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Weak complemented and weak invertible elements
in C-lattices

C. Jayaram

Abstract. In this paper, we prove that an indecomposable M -lattice is either a
principal element domain or a special principal element lattice. Next, we introduce
weak complemented elements and characterize reduced M -lattices in terms of weak
complemented elements. We also study weak invertible elements and locally weak
invertible elements in C-lattices and characterize reduced Prüfer lattices, WI-lattices,
reduced almost principal element lattices, and reduced principal element lattices in
terms of locally weak invertible elements.

1. Introduction

By a multiplicative lattice, we mean a complete lattice L, with least ele-

ment 0 and compact greatest element 1, on which there is defined a com-

mutative, associative, completely join distributive product for which 1 is a

multiplicative identity. By a C-lattice we mean a (not necessarily modular)

multiplicative lattice which is generated under joins by a multiplicatively closed

subset C of compact elements. Throughout this paper L denotes a principally

generated (i.e., every element of L is a join of principal elements of L) C-lattice

and L∗ denotes the set of all compact elements of L. R denotes a commutative

ring with identity and L(R) denotes the lattice of all ideals of R.

Obviously, C-lattices arise as abstractions of ideal systems, in particular

when considering rings with identity. There the principal ideals form a gener-

ating set of compact elements whereas the finitely generated ideals form the

set of all compact elements. Like the ideal lattice of a ring, any C-lattice can

be localized. If S is a multiplicative closed subset of L∗, then for any a ∈ L,

aS =
∨
{x ∈ L∗ | xs ≤ a for some s ∈ S} and LS = {xS | x ∈ L}. LS

is again a multiplicative lattice under the same order as L with the product

aS ◦ bS = (ab)S . We denote the meet and join operations in LS by ∧ and

∨. The meet and join operations for LS are given by aS ∧ bS = (a ∧ b)S
and aS ∨ bS = (a ∨ b)S , for any aS , bS ∈ LS . For a, b ∈ L, we denote∨
{x ∈ L | xb ≤ a} by (a :b). If p is a prime element of L and S =

{x ∈ L∗ | x � p}, then LS is denoted by Lp. For more details on C-lattices and
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their localization theory, the reader is referred to [21] and [26]. If L = L(R)

is the lattice of ideals of a ring and if p is a prime ideal of R, then the lattice

Lp of ideals of Rp is naturally isomorphic to the localization L(R)p of the

lattice L(R).

We note that in a C-lattice, product is order preserving, a finite product

of compact elements is again compact, and for any a, b ∈ L, a = b if and

only if am = bm for all maximal elements m of L. Since in C-lattices, every

element is a join of compact elements and a finite join of compact elements

is compact, then by [3, Theorem 1.3], it follows that principal elements are

always compact.

An element a ∈ L is said to be proper if a < 1. An element p < 1 in L is

said to be prime if ab ≤ p implies either a ≤ p or b ≤ p. In a C-lattice L,

an element p is prime if and only if ab ≤ p implies either a ≤ p or b ≤ p for

all a, b ∈ L∗. An element m < 1 in L is said to be maximal if m < x ≤ 1

implies x = 1. It is easily seen that in C-lattices, maximal elements are prime

elements.

The theory of C-lattices was initiated by R.P. Dilworth in his fundamental

and ground breaking paper [9] based on the notion of a principal element e.

Recall that an element e ∈ L is said to be principal [9], if it satisfies the dual

identities (i) a ∧ be = ((a :e) ∧ b)e and (ii) (ae ∨ b :e) = (b :e) ∨ a. Elements

satisfying the weaker identity (i
′
) a ∧ e = (a :e)e obtained from (i) by setting

b = 1 are called weak meet principal. An element a ∈ L is said to be locally

principal if am is principal in Lm for all maximal elements m of L. If e ∈ L is

weak meet principal and if e ≤ m for maximal element m of L, then for any

am ∈ Lm, am ≤ em implies am = (a ∧ e)m = ((a :e)e)m = (a :e)m ◦ em, so em
is weak meet principal in Lm, and hence by [3, Theorem 1.2], em is principal

in Lm. Therefore, every weak meet principal element of L is locally principal.

An ideal I of R is said to be quasi-principal if it is a principal element of

L(R). An element a ∈ L is said to be a complemented element if a ∨ b = 1

and ab = 0 for some element b ∈ L and a is called nilpotent if an = 0 for some

positive integer n. For any a, b ∈ L, we say a and b are comaximal if a∨ b = 1.

L is said to be indecomposable if 0 and 1 are the only complemented elements

of L. If 0 is the only nilpotent element, then L is called reduced. An element

a ∈ L is said to be weak invertible if a is principal and (0:a) is a complemented

element of L, and a is said to be invertible if a is principal and (0:a) = 0.

Weak invertible elements have been studied in [23] and [19]. An ideal I of R

is said to be weak invertible [19] if it is a weak invertible element of L(R). An

ideal I of R is said to be quasi-invertible [19] if it is an invertible element of

L(R). For any a ∈ L, we denote
√
a =

∨
{x ∈ L∗ | xn ≤ a for some positive

integer n}. L is said to be a domain if the zero element is a prime element.

Note that by [8, Theorem 1], in C-lattices, a compact locally principal element

is principal.

L is said to be a principal element lattice if every element is principal. L

is said to be an almost principal element lattice if Lm is a principal element
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lattice for each maximal element m of L. The classical example of a principal

element lattice presented by Dilworth in [9] is the ideal structure of a Dedekind

domain. For various characterizations of principal element lattices and almost

principal element lattices, the reader is referred to [6], [20], [22], [15], [16]

and [17]. L is said to be a special principal element lattice if it has a unique

maximal element which is principal and every proper element is a power of the

maximal element.

A lattice L is said to be anM -lattice if every element is weak meet principal.

