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Abstract. The lattice of varieties of quasi-Stone algebras ordered by inclusion is an
ω+1 chain. It is shown that the variety Q2,2 (of height 13) is finite-to-finite universal
(in the sense of Hedrĺın and Pultr). Further, it is shown that this is sharp; namely,
the variety Q3,1 (of height 12) is not finite-to-finite universal and, hence, no proper
subvariety of Q2,2 is finite-to-finite universal. In fact, every proper subvariety of Q2,2

fails to be universal. However, Q1,2 (the variety of height 9) is shown to be finite-to-
finite universal relative to Q2,1 (the variety of height 8). This too is sharp; namely,
no proper subvariety of Q1,2 is finite-to-finite relatively universal. Consequences of
these facts are discussed.

1. Quasi-Stone algebras

As introduced in [18], an algebra L = (L;∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) is

a quasi-Stone algebra if

(i) (L;∨,∧, 0, 1) is a bounded distributive lattice;

(ii) 0′ = 1 and 1′ = 0;

(iii) (x ∨ y)′ = x′ ∧ y′;

(iv) (x ∧ y′)′ = x′ ∨ y′′;

(v) x ≤ x′′;

(vi) x′ ∨ x′′ = 1.

For m ∈ ω, Bm denotes the Boolean lattice with m atoms and B̂m denotes

the lattice Bm⊕{1m} where 1m is a new element. For m,n ∈ ω, Qm,n denotes

the quasi-Stone algebra (B̂m ×Bn;∨,∧,′ , (0, 0), (1m, 1)) where (x, y)′ = (0, 0)

if (x, y) �= (0, 0), and (1m, 1) otherwise.

As shown in [18], the lattice of varieties of quasi-Stone algebras forms an

ω+1 chain (see Figure 1) whereT, Qm,n, andQS denote the trivial variety, the

variety V(Qm,n) of quasi-Stone algebras generated by Qm,n, and the variety

of all quasi-Stone algebras, respectively.

A graph G = (V,E) is a set of vertices V and a set of edges E consisting of

2-element subsets of V . For graphs G = (V,E) and H = (W,F ), a mapping

φ : G → H is compatible providing, for every {x, y} ∈ E, {φ(x), φ(y)} ∈ F .
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T ⊂
Q0,0 ⊂
Q1,0 ⊂ Q0,1 ⊂
Q2,0 ⊂ Q1,1 ⊂ Q0,2 ⊂
Q3,0 ⊂ Q2,1 ⊂ Q1,2 ⊂ Q0,3 ⊂
Q4,0 ⊂ Q3,1 ⊂ Q2,2 ⊂ Q1,3 ⊂ Q0,4 ⊂ · · · ⊂ QS

Figure 1. The ω + 1 chain of varieties of quasi-Stone algebras

The class of all graphs with all compatible mappings forms a category. This

category will be denoted by G.

A variety V is universal provided every category of algebras of finite type

is isomorphic to a full subcategory of V, or equivalently, the category G is

isomorphic to a full subcategory of V, see Hedrĺın and Pultr [13] (as well as

Pultr and Trnková [17]). If there exists a functor Φ : G → V which establishes

that V is universal and, in addition, sends finite graphs to finite algebras, then

V is said to be finite-to-finite universal.

The following will be shown in Section 3.

Theorem 1.1. Q2,2 is finite-to-finite universal.

For a quasi-Stone algebra L, let End(L) denote the monoid of endomor-

phisms of L under composition. The following is an immediate consequence

of Theorem 1.1 together with known properties of graphs.

Corollary 1.2. For every monoid M and cardinal κ ≥ |M |+ ω, there exists

a family of quasi-Stone algebras (Li : i ∈ I) such that

(i) Li ∈ Q2,2 for i ∈ I,

(ii) Li �∼= Lj for distinct i, j ∈ I,

(iii) End(Li) ∼= M for i ∈ I,

(iv) |I| = 2κ and |Li| = κ for i ∈ I.

Moreover, if |M | is finite, then there also exists a countably infinite family of

finite quasi-Stone algebras (Li : i ∈ I) satisfying (i), (ii), and (iii).

A class of algebras with a common finite signature is a variety (or an equa-

tional class) if it is defined by a set of identities (or equations) of the form p = q

and a quasivariety (or an implicational class) if it is defined by a set of quasi-

identities (or implications) of the form (p0 = q0 ∧ · · · ∧ pn−1 = qn−1) ⇒ p = q.

Recall that for a class K of algebras with common finite signature, the variety

generated by K is HSP(K) (where H, S, and P denote the operators of all

homomorphic images, subalgebras, and products, respectively) and the quasi-

variety generated by K is ISPPu(K) (where I and Pu denote the operators

of all isomorphic copies and ultraproducts, respectively).
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For a variety V, let LV (V) denote the lattice of subvarieties of V ordered

by inclusion. Then as noted above (and shown in [18]), for any variety V of

quasi-Stone algebras, LV (V) is a chain. Analogously, let LQ(V) denote the

lattice of subquasivarieties ofV ordered by inclusion. Then another immediate

consequence of Theorem 1.1 is that |LQ(Q2,2)| = 2ω. In fact, it follows from

Theorem 1.1 and the main result of [1] that the ideal lattice of a free lattice on

ω free generators is embeddable into LQ(Q2,2) and that Q2,2 is Q-universal

in the sense of Sapir [19].

That Theorem 1.1 is sharp will be shown in Section 4, by establishing that

the following holds for Q3,1, the largest proper subvariety of Q2,2, and hence,

also holds for any proper subvariety of Q2,2.

Theorem 1.3. Q3,1 is not universal.

The justification of Theorem 1.3 will consist of showing that, up to iso-

morphism, there are only two algebras in Q3,1 with a trivial endomorphism

monoid, from which it follows immediately that neither Q3,1 nor any subvari-

ety is universal.

Investigation of varieties of semigroups led Demlová and Koubek (see [6],

[7], [8], and [9]) to introduce a notion of relatively universal. Precursors of this

notion may be found as far back as Sichler [20].

A variety V is relatively universal to a proper subvariety W (or, briefly,

W-universal) if there is a faithful functor Ψ : G → V such that Im(Ψ(f))

belongs to W for no compatible mapping f (that is, if f : G → G′ is a com-

patible map, then the image of Ψ(G) under Ψ(f) does not belong to W) and if

φ : Ψ(G) → Ψ(G′) is a homomorphism, where G andG′ are graphs, then either

Im(φ) belongs to W (that is, the image of Ψ(G) under Ψ(f) belongs to W)

or φ = Ψ(f) for a compatible mapping f : G → G′. If, in addition, Ψ assigns

finite algebras to finite graphs, V is said to be finite-to-finite W-universal.

The following will be shown in Section 5.

Theorem 1.4. Q1,2 is finite-to-finite Q2,1-universal.

In [3] (see the remarks in Section 6 below), quasivarieties of quasi-Stone

algebras are investigated. In particular, it is shown in [3] that LQ(Q2,1) is

countably infinite. This together with the following observation proves that

Theorem 1.4 is sharp, in the sense that no proper subvariety of Q1,2 is finite-

to-finite relatively universal.

Proposition 1.5. If V is a variety of algebras of finite signature that is finite-

to-finite W-universal, then |LQ(V)| = 2ω.

Proof. Let Ψ : G → V be a faithful functor establishing that V is finite-to-

finite W-universal. Let (Gi : i < ω) be a family of finite graphs having the

property that i = j if and only if there is a compatible mapping from Gi to

Gj ; such a family does exist. The identity map idGi : Gi → Gi is a compatible

mapping. Thus, Im(Ψ(idGi
)) �∈ W. Hence, for all i < ω, Ψ(Gi) �∈ W because

by the definition of a functor, Ψ(idGi) = idΨ(Gi).
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We will show that if Ψ(Gi) ∈ ISPPu({Ψ(Gj) : j ∈ J}), where J ⊆ ω,

then i ∈ J . Let Ψ(Gi) ∈ ISPPu({Ψ(Gj) : j ∈ J}). Since V is of finite

signature and Ψ(Gi) is finite, there is a finite subset K of J and a family

of homomorphisms, (φk : Ψ(Gi) → Ψ(Gk) : k ∈ K), which separates the

elements of Ψ(Gi). If Im(φk) ∈ W for all k ∈ K, then Ψ(Gi) ∈ W. So,

Im(φk) �∈ W for some k ∈ K, and therefore, φ = Ψ(fk) for some compatible

mapping fk : Gi → Gk. Hence, i = k, that is, i ∈ J . Thus, |LQ(V)| = 2ω. �

2. Duality

Priestley [16] developed a duality for the category of non-trivial (0, 1)-

distributive lattices. Subsequently, Cignoli [5] (cf. Halmos [12]) derived an

analogous duality for the category of non-trivial Q-distributive lattices. Later

Gaitán [10] adapted Cignoli’s duality to quasi-Stone algebras. In [2], a variant

of Cignoli’s duality was given, which we believe is somewhat easier to use. In

this section, we present a duality for quasi-Stone algebras based on [2].

A Priestley space is a triple (P ;≤, τ) such that (P ;≤) is a partially or-

dered set, (P ; τ) is a compact topological space, and the triple is totally order-

disconnected (that is, for x, y ∈ P , if x �≤ y, then there exists a clopen order-

filter X ⊆ P such that x ∈ X and y �∈ X.)

Priestley showed that the category of non-trivial (0, 1)-distributive lat-

tices with (0, 1)-lattice homomorphisms is dually equivalent to the category

of Priestley spaces with continuous order-preserving maps as morphisms.

Pertinent to what follows, recall that for a Priestley space (P ;≤, τ), if X is

a closed subset of P , then for every x ∈ X, there exists y ∈ X such that y is

maximal in (X;≤�X) and x ≤ y. The set of maximal elements in (X;≤�X)

will be denoted by Max(X).

If E is an equivalence relation on a set P and X ⊆ P , then E(X) denotes

{y : yEx for some x ∈ X}; for x ∈ P , let E(x) denote E({x}).
AQS-space (P ;≤, τ, E) is a Priestley space (P ;≤, τ) together with an equiv-

alence relation E defined on P such that

(i) for x and y ∈ P , if x ≤ y or y ≤ x, then E(x) = E(y) (that is, E(x), is

both an order-ideal and an order-filter for every x ∈ P ),

(ii) if X ⊆ P is a clopen order-filter, then E(X) is clopen, and

(iii) for x ∈ P , E(x) is a closed subset of P .

For QS-spaces (P ;≤, τ, E) and (P ′;≤′, τ ′, E′), a mapping ϕ : P → P ′ is a

QS-map if it is a continuous order-preserving map such that

(i) for x and y ∈ P , ϕ(x)E′ϕ(y) whenever xEy, and

(ii) if z is a maximal element of E′(ϕ(x)), then z = ϕ(y) for some y ∈ E(x),

that is, Max(E′(ϕ(x))) ⊆ ϕ(Max(E(x))).

