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Boolean sets, skew Boolean algebras and
a non-commutative Stone duality

Ganna Kudryavtseva and Mark V. Lawson

Abstract. We describe right-hand skew Boolean algebras in terms of a class of

presheaves of sets over Boolean algebras called Boolean sets, and prove a duality

theorem between Boolean sets and étalé spaces over Boolean spaces.

1. Introduction

This paper is part of an ongoing collaboration exploring the connections

between our different generalizations [2, 3, 7, 8, 9] of classical Stone duality.

We first find an alternative description of the skew Boolean algebras which

are the focus of the first author’s generalization and then reprove the main

duality theorems of [2] in these new terms. These results will form the basis of

[5], where we shall show explicitly how our two generalizations fit together to

provide a single duality theorem. In this introduction, we define the structures

we shall be studying and state the two theorems we shall be proving.

1.1. Classical Stone duality. Throughout this paper, we shall use the term

Boolean algebra to mean what is usually called a generalized Boolean algebra;

that is, a relatively complemented distributive lattice with bottom element. A

Boolean algebra with a top element will be called a unital Boolean algebra. A

homomorphism θ : A → B of Boolean algebras is said to be proper if B is equal

to the order ideal generated by the image of θ.

Let X be a poset. A subset F of X is called down directed provided that

a, b ∈ F imply that there is c ∈ F such that c ≤ a, b, and it is called upwardly

closed provided that a ∈ F and b ≥ a imply b ∈ F . A filter is a non-empty

subset that is down directed and upwardly closed. A proper filter is a filter

F which is a proper subset of X, that is F �= X. An ultrafilter is a maximal

proper filter with respect to subset inclusion. With each Boolean algebra B, we

may associate its set of ultrafilters B∗. A proper filter F in a Boolean algebra

is said to be prime if a ∨ b ∈ F implies that a ∈ F or b ∈ F . An ideal of a
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Boolean algebra is a non-empty subset I such that a ∈ I and b ≤ a imply that

b ∈ I and a, b ∈ I implies that a ∨ b ∈ I. A proper ideal I is said to be prime

if a ∧ b ∈ I implies that a ∈ I or b ∈ I. The following proposition summarizes

some important results we shall need later, whose proofs are well known in the

unital case.

Proposition 1.1. The following hold in a Boolean algebra.

(1) Each non-zero element is contained in an ultrafilter.

(2) The ultrafilters are precisely the prime filters.

(3) The proper maximal ideals are precisely the prime ideals.

(4) The complement of a prime ideal is a prime filter.

(5) Let I be an ideal and F a filter such that I ∩ F = ∅. Then there exists an

ideal I ′ which is maximal such that I ⊆ I ′ and I ′∩F = ∅. In addition, such

an ideal I ′ is prime. It follows that given an ideal I and a filter F such

that I ∩ F = ∅, there is an ultrafilter F ′ such that F ⊆ F ′ and I ∩ F ′ = ∅.
(6) For each pair of distinct non-zero elements there is an ultrafilter that

contains one and omits the other.

By a Boolean space we shall mean a Hausdorff space with a basis of compact-

open subsets. A continuous mapping of topological spaces is called proper if

the inverse images of compact sets are compact. The most famous result about

Boolean algebras is the following [1, 13].

Theorem 1.2 (Stone Duality). The category of Boolean algebras and proper

homomorphisms is dually equivalent to the category of Boolean spaces and

proper continuous maps.

We now sketch a proof of this theorem. For each a ∈ B, define M(a)

to be the set of all ultrafilters containing a; if a �= 0, then this set is non-

empty because every non-zero element of a Boolean algebra is contained in an

ultrafilter. Then the M(a) form the basis of a topology for B∗ which makes B∗

into a Boolean space. With each Boolean space X, associate the set X∗ of all

compact-open subsets. Under subset inclusion, X∗ is a Boolean algebra. The

function B → B∗∗ given by a �→ M(a) is an isomorphism of Boolean algebras.

The function X → X∗∗ given by x �→ N(x), the set of all compact-open sets of

X containing x, is a homeomorphism of topological spaces.