For more information on M -lattices, the reader is referred to [2], [13], and [28].

L is said to be a regular lattice if every compact element of L is a complemented

element of L. For various characterizations of regular lattices, the reader is

referred to [5]. L is an M -normal lattice [7] if every prime element contains a

unique minimal prime element. Note that an M -normal lattice need not be an

M -lattice. L is called a Prüfer lattice if every compact element is principal.

L is called a WI-lattice if every compact element is weak invertible. Prüfer

lattices have been studied in [3] and [17] and WI-lattices have been studied in

[23] and [19].

Recall that an ideal I of R is called a multiplication ideal if for every ideal

J ⊆ I, there exists an ideal K with J = KI. R is a multiplication ring if every

ideal is a multiplication ideal. Multiplication rings have been studied in [4]

and [11]. It should be mentioned that R is a multiplication ring if and only if

L(R) is an M -lattice. R is a general ZPI-ring, if every ideal is a finite product

of prime ideals of R. A ring R is said to be arithmetical if its ideal lattice

is distributive. R is said to be a WI-ring, if every finitely generated ideal is

weak invertible. Recall that R is called a quasi-regular ring if its classical ring

of quotients is a Von-Neumann regular ring. Quasi-regular rings have been

studied in [10] and [14]. It should be mentioned that quasi-regular rings are

also known as complemented rings.

In this paper, we study weak complemented elements, weak invertible

elements, and locally weak invertible elements in not necessarily modular

C-lattices. For various examples of non modular C-lattices, the reader is re-

ferred to [1]. In Section 2, we prove that an indecomposable M -lattice is either

a principal element domain or a special principal element lattice (see Theorem

2.2). We also introduce weak complemented elements and characterize reduced

M -lattices in terms of weak complemented elements (see Theorem 2.7). In Sec-

tion 3, we study weak invertible elements and locally weak invertible elements

in C-lattices and characterize reduced Prüfer lattices, WI-lattices, reduced al-

most principal element lattices, and reduced principal element lattices in terms

of locally weak invertible elements (see Theorem 3.3, Theorem 3.4, Theorem

3.5, and Theorem 3.10). Finally, we prove that if L is a reduced Prüfer lat-

tice, then compact prime elements of L are either complemented elements or

invertible maximal elements of L (see Theorem 3.13). As a consequence, we

prove that if R is a reduced arithmetical ring, then finitely generated prime

ideals of R are either complemented ideals or quasi-invertible maximal ideals
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of R. Further, if R is a WI-ring, then finitely generated prime ideals of R are

either complemented ideals or invertible maximal ideals of R (see Corollary

3.14).

For general background and terminology, the reader may consult [3] and

[21], and for general background and terminology in commutative ring theory,

the reader is referred to [12] and [27].

2. Indecomposable M-lattices

In this section, we study weak complemented elements and characterize

reduced M -lattices in terms of weak complemented elements.

We shall begin with the following lemma.

Lemma 2.1. Let L be an M -lattice and let b be a nonzero idempotent element

of L. Then b is the join of complemented elements of L.

Proof. Let c =
∨
{d ∈ L∗ | d ≤ b and d is a nilpotent element of L}. Choose

any nonzero compact element y of L such that y ≤ b. By hypothesis, y = bd

for some d ∈ L. Note that by = b2d = bd = y. As y is compact, we get y = xy

for some compact element x ≤ b. By hypothesis and by [8, Theorem 1 and

Proposition 2], x is principal. Observe that x is a non-nilpotent element of L.

If x ≤ c, then by [9, Property 2.16], x is a nilpotent element, so x �≤ c and

hence c < b. Also, it can be easily shown that c =
√
c ∧ b. Let m = (c :x) ∧ b

and n = (c :m) ∧ b. We claim that m ∧ n = c. Clearly,

m ∧ n = (c :x) ∧ b ∧ (c :m) = m ∧ (c :m)

and c ≤ m ∧ (c :m) = m ∧ n. Again, m ∧ n ≤ n ≤ (c :m), so

(m ∧ n)2 ≤ (c :m)(m ∧ n) ≤ (c :m)m ≤ c.

Consequently, m ∧ n ≤
√
c ∧ b = c. This shows that m ∧ n = c. Also,

m ∧ x = (c :x) ∧ b ∧ x = (c :x) ∧ x ≤ c

since
√
c ∧ b = c. Next, we show that 1 = (c :x) ∨ n. Since x ≤ c ∨ x ∨m and

c ∨ x ∨ m is weak meet principal, it follows that x = d(c ∨ x ∨ m) for some

d ∈ L, and so x = xb = db(c ∨ x ∨ m). Observe that dbm ≤ x ∧ m ≤ c, so

db ≤ (c :m) ∧ b = n, and hence

x ≤ db(c ∨ x ∨m) ≤ n(c ∨ x ∨m) = nc ∨ nx ∨mn ≤ c ∨ nx

(as nc ≤ c and mn ≤ m∧n ≤ c). Thus, x ≤ c∨nx. Again, since 1 = (c∨nx :x)
and x is principal, it follows that 1 = n ∨ (c :x).

Note that 1 is compact, so there exist compact elements n1, n2 ∈ L such

that 1 = n1 ∨ n2, n1 ≤ (c :x), and n2 ≤ n. Since n1n2 ≤ (c :x) ∧ b = m and

n1n2 ≤ n, we have n1n2 ≤ m ∧ n = c, and hence n1n2 is a nilpotent element

of L. Suppose (n1n2)
k = 0 for some positive integer k. Then n1

k ∨ n2
k = 1

and n1
kn2

k = 0, so n2
k is a complemented element of L and also n2

k ≤ b.

