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Commutators for near-rings: Huq �= Smith
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This article is dedicated to the memory of Ervin Fried

Abstract. It is shown that the Huq and the Smith commutators do not coincide in
the variety of near-rings.

1. Introduction

As the title shows, the paper is devoted to commutators of ideals (normal

subobjects) in the variety (category) of near-rings, and its main purpose is to

present a counter-example, due to the third named author, showing that, in

the case of near-rings, the Huq and the Smith commutators need not coincide.

For readers less familiar with these commutators, let us recall the following.

What we call the Huq commutator is a category-theoretic concept intro-

duced by Huq [14]. In the case of a semi-abelian [16] variety C of universal

algebras, such as the varieties of groups, rings, or near-rings, it can be defined

as follows. Given X in C and normal subalgebras A and B of X, the Huq

commutator [A,B]H is the smallest normal subalgebra C of X such that the

canonical homomorphism A ∗B → X/C factors through the canonical homo-

morphism A ∗B → A×B. Briefly, the existence of such a factorization means

that the canonical homomorphism A×B → X/C is well defined. Here A ∗B
stands for the free product (in categorical terms, the coproduct or sum) of A

and B.

The Smith commutator is a concept originally introduced by Smith [20] for

congruences in a Mal’tsev (that is, congruence permutable) variety. Together

with its various generalizations, this notion is well known not only in universal

algebra but also in category theory (see e.g., [17] and references therein). In

the formulation given in [15], for an algebra X in a Mal’tsev variety with

Mal’tsev term p(x, y, z) and two congruences α and β on X, the commutator

[α, β]S is the smallest congruence θ on X for which the function

p : {(x, y, z) | (x, y) ∈ α and (y, z) ∈ β} → X/θ
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sending (x, y, z) to the θ-class of p(x, y, z) is a homomorphism.

When X belongs to a semi-abelian variety C (and in some more general

situations), there is a one-to-one correspondence between the normal subalge-

bras and the congruences on X. From a superficial glance, this may suggest

that the congruence approach should give the same results everywhere as the

ideal (normal subalgebra) approach, that is, for normal subalgebras A and B

of X and their corresponding congruences α and β on X, the congruence cor-

responding to [A,B]H coincides with the Smith commutator [α, β]S . Indeed,

this is the case for pointed strongly protomodular exact categories [4] and for

action accessible categories [6, 19]. Well-known examples are the varieties of

groups, Lie algebras, associative algebras, non-unital rings, and (pre)crossed

modules of groups. However, this is not the case in general, as is suggested,

in a sense, already by the commutator constructions of Higgins [13] (much

earlier than the Huq and the Smith commutators were introduced). The first

explicit counter-example (‘digroups’ in the sense of Bourn: two independent

group structures on the same set with the same identity element—notice that

this term is used with a different meaning in Loday’s theory of dimonoids) was

constructed much later in a joint work of the first named author and Bourn

(unpublished, but later mentioned, first in [3], in the form of an observation

on change-of-base functors for split extensions). Another counter-example

(loops) was given recently by Hartl and van der Linden [12]. The question of

when these two commutators coincide, is of sufficient importance to justify a

condition “Smith = Huq” in universal algebra around which several theories

have been developed, see for example [18]. The validity of this condition fa-

cilitates work in homological algebra; for, we mention that it allows one to

know that all abelian extensions are torsors in an appropriate sense [5]. This

immediately gives what Gerstenhaber [9] calls Baer Extension Theory, not

using congruence counterparts of the constructions involved. Note, however,

that congruences cannot be avoided, not only in the general congruence per-

mutable case considered in the last chapter of J.D.H. Smith [20], but even in

the general semi-abelian case.

Let us recall that a near-ring N is a system N = (N, 0,+,−, ·) in which

(N, 0,+,−) is a group (not necessarily commutative), (N, ·) is a semigroup

(with x · y written as xy), and the right distributive law (x + y)z = xy + xz

holds. Notice that 0x = 0 is an identity in near-rings but x0 = 0 need not

be valid. In the semi-abelian variety of near-rings, the normal subalgebras are

called ideals, and A�N if and only if A is a normal subgroup of (N, 0,+,−)

with an and n(a +m) − nm in A for all a ∈ A and n,m ∈ N . The next two

sections give more information on these two commutators for near-rings, while

the last section presents our counter-example.

Throughout this paper, N denotes a near-ring, A and B ideals of N , and

α and β the corresponding congruences. Furthermore, we shall write [A,B]H
for the Huq commutator of A and B and [A,B]S for the ideal corresponding

to the Smith commutator [α, β]S .
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2. The Huq commutator for near-rings

Apart from the two commutator operations we are interested in, we intro-

duce two more operations on ideals, namely:

(1) [A,B]G, the ideal ofN generated by the usual group-theoretic commutator

of A and B considered as subgroups of the additive group of N ; that is,

[A,B]G is the ideal of N generated by the set

{a+ b− a− b | a ∈ A, b ∈ B};

(2) A •B, the ideal of N generated by the set

{a(b+ a′)− aa′ | a, a′ ∈ A and b ∈ B}.