1.2. Skew Boolean algebras. Our reference for what follows is [11]. A

right-hand skew Boolean algebra is a triple (B, ◦, •) where both (B, ◦) and

(B, •) are bands satisfying the following axioms:

(SB1) x ◦ (x • y) = x = (y • x) ◦ x and x • (x ◦ y) = x = (y ◦ x) • x.
(SB2) x ◦ y ◦ x = y ◦ x and x • y • x = x • y.
(SB3) x • y = y • x if and only if x ◦ y = y ◦ x.
(SB4) There is an element 0 ∈ B such that 0 ◦ x = 0 = x ◦ 0.
(SB5) x↓ = {x ◦ s ◦ x : s ∈ B} is a unital Boolean algebra.
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There are a number of important consequences of these axioms. First, from [11,

Section 3.1], (SB2) combined with (SB5) implies that (B, ◦) is right normal.

Second, (B, •, 0) is a monoid with identity 0. Third, we have that

x ◦ (y • z) = (x ◦ y) • (x ◦ z) and (y • z) ◦ x = (y ◦ x) • (z ◦ x).

In addition, the minimum semilattice congruence γ is the same for both (B, ◦)
and (B, •), and the factor-set B/γ with respect to the operations induced by

◦, • and 0 is a Boolean algebra. The γ-classes are flat in the sense that every

γ-class is a right zero semigroup with respect to ◦ and a left zero semigroup

with respect to •. The relation γ, defined relative to (B, ◦), is Green’s relation

R.

Remark 1.3. Our notation differs from the standard notation used in [10],

for example, because we use ◦ and • rather than ∧ and ∨, respectively. This is
to avoid ambiguity when we come to discuss meets and joins with respect to

the natural partial order.

Let (B, ◦, •) be a right-hand skew Boolean algebra. Define on it a natural

partial order by setting x ≤ y if and only if x = x ◦ y or, equivalently, y = x • y.
For x, y ∈ B, we define the relative complement x\y, of y with respect to x,

as the relative complement of the element y ◦ x ≤ x in the unital Boolean

algebra x↓.

Let B1 and B2 be right-hand skew Boolean algebras. We call a map

ϕ : B1 → B2 amorphism of right-hand skew Boolean algebras or just amorphism

provided that it preserves the operations ◦, • and the zero. That is, we have

ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y), ϕ(x • y) = ϕ(x) • ϕ(y) for any x, y ∈ B1 and ϕ(0) = 0.

Observe that any morphism ϕ : B1 → B2 induces a morphism ϕ : B1/γ → B2/γ

of Boolean algebras in a canonical way. We will say that ϕ underlies ϕ and

that ϕ is over ϕ.

A right-hand skew Boolean algebra is said to be a right-hand skew Boolean

∧-algebra if the meet of any two elements exists with respect to the natural

partial order. Let B1, B2 be right-hand skew Boolean ∧-algebras. A morphism

ϕ : B1 → B2 will be called a ∧-morphism provided that ϕ(x∧ y) = ϕ(x)∧ϕ(y)

for any x, y ∈ B1. Right-hand skew Boolean ∧-algebras and their ∧-morphisms

form a subcategory, although not a full one, of the category of skew Boolean

algebras.

1.3. Boolean sets. Let E be a meet semilattice equipped with the following

additional data. For each e ∈ E, let Xe be a set where we assume that if

e �= f , then Xe and Xf are disjoint. If e ≥ f , then a function |ef : Xe → Xf is

given where x �→ x|ef . We call these restriction functions. In addition, |ee is the

identity on Xe and if e ≥ f ≥ g, then

(x|ef )|fg = x|eg.

Put X =
⋃

e∈E Xe and define p : X → E by p(x) = e if x ∈ Xe. We shall

say that X = (X, p) is a presheaf of sets over E. We will sometimes denote
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this presheaf by X
p→ E. Observe that we do not assume that the sets Xe

are non-empty. If they are all non-empty, we denote the presheaf of sets by

X
p
� E and say that the presheaf has global support.