We show that n2
k �= 0. If n2

k = 0, then 1 = n1
k ≤ (c :x), and hence
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x ≤ c. This contradicts the fact that x is a non-nilpotent element of L.

Let b∗ =
∨
{e ≤ b | e is a complemented element of L}. Since n2

k is a nonzero

complemented element and n2
k ≤ b, it follows that b∗ �= 0. Since n2

k ≤ b

and n1 ≤ (c :x), it follows that x = (n1
k ∨ n2

k)x = n1
kx ∨ n2

kx ≤ c ∨ n2
k,

so x ≤ a ∨ e for some nilpotent a ≤ c and nonzero complemented element

e ≤ b∗. Suppose al = 0 for some positive integer l. Then by [9, Property

2.16], xl ≤ (a ∨ e)
l ≤ al ∨ el = el = e ≤ b∗ as e is idempotent. Note that

y = xly ≤ e ≤ b∗, and hence b = b∗, completing the proof of the lemma. �

Theorem 2.2. Suppose L is an indecomposable M -lattice. Then L is either

a principal element domain or a special principal element lattice.

Proof. Let m be a maximal element of L. Suppose the powers of m prop-

erly descend. By [22, Lemma 2], mω =
∧∞

k=1 m
k is a nonmaximal prime

element of L. Next, we claim that mω is an idempotent element of L. Suppose

p > mω is a maximal element of L. As pp is principal in Lp, it follows that

mω
p = ppm

ω
p. Since mω

p is principal, we have 1p = pp ∨ (0p :m
ω
p). As Lp

is quasi-local, it follows that 1p = (0p :m
ω
p), so mω

p = 0p. Suppose mω �< q

for some maximal element of L. Then mω
q = 1q. Therefore, mω is locally

idempotent and hence idempotent. So by Lemma 2.1, mω = 0. Consequently,

L is a domain. It is well known that an M -lattice which is also a domain is a

principal element domain (see [2, Theorem 4.1] or [13, Theorem 6 and corol-

lary]). Suppose the powers of m do not properly descend. Then mk = m2k for

some positive integer k. So by hypothesis and Lemma 2.1, mk = 0, and hence

L is a quasi-local lattice. By [22, Lemma 4], every nonzero element is a power

of m and principal. So, L is a special principal element lattice. �

An element a ∈ L is a σ-element if for every compact element x ≤ a,

a ∨ (0 :x) = 1. It should be mentioned that a is a σ-element if and only if

a is locally complemented (see [24, Proposition 1]). For more information on

σ-elements, the reader is referred to [24].

Lemma 2.3. Suppose L is an M -lattice and a is an element of L. Then

a = a2 if and only if a is a σ-element.

Proof. Assume that a = a2. Suppose x ≤ a is a compact element of L. By

Lemma 2.1, we have x ≤ y for some complemented element y ≤ a. Then

(0:y) ≤ (0 :x), so a ∨ (0 :x) = 1, and hence a is a σ-element.

Conversely, assume that a is a σ-element. It is enough if we show that

a is locally idempotent. Suppose m is a maximal element of L. If a �≤ m,

then am = 1m in Lm. Suppose a ≤ m. Choose any compact element x ≤ a.

Then a ∨ (0 :x) = 1, so am ∨ (0 :x)m = 1m. As Lm is quasi-local, it follows

that (0 :x)m = 1m, so xm = 0m. As L is compactly generated, it follows that

am = 0m, and hence a is a locally idempotent element of L. �

Lemma 2.4. Suppose L is an M -lattice and m is a prime element of L that

is both maximal and minimal. Assume that (0 :m) = (0:m)
2
. Then m = m2.
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Proof. If (0 :m) �≤ m, then m ∨ (0 :m) = 1, so m = m2 ∨ m(0 :m) = m2. So

assume that (0 :m) ≤ m. By Lemma 2.3, (0 :m) is a σ-element. We claim

that (0 :m)m = 0m in Lm. Choose any compact element x ≤ (0 :m). Since

(0 :m) is a σ-element, we have (0:x) �≤ m, so xy = 0 for some compact element

y �≤ m. Therefore, x ≤ 0m, and hence (0 :m)m = 0m in Lm. Again, for any

maximal element p �= m, we have (0:m) ≤ p, so by the previous argument,

(0 :m)p = 0p in Lp. Since in a C-lattice a = b if and only if ap = bp for all

maximal elements p of L, it follows that (0 :m) = 0, and hence (0:mk) = 0

for all positive integers k. Now we show that m = m2. Suppose m2 < m.

Then there exists a principal element a ≤ m such that a �≤ m2. As m is weak

meet principal, it follows that a = my for some y �≤ m. As m is a minimal

prime, by [2, Lemma 3.5], there exists a compact element z �≤ m such that

anz = 0 for some positive integer n. Consequently, ynz ≤ (0 :mn) = 0 ≤ m, a

contradiction. Hence, m = m2, completing the proof of the lemma. �

Lemma 2.5. Let L be a reduced M -normal lattice and let x ∈ L∗. If x∨(0 :x)

is weak meet principal, then (0 :x) is a complemented element of L.

Proof. By [7, Theorem 7], (0 :x) is a σ-element, so it is locally complemented,

and hence it is an idempotent element. As x∨(0 :x) is weak meet principal and

not contained in any minimal prime, by [16, Lemma 9], x ∨ (0 :x) is compact,

so x ∨ (0 :x) = x ∨ a for some compact element a ≤ (0 :x). Again, as (0 :x) is

a σ-element, it follows that

(0 :x) = (0:x) ∧ (x ∨ a) = (0:x)(x ∨ a) = (0:x)a ≤ a

so (0 :x) = a which is compact. Since (0 :x) is compact and idempotent,

by [21, Lemma 2], (0 :x) is principal and idempotent, and hence (0 :x) is a

complemented element of L. �

Definition 2.6. An element a ∈ L is said to be a weak complemented element

if a is weak meet principal and (0:a) is a σ-element.