If X is a closed subset of a Priestley space (P ;≤, τ), then (X;≤�X, τ�X)

is also a Priestley space. However, if X is a closed subset of a QS-space

(P ;≤, τ, E), then (X;≤�X, τ�X,E�X) need not be a QS-space. As suggested
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by the the definition of a QS-map, define (X;≤�X, τ�X,E�X) to be a QS-

subspace of a QS-space (P ;≤, τ, E) provided that X is a closed subset of P

and for x ∈ X, every maximal element of E(x) is also an element of X.

The category QS of all non-trivial quasi-Stone algebras whose morphisms

are all homomorphisms is dually equivalent to the category S of all QS-spaces

whose morphisms are all QS-maps. The contravariant functors S : QS → S

and Q : S → QS and the pair of natural isomorphisms σ : 1QS
∼= QS and

ε : 1S ∼= SQ that establish a dual equivalence between QS and S are defined

as follows:

With each object L of QS is associated a QS-space S(L) = (S(L);≤, τ, E)

where S(L) is the set of all prime filters of L, ≤ is set inclusion, τ has as a

sub-basis all subsets of S(L) of the form {x ∈ S(L) : a ∈ x}, where a ∈ L,

and their complements, and for x and y ∈ S(L), (x, y) ∈ E if and only if

x ∩ {z′ : z ∈ L} = y ∩ {z′ : z ∈ L}. With each morphism f : L → L′ in QS

is associated a QS-map S(f) : S(L′) → S(L) such that S(f)(x) = f−1(x) for

x ∈ S(L′).

With each object (P ;≤, τ, E) of S is associated a quasi-Stone algebra

Q(P ) = (Q(P );∪,∩,′ , ∅, P )

where Q(P ) is the set of all clopen order-filters of P , ∪ and ∩ are set-theoretical

union and intersection, respectively, and for X ∈ Q(P ), X ′ = Q(P ) \ E(X).

With each morphism ϕ : P → P ′ in S is associated a QS-homomorphism

Q(ϕ) : Q(P ′) → Q(P ) such that for X ∈ Q(P ′), we have Q(ϕ)(X) = ϕ−1(X).

The natural isomorphisms σ : 1QS
∼= QS and ε : 1S ∼= SQ are given by

σ(L)(a) = {x ∈ S(L) : a ∈ x} and ε(P )(x) = {X ∈ Q(P ) : x ∈ X}.

Proposition 2.1 (Gaitán [10]). The category QS is dually equivalent to the

category S. The dual equivalence is given by the pair of contravariant func-

tors S : QS → S and Q : S → QS and by the pair of natural isomorphisms

σ : 1QS
∼= QS and ε : 1S ∼= SQ. Furthermore, one-to-one and onto mor-

phisms in the category QS correspond, respectively, to onto and one-to-one

order-preserving morphisms in S.

Since those varieties V of quasi-Stone algebras for which V ⊆ Q2,2 are of

particular interest here, the QS-spaces S(Qm,n) of the quasi-Stone algebras

Qm,n for which V(Qm,n) ⊆ Q2,2 are diagrammed in Figure 2. It is to be un-

derstood that each of the QS-spaces in Figure 2 have precisely one equivalence

class which is the entire space.

Finally, for a QS-space (P ;≤, τ, E) and X ⊆ P , let Max(X) denote the set

of maximal elements of [X), where [X) = {y : x ≤ y for some x ∈ X}; in the

event that X = {x}, denote [X) by [x) and Max(X) by Max(x). Similarly, set

(X] = {y : y ≤ x for some x ∈ X}, and in the event that X = {x}, denote (X]

by (x]. If x �∈ Max(x), then x is said to be a type n element if n = |Max(x)|.
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3. The variety Q2,2 (Theorem 1.1)

Throughout this section, P5 is the category whose objects are structures

(X;≤, τ, b0, b1, b2, b3, b4), where (X;≤, τ) is a Priestley space and for 0 ≤ i < 5,

bi is a minimal element in (X;≤), each set {bi} is clopen in (X; τ), and for

B = {bi : 0 ≤ i < 5}, [B) = X, while |(x] ∩ B| > 1 for any x ∈ X \ B.

Morphisms between objects

(X;≤, τ, b0, b1, b2, b3, b4) and (X ′;≤′, τ ′, b′0, b
′
1, b

′
2, b

′
3, b

′
4)

are mappings f : X → X ′ which are morphisms between Priestley spaces

(X;≤, τ) and (X ′;≤′, τ ′) satisfying f(bi) = b′i for every 0 ≤ i < 5.

In [4] (see also Koubek [14] and Goralč́ık, Koubek, and Sichler [11]), it is

shown thatP5 contains a full subcategory dually isomorphic to the categoryG,

for which finite graphs correspond to finite members of P5. Thus, in view

of Proposition 2.1, in order to establish Theorem 1.1, it is sufficient to construct

a functor Φ : P5 → S which is faithful and full, assigns finite QS-spaces to
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finite members of P5, and which satisfies Q(Φ(X)) ∈ Q2,2 for every object X

of P5. Such a functor is constructed below.

First, the formal definition of Φ will be given, then an indication of the

underlying idea behind Φ, followed by a verification that it fulfils the necessary

properties.

For each (X;≤, τ, b0, b1, b2, b3, b4) ∈ P5, define Φ(X) = (P ;≤, τ, E) by

P = (X \B) ∪A ∪ C ∪D0 ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5),

where

A = {ai : 0 ≤ i < 4}, C = {ci : 0 ≤ i < 4},
D0 = {d0,i : 0 ≤ i < 3}, D1 = {d1,i : 0 ≤ i < 27},

D2 = {d2,i : 0 ≤ i < 29}, and Ei = {ei,j : 0 ≤ j < 15}, for 0 ≤ i < 5.

The partial order (P ;≤) is the least order such that Max(P ) = A and P \ A
has precisely four elements of type 3, namely, elements of the set C, while all

other elements are of type 2.

• The type 3 elements are such that c0 ≤ a0, a1, a2, while c1, c2 ≤ a1, a2, a3,

and c3 ≤ a0, a2, a3.

• The type 2 elements are such that x ≤ a2, a3 for x ∈ D0, while x ≤ a1, a2
for x ∈ (X \B) ∪D1 ∪D2 ∪

⋃
(Ei : 0 ≤ i < 5).

Each of D0, D1, D2, E0, E1, E2, E3, and E4 are fences where

• d0,1 ≤ d0,0, d0,2 for D0,

• d1,2i+1 ≤ d1,2i, d1,2i+2 where 0 ≤ i < 13 for D1,

• d2,2i+1 ≤ d2,2i, d2,2i+2 where 0 ≤ i < 14 for D2,

• and if E0, E1, E2, E3, and E4, then ei,2j+1 ≤ ei,2j , ei,2j+2 for 0 ≤ i < 5

and 0 ≤ j < 7.

The fences E0, E1, E2, E3, and E4 are connected to the fences D1 and D2

and the fences D0, D1, and D2 are connected to C, the elements of type 3, as

follows

• d1,9+2i ≤ ei,0, and d2,9+2i ≤ ei,14 for 0 ≤ i < 5,

• c0 ≤ d1,0, d2,0, while c1 ≤ d1,26, c2 ≤ d2,28, c2 ≤ d0,0, and c3 ≤ d0,2.

Elements of X \B are connected to the fences E0, E1, E2, E3, and E4 by

• ei,7 ≤ x iff bi ≤ x for 0 ≤ i < 5 and x ∈ X \B.

While, finally, for elements of X \B,

• x ≤ y in P iff x ≤ y in X for x, y ∈ X \B.

Figure 3 visualizes the partial order on the part A ∪ C ∪D0 of the domain

of Φ(X). The solid points on Figure 3 indicate that a1 and a2 are connected

to every element x of the remaining part of the domain of Φ(X), that is, the

part (X \B) ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5) as follows: x ≤ a1, a2. The arrow

on Figure 3 from c1 to a3 abbreviates the order relation c1 ≤ a3.

Figure 4 helps to visualize the partial order on the part

C ∪ (X \B) ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5)
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of the domain of Φ(X) and together with Figure 3 shows how it is linked with

the partial order on the part A∪C ∪D0. It is linked by the elements c0, c1, c2
and by a1 and a2 (see Figure 3). The partial order on Figure 4 one should read

as follows: a ≤ b iff the point assigned to a is solid while the point assigned to

b is empty. The arrows on Figure 4 from e0,7 to x and from e4,7 to x abbreviate

the order relation ei,7 ≤ x, where 0 ≤ i < 5 and x is an element of X \B with

bi ≤ x.
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The topology τ on the domain P of Φ(X) is the union topology of the

clopen subspace X \B of X together with the discrete topology on the finite

set A ∪ C ∪D0 ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5).

The equivalence relation E on P is defined by xEy for all x, y ∈ P . Clearly,

Φ(X) = (P ;≤, τ, E) is finite whenever X is. Clearly too, since P has only

one equivalence class, Φ(X) satisfies (i), (ii), and (iii) of the requirements for

a Priestley space to be a QS-space. To see that Φ(X) is a Priestley space,

suppose that x �≤ y for some x, y ∈ P . If x �∈ X \ B, then [x) ∩ (X \ B) = ∅
unless x = ei,7 for some 0 ≤ i < 5. That is, [x) is a finite union of discrete

points and, hence, clopen. On the other hand, if x = ei,7 for some 0 ≤ i < 5,

then we have [x) = {ei,6, ei,7, ei,8} ∪ ([bi) ∩ (X \ B)) ∪ {a1, a2}. If y �∈ X \ B,

then [x) = {ei,6, ei,7, ei,8} ∪ (X \ B) ∪ {a1, a2} is a clopen order-filter which

contains x but not y. If y ∈ X \ B, then bi �≤ y, and there exists a clopen

order-filter F ⊆ X such that [bi) ⊆ F and y �∈ F , in which case we have that

{ei,6, ei,7, ei,8} ∪ (F \B)∪ {a1, a2} is a clopen order-filter of P which contains

x and not y. If x ∈ X \ B, then either y �∈ X \ B and (X \ B) ∪ {a1, a2} will

suffice, or y ∈ X \ B and there exists a clopen order-filter F ⊆ X such that

x ∈ F and y �∈ F , as such, (F \B) ∪ {a1, a2} will serve.

For a morphism f : X → X ′ inP5, letΦ(f) : P → P ′ be given byΦ(f)(x) =

f(x) for x ∈ X \B and the identity otherwise. Clearly, Φ(f) is a QS-map.

Informally, the functor Φ works in the following way. For a QS-map

φ : Φ(X) → Φ(X ′), since Max(Φ(X)) = Max(Φ(X ′)) is a 4-element set A, φ is

1-1 on it. Further, as Φ(X) has no type 1 element, φ(Φ(X)\A) ⊆ (Φ(X ′)\A),

and given that Φ(X) has no element of type 4, φ(C) ⊆ C for the set C of type

3 elements. All other elements are type 2. The fences D0, D1, and D2 are of

varying length and connect different members of C. They ensure that φ is the

identity on A, C, D0, D1, and D2. The fences D1 and D2 have greater length,

guaranteeing that φ is also the identity on the 5 fences (Ei : 0 ≤ i < 5) which

are strung between them. By identifying ei,7 with bi for each 0 ≤ i < 5, it

follows that φ(X \ B) ⊆ (X ′ \ B), thereby forcing φ to mimic Φ(f) for some

f : X → X ′. A careful proof of Theorem 1.1 follows.