Let X
p→ E be a presheaf of sets. Define a binary operation ◦ on X as

follows

x ◦ y = y|p(y)p(x)∧p(y).

It is routine to check that (X, ◦) is a right normal band. In the case where

the presheaf has global support, we can also go in the opposite direction. The

following was proved in [4].

Theorem 1.4. The category of presheaves of sets with global support is equiv-

alent to the category of right normal bands.

We now define two relations on presheaves of sets over semilattices and then

explore some of their properties. On X define the relation ≤ by

x ≤ y ⇔ x = y|p(y)p(x). (1.1)

This is a partial order. Define the relation ∼ by

x ∼ y ⇔ ∃x ∧ y and p(x ∧ y) = p(x) ∧ p(y)

and say that x and y are compatible. The following result was proved as [4,

Lemma 2.2].

Lemma 1.5. Let X
p→ E be a presheaf of sets.

(1) If x, y ≤ z, then x ∼ y.

(2) If x ∼ y and p(x) ≤ p(y), then x ≤ y.

(3) x ≤ y if and only if x = x ◦ y.
(4) x ∼ y if and only if x ◦ y = y ◦ x.

The following is immediate by the above lemma and is useful in showing

two elements are equal.

Corollary 1.6. In a presheaf of sets, if x, y ≤ z and p(x) = p(y), then x = y.

The next result tells us that the map p reflects the partial order.

Lemma 1.7. Suppose that b ≤ p(x). Then there exists a unique y ≤ x such

that p(y) = b.

Proof. Put y = x|p(x)b . By construction, we have that p(y) = b and y ≤ x.

Uniqueness follows by Corollary 1.6. �

The following result will be important to us.

Lemma 1.8. Let B be a lattice and X
p
� B a presheaf of sets over B. Suppose

that x ∼ y and x ∨ y exists. Then p(x ∨ y) = p(x) ∨ p(y).
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Proof. From x, y ≤ x ∨ y and the fact that p is order preserving, we have that

p(x), p(y) ≤ p(x ∨ y). Thus, p(x) ∨ p(y) ≤ p(x ∨ y). It follows in particular

that the restriction t = (x ∨ y)|p(x∨y)
p(x)∨p(y) is defined. We have t, x ≤ x ∨ y, so

t ∼ x. But p(t) ≥ p(x). So, t ≥ x by Lemma 1.5. Similarly t ≥ y. It follows

that t ≥ x ∨ y. Hence, t = x ∨ y, and the statement follows. �

A Boolean set X is a presheaf of sets X
p
� B over a Boolean algebra B which

has a minimum element, usually denoted by 0, with respect to the natural

partial order and such that if x ∼ y, then ∃x∨ y. We also require that p(x) = 0

implies that x = 0. It is worth stressing that Boolean sets have global support.

Remark 1.9. Observe that in a Boolean set, we in fact have that x ∼ y if

and only if ∃x∨ y, since by Lemma 1.5, if ∃x∨ y, then x ∼ y. Furthermore, by

Lemma 1.8, if x ∼ y, then p(x ∨ y) = p(x) ∨ p(y).

Let X
p
� B1 and Y

q
� B2 be Boolean sets. A morphism of Boolean sets

consists of a map ϕ : X → Y and a morphism ϕ : B1 → B2 of Boolean algebras

such that the following conditions are satisfied:

(BM1) The following diagram commutes:

X

p

��

ϕ �� Y

q

��
B1

ϕ
�� B2

That is, ϕp = qϕ holds.

(BM2) For any a ≥ b in B1, the following diagram commutes:

Xa

|ab
��

ϕ �� Yϕ(a)

|ϕ(a)

ϕ(b)

��
Xb ϕ

�� Yϕ(b)

That is, ϕ(x|ab ) = ϕ(x)|ϕ(a)
ϕ(b) for any x ∈ Xa.

Note that given ϕ, there is at most one map ϕ satisfying (BM1). For this

reason, we shall usually refer to ϕ as the morphism rather than (ϕ,ϕ). Boolean

sets and their morphisms form a category.