Note that if L is a regular lattice, then by [24, Theorem 3], every element

is a σ-element. Also, by [25, Remark 1] and [5, Theorem 4], every element

is weak meet principal, and hence every element is a weak complemented

element. Observe that by [8, Theorem 1 and Proposition 2] and [21, Lemma

2], an element a ∈ L is weak invertible if and only if a is weak complemented

and both a and (0:a) are compact elements of L. Further, by Lemma 2.5, L

is a reduced principal element lattice if and only if L is a reduced M -lattice in

which every element is compact if and only if every element is weak invertible.

The following Theorem 2.7 characterizes reduced M -lattices.

Theorem 2.7. The following statements on L are equivalent:

(i) L is a reduced M -lattice.

(ii) Every element of L is a weak complemented element.

(iii) Every prime element of L is a weak complemented element.
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Proof. (i) ⇒ (ii): Suppose L is a reduced M -lattice. Then for any maximal

element m of L, Lm is an indecomposable principal element lattice, so by

Theorem 2.2, every maximal element contains a unique minimal prime element,

and hence L is an M -normal lattice. Let a ∈ L. Clearly, a is weak meet

principal. We show that (0 :a) is a σ-element. Suppose x is a compact element

such that x ≤ (0 :a). By Lemma 2.5, (0 :x) is a complemented element of L.

Let e be the complement of (0 :x). Since ax = 0, it follows that a ≤ (0 :x), so

ae = 0, and hence e ≤ (0 :a). Therefore, 1 = e ∨ (0 :x) ≤ (0 :a) ∨ (0 :x). This

shows that (0 :a) is a σ-element. Thus, a is a weak complemented element

of L.

(ii) ⇒ (iii): This is obvious.

(iii) ⇒ (i): Suppose (iii) holds. Since every prime element is weak meet

principal, by [2, Theorem 4.3], L is an M -lattice. Now it is enough if we show

that Lm is a domain for all maximal elements m of L. Let m be a maximal

element of L. If m is nonminimal, then by Theorem 2.2, Lm is a principal

element domain. Suppose m is both maximal and minimal. Then by Lemma

2.3, Lemma 2.4 and Theorem 2.2, Lm is a domain. This completes the proof

of the theorem. �

For any a ∈ R, the principal ideal generated by a is denoted by (a).

Definition 2.8. An ideal I ∈ L(R) is said to be a weak complemented ideal

if I is a multiplication ideal and ((0) :I) is a σ-element of L(R).

As a consequence of Theorem 2.7, we have the following result.

Corollary 2.9. The following statements on R are equivalent:

(i) R is a reduced multiplication ring.

(ii) Every ideal of R is a weak complemented ideal.

(iii) Every prime ideal of R is a weak complemented ideal.

Corollary 2.10. L is a reduced principal element lattice if and only if every

prime element is weak invertible.

Proof. It is well known that L is a principal element lattice if and only if every

prime element is principal. Now the result follows from Theorem 2.7 and the

fact that compact σ-elements are complemented elements. �

Corollary 2.11. R is a reduced general ZPI-ring if and only if every prime

ideal is weak invertible.

Proof. Note that by [15, Theorem 2.2], R is a reduced general ZPI-ring if and

only if L(R) is a reduced principal element lattice and every prime ideal is

weak invertible if and only if every prime element of L(R) is a weak invertible

element of L(R). Now the result follows from Corollary 2.10. �
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Proof. If (0 :m) �≤ m, then m ∨ (0 :m) = 1, so m = m2 ∨ m(0 :m) = m2. So

assume that (0 :m) ≤ m. By Lemma 2.3, (0 :m) is a σ-element. We claim

that (0 :m)m = 0m in Lm. Choose any compact element x ≤ (0 :m). Since

(0 :m) is a σ-element, we have (0:x) �≤ m, so xy = 0 for some compact element

y �≤ m. Therefore, x ≤ 0m, and hence (0 :m)m = 0m in Lm. Again, for any

maximal element p �= m, we have (0:m) ≤ p, so by the previous argument,

(0 :m)p = 0p in Lp. Since in a C-lattice a = b if and only if ap = bp for all

maximal elements p of L, it follows that (0 :m) = 0, and hence (0:mk) = 0

for all positive integers k. Now we show that m = m2. Suppose m2 < m.

Then there exists a principal element a ≤ m such that a �≤ m2. As m is weak

meet principal, it follows that a = my for some y �≤ m. As m is a minimal

prime, by [2, Lemma 3.5], there exists a compact element z �≤ m such that

anz = 0 for some positive integer n. Consequently, ynz ≤ (0 :mn) = 0 ≤ m, a

contradiction. Hence, m = m2, completing the proof of the lemma. �

Lemma 2.5. Let L be a reduced M -normal lattice and let x ∈ L∗. If x∨(0 :x)

is weak meet principal, then (0 :x) is a complemented element of L.

Proof. By [7, Theorem 7], (0 :x) is a σ-element, so it is locally complemented,

and hence it is an idempotent element. As x∨(0 :x) is weak meet principal and

not contained in any minimal prime, by [16, Lemma 9], x ∨ (0 :x) is compact,

so x ∨ (0 :x) = x ∨ a for some compact element a ≤ (0 :x). Again, as (0 :x) is

a σ-element, it follows that

(0 :x) = (0:x) ∧ (x ∨ a) = (0:x)(x ∨ a) = (0:x)a ≤ a

so (0 :x) = a which is compact. Since (0 :x) is compact and idempotent,

by [21, Lemma 2], (0 :x) is principal and idempotent, and hence (0 :x) is a

complemented element of L. �

Definition 2.6. An element a ∈ L is said to be a weak complemented element

if a is weak meet principal and (0:a) is a σ-element.