The following lemma shows that the quasi-Stone algebra represented by

each Φ(X) belongs to Q2,2.

Lemma 3.1. For X ∈ P5, Q(Φ(X)) ∈ Q2,2.

Proof. For P = Φ(X), observe that Max(P ) = A and that for x ∈ P \ A,

|Max(x)| ≥ 2. Thus, for each x ∈ P \ A, there is a QS-map ψx : S(Q2,2) → P

with ψx(S(Q2,2)) = {x}∪A, where S(Q2,2) is the QS-space of the algebra Q2,2

diagrammed in Figure 2; i.e., the set of QS-maps (Q(ψx) : x ∈ P \A) represent

homomorphisms from the quasi-Stone algebra represented byQ(Φ(X)) to Q2,2

which separate the elements of the algebra. Since Q2,2 generates the variety

Q2,2, the quasi-Stone algebra Q(Φ(X)) represented by the QS-space Φ(X)

belongs to Q2,2. �
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Clearly, Φ : P5 → S is faithful. The following lemma shows that Φ is full.

Lemma 3.2. For X,X ′ ∈ P5, if φ : Φ(X) → Φ(X ′) is a QS-map, then there

exists a morphism f : X → X ′ such that φ = Φ(f).

Proof. Let P = Φ(X) and P ′ = Φ(X ′). Since φ is a QS-map and Max(P ) =

Max(P ′) = A, φ(A) = A follows from the definition of QS-map. Consequently,

φ(P \ A) ⊆ P ′ \ A because for x ∈ P \ A, |Max(x)| ≥ 2. Moreover, since

for x ∈ P \ C, |Max(x)| ≤ 2, and for x ∈ C, |Max(x)| = 3, it follows

that φ(C) ⊆ C. As Max(c2) �= Max(c3), φ(c2) �= φ(c3). Since D0 is the

shortest path between c2 and c3 in the comparability graph of (P \A;≤) and

since this path is shorter than any other path between distinct ci and cj ,

φ({c2, c3}) = {c2, c3}.
As Max(c0) �= Max(c2) and Max(c0) �= Max(c3), Max(φ(c0)) �= Max(φ((c2))

and Max(φ(c0)) �= Max(φ(c3)). Since φ({c2, c3}) = {c2, c3}, this means

that Max(φ(c0)) �= {a1, a2, a3} and Max(φ(c0)) �= {a0, a2, a3}. Notice that

we have Max(c0) = {a0, a1, a2}, Max(c1) = Max(c2) = {a1, a2, a3}, and

Max(c3) = {a0, a2, a3}. So, as φ(C) ⊆ C, it follows that φ(c0) = c0.

We show that φ(c2) = c2 and φ(c3) = c3. Supposing otherwise, we have

by φ({c2, c3}) = {c2, c3} that φ(c2) = c3. Since Max(c1) = Max(c2), we have

Max(φ(c1)) = Max(c3). So, as φ(C) ⊆ C and for i < 4, Max(ci) = Max(c3) iff

i = 3, we conclude that φ(c1) = c3. However, D1 is the shortest path between

c0 and c1 in the comparability graph of (P \ A;≤) and it is shorter than any

path between c0 and c3. Thus, φ(c2) = c2 and φ(c3) = c3.

We now show that φ(c1) = c1. As we have Max(φ(c0)) = {a0, a1, a2}
and Max(φ(c3)) = {a0, a2, a3}, and as Max(φ(c1)) = {a1, a2, a3} because

Max(c1) = Max(c2), we conclude that φ(c1) �= φ(c0) and φ(c1) �= φ(c3). Thus,

φ(c1) ∈ {c1, c2}. Now, since the shortest path between c0 and c2 in the com-

parability graph of (P \A;≤) is longer than that between c0 and c1, it follows

from φ(c0) = c0 that φ(c1) = c1.

We have shown that φ(ci) = ci for 0 ≤ i < 4. Thus: for 0 ≤ i < 3,

φ(d0,i) = d0,i since D0 is the unique shortest path between c2 and c3 in the

comparability graph of (P \A;≤); for 0 ≤ i < 27, φ(d1,i) = d1,i since D1 is the

unique shortest path between c0 and c1; for 0 ≤ i < 29, φ(d2,i) = d2,i since

D2 is the unique shortest path between c0 and c2. Furthermore, for 0 ≤ i < 5

and 0 ≤ j < 15, φ(ei,j) = ei,j since Ei is the shortest path between d1,9+2i

and d2,9+2i in the comparability graph of (P \A;≤).

We now show that φ(x) ∈ X ′ \ B for x ∈ X \ B. Let x ∈ X \ B. Then

by |(x] ∩ B| > 1, there are 0 ≤ i �= j < 5 such that bi ≤ x and bj ≤ x in

(X;≤). This implies that ei,7 ≤ x and ej,7 ≤ x in (P ;≤). As φ(ei,7) = ei,7
and φ(ej,7) = ej,7, we have ei,7 ≤ φ(x) and ej,7 ≤ φ(x) in (P ′;≤). But

X \ B ⊆ P \ A and φ(P \ A) ⊆ P ′ \ A. So φ(X \ B) ⊆ P ′ \ A, and therefore

φ(x) �∈ A. Since for y ∈ P ′, if ei,7 ≤ y and ej,7 ≤ y, then y ∈ {a1, a2} or

y ∈ X ′ \B, it follows that φ(x) ∈ X ′ \B.
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Finally, as Max(c0)∩Max(c1) = {a1, a2} and Max(c0)∩Max(c3) = {a0, a2},
φ({a1, a2}) = {a1, a2} and φ({a0, a2}) = {a0, a2}. In particular, φ(a2) = a2.

It then follows that φ(a0) = a0 and φ(a1) = a1, from which φ(a3) = a3.

To summarize, φ = Φ(f) where f : X → X ′ is given by f = φ�(X\B) on

X \B and the identity on B. �

4. The variety Q3,1 (Theorem 1.3)

An algebra is called endomorphism rigid or just rigid if the identity map is

its only endomorphism. To establish Theorem 1.3, it is sufficient to show that,

up to isomorphism, Q3,1 contains only two rigid algebras, the one-element

and two-element algebras (since any finite-to-finite universal variety contains

a proper class of non-isomorphic rigid algebras).

Throughout this section, (P ;≤, τ, E) denotes the QS-space of a quasi-Stone

algebra L ∈ Q3,1 that is rigid.

Since Q3,1 is generated by the algebra Q3,1 (the QS-space S(Q3,1) is dia-

grammed in Figure 2), each x ∈ P is in the QS-map image of some QS-map

ψx : S(Q3,1) → P . In particular, for x ∈ P , |Max(E(x))| ≤ 4 and, in the event

that |Max(E(x))| = 4, either |Max(x)| = 3 or 4, or x ∈ Max(E(x)). More-

over, since Q1,2 is generated by the algebra Q1,2 (the QS-space S(Q1,2) is dia-

grammed in Figure 2), it follows that L �∈ Q1,2 if and only if |Max(E(x))| = 4

for some x ∈ P .

The proof of Theorem 1.3 falls naturally into three cases. In Lemma 4.1,

it is shown that L ∈ Q1,2, then in Lemma 4.2, that L ∈ Q1,1, and finally, in

Lemma 4.3, that L is a one-element or a two-element algebra. In each case,

the proof is similar but different. We have tried to emphasise the similarities

in order to assist the reader with the technical details.

The basic idea behind the proof of Lemma 4.1 is as follows: By the above

remarks, for L �∈ Q1,2, there are two possibilities: there exists x ∈ P such

that |Max(x)| = 4 or, if such an x does not exist, there exists x ∈ P such that

|Max(E(x))| = 4 where either |Max(x)| = 3 or Max(x) = {x}. Consider the

the first case. Set Max(x) = {a0, a1, a2, a3} and denote x by a0,1,2,3. If P were

finite, then for A = E(x), the mapping φ : P → P , given by

φ(x) =





x if x = ai for some 0 ≤ i < 4,

a0,1,2,3 if x ∈ A \ {a0, a1, a2, a3},
x otherwise,

is a QS-map. (Recall that A is both an order-ideal as well as an order-filter.)

As L is rigid, φmust be trivial, but then there is a non-trivial ψ : φ(P ) → φ(P )

given, for example, by ψ(a0) = a1, ψ(a1) = a0, and ψ(x) = x otherwise, a

contradiction. If P is not finite, then greater care must be taken. Again, let

Max(x) = {a0, a1, a2, a3} and denote x by a0,1,2,3. The objective now is to
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choose a clopen set A ⊆ P such that E(A) = A (whereupon A is an order-

ideal as well as an order-filter), which may be partitioned into five clopen sets

(Ai : 0 ≤ i < 4) and A \
⋃
(Ai : 0 ≤ i < 4) such that for 0 ≤ i, j < 4, we

have ai ∈ Ai, Ai ∩ Aj = ∅ for i �= j, Max(A) =
⋃
(Ai : 0 ≤ i < 4), and

E(Ai) = E(Aj) = A. It will follow that φ : P → P , given by

φ(x) =





ai if x ∈ Ai for some 0 ≤ i < 4,

a0,1,2,3 if x ∈ A \
⋃
(Ai : 0 ≤ i < 4),

x otherwise,

is a QS-map, and as in the finite case, ψ : φ(P ) → φ(P ) will show that L is not

rigid. Consider the second case, where there does not exist an x ∈ P such that

|Max(x)| = 4 and, in particular, for every x ∈ P such that |Max(E(x))| = 4,

either |Max(x)| = 3 or Max(x) = {x}. Choose such an x and set Max(x) =

{a0, a1, a2, a3}. For distinct 0 ≤ i, j, k < 4, if (ai] ∩ (aj ] ∩ (ak] �= ∅, choose
some distinguished element ai,j,k ∈ (ai]∩ (aj ]∩ (ak]. If P were finite, then for

A = E(x), the mapping φ : P → P , given by

φ(x) =




x if x = ai for some 0 ≤ i < 4,

ai,j,k if x ∈ (ai] ∩ (aj ] ∩ (ak] for distinct 0 ≤ i, j, k < 4,

x otherwise,

would be a QS-map. Since L is rigid, φ must be trivial, but then, as before,

there exists a suitable non-trivial ψ : φ(P ) → φ(P ), which must be chosen

more carefully this time, depending on which, if any, distinct 0 ≤ i, j, k < 4

are such that (ai] ∩ (aj ] ∩ (ak] �= ∅, thereby leading to a contradiction. If P

is not finite, then even greater care must be taken than before. The objective

now is to choose a clopen set A ⊆ P such that E(A) = A and which may

be partitioned into between four and eight clopen sets (Ai : 0 ≤ i < 4) and

(Ai,j,k : 0 ≤ i, j, k < 4 are distinct) (the size of the partition depending on

whether or not (ai]∩ (aj ]∩ (ak] �= ∅ for particular 0 ≤ i, j, k < 4) such that for

distinct 0 ≤ i, j, k < 4, ai ∈ Ai, ai,j,k ∈ Ai,j,k, Max(A) =
⋃
(Ai : 0 ≤ i < 4),

and E(Ai) = E(Aj) = A. It will follow that φ : P → P given by

φ(x) =




ai if, for some 0 ≤ i < 4, x ∈ Ai,

ai,j,k if, for distinct 0 ≤ i, j, k < 4, x ∈ Ai,j,k,

x otherwise,

is a QS-map and, as in the finite case, a suitable ψ : φ(P ) → φ(P ) will show

that L is not rigid. To ensure that everything works as anticipated, the family

(Ai : 0 ≤ i < 4) must be chosen carefully. First, a family (Bi : 0 ≤ i < 4) is

chosen in the same way as the family (Ai : 0 ≤ i < 4) was chosen in the first

case; in turn, the family (Bi : 0 ≤ i < 4) is refined to choose a suitable family

(Ai : 0 ≤ i < 4). In both cases, we will observe that for 0 ≤ i < 4, Ai is an

antichain. This fact is not explicitly used in the proof of Lemma 4.1, rather it
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is to clarify a difference between the proof of Lemma 4.1 and those of Lemma

4.2 and Lemma 4.3, where such a choice may not be possible.