Lemma 1.10. Let ϕ : X → Y be a morphism of Boolean sets. We have

ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) for any compatible x, y ∈ X.

Proof. By (BM1), we have q(ϕ(x ∨ y)) = ϕ(p(x)) ∨ ϕ(p(y)). Applying (BM2),

we have ϕ(x ∨ y) ≥ ϕ(x), ϕ(y). Thus, ϕ(x ∨ y) ≥ ϕ(x) ∨ ϕ(y). This and

q(ϕ(x ∨ y)) = q(ϕ(x) ∨ ϕ(y)) imply the needed statement. �

A Boolean set X
p
� B is called a Boolean ∧-set provided that x ∧ y exists

for any x, y ∈ X. Let X
p
� B1 and Y

q
� B2 be Boolean ∧-sets. A morphism
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ϕ : X → Y will be called a ∧-morphism provided that ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y)

for any x, y ∈ X. Boolean ∧-sets and their ∧-morphisms form a subcategory,

although not a full one, of the category of Boolean sets.

We now have all the definitions needed to state our first theorem.

Theorem 1.11.

(1) The category of Boolean sets is isomorphic to the category of right-hand

skew Boolean algebras.

(2) The category of Boolean ∧-sets is equivalent to the category of right-hand

skew Boolean ∧-algebras.

1.4. Boolean right normal bands. There is another way of interpreting

Boolean sets which comes from Theorem 1.4. Let S be a right normal band. We

call it Boolean provided that S/γ is a Boolean algebra and joins of compatible

pairs of elements exist in S. A Boolean right normal band S has (finite) meets

if for any a, b ∈ S their meet a∧ b exists in S. Let S, T be Boolean right normal

bands and ϕ : S → T be a semigroup homomorphism. We call ϕ a Boolean

morphism provided that ϕ : S/γ → T/γ is a proper morphism of Boolean

algebras. Boolean right normal bands and their Boolean morphisms form a

category. Boolean right normal bands with meets and their meet-preserving

Boolean morphisms also form a category that is a subcategory, although not

full, of the category of Boolean right normal bands. The following theorem can

be easily deduced applying Theorem 1.4.

Theorem 1.12.

(1) The category of Boolean sets is equivalent to the category of Boolean right

normal bands.

(2) The category of Boolean ∧-sets is isomorphic to the category of Boolean

right normal bands with meets.

1.5. Étalé spaces. An étalé space is a triple (E, p,X), where E and X are

topological spaces and p : E → X is a surjective local homeomorphism. We

will call X the base space and will also say that the étalé space (E, p,X) is

over X. If x ∈ X, then the set Ex = p−1(x) is called the stalk over x. A subset

A ⊆ E is called an open local section or just an open section provided that A is

open and the restriction of the map p to A is injective. Our spaces will always

have X as a Boolean space.

If A ⊆ E is an open local section, we say that it is over p(A). If B is an

open set in X, then by E(B) we denote the set of all open local sections over

B. In the following lemma, whose proof follows from the fact that p is a local

homeomorphism, we collect some easy properties of étalé spaces needed below.

Lemma 1.13. Let (E, p,X) be an étalé space.

(1) If A ⊆ E is an open local section then p(A) is open in X.
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(2) An open local section A in E is compact if and only if p(A) is compact

in X.

(3) Let A be a compact-open set in X. Then the set E(A) is non-empty.

Proof. (1): This follows since local homeomorphisms are open maps.

(2): If A is a compact-open local section, then p(A) is compact since

continuous maps preserve compactness. Suppose that A is an open section such

that p(A) is compact. Let A =
⋃

i Vi be an open cover. Then p(A) =
⋃

i p(Vi)

is an open cover. By compactness, we may write p(A) =
⋃n

i=1 p(Vi). Clearly⋃n
i=1 Vi ⊆ A. Let a ∈ A. Then p(a) ∈ p(Vi) for some 1 ≤ i ≤ n. Because A is

a local section, we must have that a ∈ Vi and the result follows.

