] ∈ Fi(A1). So h−1[P ] ∩ Qc = ∅. As Qc is an order ideal and

h−1[P ] a meet filter, by Lemma 2.2 we have that there is Q′ ∈ X̂(A1) such

that h−1[P ] ⊆ Q′ and Q′ ∩Qc = ∅. Then Q′ is the required element such that

Q′ ∈ Rh(P ) ∩ X̂(A1) and Q′ ⊆ Q, i.e., Q ∈ ↑(Rh(P ) ∩ X̂(A1)). �

Corollary 5.8. Suppose h : A1 −→ A2 is a semi-homomorphism between the

DH ∧-algebras A1 and A2. Then Rh is a DH ∧-morphism between the dual

DH ∧-spaces of A2 and A1. Moreover, if h is a homomorphism, then Rh is

functional.

5.1. Dual equivalences of categories. We show first thatDH ∧-spaces are

taken as objects and DH ∧-morphisms as morphisms, we obtain indeed a cate-

gory. As a corollary, we get that DH ∧-spaces and DH ∧-functional morphisms

form a subcategory of the former.

Theorem 5.9. Suppose that 〈X1, τκ1 , X̂1〉, 〈X2, τκ2 , X̂2〉 and 〈X3, τκ3 , X̂3〉 are
DH ∧-spaces; let R ⊆ X1 ×X2 and S ⊆ X2 ×X3 be two DH ∧-morphisms.

(1) The DH ∧-morphism ≤2 ⊆ X2 ×X2 satisfies the conditions ≤2 ◦ R = R,

and S ◦ ≤2 = S.

(2) S ◦R ⊆ X1 ×X3 is a DH ∧-morphism.

(3) If R,S are functional, then so is S ◦R.

Proof. (1): This has been proven in [7, Theorem 3.1] for H-relations, so it

holds particularly for DH ∧-morphisms.

(2): By [7, Theorem 3.1], we get that S◦R is an H-relation. We just have to

show that S ◦R satisfies condition (DH ∧M), i.e., to show that for all x ∈ X̂1,

(S ◦R)(x) = ↑(S ◦R)(x)∩ X̂3). Let x ∈ X̂1. First we prove that (S ◦R)(x) is

an up-set. Let z ∈ (S ◦R)(x) and let z ≤3 w for some w ∈ X3. By definition,

there is y ∈ X2 such that y ∈ R(x) and z ∈ S(y). By condition (DH ∧M) on

R, we have R(x) = ↑(R(x) ∩ X̂2). Then there is y′ ∈ R(x) ∩ X̂2 such that

y′ ≤2 y. Now since S ◦ ≤2 = S, we get z ∈ S(y′). As y′ ∈ X̂2, by condition
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(DH ∧M) on S, S(y′) = ↑(S(y′)∩ X̂3). Then there is z′ ∈ S(y′)∩ X̂3 such that

z′ ≤3 z ≤3 w. Therefore, we have w ∈ S(y′), and then from y′ ∈ R(x), we get

w ∈ (S ◦R)(x).

From (S ◦R)(x) being an up-set, we have that ↑(S◦R)(x)∩X̂3 ⊆ (S ◦R)(x).

For the other inclusion, let z ∈ (S ◦R)(x). By a similar argument as before,

we conclude that there is z′ ∈ (S ◦R)(x) ∩ X̂3 such that z′ ≤ z. Therefore,

z ∈ ↑(S ◦R(x) ∩ X̂3).

(3) This follows from item (2) and results in [7, Section 5.2]. �

Corollary 5.10. DH ∧-spaces and DH ∧-morphisms form a category.

Proof. For a DH ∧-space 〈X,κ, X̂〉, we already pointed out that the order ≤
on X given by the dual of the specialization order, is a DH ∧-morphism. Then

by item (1) in Theorem 5.9, it is the identity morphism on 〈X,κ, X̂〉. By item

(2) in Theorem 5.9, the relational composition works as composition between

DH ∧-morphisms. �

Corollary 5.11. DH ∧-spaces and DH ∧-functional morphisms form a cate-

gory.