Lemma 4.1. L ∈ Q1,2.

Proof. Suppose on the contrary that L �∈ Q1,2. Then, as noted above, there

exists an x in P such that |Max(E(x))| = 4 and either |Max(x)| = 3 or 4, or

x ∈ Max(E(x)).

Case 1. There exists an x ∈ P such that |Max(E(x))| = 4 and |Max(x)| = 4.

Let the x be denoted by a0,1,2,3 and let Max(E(x)) = {ai : 0 ≤ i < 4}.
Since (P ;≤, τ), being a Priestley space, is totally order-disconnected, there

are mutually disjoint clopen order-filters A′
i, where 0 ≤ i < 4, such that

ai ∈ A′
i. For 0 ≤ i < 4, let Ai = A′

i ∩
⋂
(E(A′

j) : 0 ≤ j < 4 and j �= i).

By the definition of a QS-space, every set E(A′
j) is clopen. Further, if

z ≥ y ∈ E(A′
j), then z ∈ E(y) and z ∈ E(A′

j). That is, each E(A′
j) is

an order-filter. Obviously, aiEaj for 0 ≤ i, j < 4, so ai ∈ E(A′
j) for any

0 ≤ i, j < 4. Thus, (Ai : 0 ≤ i < 4) are mutually disjoint clopen order-filters

and ai ∈ Ai. We prove the following:

For y ∈ P , if E(y) ∩Ai �= ∅ for some i < 4, then

(1) E(y) ∩Aj �= ∅ for all j < 4,

(2) |Max(E(y))| = 4, and

(3) |Max(E(y)) ∩Aj | = 1 for all j < 4.

Assume E(y) ∩ Ai �= ∅ for some i < 4. Since Ai is an order-filter, zi ∈ Ai

for some zi ∈ Max(E(y)). Thus, zi ∈ A′
i and zi ∈ E(A′

j) for all j �= i.

Consequently, y ∈ E(A′
j) for all j �= i. Thus, for every j �= i, there exists

wj ∈ A′
j such that yEwj , that is wj ∈ E(y). For each j �= i, let zj ∈ Max(E(y))

be such that wj ≤ zj . Since A′
j is an order-filter, zj ∈ A′

j . As zk ∈ E(y) and

zk ∈ A′
k for all k < 4, we have {z0, z1, z2, z3} ⊆ E(A′

k) for all k < 4. Thus,

zj ∈ E(y) ∩Aj for all j < 4. This proves (1). (2) and (3) follow from (1) and

the facts that |Max(E(y))| ≤ 4 and that (Ai : 0 ≤ i < 4) are mutually disjoint

order-filters.

The following are true.

(4) E(Ai) = E(Aj) for all 0 ≤ i, j < 4, and

(5) (Ai : 0 ≤ i < 4) are antichains in (P ;≤).

Then (4) follows from (1). To see (5), recall that L ∈ Q3,1. So, for every

y ∈ P with y �∈ Max(E(y)), the following holds: |Max(y) ∩Max(E(y))| ≥ 2,

or |Max(y)| = 1 and |Max(E(y))| ≤ 3. Thus, (5) follows from (3) and the

fact that (Ai : 0 ≤ i < 4) are mutually disjoint order-filters.

Now, set A = E(Ai) = E(Aj) for 0 ≤ i, j < 4, and define the mapping

φ : P → P as follows:

φ(x) =




ai if, for some 0 ≤ i < 4, x ∈ Ai,

a0,1,2,3 if x ∈ A \
⋃
(Ai : 0 ≤ i < 4),

x otherwise.
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Since A is clopen as too are Ai for 0 ≤ i < 4, φ is continuous. Let x ≤ y in

(P ;≤, τ, E). Since (P ;≤, τ, E) is a QS-space, E(x) = E(y). So, x belongs to

A if and only if y does. Hence, φ(x) = x ≤ y = φ(y) in case x �∈ A. So, let

both x and y belong to A. If x ∈
⋃
(Ai : 0 ≤ i < 4), then, by (5) and x ≤ y,

we have x = y, and so φ(x) ≤ φ(y). If x, y ∈ A \
⋃
(Ai : 0 ≤ i < 4), then

φ(x) = a0,1,2,3 = φ(y), and so φ(x) ≤ φ(y). If x ∈ A \
⋃
(Ai : 0 ≤ i < 4) and

y ∈
⋃
(Ai : 0 ≤ i < 4), then φ(x) = a0,1,2,3 and φ(y) = ai for some 0 ≤ i < 4.

As a0,1,2,3 ≤ ai in (P ;≤) for all i < 4, we have that φ(x) ≤ φ(y), proving

that φ is order-preserving. By (1)–(5), φ(Max(E(x))) ⊇ Max(E(φ(x))) for all

x ∈ P . Thus, φ is a QS-map.

Recall that L has been assumed to be rigid and that (P ;≤, τ, E) is a QS-

space of L. Thus, if φ is not the identity map, then L is not rigid, and we get

a contradiction. So, let us assume that φ = id. This means that Ai = {ai} for

0 ≤ i < 4 and A \
⋃
(Ai : 0 ≤ i < 4) = {a0,1,2,3}. In particular, the singleton

sets {ai}, where i < 4, are clopen. This is why the map ψ : P → P , given by

ψ(x) =




a1 if x = a0,

a0 if x = a1,

x otherwise,

is continuous. Obviously, it is order-preserving and satisfies the remaining

requirements of a QS-map. Evidently, φ �= id, contradicting the rigidity of L.

In view of Case 1 just considered, we may assume that for every x ∈ P , if

|Max(E(x))| = 4, then either |Max(x)| = 3 or x ∈ Max(E(x)).

Case 2. There exists an x ∈ P such that |Max(E(x))| = 4 and either

|Max(x)| = 3 or x ∈ Max(E(x)).

Choose one such x ∈ P and let Max(E(x)) = {ai : 0 ≤ i < 4}. By

hypothesis, if x ∈
⋃
((ai] \ {ai} : 0 ≤ i < 4), then x ∈ (ai] ∩ (aj ] ∩ (ak] for

distinct 0 ≤ i, j, k < 4. Whenever (ai] ∩ (aj ] ∩ (ak] is non-empty for distinct

0 ≤ i, j, k < 4, choose an element of it and denote it by ai,j,k; note that

ai,j,k �≤ al for l �= i, j, k.

As in Case 1, for 0 ≤ i < 4, choose mutually disjoint clopen order-filters B′
i

such that ai ∈ B′
i and set Bi = B′

i ∩
⋂
(E(B′

j) : 0 ≤ j < 4 and j �= i).

It follows, just as in Case 1, that (Bi : 0 ≤ i < 4) are mutually disjoint

clopen order-filters, ai ∈ Bi for 0 ≤ i < 4, and for y ∈ P , if E(y) ∩Bi �= ∅ for

some i < 4, then

(1) E(y) ∩Bj �= ∅ for all j < 4,

(2) |Max(E(y))| = 4,

(3) |Max(E(y)) ∩Bj | = 1 for all j < 4,

(4) E(Bi) = E(Bj) for all 0 ≤ i, j < 4, and

(5) (Bi : 0 ≤ i < 4) are antichains in (P ;≤).

Set B = E(Bi) = E(Bj) for 0 ≤ i, j < 4. By (2) and (3), y �∈ Max(P ) for

y ∈ B \
⋃
(Bi : 0 ≤ i < 4), and, by hypothesis, |Max(y)| = 3. In particular,

y ∈ (Bi] ∩ (Bj ] ∩ (Bk] for some distinct 0 ≤ i, j, k < 4, while y �∈ (Bl] for
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l �= i, j, k. Since (Bi : 0 ≤ i < 4) are clopen and (Bi]∩ (Bj ]∩ (Bk] is closed for

distinct 0 ≤ i, j, k < 4, we have

(6) (Bi : 0 ≤ i < 4) ∪ ((Bi] ∩ (Bj ] ∩ (Bk] : for distinct 0 ≤ i, j, k < 4) is a

clopen partition of B.

Suppose we have y ∈ (Bi]∩ (Bj ]∩ (Bk] for some distinct 0 ≤ i, j, k < 4, but

(ai] ∩ (aj ] ∩ (ak] = ∅. Since y ≤ bl ∈ Bl but y �≤ al ∈ Bl for some l = i, j or k,

so Max(E(y))∩{ai : 0 ≤ i < 4} = ∅ by (3). In particular, there exists a clopen

order-filter Y such that y ∈ Y and Y ∩ {ai : 0 ≤ i < 4} = ∅. By compactness,

there exists a clopen order-filter B′
i,j,k such that

B′
i,j,k ⊇ (Bi] ∩ (Bj ] ∩ (Bk] and B′

i,j,k ∩ {ai : 0 ≤ i < 4} = ∅.

Since B′
i,j,k is an order-filter, that E(x) ∩ B′

i,j,k = ∅. Set Bi,j,k = E(B′
i,j,k),

which, since B′
i,j,k is a clopen order-filter, is also a clopen order-filter.

For 0 ≤ i < 4, let

A′
i = Bi \

⋃
(Bj,k,l : (aj ] ∩ (ak] ∩ (al] = ∅ for distinct 0 ≤ j, k, l < 4).

Then (A′
i : 0 ≤ i < 4) are mutually disjoint clopen order-filters with ai ∈ A′

i.