(3): For each a ∈ A, choose by surjectivity an e ∈ E such that p(e) = a.

Because p is a local homeomorphism, we may find an open set Ve in E such

that p induces a homeomorphism from Ve to p(Ve). But X has a basis of

compact-open sets, and so, in particular, we may find a compact-open set Ya

such that a ∈ Ya ⊆ p(Ve). Passing to Ya ∩A, if needed, we may assume that

Ya ⊆ A. Let Ue be p−1(Ya) ∩ Ve. Then Ue is a compact-open subset of E

that contains e and is mapped bijectively by p to Ya. It follows that Ue is

a compact-open local section containing e. The Ya form an open cover of A

and so by compactness, we may find a finite subcover. Let a1, . . . , an be the

elements of A such that the Yi = Yai
form a cover of A. If these sets were

disjoint, then the sets Ui = Uei would be disjoint and we could simply take

their union to form a compact-open local section over A. Suppose they are not

disjoint. Form the sets Z1 = Y1, Z2 = Y2 \ Y1, Z3 = Y3 \ (Y1 ∪ Y2), and so on.

The sets Z1, . . . , Zn are disjoint and their union is A. In addition, they are all

open since in a Hausdorff space compact subsets are closed. We now define

the sets Bi associated with the Zi where Bi ⊆ Ui. Put B =
⋃n

i=1 Bi. Then

p(B) = A and B is a compact-open local section. �

Let (E, p,X) and (F, q, Y ) be étalé spaces. A relational morphism

ϕ : (E, p,X) → (F, q, Y )

consists of two pieces of information: a map ϕ : E → P(F ), where P(F ) is

the power set of F , and a map ϕ : X → Y such that ϕ(x) ⊆ Fϕ(p(x)) for each

x ∈ E. We will say that ϕ underlies ϕ and that ϕ is over ϕ.

A relational morphism ϕ : (E, p,X) → (F, q, Y ) is called a partial map

provided that |ϕ(x)| ≤ 1 for each x ∈ E. We say that a relational morphism

is locally injective if for any x, y ∈ E such that p(x) = p(y) we have that

ϕ(x) ∩ ϕ(y) �= ∅ implies that x = y. We say that a relational morphism is

locally surjective if given y ∈ F such that q(y) = ϕ(e) for some e ∈ X, then

there is x ∈ E such that p(x) = e and y ∈ ϕ(x). A relational morphism that is

both locally injective and locally surjective will be called a relational covering

morphism. We say that a relational covering morphism ϕ : (E, p,X) → (F, q, Y )

is continuous if for every open set A in F , its inverse image ϕ−1(A) is an open
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ϕ : X → Y will be called a ∧-morphism provided that ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y)
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full, of the category of Boolean right normal bands. The following theorem can

be easily deduced applying Theorem 1.4.

Theorem 1.12.

(1) The category of Boolean sets is equivalent to the category of Boolean right

normal bands.

(2) The category of Boolean ∧-sets is isomorphic to the category of Boolean

right normal bands with meets.

1.5. Étalé spaces. An étalé space is a triple (E, p,X), where E and X are

topological spaces and p : E → X is a surjective local homeomorphism. We

will call X the base space and will also say that the étalé space (E, p,X) is

over X. If x ∈ X, then the set Ex = p−1(x) is called the stalk over x. A subset

A ⊆ E is called an open local section or just an open section provided that A is

open and the restriction of the map p to A is injective. Our spaces will always

have X as a Boolean space.

If A ⊆ E is an open local section, we say that it is over p(A). If B is an

open set in X, then by E(B) we denote the set of all open local sections over

B. In the following lemma, whose proof follows from the fact that p is a local

homeomorphism, we collect some easy properties of étalé spaces needed below.

Lemma 1.13. Let (E, p,X) be an étalé space.

(1) If A ⊆ E is an open local section then p(A) is open in X.
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set in E. We say that ϕ is proper if the inverse images of compact sets are

compact.