For our ideals A and B, [A,B]H is the smallest ideal of N for which the

canonical map θ0 : A×B → N/[A,B]H is a near-ring homomorphism; the sub-

script 0 indicates here that we are dealing with ideals, that is, with congruence

classes of 0; later we shall deal with congruences themselves. The homomor-

phism θ0 must send elements of the form (a, 0) and (0, b) to the classes of a

and b, respectively, and so

θ0(a, b) = a+ b+ [A,B]H ,

as follows from (a, b) = (a, 0)+(0, b). This formula easily gives the next result.

Theorem 2.1. [A,B]H = [A,B]G∨(A•B)∨(B•A) in the lattice of sub-near-

rings of N (or, equivalently, in the lattice of ideals of N). That is, [A,B]H is

the ideal of N generated by all elements of the form a+b−a−b, a(b+a′)−aa′,

and b(a+ b′)− bb′, where a and a′ are in A, and b and b′ are in B.

Proof. Just observe the following.

– The map θ0 preserves addition if and only if [A,B]G ⊆ [A,B]H .

– The map θ0 preserves multiplication if and only if aa′+bb′−(a+b)(a′+b′)

is in [A,B]H for all a, a′ ∈ A and b, b′ ∈ B.

– These preservation properties hold since θ0 is a homomorphism.

– As follows from the right distributive law and the fact that [A,B]H is an

ideal in N containing [A,B]G, all elements of the form aa′+bb′−(a+b)(a′+b′),

with a, a′ ∈ A and b, b′ ∈ B, are in [A,B]H if and only if all elements of the

forms a(b+ a′)− aa′ and b(a+ b′)− bb′, again with a, a′ ∈ A and b, b′ ∈ B, are

in [A,B]H . �

3. The Smith commutator for near-rings

As experience with the Smith commutator theory shows, and as even sug-

gested, in a sense, by classical affine geometry (see e.g., [11]), the suitable

congruence counterpart of the map θ0 is the map

θ : {(x, y, z) ∈ N3 | x− y ∈ A and y − z ∈ B} → N/[A,B]S (3.1)
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defined by θ(x, y, z) = x − y + z where [A,B]S is the smallest ideal of N for

which θ is a near-ring homomorphism. This gives a simple characterization

of the Smith commutator, perfectly analogous to the definition of the Huq

commutator, and explicitly mentioned in [15] (referring to [17]) in a more

general context.

The next theorem will be a counterpart of Theorem 2.1. In order to formu-

late it, we introduce two more operations on ideals A,B,C, and D of N ; this

time a ternary and a quaternary operation, respectively.

– C(A,B,C) is the ideal of N generated by the set

{a(b+ c)− ac | a ∈ A, b ∈ B, c ∈ C};

note that C(A,B,A) = A •B.

– C′(A,B,C,D) is the ideal of N generated by the set

{a(b+ c+ d)− a(c+ d) + ad− a(b+ d) | a ∈ A, b ∈ B, c ∈ C, d ∈ D}.

Theorem 3.1. [A,B]S = [A,B]G ∨ C(A,B,N) ∨ C(B,A,N) ∨ C′(N,A,B,N)

in the lattice of sub-near-rings of N (or, equivalently, in the lattice of ideals

of N). That is, [A,B]S is the ideal of N generated by all elements of the forms

a+b−a−b, a(b+x)−ax, b(a+x)−bx, x(a+b+y)−x(b+y)+xy−x(a+y) (3.2)

where a ∈ A, b ∈ B and x, y ∈ N .

Proof. We begin as in the proof of Theorem 2.1. Being a homomorphism,

θ (defined by (3.1)) preserves addition and multiplication. Preservation of

addition is equivalent to [A,B]G ⊆ [A,B]S or, in other words, that all elements

of the form a+b−a−b with a ∈ A and b ∈ B are in [A,B]S . Next, θ preserves

multiplication if and only if [A,B]S contains all elements of the form

xx′ − yy′ + zz′ − (x− y + z)(x′ − y′ + z′) (3.3)

with x−y and x′−y′ in A, and y− z and y′− z′ in B. Denoting x−y, x′−y′,

y − z, and y′ − z′ by a, a′, b, and b′, respectively, we can rewrite (3.3) as

(a+ b+ z)(a′ + b′ + z′)− (b+ z)(b′ + z′) + zz′ − (a+ z)(a′ + z′), (3.4)

and then, using the right distributive law, as

a(a′ + b′ + z′) + b(a′ + b′ + z′) + z(a′ + b′ + z′)

− z(b′ + z′)− b(b′ + z′) + zz′ − z(a′ + z′)− a(a′ + z′).
(3.5)

We need to show that given a congruence ∼ on N with a+ b ∼ b+ a for all a

in A and b in B, all elements of the forms (3.2) are congruent to 0 if and only

if all elements of the form (3.5) are congruent to 0.