Proof. This follows from the previous corollary and item (3) in Theorem 5.9.

�

Let us consider the following categories:

DH∧
S DH ∧-algebras and semi-homomorphisms,

DH∧
H DH ∧-algebras and homomorphisms,

SpDH∧

M DH ∧-spaces and DH ∧-morphisms,

SpDH∧

F DH ∧-spaces and DH ∧-functional morphisms.

We now complete the dualities by exhibiting the contravariant functors and

the natural isomorphisms involved in them.

By previous results, we define a contravariant functor ( )∗ : DH
∧
S → SpDH∧

M

as follows. For any DH ∧-algebras A,A1,A2 and any semi-homomorphism

h : A1 −→ A2,

A∗ = 〈X(A), κA, X̂(A)〉 and h∗ = Rh.

Similarly, we shall define the contravariant functor ( )∗ : SpDH∧

M → DH∧
S as

follows. For any DH ∧-spaces 〈X,κ, X̂〉, 〈X1, κ1, X̂1〉, and 〈X2, κ2, X̂2〉 and

any DH ∧-morphism R ⊆ X1 ×X2,

(〈X,κ, X̂〉)∗ = 〈Dκ(X),⇒,�, X〉 and R∗ = �R.

Consider now the following family of morphisms in DH∧
S :

ϕ =
(
ϕA : A −→ DκA

(X(A))
)
A∈DH∧

S

.

Lemma 5.12. ϕ is a natural isomorphism between the identity functor in

DH∧
S and (( )∗)

∗.
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Proof. Suppose that A1,A2 are two DH ∧-algebras, and let h : A1 −→ A2 be

a semi-homomorphism between them. Then by [7, Lemma 3.5], we get that

�Rh
◦ ϕA1

= ϕA2
◦ h, and then by Theorem 4.7 we get that for all A ∈ DH∧

S ,

ϕA is an isomorphism. �

For any DH ∧-space 〈X,κ, X̂〉, we defined the map εX : X −→ X(Dκ(X)).

Associated with this map, we define now the relation ψX ⊆ X ×X(Dκ(X) as

follows:

(x, P ) ∈ ψX iff εX(x) ⊆ P.

Lemma 5.13. ψX is a DH ∧-functional morphism.

Proof. By the results of [7], we know that ψX is a functional H-relation, so we

just have to check that condition (DH∧M) of Definition 5.2 is satisfied. Let

x ∈ X̂. It is immediate that ↑(ψX(x) ∩ X̂(D(X̂))) ⊆ ψX(x). Let P ∈ ψX(x),

i.e., εX(x) ⊆ P . By Theorem 4.8, we know that εX(x) ∈ X̂(D(X̂)), and

clearly εX(x) ∈ ψX(x). Therefore, P ∈ ↑(ψX(x) ∩ X̂(D(X̂)), as required. �

Consider now the following family of morphisms in SpDH∧

M :

ψ =
(
ψX ⊆ X ×X(Dκ(X))

)
〈X,κ,X̂〉∈SpDH∧

M

.

Lemma 5.14. ψ is a natural isomorphism between then identity functor in

SpDH∧

M and (( )∗)∗.

Proof. Suppose that 〈X1, τκ1
, X̂1〉 and 〈X2, τκ2

, X̂2〉 are two DH ∧-spaces, and

let R ⊆ X1 × X2 be a DH ∧-morphism between them. By [7, Lemma 3.4],

we get that (x, y) ∈ R iff (εX1
(x), εX2

(y)) ∈ R�R
, and from this it follows

that R�R
◦ ψX1

= ψX2
◦ R. Moreover, by Theorem 4.8, we have that εX

is an homeomorphism such that εX [X̂] = X̂(D(X̂)). This implies, together

with results from [7, Theorem 3.2], that EX is an isomorphism in SpDH∧

M , as

required. �

Theorem 5.15. The categories SpDH∧

M and DH∧
S are dually equivalent by

means of the contravariant functors ( )∗ and ( )∗ and the natural equivalences

ϕ and ψ. Similarly, the categories SpDH∧

F and DH∧
H are dually equivalent.