We define the category of étalé spaces whose objects are étalé spaces over

Boolean spaces (and in this paper we refer to the latter just as étalé spaces),

and whose morphisms are the proper continuous relational covering morphisms.

The following statement is easy to verify.

Lemma 1.14. Let ϕ : (E, p,X) → (F, q, Y ) be a proper continuous relational

covering morphism. Then ϕ : X → Y is a proper continuous map of topological

spaces.

We define a category of Hausdorff étalé spaces whose objects are Hausdorff

étalé spaces and whose morphisms are proper continuous relational covering

morphisms which are partial maps. This category is a subcategory of the

category of étalé spaces, although again not full.

We now have all the definitions needed to state our second theorem.

Theorem 1.15.

(1) The category of étalé spaces over Boolean spaces is dually equivalent to the

category of Boolean sets.

(2) The category of Hausdorff étalé spaces over Boolean spaces is dually equiv-

alent to the category of Boolean sets with binary meets.

Given the well-known correspondence between étalé spaces and sheaves

with global support, Theorem 1.15(1) tells us that Boolean sets correspond

to sheaves with global support over Boolean spaces. Actually, invoking the

notion of a sheaf over a category, Boolean sets themselves can be looked at as

sheaves with global support over Boolean algebras as poset categories. Let us

make this precise. Let B be a Boolean algebra and let c ∈ B. We call a subset

S ⊆ B a covering sieve for c, provided that

(1) a ≤ c for each a ∈ S,

(2) b ≤ a and a ∈ S imply b ∈ S,

(3) there is k ≥ 1 and a1, . . . ak ∈ S such that c = a1 ∨ · · · ∨ ak.

Let J(c) be the collection of all covering sieves of c. Then assigning to each

c ∈ B the set J(c) defines on B a Grothendieck topology (see [12, Chapter 3]).

Boolean sets, being special kinds of presheaves of sets over Boolean algebras,

are then precisely sheaves with global support with respect to the described

Grothendieck topology.

Remark 1.16. Theorem 1.15 can be generalized, in a clear way, to the setting

where the global support requirement is dropped. However, Theorem 1.11

shows that global supports of associated Boolean sets arise intrinsically from

skew Boolean algebras. So, as our purpose is to study the relationship between

skew Boolean algebras, Boolean sets and étalé spaces, it is important for us to

work in the global support setting.
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2. Proof of Theorem 1.11

We begin by showing that every Boolean set gives rise to a right-hand

skew Boolean algebra. The motivation for our construction comes from [11,

Examples 3.6(b)]. Let X
p
� B be a Boolean set. Let e, f ∈ B. Define

e\f = (e ∧ f)′

where the complement is taken inside the unital Boolean algebra e↓. The

element e\f is the largest element satisfying the following two properties:

e\f ≤ e and (e\f) ∧ f = 0. Let x, y ∈ X. We make the following definitions

x ◦ y = y|p(y)p(x)∧p(y) y\x = y|p(y)p(y)\p(x) x • y = x ∨ (y\x)

where the last is defined since the two parts of the join are compatible.

Lemma 2.1. Let X
p
� B be a Boolean set.

(1) (a\b)\c = (a\b) ∧ (a\c).
(2) (a ∨ b)\c = (a\c) ∨ (b\c) if a ∨ b exists.

(3) a\(b ∨ c\b) = (a\b) ∧ (a\c).

Proof. (1): Observe that the right side is well-defined by Lemma 1.5. In

addition, (a\b)\c ≤ a and (a\b) ∧ (a\c) ≤ a. To prove that these two elements

are equal, we invoke Corollary 1.6, using the fact that in a Boolean algebra, we

have (e\f)\g = (e\f) ∧ (e\g).
(2): Both sides are less than or equal to a ∨ b. To prove that these two

elements are equal, we invoke Corollary 1.6, using the fact that in a Boolean

algebra, we have (e ∨ f)\i = (e\i) ∨ (f\i).
(3): Both sides are less than or equal to a. To prove that these two elements

are equal, we invoke Corollary 1.6, using the fact that in a Boolean algebra, we

have e\(i ∨ j\i) = (e\i) ∧ (e\j). �

Lemma 2.2. (X, •) is a band.