“If”: Just note that in the cases a′ = b = z = 0, a = b′ = z = 0, and

a = b = 0, the expression (3.5) reduces to a(b′ + z′) − az′, b(a′ + z′) − bz′,

and z(a′ + b′ + z′)− z(b′ + z′) + zz′ − z(a′ + z′), respectively, which gives the

expressions in (3.2).
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“Only if”: Assuming that all elements of the forms (3.2) are congruent to 0,

for the expression (3.5), we obtain in turn:

a(a′ + b′ + z′) + b(a′ + b′ + z′) + z(a′ + b′ + z′)− z(b′ + z′)

− b(b′ + z′) + zz′ − z(a′ + z′)− a(a′ + z′)

∼ a(a′ + b′ + z′) + b(a′ + b′ + z′)− b(b′ + z′) + z(a′ + b′ + z′)

− z(b′ + z′) + zz′ − z(a′ + z′)− a(a′ + z′)

(since z(a′ + b′ + z′)− z(b′ + z′) is in A and −b(b′ + z′) is in B, whence these

elements commute up to [A,B]G)

∼ a(a′ + b′ + z′) + b(a′ + b′ + z′)− b(b′ + z′)− a(a′ + z′)

(since z(a′ + b′ + z′)− z(b′ + z′) + zz′ − z(a′ + z′) ∼ 0)

∼ a(a′ + b′ + z′)− a(a′ + z′) ∼ 0

(since b(a′ + b′ + z′)− b(b′ + z′) ∼ 0). �

4. Huq �= Smith

As mentioned in the Introduction, the purpose of this section is to give an

example of a near-ring N with ideals A and B for which [A,B]S �= [A,B]H .

Since the inclusion [A,B]H ⊆ [A,B]S (trivially) holds in general, inequality

here means strict inclusion.

Example. We take N = Ψ, the near-ring constructed in [21] using an idea of

Betsch and Kaarli [1]. Its underlying group is M3 = M ×M ×M where M is

any abelian group with a nonzero proper subgroup K, and its multiplication

is defined by

(m1,m2,m3)(n1, n2, n3) =

{
(m2, 0, 0), if n2 �= 0 �= n3,

(0, 0, 0), otherwise.

We then take A = M×K×{0} = {(m1,m2,m3) ∈ M3 | m2 ∈ K and m3 = 0}
and B = M × {0} ×M = {(m1,m2,m3) ∈ M3 | m2 = 0}. Then:

(a) [A,B]G = {0} since M3 is an abelian group.

(b) C(A,B,N) = K × {0} × {0} = {(m1,m2,m3) ∈ M3 | m1 ∈ K and

m2 = 0 = m3}. Indeed, on the one hand, C(A,B,N) ⊆ K × {0} × {0} by the

definition of multiplication in N , and, on the other hand, for every non-zero

k ∈ K, we have that C(A,B,N) contains

(k, 0, 0) = (0,−k, 0)[(0, 0, k) + (0, k,−k)]− (0,−k, 0)(0, k,−k),

and also C(A,B,A) = K × {0} × {0}.
(c) C(B,A,N) = {0} × {0} × {0} since bx = 0 for every b ∈ B and every

x ∈ N , and also C(B,A,B) = {0} × {0} × {0}.
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(d) C′(N,A,B,N) = M×{0}×{0} = {(m1,m2,m3) ∈ M3 | m2 = m3 = 0}.
Indeed, on the one hand, xy ∈ M ×{0}× {0} for every x and y in N , making

the inclusion C′(N,A,B,N) ⊆ M × {0} × {0} obvious; on the other hand, for

every non-zero m ∈ M , we choose any non-zero k ∈ K, and we have

(m, 0, 0) = (0,m, 0)[(0, k, 0)+(0, 0,m)+(0, 0, 0)]−(0,m, 0)[(0, 0,m)+(0, 0, 0)]

+ (0,m, 0)(0, 0, 0)− (0,m, 0)[(0, k, 0) + (0, 0, 0)] ∈ C′(N,A,B,N).

Therefore, [A,B]S = M ×{0}× {0} by Theorem 3.1. At the same time, using

Theorem 2.1 and the calculation above, we obtain

[A,B]H = [A,B]G ∨ (A •B) ∨ (B •A)

= [A,B]G ∨ C(A,B,A) ∨ C(B,A,B) = K × {0} × {0}.

That is, [A,B]H �= [A,B]S , as desired.

Remarks. (a) Obviously, the same (counter-)example can be used in the

category of zero-symmetric near-rings, that is, those near-rings X in which

x0 = 0 for every x ∈ X; the variety of near-rings in which the constants

form an ideal, cf. [7] or [8]; or we could even require all near-rings to have

commutative addition, and/or to satisfy the identity xyz = 0.

(b) As mentioned in the example above, we have xy ∈ M × {0} × {0} for

every x and y in N , which implies [N,N ]S ⊆ M × {0} × {0} (which is in fact

equality, since we know that [A,B]S = M × {0} × {0}). On the other hand,

xy = (0, 0, 0) = 0 for every x ∈ N and y ∈ M × {0} × {0}, which implies

[N,M × {0} × {0}]S = 0. This shows that N is a nilpotent object of class 2.

(c) We do not fully understand the role and behaviour of the operations •,
C and C′; further investigations, including comparisons with weighted commu-

tators [6], may yield more information here.
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