Note that if L is a regular lattice, then by [24, Theorem 3], every element

is a σ-element. Also, by [25, Remark 1] and [5, Theorem 4], every element

is weak meet principal, and hence every element is a weak complemented

element. Observe that by [8, Theorem 1 and Proposition 2] and [21, Lemma

2], an element a ∈ L is weak invertible if and only if a is weak complemented

and both a and (0:a) are compact elements of L. Further, by Lemma 2.5, L

is a reduced principal element lattice if and only if L is a reduced M -lattice in

which every element is compact if and only if every element is weak invertible.

The following Theorem 2.7 characterizes reduced M -lattices.

Theorem 2.7. The following statements on L are equivalent:

(i) L is a reduced M -lattice.

(ii) Every element of L is a weak complemented element.

(iii) Every prime element of L is a weak complemented element.
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3. Locally weak invertible elements in C-lattices

In this section, we study weak invertible elements and locally weak invertible

elements in C-lattices and characterize reduced Prüfer lattices, WI-lattices, re-

duced almost principal element lattices, and reduced principal element lattices

in terms of locally weak invertible elements. We shall begin with the following

definition.

Definition 3.1. An element a ∈ L is said to be locally weak invertible if for

each maximal element m of L, am is a weak invertible element of Lm.

Observe that if a � m for some maximal element m of L, then am = 1m is

weak invertible, so a ∈ L is locally weak invertible if for each maximal element

m ≥ a, am is a weak invertible element of Lm. Note that an element a ∈ L is

locally weak invertible if and only if for any maximal element m ≥ a, either

am = 0m or am is invertible in Lm. Observe that weak invertible elements

are locally weak invertible but the converse need not be true. For example, if

L is a locally domain, then any weak meet principal element is locally weak

invertible, but weak meet principal elements need not be compact. It can

be easily verified that a compact element a is locally weak invertible if and

only if a is weak complemented. Also, it not hard to show that if a and b

are compact weak complemented elements, then ab is again a compact weak

complemented element. In general, a locally weak invertible element need not

be weak complemented. For example, let L be a domain which is an almost

principal element domain, but not a principal element domain. Since L is not

a principal element domain, it follows that L is not an M -lattice, so there

exists at least one nonzero element a of L which is not weak meet principal.

Note that a is not weak complemented but a is locally weak invertible. Also,

note that a is not weak invertible.

It is not known whether a weak complemented element is locally weak

invertible element or not.

Lemma 3.2. Let L be a reduced lattice and let a ∈ L∗. Then the following

statements are equivalent:

(i) a is weak invertible.

(ii) a is locally weak invertible and (0 :a) is compact.

(iii) There exists b ∈ L∗ such that ab = 0 and a ∨ b is invertible.

Proof. (i) ⇒ (ii): Suppose (i) holds. Assume that m ≥ a is a maximal element

of L. By (i), (0 :a) is a complemented element, so (0 :a)m = (0m :am) = 1m
or (0 :a)m = (0m :am) = 0m as a is a compact element of L. If (0 :a)m =

(0m :am) = 1m, then am = 0m. If (0 :a)m = (0m :am) = 0m, then am is invert-

ible in Lm, so a is locally weak invertible. Again since (0 :a) is a complemented

element, by [5, Lemma 6], (0 :a) is compact, so (ii) holds.

(ii) ⇒ (iii): Suppose (ii) holds. Since a and (0:a) are compact elements, it

follows that a ∨ (0 :a) is compact. By [8, Theorem 1], it is enough if we show
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that a ∨ (0 :a) is locally principal. Suppose a ∨ (0 :a) ≤ m for some maximal

element m of L. As (0 :a) ≤ m, it follows that (0m :am) = (0:a)m �= 1m, so

(0m :am) = (0:a)m = 0m, and hence (a ∨ (0 :a))m = am which is principal in

Lm. Therefore, a ∨ (0 :a) is invertible.

(iii) ⇒ (i): Suppose (iii) holds. We show that a is locally principal. Let

m ≥ a be a maximal element of L. If bm = 1m, then am = 0m. Suppose

bm �= 1m. Then a ∨ b ≤ m. As a ∨ b is invertible, by [8, Proposition 2],

(a ∨ b)m is join irreducible. So either (a ∨ b)m = am or (a ∨ b)m = bm. Then

either am or bm is invertible. If bm is invertible, then (0:b)m = 0m, so am = 0m.

Therefore, a is locally principal and hence principal as a is compact. Again note

that (0 :a) ∨ (0 :b) �≤ m for all maximal elements m of L, so (0 :a) ∨ (0 :b) = 1.

Also, (0 :a)(0 :b) = (0:a) ∧ (0 :b) = (0:a ∨ b) = 0. This shows that (0 :a) is

a complemented element, and hence a is weak invertible. This completes the

proof of the lemma. �

We now characterize reduced Prüfer lattices and WI-lattices as follows.

Theorem 3.3. Every compact element of L is locally weak invertible if and

only if L is a reduced Prüfer lattice.

Proof. Suppose every compact element of L is locally weak invertible. We

show that for any x ∈ L∗, (0 :x) is a σ-element. Let x ∈ L∗. Note that x is

locally weak invertible. Let m ≥ x be a maximal element of L. Since xm is

weak invertible in Lm, it follows that either xm = 0m or xm is invertible, so

either (0 :x)m = (0m :xm) = 1m or (0 :x)m = (0m :xm) = 0m, and hence (0 :x)

is locally complemented. Therefore, (0 :x) is a σ-element. We prove that L

is a reduced lattice. Suppose y ∈ L∗ and assume that y2 = 0. As y ≤ (0 :y)

and (0:y) is a σ-element, by the definition of σ-element, we have (0:y) = 1, so

y = 0, and hence L is reduced. Again if a ∈ L∗, then for any maximal element

m ≥ a, either am = 0m or am is invertible in Lm. So a is locally principal and

hence principal. Consequently, L is a Prüfer lattice.