Proof. We have that (x • y) • z = x ∨ (y\x) ∨ z\(x ∨ y\x). Thus, using

Lemma 2.1(3), we have that (x • y) • z = x∨ (y\x)∨ (z\x∧ z\y). On the other

hand, x • (y • z) = x ∨ (y ∨ z\y)\x. Using Lemma 2.1(2) and (1), we again

obtain x ∨ (y\x) ∨ (z\x ∧ z\y). �

Lemma 2.3. The following are equivalent:

(1) x ∼ y.

(2) x ◦ y = y ◦ x.
(3) x • y = y • x.

Proof. (1)⇔(2): This follows by Lemma 1.5.

(1)⇒(3): From x ∼ y, we have by assumption that x ∨ y exists. It follows

that x • y = (x\y) ∨ (x ∧ y) ∨ (y\x) = y • x, as required.
(3)⇒(1): Suppose that x • y = y • x = z. Then x, y ≤ z. By Lemma 1.5, we

have that x ∼ y. �
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set in E. We say that ϕ is proper if the inverse images of compact sets are

compact.

We define the category of étalé spaces whose objects are étalé spaces over

Boolean spaces (and in this paper we refer to the latter just as étalé spaces),

and whose morphisms are the proper continuous relational covering morphisms.

The following statement is easy to verify.

Lemma 1.14. Let ϕ : (E, p,X) → (F, q, Y ) be a proper continuous relational

covering morphism. Then ϕ : X → Y is a proper continuous map of topological
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We define a category of Hausdorff étalé spaces whose objects are Hausdorff

étalé spaces and whose morphisms are proper continuous relational covering
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category of étalé spaces, although again not full.
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Theorem 1.15.

(1) The category of étalé spaces over Boolean spaces is dually equivalent to the
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(2) The category of Hausdorff étalé spaces over Boolean spaces is dually equiv-

alent to the category of Boolean sets with binary meets.

Given the well-known correspondence between étalé spaces and sheaves

with global support, Theorem 1.15(1) tells us that Boolean sets correspond

to sheaves with global support over Boolean spaces. Actually, invoking the

notion of a sheaf over a category, Boolean sets themselves can be looked at as

sheaves with global support over Boolean algebras as poset categories. Let us

make this precise. Let B be a Boolean algebra and let c ∈ B. We call a subset

S ⊆ B a covering sieve for c, provided that

(1) a ≤ c for each a ∈ S,

(2) b ≤ a and a ∈ S imply b ∈ S,

(3) there is k ≥ 1 and a1, . . . ak ∈ S such that c = a1 ∨ · · · ∨ ak.

Let J(c) be the collection of all covering sieves of c. Then assigning to each

c ∈ B the set J(c) defines on B a Grothendieck topology (see [12, Chapter 3]).

Boolean sets, being special kinds of presheaves of sets over Boolean algebras,

are then precisely sheaves with global support with respect to the described

Grothendieck topology.

Remark 1.16. Theorem 1.15 can be generalized, in a clear way, to the setting

where the global support requirement is dropped. However, Theorem 1.11

shows that global supports of associated Boolean sets arise intrinsically from

skew Boolean algebras. So, as our purpose is to study the relationship between

skew Boolean algebras, Boolean sets and étalé spaces, it is important for us to

work in the global support setting.
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Lemma 2.4.

(1) x = x ◦ (x • y).
(2) x = (y • x) ◦ x.
(3) x = x • (x ◦ y).
(4) x = (y ◦ x) • x.

Proof. (1): By definition, x◦(x•y) = (x∨(y\x))|p(x)∨p(y\x)
p(x) . But x ≤ x∨(y\x).

Thus, x = x ◦ (x • y) by Lemma 1.5.

(2): (y•x)◦x = x|p(x)p(x)∧p(y•x). But p(x)∧p(y•x) = p(x), and so x = (y•x)◦x.
(3): This equality follows from the fact that (x ◦ y)\x = 0.