Set Ai = A′
i ∩

⋂
(E(A′

j) : 0 ≤ j < 4 and j �= i). As above, (Ai : 0 ≤ i < 4) are

mutually disjoint clopen order-filters, ai ∈ Ai for 0 ≤ i < 4, and, for y ∈ P , if

E(y) ∩Ai �= ∅ for some i < 4, then

(1) E(y) ∩Aj �= ∅ for all j < 4,

(2) |Max(E(y))| = 4,

(3) |Max(E(y)) ∩Aj | = 1 for all j < 4,

(4) E(Ai) = E(Aj) for all 0 ≤ i, j < 4, and

(5) (Ai : 0 ≤ i < 4) are antichains in (P ;≤).

Set A = E(Ai) = E(Aj) for 0 ≤ i, j < 4 and for distinct 0 ≤ i, j, k < 4, let

Ai,j,k denote the closed set (Ai] ∩ (Aj ] ∩ (Ak]. Then

(6) (Ai : 0 ≤ i < 4) ∪ (Ai,j,k : for distinct 0 ≤ i, j, k < 4) is a clopen

partition of A,

(7) for distinct 0 ≤ i, j, k < 4, if Ai,j,k �= ∅, then (ai]∩ (aj ]∩ (ak] �= ∅, and
(8) for distinct 0 ≤ i, j, k < 4 and 0 ≤ p, q, r < 4, if y ≤ z, y ∈ Ai,j,k, and

z ∈ Ap,q,r, then {i, j, k} = {p, q, r}.
If y ∈ Ai,j,k and l ∈ {i, j, k}, y ≤ bl ∈ Al ⊆ A′

l ⊆ Bl. If (ai]∩(aj ] ∩ (ak] = ∅,
then y ∈ B′

i,j,k and Max(E(y)) ⊆ Bi,j,k. Hence, for any 0 ≤ l < 4, we have

that Max(E(y)) ∩ A′
l = ∅, that is, Max(E(y)) ∩ Al = ∅, contradicting y ∈ A

and verifying (7); (8) follows from (1) and (2).

Consider the mapping φ : P → P given by

φ(x) =




ai if, for some 0 ≤ i < 4, x ∈ Ai,

ai,j,k if, for distinct 0 ≤ i, j, k < 4, x ∈ Ai,j,k,

x otherwise.

By (6), φ is continuous. Let x ≤ y in (P ;≤, τ). Since E(x) = E(y), x ∈ A

iff y ∈ A. As in Case (1), if x �∈ A, then φ(x) = x ≤ y = φ(y). Assume
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x, y ∈ A. Again by (5), if x ∈
⋃
(Ai : 0 ≤ i < 4), then x = y and it follows that

φ(x) ≤ φ(y). If x, y ∈ A \
⋃
(Ai : 0 ≤ i < 4), then by (8), both x, y ∈ Ai,j,k

for some distinct 0 ≤ i, j, k < 4, from which φ(x) = φ(y) = ai,j,k by (7). If

x ∈ A \
⋃
(Ai : 0 ≤ i < 4) and y ∈

⋃
(Ai : 0 ≤ i < 4), then x ∈ Ai,j,k for

some distinct 0 ≤ i, j, k < 4 and y ∈ Al for some l ∈ {i, j, k}. In particular,

φ(x) = ai,j,k and φ(y) = al, where ai,j,k < al. By (1), φ is a QS-map.

Were φ non-identity, it would violate the rigidity of L. So suppose otherwise,

that φ is the identity map. Observe then that by (6), each non-empty set of

(Ai : 0 ≤ i < 4) ∪ (Ai,j,k : for distinct 0 ≤ i, j, k < 4) is an isolated point

of (P ; τ). First consider the case that there exist distinct p and q such that

whenever Ai,j,k �= ∅, we have p, q ∈ {i, j, k}. That is, either Ai,j,k = ∅ for all

distinct 0 ≤ i, j, k < 4 or Ap,q,k �= ∅ for some k �= p, q, where there are two

possible values for k and Ap,q,k �= ∅ may hold for either one or both. Let ζ

denote the permutation on {i : 0 ≤ i < 4} given by ζ(p) = q, ζ(q) = p, and

the identity otherwise. Then ψ : P → P , given by

ψ(x) =




aζ(i) if x = ai,

aζ(i),ζ(j),ζ(k) if x = ai,j,k,

x otherwise,

yields a non-identity QS-map on P . Failing this, Ai,j,k �= ∅ for some distinct

0 ≤ i, j, k < 4 and either there exists precisely one p such that p ∈ {i, j, k}
whenever Ai,j,k �= ∅ or no such p exists. If a unique p exists, then Ap,j,k �= ∅ for

all valid choices of j and k, of which there are three. In this case, choose distinct

j and k both of which are distinct from p and let ζ denote the permutation

on {i : 0 ≤ i < 4} given by ζ(j) = k, ζ(k) = j, with the identity elsewhere.

Should no such p exist, then Ai,j,k �= ∅ for all distinct 0 ≤ i, j, k < 4. In this

case, simply choose distinct j and k, and again let ζ denote the permutation

on {i : 0 ≤ i < 4} given by ζ(j) = k, ζ(k) = j, with the identity elsewhere.

In either case, ψ as given above but with the modified ζ provides a non-trivial

QS-map, contradicting the rigidity of L. �

Informally, the proof of Lemma 4.1 shows that if for some x ∈ P , we have

|Max(E(x))| = 4, then L is not rigid. Now Lemma 4.2 will show that if for

some x ∈ P , |Max(E(x))| = 3, then it is also the case that L is not rigid.

As with Lemma 4.1, there are two cases. First there exists x ∈ P such that

|Max(x)| = 3 while next, for no x ∈ P is it the case that |Max(x)| = 3, but

there is an x ∈ P such that |Max(E(x))| = 3 (from which it follows that

|Max(x)| = 1 or 2, or x ∈ Max(E(x))). As in Lemma 4.1, the objective is to

choose a suitable clopen set A ⊆ P for which E(A) = A and to partition it

with a view to defining QS-maps φ and ψ. As in Lemma 4.1, the choice of

A is more subtle in the second case. With clarity in mind, we have presented

the proof in a similar format to that of Lemma 4.1. So too for the proof of

Lemma 4.3, which shows that if for all x ∈ P , |Max(E(x))| ≤ 2, then L is a

one-element or two-element algebra.
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Lemma 4.2. L ∈ Q1,1.

Proof. Suppose L �∈ Q1,1; then by Lemma 4.1, |Max(E(x))| < 4 for x ∈ P ,

but by hypothesis, |Max(E(x))| = 3 for some x ∈ P .

Case 1. There exists x ∈ P such that |Max(E(x))| = 3 and |Max(x)| = 3.

Let the x be denoted a0,1,2 and set Max(E(x)) = {ai : 0 ≤ i < 3}. As in

Case 1 of Lemma 4.1, for 0 ≤ i < 3, choose mutually disjoint clopen order-

filters A′
i such that ai ∈ A′

i and again set

Ai = A′
i ∩

⋂
(E(A′

j) : 0 ≤ j < 3 and j �= i).

Arguing as before, (Ai : 0 ≤ i < 3) are mutually disjoint clopen order-filters,

ai ∈ Ai for every 0 ≤ i < 3, and for y ∈ P , if E(y) ∩ Ai �= ∅ for some i < 3,

then

(1) E(y) ∩Aj �= ∅ for all j < 3,

(2) |Max(E(y))| = 3,

(3) |Max(E(y)) ∩Aj | = 1 for all j < 3, and

(4) E(Ai) = E(Aj) for all 0 ≤ i, j < 3.

However, the presence of type 1 elements means that it no longer need be

the case that each Ai is an antichain.

Set A = E(Ai) = E(Aj) for 0 ≤ i, j < 3, and let the mapping φ : P → P

be given by

φ(x) =




ai if, for some 0 ≤ i < 3, x ∈ Ai,

a0,1,2 if x ∈ A \
⋃
(Ai : 0 ≤ i < 3),

x otherwise.

As A is clopen, as is Ai for each 0 ≤ i < 4, so φ is continuous. Let x ≤ y in

(P ;≤, τ, E). Since E(x) = E(y), x belongs to A if and only if y does. Hence,

φ(x) = x ≤ y = φ(y) whenever x �∈ A. Assume both x and y belong to A.

If x ∈ Ai for some 0 ≤ i < 3, then y ∈ Ai and φ(x) = ai = φ(y), whence

φ(x) ≤ φ(y). If x ∈ A \
⋃
(Ai : 0 ≤ i < 3), then φ(x) = a0,1,2. Either

y ∈ A \
⋃
(Ai : 0 ≤ i < 3) and φ(y) = a0,1,2 = φ(x), or y ∈ Ai for some

0 ≤ i < 3 and φ(y) = ai. Either way, φ(x) ≤ φ(y) since a0,1,2 ≤ ai for every

0 ≤ i < 3. By (1)–(4), φ(Max(E(x))) ⊇ Max(E(φ(x))) for all x ∈ P , showing

that φ is a QS-map.

Since L is rigid, φ must be the identity map. That is, the singleton sets

Ai = {ai} for 0 ≤ i < 3 and A \
⋃
(Ai : 0 ≤ i < 3) = {a0,1,2} are clopen.

Hence, the map ψ : P → P , given by

ψ(x) =




a1 if x = a0,

a0 if x = a1,

x otherwise,

is continuous. Obviously, it is order-preserving and satisfies the requirements

of a QS-map. Evidently, φ �= id, contradicting the rigidity of L.



172 M. E. Adams, W. Dziobiak, and H. P. Sankappanavar� Algebra Univers.18 M. E. Adams, W. Dziobiak, and H. P. Sankappanavar Algebra univers.

In view of Case 1 just considered, we may assume that for every x ∈ P , if

|Max(E(x))| = 3, then either |Max(x)| = 1 or 2 or x ∈ Max(E(x)).

Case 2. There exists an x ∈ P such that |Max(E(x))| = 3 and either

|Max(x)| = 1 or 2, or x ∈ Max(E(x)).

Choose such an x ∈ P and let Max(E(x)) = {ai : 0 ≤ i < 3}. By hypoth-

esis, if x ∈
⋃
((ai] \ {ai} : 0 ≤ i < 3), then x ∈ (ai] for some 0 ≤ i < 3 and

x �∈ (aj ] for any 0 ≤ j < 3 with i �= j, or x ∈ (ai] ∩ (aj ] for some distinct

0 ≤ i, j < 3 and x �∈ (ak]∩ (al] for any distinct 0 ≤ k, l < 3 with {i, j} �= {k, l}.
Whenever (ai] ∩ (aj ] is non-empty for distinct 0 ≤ i, j < 3, choose an element

of it and denote it by ai,j , observing that ai,j �≤ ak for k �= i, j.

Just as in Case 1 above and mimicking Case 2 of Lemma 4.1, for 0 ≤ i < 3,

choose mutually disjoint clopen order-filters B′
i such that ai ∈ B′

i and set

Bi = B′
i ∩

⋂
(E(B′

j) : 0 ≤ j < 3 and j �= i).

It follows, just as before, that (Bi : 0 ≤ i < 3) are mutually disjoint clopen

order-filters, ai ∈ Bi for 0 ≤ i < 3, and for y ∈ P , if E(y) ∩ Bi �= ∅ for some

i < 3, then

(1) E(y) ∩Bj �= ∅ for all j < 3,

(2) |Max(E(y))| = 3,

(3) |Max(E(y)) ∩Bj | = 1 for all j < 3, and

(4) E(Bi) = E(Bj) for all 0 ≤ i, j < 3.