Conversely, assume that L is a reduced Prüfer lattice. Then by [23, Lemma

2], L is an M -normal lattice. Let a ∈ L∗. By hypothesis, a is principal. As

L is an M -normal lattice, Lm is a domain for all maximal elements m of L.

If m ≥ a is a maximal element of L, then either am = 0m or (0m :am) =

(0:a)m = 0m in Lm. So a is locally weak invertible. This completes the proof

of the theorem. �

Theorem 3.4. The following statements on L are equivalent:

(i) L is a WI-lattice.

(ii) Every compact element is locally weak invertible and for every principal

element a ∈ L, (0 :a) is compact.

(iii) For each a ∈ L∗, there exists b ∈ L∗ such that ab = 0 and a ∨ b is

invertible.

Proof. (i) ⇒ (ii): This follows from the definition of a WI-lattice and from the

fact that a complemented element is a compact element.
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3. Locally weak invertible elements in C-lattices

In this section, we study weak invertible elements and locally weak invertible

elements in C-lattices and characterize reduced Prüfer lattices, WI-lattices, re-

duced almost principal element lattices, and reduced principal element lattices

in terms of locally weak invertible elements. We shall begin with the following

definition.

Definition 3.1. An element a ∈ L is said to be locally weak invertible if for

each maximal element m of L, am is a weak invertible element of Lm.

Observe that if a � m for some maximal element m of L, then am = 1m is

weak invertible, so a ∈ L is locally weak invertible if for each maximal element

m ≥ a, am is a weak invertible element of Lm. Note that an element a ∈ L is

locally weak invertible if and only if for any maximal element m ≥ a, either

am = 0m or am is invertible in Lm. Observe that weak invertible elements

are locally weak invertible but the converse need not be true. For example, if

L is a locally domain, then any weak meet principal element is locally weak

invertible, but weak meet principal elements need not be compact. It can

be easily verified that a compact element a is locally weak invertible if and

only if a is weak complemented. Also, it not hard to show that if a and b

are compact weak complemented elements, then ab is again a compact weak

complemented element. In general, a locally weak invertible element need not

be weak complemented. For example, let L be a domain which is an almost

principal element domain, but not a principal element domain. Since L is not

a principal element domain, it follows that L is not an M -lattice, so there

exists at least one nonzero element a of L which is not weak meet principal.

Note that a is not weak complemented but a is locally weak invertible. Also,

note that a is not weak invertible.

It is not known whether a weak complemented element is locally weak

invertible element or not.

Lemma 3.2. Let L be a reduced lattice and let a ∈ L∗. Then the following

statements are equivalent:

(i) a is weak invertible.

(ii) a is locally weak invertible and (0 :a) is compact.

(iii) There exists b ∈ L∗ such that ab = 0 and a ∨ b is invertible.

Proof. (i) ⇒ (ii): Suppose (i) holds. Assume that m ≥ a is a maximal element

of L. By (i), (0 :a) is a complemented element, so (0 :a)m = (0m :am) = 1m
or (0 :a)m = (0m :am) = 0m as a is a compact element of L. If (0 :a)m =

(0m :am) = 1m, then am = 0m. If (0 :a)m = (0m :am) = 0m, then am is invert-

ible in Lm, so a is locally weak invertible. Again since (0 :a) is a complemented

element, by [5, Lemma 6], (0 :a) is compact, so (ii) holds.

(ii) ⇒ (iii): Suppose (ii) holds. Since a and (0:a) are compact elements, it

follows that a ∨ (0 :a) is compact. By [8, Theorem 1], it is enough if we show
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(ii) ⇒ (iii): This follows from Lemma 3.2.

(iii)⇒ (i): Suppose (iii) holds. We show that L is a reduced lattice. Suppose

a ∈ L∗ and assume that a2 = 0. By (iii), there exists b ∈ L∗ such that ab = 0

and a∨b is invertible. Then a(a∨b) = a2∨ab = 0, so a = 0 as a∨b is invertible.
Therefore, L is a reduced lattice. Again by Lemma 3.2, every compact element

is weak invertible. Hence, L is a WI-lattice and the proof is complete. �

Theorem 3.5. Every element of L is locally weak invertible if and only if L

is a reduced almost principal element lattice.

Proof. Suppose every element of L is locally weak invertible. If a is locally

weak invertible, then for any maximal element m ≥ a, either am = 0m or am is

invertible in Lm. So a is locally principal, and hence L is an almost principal

element lattice. By Theorem 3.3, L is reduced.

Conversely, assume that L is a reduced almost principal element lattice.

Then Lm is a domain for all maximal elements m of L. Further, if a ∈ L

and a ≤ m for some maximal element m of L, then either am = 0m or am is

invertible in Lm. Consequently, every element of L is locally weak invertible

and the proof is complete. �

Lemma 3.6. Suppose a is a σ-element. Suppose there exist prime elements

p1, p2, . . . , pn such that for each maximal element m of L, m ≥ (0 :a) implies

m ≥ pj for some j ∈ {1, 2, . . . , n}. Then a is a complemented element of L.

Proof. It is enough if we show that a is compact.

Case (i). Suppose a ≤
∧n

i=1 pi. If a ≤ m for some maximal element m of L,

then for any compact element x ≤ a, (0 :x) �≤ m, so (0 :x)m = 1m, and hence

xm = 0m. Consequently, am = 0m in Lm. Suppose a �≤ m for some maximal

element m of L. Then am = 1m, so (0m :am) = 0m. Clearly, (0 :a)m = 0m
in Lm. As (0 :a) ≤ m, by hypothesis, m ≥ pj for some j ∈ {1, 2, . . . , n}, so
m ≥ a, a contradiction. Thus, am = 0m for all maximal elements m of L, and

hence a = 0.