Remark 5.16. A subclass of DH ∧-algebras already mentioned are the im-

plicative semilattices (or IS-algebras). A duality for IS-algebras was studied

in [5], where IS-spaces are defined as those DS-spaces 〈X, τ〉 that satisfy the

following condition:

(IS) for all U, V ∈ KO(X), sat(U ∩ V c) ∈ KO(X).

Notice that condition (IS) is similar to condition (H) of definition of H-space.

It is clear that the duality given in [5] is a particular case of the one presented

here when X = X̂ and κ = KO(X).
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6. Topological characterization of filters

In [7, Section 5], the authors give a topological characterization of implica-

tive filters of an H-algebra. Here we give a topological characterization of

implicative filters, meet filters and absorbent filters of a DH ∧-algebra.

Let A be a DH ∧-algebra. Let C(X(A)) be the family of all closed subsets

of the H-space 〈X(A), κA〉. We consider the following maps:

C(−) : Fi→(A) −→ C(X(A)) given by F �−→ CF =
⋂

{ϕ(a) : a ∈ F},

F(−) : C(X(A)) −→ Fi→(A) given by C �−→ FC = {a ∈ A : C ⊆ ϕ(a)}.

By [7, Proposition 5.1], we get that these maps are well defined, and more-

over, they are inverses of each other. So, the ordered sets 〈Fi→(A),⊆〉 and

〈C(X(A)),⊇〉 are order isomorphic. Let C be an irreducible closed subset

X(A). We prove that the implicative filter FC = {a ∈ A : C ⊆ ϕ(a)} is

irreducible. If F1,F2 are implicative filters of A such that F1 ∩ F2 ⊆ FC , then

C ⊆ CF1∪CF2 . As C is irreducible, C ⊆ CF1 or CF2 . So, F1 ⊆ FC or F2 ⊆ FC ,

i.e., FC is irreducible. Thus, →-irreducible implicative filters of A correspond

to irreducible closed subsets of 〈X(A), κA〉. We now identify which closed

subsets of 〈X(A), κA〉 correspond to meet filters of A.

Proposition 6.1. For any DH ∧-algebra A, the following hold:

(1) If F ∈ Fi(A), then CF = ↑(CF ∩ X̂(A)).

(2) If C ∈ C(X(A)) is such that C = ↑(C ∩ X̂(A)), then FC ∈ Fi(A).

Proof. (1): For F ∈ Fi(A), as CF is closed subset of 〈X(A), κA〉, we have

that it is an up-set. Thus, ↑(CF ∩ X̂(A)) ⊆ CF . Let P ∈ X(A) be such that

P ∈ CF . Then F ⊆ P . Consider the order ideal P c. We have F ∩ P c = ∅, so
by Lemma 2.2, there is F ′ ∈ X̂(A) such that F ⊆ F ′ and F ′ ∩ P c = ∅, i.e.,
F ′ ⊆ P . Thus, F ′ ∈ CF ∩ X̂(A), and therefore P ∈ ↑(CF ∩ X̂(A)).

(2): Let C ∈ C(X(A)) be a closed subset such that C = ↑(C ∩ X̂(A)).

Let a, b ∈ FC . We show a ∧ b ∈ FC . By assumption, C ⊆ ϕ(a), ϕ(b). Then

C ∩ X̂(A) ⊆ ϕ(a) ∩ ϕ(b) ∩ X̂(A), and so

C = ↑(C ∩ X̂(A)) ⊆ ↑(ϕ(a) ∩ ϕ(b) ∩ X̂(A)) = ϕ(a ∧ b).