As in Case 1, the presence of type 1 elements means that no Bi need be an

antichain. However, since Bi is an order-filter, it follows from (1) - (3) that

for y ∈ Bi, either y ∈ Max(P ) or it is of type 1.

Set B = E(Bi) = E(Bj) for 0 ≤ i, j < 3.

By (2) and (3), for y ∈ B \
⋃
(Bi : 0 ≤ i < 3), y �∈ Max(P ), and so

|Max(y)| = 1 or 2. If |Max(y)| = 2, then y ∈ (Bi] ∩ (Bj ] for some distinct

0 ≤ i, j < 3, while y �∈ (Bk] for k �= i, j. Although (Bi]∩ (Bj ] is a closed order-

ideal for distinct 0 ≤ i, j < 3, it need not be clopen, and unlike in Lemma 4.1,

we may not conclude that

(Bi : 0 ≤ i < 3) ∪ ((Bi] ∩ (Bj ] : for distinct 0 ≤ i, j, k < 3)

is a clopen partition of B. However, initially, we may still proceed as in Case 2

of Lemma 4.1.

Suppose y ∈ (Bi] ∩ (Bj ] for some distinct 0 ≤ i, j < 3, but (ai] ∩ (aj ] = ∅.
Since y ≤ bk ∈ Bk, but y �≤ ak ∈ Bk for some k = i or j, so by (3), we

have Max(E(y)) ∩ {ai : 0 ≤ i < 3} = ∅. In particular, there exists a clopen

order-filter Y such that y ∈ Y and Y ∩ {ai : 0 ≤ i < 3} = ∅. By compactness,

there exists a clopen order-filter B′
i,j such that

B′
i,j ⊇ (Bi] ∩ (Bj ] and B′

i,j ∩ {ai : 0 ≤ i < 3} = ∅.

Observe, once more, that E(x) ∩ B′
i,j = ∅ since B′

i,j is an order-filter. Now

set Bi,j = E(B′
i,j), which, since B′

i,j is a clopen order-filter, is also a clopen

order-filter.
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For 0 ≤ i < 3, let

A′
i = Bi \

⋃
(Bj,k : (aj ] ∩ (ak] = ∅ for distinct 0 ≤ j, k < 3).

Then (A′
i : 0 ≤ i < 3) are mutually disjoint clopen order-filters such that

ai ∈ A′
i. Set

Ai = A′
i ∩

⋂
(E(A′

j) : 0 ≤ j < 3 and j �= i).

Yet again, (Ai : 0 ≤ i < 3) are mutually disjoint clopen order-filters, ai ∈ Ai

for 0 ≤ i < 3, and for y ∈ P , if E(y) ∩Ai �= ∅ for some i < 3, then

(1) E(y) ∩Aj �= ∅ for all j < 3,

(2) |Max(E(y))| = 3,

(3) |Max(E(y)) ∩Aj | = 1 for all j < 3, and

(4) E(Ai) = E(Aj) for all 0 ≤ i, j < 3.

Set A = E(Ai) = E(Aj) for 0 ≤ i, j < 3.

Suppose, for distinct 0 ≤ i, j < 3, y ∈ (Ai] ∩ (Aj ]; then by hypothesis,

y is a type 2 element. In particular, y �∈ Ak for any 0 ≤ k < 3 and there

exists a clopen order-ideal containing y whose intersection with the clopen

order-filter
⋃
(Ak : 0 ≤ k < 3) is empty. Further, since y is a type 2 element,

y �∈ (Ak] for k �= i, j. That is, there exists a clopen order ideal containing y

whose intersection with the closed order-ideal (Ak] ∩ (Al] is empty whenever

{i, j} �= {k, l} for distinct 0 ≤ k, l < 3. Since A is also a clopen order-ideal, by

compactness there is a clopen order-ideal Ai,j such that (Ai]∩(Aj ] ⊆ Ai,j ⊆ A

for which Ai,j ∩ Ak,l = ∅ whenever {i, j} �= {k, l} for distinct 0 ≤ k, l < 3.

Proceed inductively to determine a family (Ai,j : for distinct 0 ≤ i, j < 3) such

that

(5) for distinct 0 ≤ i, j < 3, we have that Ai,j is a clopen order-ideal,

(Ai]∩(Aj ] ⊆ Ai,j ⊆ A, Ai,j∩
⋃
(Ak : 0 ≤ k < 3) = ∅, and Ai,j∩Ak,l = ∅

whenever {i, j} �= {k, l} for distinct 0 ≤ k, l < 3,

(6) for distinct 0 ≤ i, j < 3, if Ai,j �= ∅, then (ai] ∩ (aj ] �= ∅, and
(7) for distinct 0 ≤ i, j < 3 and 0 ≤ k, l < 3, if y ≤ z, y ∈ Ai,j and

z ∈ Ak,l, then {i, j} = {k, l}.
The same argument as is given in Case 2 of Lemma 4.1 establishes (6).

Namely, if y ∈ Ai,j , then for l = i or j, y ≤ bl ∈ Al ⊆ A′
l ⊆ Bl. If we have

(ai]∩ (aj ] = ∅, then y ∈ B′
i,j and Max(E(y)) ⊆ Bi,j . Hence, for any 0 ≤ l < 3,

Max(E(y)) ∩ A′
l = ∅, that is, Max(E(y)) ∩ Al = ∅, contradicting y ∈ A; (7)

follows from (1) and (2).

Set A+ = A \
⋃
(Ai : 0 ≤ i < 3) ∪

⋃
(Ai,j : for distinct 0 ≤ i, j < 3).

For y ∈ A of type 2, y ∈ Ai,j for some distinct 0 ≤ i, j < 3. In particular,

by (3), if y ∈ A+, then y is of type 1. That is, y ∈ (Ai] for some 0 ≤ i < 3,

which, by (3) again, implies that y �∈ (Aj ] for j �= i. Set A+
i = A+ ∩ (Ai]

for 0 ≤ i < 3. Since A+ is clopen and (Ai] is closed, A+
i is closed. Thus,

(A+
i : 0 ≤ i < 3) partitions A+ into closed subsets. In other words,

(8) (Ai : 0 ≤ i < 3) ∪ (A+
i : 0 ≤ i < 3) ∪ (Ai,j : for distinct 0 ≤ i, j < 3) is

a clopen partition of A.
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Consider the mapping φ : P → P given by

φ(x) =





ai if, for some 0 ≤ i < 3, x ∈ Ai ∪A+
i ,

ai,j if, for distinct 0 ≤ i, j < 3, x ∈ Ai,j ,

x otherwise.

By (8), φ is continuous. Let x ≤ y in (P ;≤, τ). Since x ∈ A iff y ∈ A,

if x �∈ A, then φ(x) = x ≤ y = φ(y). Assume x, y ∈ A. If x ∈ Ai for some

0 ≤ i < 3, then y ∈ Ai, φ(x) = ai = φ(y), and φ(x) ≤ φ(y). If x ∈ A+
i for some

0 ≤ i < 3, then y ∈ Ai ∪ A+
i since y is maximal or of type 1, while y �∈ (Aj ]

for any j �= i. So, again, φ(x) = ai = φ(y) and φ(x) ≤ φ(y). If x ∈ Ai,j for

distinct 0 ≤ i, j < 3, then y ∈ Ai,j and φ(x) = ai,j = φ(y), or y �∈ Ai,j . In the

latter case, by (7), y ∈ Ak or A+
k for some 0 ≤ k < 3. Since x ≤ y, y ∈ (Ai] or

(Aj ], that is, y ∈ Ai, Aj , A
+
i , or A

+
j . Either way, φ(x) = ai,j ≤ ai or aj while

φ(y) = ai or aj . That is, φ(x) ≤ φ(y). By (1)–(3), φ is a QS-map.

Were φ non-trivial, it would violate the rigidity of L. So suppose otherwise,

that φ is trivial. Then by (8), each non-empty set of

(Ai : 0 ≤ i < 3) ∪ (Ai,j : for distinct 0 ≤ i, j < 3)

would be an isolated point of (P ; τ).

If there exist distinct p and q such that p, q ∈ {i, j} whenever Ai,j �= ∅,
let ζ denote the permutation ζ(p) = q, ζ(q) = p, and the identity otherwise.

Alternatively, there is at most one such p, in which case let ζ denote the

permutation ζ(k) = l, ζ(l) = k, and the identity otherwise, where k and l are

distinct and distinct from p should it exist. Then the mapping ψ : P → P ,

given by

ψ(x) =




aζ(i) if x = ai,

aζ(i),ζ(j) if x = ai,j ,

x otherwise,

provides a non-trivial QS-map, contradicting the rigidity of L. �

Thus, by Lemma 4.2, the proof of Theorem 1.3 will be complete once we

have shown the following.

Lemma 4.3. If L ∈ Q1,1, then L is either a one-element or a two-element

algebra.

Proof. Since, by assumption, L ∈ Q1,1, so |Max(E(x))| ≤ 2 for all x ∈ P . If

L �∈ Q1,0, then |Max(E(x))| = 2 for some x ∈ P and either |Max(x)| = 1

or 2, or x ∈ Max(E(x)).

Case 1. There exists x ∈ P such that |Max(E(x))| = 2.

If for some x ∈ P , we have |Max(x)| = 2, let that be the choice of x. Set

Max(E(x)) = {a0, a1}. Proceeding as before, for 0 ≤ i < 2, choose mutually

disjoint clopen order-filters A′
i such that ai ∈ A′

i, and set

Ai = A′
i ∩

⋂
(E(A′

j) : 0 ≤ j < 2 and j �= i).
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Once more, (Ai : 0 ≤ i < 2) are mutually disjoint clopen order-filters, ai ∈ Ai

for each 0 ≤ i < 2, and for y ∈ P , if E(y) ∩Ai �= ∅ for some i < 2, then

(1) E(y) ∩Aj �= ∅ for all j < 2,

(2) |Max(E(y))| = 2,

(3) |Max(E(y)) ∩Aj | = 1 for all j < 2, and

(4) E(Ai) = E(Aj) for all 0 ≤ i, j < 2.

Set A = E(Ai) = E(Aj) for 0 ≤ i, j < 2.

Case 1a. There exists x ∈ P such that |Max(x)| = 2.

Denote x by a0,1 and let the mapping φ : P → P be given by

φ(x) =




ai if, for some 0 ≤ i < 2, x ∈ Ai,

a0,1 if x ∈ A \
⋃
(Ai : 0 ≤ i < 2),

x otherwise.

As argued before, φ is a QS-map. In the event that φ is trivial, the map

ψ : P → P , given by

ψ(x) =




a1 if x = a0,

a0 if x = a1,

x otherwise,

provides a non-trivial QS-map, contradicting the rigidity of L.

Case 1b. For all x ∈ P , we have |Max(x)| = 1, that is, x is either a type 1

element or x ∈ Max(E(x)).