Case (ii). Suppose a �≤ pi for all i. We claim that a ∨ (0 :a) = 1. Suppose

a ∨ (0 :a) ≤ m for some maximal element m of L. Since (0 :a) ≤ m, by

hypothesis, m ≥ pj for some j ∈ {1, 2, . . . , n}. But am = 0m in Lm, so a ≤ pj ,

a contradiction. Therefore, a is a complemented element of L, and hence by

[5, Lemma 6], a is compact.

Case (iii). Suppose a ≤
∧r

i=i pi and a �≤ pj for j = r + 1, . . . , n. We claim

that a and pj are comaximal for j ∈ {r + 1, . . . , n}. Suppose a ∨ pj ≤ m for

some j ∈ {r+1, . . . , n} and for some maximal element m of L. Since am = 0m
in Lm, it follows that a ≤ pj , a contradiction. So a∨pj = 1 for j = r+1, . . . , n.

Note that by [9, Property 2.14], a ∨ (
∧n

j=r+1 pj) = 1. Therefore, x ∨ y = 1

for some compact elements x ≤ a and y ≤
∧n

j=r+1 pj . Let m be a maximal

element of L. If a ≤ m, then am = 0m = xm in Lm. If a �≤ m, then (0:a) ≤ m,

so pj ≤ m for some j ∈ {r + 1, . . . , n}, and hence y ≤ m. Therefore, x �≤ m,

and hence am = 1m = xm in Lm. This shows that am = xm for all maximal
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elementsm of L, and hence a = x. Consequently, a is compact. This completes

the proof of the lemma. �

Lemma 3.7. Suppose a is a compact locally weak invertible element of L. As-

sume that a has only finitely many minimal primes. Then a is weak invertible.

Proof. Since a is a compact locally weak invertible element of L, it follows

that a is principal. Also, (0 :a) is locally complemented, and hence (0:a) is

a σ-element. Suppose p1, p2, . . . , pn are the minimal primes of a. If m is

any maximal element and m ≥ (0 :(0 :a)), then m ≥ a, so m ≥ pj for some

j ∈ {1, 2, . . . , n}. Therefore, by Lemma 3.6, (0 :a) is a complemented element,

and hence a is weak invertible. �

Remark 3.8. Since compact weak complemented elements are locally weak

invertible, as a consequence of Lemma 3.7, it should be mentioned that com-

pact weak complemented prime elements are weak invertible elements.

According to [18], a multiplicative lattice L0 is said to satisfy the condition

(∗) if there exists a multiplicatively closed set S of (not necessarily principal)

elements which generate L0 under joins such that every element of S is a finite

meet of primary elements.

Lemma 3.9. Suppose L satisfies the condition (∗). Then locally weak invert-

ible elements of L are weak invertible elements.

Proof. Suppose a ∈ L is locally weak invertible. Since a is locally principal,

by [18, Lemma 3], a is principal. As a is principal, by [18, Lemma 1], a

has only finitely many minimal primes, and hence by Lemma 3.7, a is weak

invertible. �

We now give a new characterization for reduced principal element lattices.

Theorem 3.10. L is a reduced principal element lattice if and only if L sat-

isfies the condition (∗) and every prime element of L is locally weak invertible.

Proof. The proof of the theorem follows from Corollary 2.10 and Lemma 3.9.

�

Corollary 3.11. R is a reduced general ZPI-ring if and only if every principal

ideal of R is a finite intersection of primary ideals and every prime ideal of R

is locally weak invertible.

Proof. The proof of the corollary follows from Theorem 3.10. �

Lemma 3.12. Let L be a Prüfer lattice and let p be a weak invertible prime

element of L. Then p is either an invertible maximal element or p is a com-

plemented element of L.

Proof. Assume that p is not a complemented element of L. Since we have

(0:p)(0 :(0 :p)) = 0, it follows that either (0 :p) ≤ p or (0 :(0 :p) ≤ p. As p is

not a complemented element of L, it follows that (0 :p) = 0. Suppose p < m
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(ii) ⇒ (iii): This follows from Lemma 3.2.

(iii)⇒ (i): Suppose (iii) holds. We show that L is a reduced lattice. Suppose

a ∈ L∗ and assume that a2 = 0. By (iii), there exists b ∈ L∗ such that ab = 0

and a∨b is invertible. Then a(a∨b) = a2∨ab = 0, so a = 0 as a∨b is invertible.
Therefore, L is a reduced lattice. Again by Lemma 3.2, every compact element

is weak invertible. Hence, L is a WI-lattice and the proof is complete. �

Theorem 3.5. Every element of L is locally weak invertible if and only if L

is a reduced almost principal element lattice.

Proof. Suppose every element of L is locally weak invertible. If a is locally

weak invertible, then for any maximal element m ≥ a, either am = 0m or am is

invertible in Lm. So a is locally principal, and hence L is an almost principal

element lattice. By Theorem 3.3, L is reduced.

Conversely, assume that L is a reduced almost principal element lattice.

Then Lm is a domain for all maximal elements m of L. Further, if a ∈ L

and a ≤ m for some maximal element m of L, then either am = 0m or am is

invertible in Lm. Consequently, every element of L is locally weak invertible

and the proof is complete. �

Lemma 3.6. Suppose a is a σ-element. Suppose there exist prime elements

p1, p2, . . . , pn such that for each maximal element m of L, m ≥ (0 :a) implies

m ≥ pj for some j ∈ {1, 2, . . . , n}. Then a is a complemented element of L.