Therefore, a ∧ b ∈ FC . �

Recall that we have already considered the DS- space X̂(A) = 〈X̂(A), τA〉
where the topology τA is generated by the base {σ(a) : a ∈ A}. Since X̂(A)

is a subspace of 〈X(A), κA〉, we have that C is a closed subset of X̂(A) if and

only if C = C ′ ∩ X̂(A) for some closed subset C ′ of 〈X(A), κA〉. Therefore,

by means of the same maps as before, we obtain that meet filters of A cor-

respond to closed sets of 〈X̂(A), τA〉, and vice versa. As above, we can see

that ∧-irreducible meet filters correspond to irreducible closed subsets of the

DS-space 〈X̂(A), τA〉.
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Finally, we identify which closed sets of the H-space 〈X(A), κA〉 correspond
to absorbent filters of A.

Proposition 6.2. For any DH ∧-algebra A,

(1) If F ∈ Ab(A), then for all a ∈ A, CF ∩ ϕ(a) = ↑(CF ∩ ϕ(a) ∩ X̂(A)).

(2) If C is a closed subset of 〈X(A), κA〉 with C ∩ϕ(a) = ↑(C ∩ϕ(a)∩ X̂(A))

for all a ∈ A, then FC ∈ Ab(A).

Proof. (1): For F ∈ Ab(A) and a ∈ A, if a ∈ F , then CF ∩ ϕ(a) = CF , and

since F is a meet filter, Proposition 6.1 implies

CF ∩ ϕ(a) = CF = ↑(CF ∩ X̂(A)) = ↑(CF ∩ ϕ(a) ∩ X̂(A)).

Assume that a /∈ F . Then by Proposition 3.6, we get that 〈F ∪ ↑a〉 is a meet

filter. Let P ∈ CF ∩ϕ(a), i.e., {a}∪F ⊆ P . We show P ∈ ↑(CF ∩ϕ(a)∩X̂(A)).

As 〈F ∪ ↑a〉 is a meet filter and P c is an order ideal such that 〈F ∪ ↑a〉∩P c = ∅,
we have by Lemma 2.2, that there is F ′ ∈ X̂(A) such that F ′ ∩ P c = ∅ and

〈F ∪ ↑a〉 ⊆ F ′, i.e., {a} ∪ F ⊆ F ′ ⊆ P . Therefore, F ′ ∈ CF ∩ ϕ(a) ∩ X̂(A),

and consequently P ∈ ↑(CF ∩ ϕ(a) ∩ X̂(A)), as required.

(2): For C a closed subset of 〈X(A), κA〉 with C∩ϕ(a) = ↑(C∩ϕ(a)∩X̂(A))

for all a ∈ A, we show that FC is an absorbent filter, i.e., we show that for

any b ∈ FC and c ∈ A, c → (b ∧ c) ∈ FC . By definition, we have to show

that we have C ⊆ ϕ(c → (b ∧ c)) = ϕ(c) ⇒ (ϕ(b) � ϕ(c)). By assumption, we

have that C ∩ ϕ(c) ⊆ ↑(C ∩ ϕ(c) ∩ X̂(A)) and C ⊆ ϕ(b). Then we have that

C∩ϕ(c) ⊆ ↑(ϕ(b)∩ϕ(c)∩X̂(A)) = ϕ(b)�ϕ(c), so C∩ϕ(c)∩(ϕ(b)�ϕ(c))c = ∅.
Since C is a closed subset of 〈X(A), κA〉, it is an up-set, so this implies that

C ∩ sat(ϕ(c) ∩ (ϕ(b) � ϕ(c))c) = ∅, i.e.,

C ⊆ (sat(ϕ(c) ∩ (ϕ(b) � ϕ(c))c))c = ϕ(a → (b ∧ a)),

as required. �

Finally, by means of the same map as before, we obtain that absorbent

filters of A correspond to closed sets C of the DS-space 〈X̂(A), τA〉 with the

property that for all a ∈ A, C ∩ ϕ(a) = ↑(C ∩ ϕ(a) ∩ X̂(A)).
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