Then (A0] and (A1] partition A into two closed sets, which are de facto

clopen. Or, consistent with earlier notation, for 0 ≤ i < 2, set

A+ = A \
⋃
(Ai : 0 ≤ i < 2) and A+

i = A+ ∩ (Ai],

whereupon (Ai, A
+
i : 0 ≤ i < 2) is a clopen partition of A. It follows that the

mapping φ : P → P , given by

φ(x) =

{
ai if, for some 0 ≤ i < 2, x ∈ Ai ∪A+

i ,

x otherwise,

is a QS-map. Should φ be trivial, then the QS-map ψ : P → P , given by

ψ(x) =





a1 if x = a0,

a0 if x = a1,

x otherwise,

is not, showing that L is not in fact rigid.

In view of Case 1, L ∈ Q1,0, whereupon |Max(E(x))| = 1 for all x ∈ P .

Case 2. For all x ∈ P , |Max(E(x))| = 1.

For any x ∈ P , let a denote the unique element of Max(E(x)). Then the

QS-map φ : P → P , given by φ(x) = a for all x, is non-trivial unless P is a

singleton, that is, L is a two-element algebra. The only other possibility is
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that L is a one-element algebra (for which a dual space does not exit), both

of which are clearly rigid. �

5. The variety Q1,2 (Theorem 1.4)

The category P5 which is used in this section is defined in Section 3.

In order to establish Theorem 1.4, it is sufficient to construct a faithful

functor Ψ : P5 → S which has the following properties:

(i) for every object X of P5, Ψ(X) is finite if X is,

(ii) Q(Ψ(X)) ∈ Q1,2 for every object X of P5,

(iii) Q(Im(Ψ(f))) ∈ Q2,1 for no morphism f of P5,

(iv) if ψ : Ψ(X) → Ψ(X ′) is a QS-map, where X and X ′ are objects of

P5, then either Q(Im(ψ)) ∈ Q2,1 or ψ = Ψ(f) for some morphism

f : X → X ′ of P5.

Such a functor is constructed below. As in Section 3 (which is similar in

spirit), first a formal definition of the functor Ψ will be given, then an informal

description of the idea lying behind it, followed by a justification that it indeed

has the properties required to establish Theorem 1.4.

For (X;≤, τ, b0, b1, b2, b3, b4) ∈ P5 where, as before, B = {bi : 0 ≤ i < 5},
define Ψ(X) = (P ;≤, τ, E) as follows:

P = (X \B) ∪A ∪ {a} ∪A0,1 ∪A1,2 ∪ C ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5),

where A = {ai : 0 ≤ i < 3}, A0,1 = {a0,1, a−1
0,1, a

0
0,1},

A1,2 = {a1,2, a−1
1,2, a

0
1,2, a

1
1,2, a

2
1,2}, C = {ci : 0 ≤ i < 3},

D1 = {d1,i : 0 ≤ i < 27}, D2 = {d2,i : 0 ≤ i < 29}, and

Ei = {ei,j : 0 ≤ j < 15} for 0 ≤ i < 5.

The partial order (P ;≤) is the least order such that Max(P ) = A and P \A
has precisely three elements of type 3, namely, elements of the set C, while all

other elements, with the exception of a which is of type 1, are of type 2.

For the type 3 elements and the type 1 element,

• c0, c1, c2 ≤ a0, a1, a2, while a ≤ a1.

The type 2 elements fall into three groups. For x ∈ A0,1,

• x ≤ a0, a1, while c0 ≤ a0,1, a
−1
0,1, and a00,1 ≤ a−1

0,1, a.

Note that, in particular, a−1
0,1, a

0
0,1, a is a fence. Analogously, for x ∈ A1,2,

• x ≤ a1, a2, while c2 ≤ a1,2, a
−1
1,2, a01,2 ≤ a−1

1,2, a
1
1,2, and a21,2 ≤ a11,2, a.

Note that, in particular, a−1
1,2, a

0
1,2, a

1
1,2, a

2
1,2, a is a fence. Moreover,

• c1 ≤ a0,1, a1,2.

Finally,

• x ≤ a0, a2 for x ∈ (X \B) ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5).

As in Section 3, D1, D2, E0, E1, E2, E3, and E4 are fences where
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• d1,2i+1 ≤ d1,2i, d1,2i+2 where 0 ≤ i < 13 for D1,

• d2,2i+1 ≤ d2,2i, d2,2i+2 where 0 ≤ i < 14 for D2,

and, for E0, E1, E2, E3, and E4,

• ei,2j+1 ≤ ei,2j , ei,2j+2 for 0 ≤ i < 5 and 0 ≤ j < 7.

Again as in Section 3, the fences E0, E1, E2, E3, and E4 are connected to the

fences D1 and D2 by

• d1,9+2i ≤ ei,0, and d2,9+2i ≤ ei,14 for 0 ≤ i < 5.

The fences D1 and D2 are connected to C, the elements of type 3, by

• c0 ≤ d1,0, d2,0, while c1 ≤ d1,26, and c2 ≤ d2,28.

Again, as in Section 3, elements of X \B are connected to the fences E0, E1,

E2, E3, and E4 by

• ei,7 ≤ x iff bi ≤ x for 0 ≤ i < 5 and x ∈ X \B.

While, finally, for elements of X \B,

• x ≤ y in P iff x ≤ y in X for x, y ∈ X \B.

For a given X ∈ P5, the domains of the objects Φ(X) and Ψ(X) of the

previous functor Φ and the current Ψ share a common part. The common

part is {c0, c1, c2} ∪ (X \ B) ∪ D1 ∪ D2 ∪
⋃
(Ei : 0 ≤ i < 5) and the partial

order on it is visualized in Figure 4.

� ��

� � � ��

a0 a1 a2

�
�

��

�
�

��

�
�
��

�
�
������������

����������

�
�
��

�
�

��

� �
�

��
�

�
�

�
�

�
�

�
�
�
�
�

�
�

�
�

��
�
��

�
�

��

����
�
�
�
�
�
�

��� a2 �
�

�
�

�
�

�
��

�
�
�
�
�

�
�

�
�

�

�
�
�
�
�
�
�

���a0

a0,1 a−1
1,2a−1
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a

a00,1 a21,2 a1,2
a01,2

c0 c1 c2

Figure 5

Figure 5 visualizes the partial order of the part A ∪ {a} ∪ A0,1 ∪ A1,2 ∪ C

of the domain of Ψ(X). The solid points on Figure 5 indicate that a0 and

a2 are connected to every element x of the remaining part of the domain of

Ψ(X), that is, the part (X \B) ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5) (see Figure 4)

as follows: x ≤ a0, a2. The arrows on Figure 5 from c0 to a2 and from c2 to

a0 abbreviate the following order relations c0 ≤ a2 and c2 ≤ a0, respectively.
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The topology τ on the domain P of Ψ(X) is the union topology of the

clopen subspace X \B of X together with the discrete topology on the finite

set

A ∪ {a} ∪A0,1 ∪A1,2 ∪ C ∪D1 ∪D2 ∪
⋃
(Ei : 0 ≤ i < 5).

The equivalence relation on P is defined by xEy for all x, y ∈ P . As in

Section 3, Ψ(X) = (P ;≤, τ, E) is finite whenever X is, and since P again has

only one equivalence class, Ψ(X) satisfies (i), (ii), and (iii) of the requirements

for a Priestley space to be a QS-space. To see that Ψ(X) is a Priestley space,

suppose that x �≤ y for some x, y ∈ P . The argument is similar to that of

Section 3. If x �∈ X \ B, then [x) ∩ (X \ B) = ∅ unless x = ei,7 for some

0 ≤ i < 5. That is, [x) is a finite union of discrete points, and hence clopen.

On the other hand, if x = ei,7 for some 0 ≤ i < 5, then

[x) = {ei,6, ei,7, ei,8} ∪ ([bi) ∩ (X \B)) ∪ {a0, a2}.

If y �∈ X \B, then [x) = {ei,6, ei,7, ei,8} ∪ (X \B) ∪ {a0, a2} is a clopen order-

filter which contains x but not y. If y ∈ X \ B, then bi �≤ y, and there exists

a clopen order-filter F ⊆ X such that [bi) ⊆ F and y �∈ F , in which case

{ei,6, ei,7, ei,8} ∪ (F \B) ∪ {a0, a2}

is a clopen order-filter of P which contains x and not y. If x ∈ X \ B, then

either y �∈ X \ B and (X \ B) ∪ {a0, a2} will suffice, or y ∈ X \ B and there

exists a clopen order-filter F ⊆ X such that x ∈ F and y �∈ F , in which case

(F \B) ∪ {a0, a2} will serve.

For a morphism f : X → X ′ inP5, letΨ(f) : P → P ′ be given byΨ(f)(x) =

f(x) for x ∈ X \ B and the identity otherwise. Clearly, Ψ(f) is a QS-map.

Thus, Ψ : P5 → S is functor which is easily seen to be faithful.

Informally, the functor Ψ works as follows. Let ψ : Ψ(X) → Ψ(X ′) be a

QS-map such that ψ(Ψ(X)) �∈ Q2,1. Since Max(Ψ(X)) = Max(Ψ(X ′)) is

a 3-element set A, ψ is 1-1 on it. Although Ψ(X) now has only 3 maximal

elements, it does have a type 1 element a. Were ψ(a) ∈ Max(Ψ(X ′)), then it

would follow that ψ(Ψ(X)) ∈ Q2,1, violating the hypothesis. Thus, we have

ψ(a) = a, and hence, ψ(a1) = a1. Further, as Ψ(X) has no type 1 element

other than a, ψ(Ψ(X) \A) ⊆ (Ψ(X ′) \A) and ψ(C) ⊆ C for the set C of type

3 elements. All other elements are type 2. Again, fences of varying length

connect different members of C as well as a. Namely, c1 is connected to c0 by

the fence c1, a0,1, c0, and to c2 by the fence c1, a1,2, c2, while c0, a
−1
0,1, a

0
0,1, a is a

fence connecting c0 to a, and c2, a
−1
1,2, a

0
1,2, a

1
1,2, a

2
1,2, a is a fence connecting c2 to

a. The fences D1 and D2 connect c0 to c1 and c2, respectively. Together, they

ensure that ψ is the identity on A, {a}, A0,1, A1,2, C, D1, and D2. Again, the

fences D1 and D2 have greater length, guaranteeing that ψ is also the identity

on the 5 fences (Ei : 0 ≤ i < 5) which are strung between them. By identifying

ei,7 with bi for each 0 ≤ i < 5, it follows that ψ(X \B) ⊆ (X ′ \B) and forces

ψ to mimic Ψ(f) for some f : X → X ′. A justification follows.
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The required property (i) of Ψ is obvious. The property (ii) of Ψ is estab-

lished by the following:

Lemma 5.1. For X ∈ P5, Q(Ψ(X)) ∈ Q1,2.