Proof. It is enough if we show that a is compact.

Case (i). Suppose a ≤
∧n

i=1 pi. If a ≤ m for some maximal element m of L,

then for any compact element x ≤ a, (0 :x) �≤ m, so (0 :x)m = 1m, and hence

xm = 0m. Consequently, am = 0m in Lm. Suppose a �≤ m for some maximal

element m of L. Then am = 1m, so (0m :am) = 0m. Clearly, (0 :a)m = 0m
in Lm. As (0 :a) ≤ m, by hypothesis, m ≥ pj for some j ∈ {1, 2, . . . , n}, so
m ≥ a, a contradiction. Thus, am = 0m for all maximal elements m of L, and

hence a = 0.

Case (ii). Suppose a �≤ pi for all i. We claim that a ∨ (0 :a) = 1. Suppose

a ∨ (0 :a) ≤ m for some maximal element m of L. Since (0 :a) ≤ m, by

hypothesis, m ≥ pj for some j ∈ {1, 2, . . . , n}. But am = 0m in Lm, so a ≤ pj ,

a contradiction. Therefore, a is a complemented element of L, and hence by

[5, Lemma 6], a is compact.

Case (iii). Suppose a ≤
∧r

i=i pi and a �≤ pj for j = r + 1, . . . , n. We claim

that a and pj are comaximal for j ∈ {r + 1, . . . , n}. Suppose a ∨ pj ≤ m for

some j ∈ {r+1, . . . , n} and for some maximal element m of L. Since am = 0m
in Lm, it follows that a ≤ pj , a contradiction. So a∨pj = 1 for j = r+1, . . . , n.

Note that by [9, Property 2.14], a ∨ (
∧n

j=r+1 pj) = 1. Therefore, x ∨ y = 1

for some compact elements x ≤ a and y ≤
∧n

j=r+1 pj . Let m be a maximal

element of L. If a ≤ m, then am = 0m = xm in Lm. If a �≤ m, then (0:a) ≤ m,

so pj ≤ m for some j ∈ {r + 1, . . . , n}, and hence y ≤ m. Therefore, x �≤ m,

and hence am = 1m = xm in Lm. This shows that am = xm for all maximal



248	 C. Jayaram� Algebra Univers.12 C. Jayaram Algebra univers.

for some maximal element m of L. Choose a principal element a ≤ m such

that a �≤ p. Then by hypothesis, (p ∨ a) is principal. By [8, Proposition 2],

(p ∨ a)m is join irreducible in Lm. As a �≤ p, it follows that (p ∨ a)m = am
in Lm. As am is principal and am �≤ pm, it follows that pm = ampm, and hence

by [3, Theorem 1.4], pm = 0m, a contradiction since (0 :p) = 0. Therefore, p

is an invertible maximal element of L. �

Finally, we prove that in a reduced Prüfer lattice, compact primes are either

complemented elements or invertible maximal elements.

Theorem 3.13. Suppose L is a reduced Prüfer lattice. Then compact prime

elements of L are either complemented elements or invertible maximal elements

of L.

Proof. Let p be a compact prime element of L. By Theorem 3.3 and by Lemma

3.7, p is weak invertible. Now the result follows from Lemma 3.12. �

Corollary 3.14. If R is a reduced arithmetical ring, then finitely generated

prime ideals of R are either complemented ideals or quasi-invertible maximal

ideals of R. Further, if R is a WI-ring, then finitely generated prime ideals of

R are either complemented ideals or invertible maximal ideals of R.

Proof. If R is a reduced arithmetical ring, then by Theorem 3.13, finitely

generated prime ideals of R are either complemented ideals or quasi-invertible

maximal ideals of R. Now assume that R is a WI-ring. Then by [19, Theorem

3.3], R is a reduced arithmetical ring and a quasi-regular ring. Again by [12,

Theorem 4.5] and [12, Lemma 18.1, page 110], an ideal I of R is quasi-invertible

if and only if it is invertible, and hence finitely generated prime ideals of R are

either complemented ideals or invertible maximal ideals of R. �
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for some maximal element m of L. Choose a principal element a ≤ m such

that a �≤ p. Then by hypothesis, (p ∨ a) is principal. By [8, Proposition 2],

(p ∨ a)m is join irreducible in Lm. As a �≤ p, it follows that (p ∨ a)m = am
in Lm. As am is principal and am �≤ pm, it follows that pm = ampm, and hence

by [3, Theorem 1.4], pm = 0m, a contradiction since (0 :p) = 0. Therefore, p

is an invertible maximal element of L. �

Finally, we prove that in a reduced Prüfer lattice, compact primes are either

complemented elements or invertible maximal elements.

Theorem 3.13. Suppose L is a reduced Prüfer lattice. Then compact prime

elements of L are either complemented elements or invertible maximal elements

of L.

Proof. Let p be a compact prime element of L. By Theorem 3.3 and by Lemma

3.7, p is weak invertible. Now the result follows from Lemma 3.12. �

Corollary 3.14. If R is a reduced arithmetical ring, then finitely generated

prime ideals of R are either complemented ideals or quasi-invertible maximal

ideals of R. Further, if R is a WI-ring, then finitely generated prime ideals of

R are either complemented ideals or invertible maximal ideals of R.

Proof. If R is a reduced arithmetical ring, then by Theorem 3.13, finitely

generated prime ideals of R are either complemented ideals or quasi-invertible

maximal ideals of R. Now assume that R is a WI-ring. Then by [19, Theorem

3.3], R is a reduced arithmetical ring and a quasi-regular ring. Again by [12,

Theorem 4.5] and [12, Lemma 18.1, page 110], an ideal I of R is quasi-invertible

if and only if it is invertible, and hence finitely generated prime ideals of R are

either complemented ideals or invertible maximal ideals of R. �
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