Proof. Observe that Max(P ) = A, where |A| = 3. Thus, for each x ∈ P \ A,

there is a QS-map ψx : S(Q1,2) → P such that ψx(S(Q1,2)) = {x} ∪A, where

S(Q1,2) denotes the QS-space diagrammed in Figure 2. That is, the family of

QS-maps (ψx : x ∈ P \ A) represent homomorphisms from Q(Ψ(X)) to Q1,2

which separate the elements of the algebra. Since Q1,2 generates Q1,2, the

quasi-Stone algebra Q(Ψ(X)) belongs to Q1,2. �

Since for any morphism f of P5, Ψ(f)(a) = a and a is an element of type

1 for which Max(a) = A, so Q(Im(Ψ(f))) �∈ Q2,1. Thus, Ψ has the property

(iii). The property (iv) of Ψ is established by the following:

Lemma 5.2. For X,X ′ ∈ P5, if ψ : Ψ(X) → Ψ(X ′) is a QS-map such

that Q(Im(ψ)) �∈ Q2,1, then there exists a morphism f : X → X ′ such that

ψ = Ψ(f).

Proof. Let P = Ψ(X) and P ′ = Ψ(X ′). Since ψ : P → P ′ is a QS-map,

ψ(A) = A, and since Q(Im(ψ)) belongs to Q1,2 \ Q2,1 (see 5.1 above), it

must be the case that a ∈ ψ(P ). This is so because the set {a, a0, a1, a2}
forms the only QS-subspace in X ′ that is isomorphic to S(Q1,2) (see Figure

2). Further, since a is the only element of type 1, so a ∈ ψ(P ), and since

ψ is order-preserving, then it must be the case that ψ(a) = a, and hence

ψ(a1) = a1.

As all elements of P \ (A ∪ {a}) are of type 2 or 3, we have

ψ(P \ (A ∪ {a}) ⊆ P ′ \ (A ∪ {a}),

and as C contains precisely the elements of type 3, it follows that ψ(C) ⊆ C.

Since (a] = {a, a00,1, a21,2} and ψ(a) = a, so ψ({a, a00,1, a21,2}) ⊆ {a, a00,1, a21,2}.
Moreover, since a is the only element of type 1, ψ({a00,1, a21,2}) ⊆ {a00,1, a21,2}.
As ψ(P \(A∪{a}) ⊆ P ′\(A∪{a}), so [{a00,1, a21,2})\A = {a−1

0,1, a
0
0,1, a, a

2
1,2, a

1
1,2}

and a00,1 ≤ a−1
0,1, implying ψ(a−1

0,1) ∈ {a−1
0,1, a

0
0,1, a

2
1,2, a

1
1,2}. However, c0 ≤ a−1

0,1

and c0 is of type 3, yet ({a00,1, a21,2, a11,2}] contains no element of type 3. Thus,

ψ(a−1
0,1) = a−1

0,1, and therefore ψ(c0) = c0 because c0 is the only element of type

3 in (a−1
0,1].

Since Max(a−1
0,1) = {a0, a1} and ψ(a1) = a1, ψ(a0) = a0, and hence as

ψ(A) = A, so ψ(a2) = a2. Since a00,1 is the unique element both in P

and P ′ with a00,1 ≤ a−1
0,1 and a00,1 ≤ a, it follows that ψ(a00,1) = a00,1, and

as ψ({a00,1, a21,2}) ⊆ {a00,1, a21,2}, it also follows that ψ(a21,2) = a21,2. No-

tice that Max(a00,1) = {a0, a1} and Max(a21,2) = {a1, a2}. Note too that

[a21,2) = {a21,2, a, a11,2, a1, a2} and Max(a21,2) = {a1, a2}. So ψ(x) = x for

x ∈ {a21,2, a, a1, a2} (see above). Thus, ψ(a11,2) ∈ {a11,2, a21,2}. If ψ(a11,2) = a21,2,

then ψ(a01,2) = a21,2 since (a21,2] = {a21,2}. But this implies ψ(a−1
1,2) ≥ a21,2, that
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is, ψ(a−1
1,2) ∈ {a11,2, a21,2}, since Max(a−1

1,2) = {a1, a2}. However, c2 ≤ a−1
1,2, while

({a11,2, a21,2}] ∩ C = ∅. Since ψ(c2) ∈ C, this is impossible, and it follows that

ψ(a11,2) = a11,2.

As a01,2 ≤ a11,2, so ψ(a01,2) ≤ ψ(a11,2) = a11,2 and ψ(a01,2) ∈ {a01,2, a11,2, a21,2}.
The case ψ(a01,2) = a21,2 is excluded because, as above, if ψ(a01,2) = a21,2,

then ψ(a−1
1,2) ∈ {a11,2, a21,2}, which, since c2 ≤ a−1

1,2, ({a11,2, a21,2}] ∩ C = ∅, and
ψ(c2) ∈ C, is not possible. Thus, ψ(a01,2) = a01,2.

However, ψ(a01,2) = a01,2 together with [a01,2) \ A = {a−1
1,2, a

0
1,2, a

1
1,2} imply

ψ(a−1
1,2) ∈ {a−1

1,2, a
0
1,2, a

1
1,2}. The case ψ(a−1

1,2) = a01,2 is impossible because

a01,2 is minimal in X ′ and c2 ≤ a−1
1,2. That is, ψ(a−1

1,2) = a01,2 would imply

ψ(c2) = ψ(a−1
1,2) = a01,2; recall that c2 is of type 3. If ψ(a−1

1,2) = a11,2, then

as c2 ≤ a−1
1,2, we would have ψ(c2) ∈ {a01,2, a11,2, a21,2} which is impossible

because each element of {a01,2, a11,2, a21,2} is of type 2. Thus, ψ(a−1
1,2) = a−1

1,2 and

ψ(c2) = c2.

Notice that [c2) \ A = {c2, a−1
1,2, a1,2}. Thus, ψ(a1,2) ∈ {c2, a−1

1,2, a1,2} as

ψ(c2) = c2. The case ψ(a1,2) = c2 implies ψ(c1) = c2 because c2 is minimal in

X ′ and c1 ≤ a1,2. The argument that ψ(c1) = c2 leads to a contradiction will

be referred to several times below. It proceeds as follows. Since c1 ≤ a0,1, so

c2 = ψ(c1) ≤ ψ(a0,1); i.e., ψ(a0,1) ∈ [c2). Either ψ(a0,1) ∈ {a1,2, a−1
1,2, a1, a2}

or ψ(a0,1) = c2. But c0 ≤ a0,1, so ψ(a0,1) = c2 implies that c0 = ψ(c0) = c2,

a contradiction. Thus, ψ(a0,1) ∈ {a1,2, a−1
1,2, a1, a2}. But a0,1 ≤ a0 means that

ψ(a0,1) ≤ a0 = ψ(a0), while a0 �∈ [{a1,2, a−1
1,2, a1, a2}) = {a1,2, a−1

1,2, a1, a2}, a
contradiction. In other words, ψ(c1) �= c2. In this instance, it now follows

that ψ(a1,2) �= c2. Thus, ψ(a1,2) = a−1
1,2 or ψ(a1,2) = a1,2. We will show that

the case ψ(a1,2) = a−1
1,2 is impossible. Suppose that ψ(a1,2) = a−1

1,2. Then

by c1 ≤ a1,2 and (a−1
1,2] = {a−1

1,2, a
0
1,2, c2}, ψ(c1) ∈ {ψ(a−1

1,2), ψ(a
0
1,2), ψ(c2)}.

But ψ(x) = x for x ∈ {a−1
1,2, a

0
1,2, c2}. So, ψ(c1) ∈ {a−1

1,2, a
0
1,2, c2}. The case

ψ(c1) ∈ {a−1
1,2, a

0
1,2} is impossible because c1 is of type 3 and ψ(A) = A. But,

as just argued, ψ(c1) = c2 leads to a contradiction. Thus, ψ(a1,2) = a1,2.

From ψ(a1,2) = a1,2, it follows that ψ(c1) ∈ {c1, c2}. This is because c1 and

c2 are the only elements of type 3 in (a1,2]. As argued above, ψ(c1) = c2 is

not possible, and so ψ(c1) = c1.

Since a0,1 is the only non-maximal element with c0, c1 ≤ a0,1, ψ(a0,1) = a0,1.

Summarizing, we have shown that ψ(x) = x for x ∈ A∪{a}∪A0,1∪A1,2∪C.

Let A0,2 = (X \ B) ∪ C ∪ D1 ∪ D2 ∪
⋃
(Ei : 0 ≤ i < 5) and A′

0,2 =

(X ′ \ B) ∪ C ∪ D1 ∪ D2 ∪
⋃
(Ei : 0 ≤ i < 5). Observe that ψ(A0,2) ⊆ A′

0,2.

Indeed, if x ∈ A0,2, then x ≤ a0, a2. So, as ψ(a0) = a0 and ψ(a2) = a2,

ψ(x) ≤ a0, a2, and hence ψ(x) ∈ A′
0,2. Now notice that D1 is the unique

shortest path between c0 and c1 in the comparability graph of (A0,2;≤), as

well as in the comparability graph of (A′
0,2;≤). So, as ψ(c0) = c0, ψ(c1) = c1,

and ψ(A0,2) ⊆ A′
0,2, it follows that ψ(x) = x for x ∈ D1. Similarly, since

ψ(c2) = c2 and D2 is the unique shortest path between c0 and c2 in the
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comparability graph of (A0,2;≤) and in the comparabilty graph of (A′
0,2;≤),

it follows ψ(x) = x for x ∈ D2.

In order to finish the proof that ψ = Ψ(f) for some morphism f : X → X ′,

we still need to show that ψ(x) ∈ X ′ \B for x ∈ X \B. But this can be shown

in exactly the same way as in the proof of Lemma 3.2. Thus, ψ = Ψ(f) where

f : X → X ′ is given f = ψ�(X\B) on X \B and the identity on B. �

6. Concluding remarks

In [3], quasivarieties of quasi-Stone algebras are considered. The connection

between [3] and this paper lies in another notion of universality, one due to

Sapir [19].

A variety V of algebras of finite type is Q-universal providing that for any

quasivariety M of finite type, LQ(M) is a homomorphic image of a sublattice

of LQ(V), see Sapir [19].

As shown in [1], every finite-to-finite universal variety contains the ideal

lattice of a free lattice on countably many generators as a sublattice, and

hence is Q-universal.

By Theorem 1.1, Q2,2 is Q-universal. It follows then that |LQ(Q2,2)| = 2ω

(which we already know from Proposition 1.5) and that LQ(Q2,2) fails to

satisfy any non-trivial lattice identity.

Although we already know that |LQ(Q1,2)| = 2ω, it is shown in [3] that for

its largest proper subvariety Q2,1, LQ(Q2,1) is countably infinite and that for

its largest proper subvariety Q3,0, LQ(Q3,0) is finite. We will achieve this, in

[3], by giving a complete description of the critical algebras in each subvariety

of LQ(Q2,1). (Recall that any locally finite quasivariety is determined by its

critical algebras, and quasi-Stone algebras are locally finite.) Of particular

interest to us in [3] is the lattice LQ(Q1,2).
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