(4): This equality follows from the fact that x = x|p(x)p(x)∧p(y)∨x|
p(x)
p(x)\p(y◦x). �

We have now proved the following.

Proposition 2.5. Let X
p
� B be a Boolean set. Then (X, ◦, •) is a right-hand

skew Boolean algebra.

Note that the natural partial order on (X, ◦, •) coincides with the partial

order on X given by (1.1).

The construction in the opposite direction is easier to prove.

Proposition 2.6. Let (X, ◦, •) be a right-hand skew Boolean algebra. Then

X is a Boolean set.

Proof. Put B = X/R. Then B is a Boolean algebra, using in particular [11,

Section 1.5]. Denote the elements of B by [x]R and define p(x) = [x]R. Then

X
p
� B is a presheaf of sets by Theorem 1.4. Suppose that x ∼ y. Clearly,

y ◦ x ≤ x. But x ∧ y ≤ x and p(x ∧ y) = p(x) ∧ p(y) = p(y ◦ x). It follows by
Corollary 1.6 that y◦x = x∧y. Similarly, x◦y = x∧y. Hence, x◦y = y◦x. But
by axiom (SB1), x = x◦(x•y). Thus, x, y ≤ x•y. This and p(x•y) = p(x)∨p(y)
imply that x ∨ y exists and equals x • y. �

Note that the order (1.1) is just the natural partial order on (X, ◦, •).

Lemma 2.7. Let ϕ : X1 → X2 be a morphism of right-hand skew Boolean

algebras. Then ϕ is a morphism of Boolean sets.

Proof. Put B1 = X1/γ and B2 = X2/γ, letting p : X1 → B1 and q : X2 → B2

be the projection maps. Let ϕ : B1 → B2 be the morphism of Boolean algebras

that underlies ϕ. It is immediate that (BM1) holds.

Let a ≥ b in B1 and let x ∈ X1 be such that p(x) = a. Consider any

y ∈ B1 with p(y) = b. We have y ◦ x = x|ab . Since ϕ preserves ◦, we have

ϕ(y ◦ x) = ϕ(y) ◦ ϕ(x). On the other hand, we have that q(ϕ(x)) = ϕ(a)

and q(ϕ(y)) = ϕ(b) by (BM1). Hence, ϕ(y) ◦ ϕ(x) = ϕ(x)|ϕ(a)
ϕ(b) . This proves

(BM2). �

Lemma 2.8. Let ϕ : X1 → X2 be a morphism of Boolean sets. Then ϕ is a

morphism of right-hand skew Boolean algebras.
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Proof. We have that ϕ preserves ◦ since

ϕ(x ◦ y) = ϕ
(
y|p(y)p(x)∧p(y)

)
= ϕ(y)|ϕ(p(y))

ϕ(p(x))∧ϕ(p(y))

= ϕ(y)|q(ϕ(y))
q(ϕ(p(x))∧q(ϕ(p(y)) = ϕ(x) ◦ ϕ(y),

by applying (BM1) and (BM2).

Note that ϕ(y \ x) = ϕ(y) \ ϕ(x) since morphisms of skew Boolean algebras

preserve relative complements or by a direct verification similar to the one above.

Applying the definition of • and Lemma 1.10, it follows that ϕ preserves •. It
is clear that ϕ preserves the zero since it preserves the order. �

Finally, we need to prove that the constructions in Propositions 2.5 and 2.6

are mutually inverse. To do this only requires the following lemma.

Lemma 2.9. Let (X, ◦, •) be a right-hand skew Boolean algebra. Then

x • y = x ∨ y\x.

Proof. By axiom (SB1), x = x ◦ (x • y) and so x ≤ x • y. We show that

y\x ≤ x • y. Using the fact that ◦ distributes over •, mentioned after the

axioms for right-hand skew Boolean algebras, and the fact that

x ◦ (y\x) = (y\x) ◦ x = 0

and y ≥ y\x, we calculate that

(x • y) ◦ (y\x) = (x ◦ (y\x)) • (y ◦ (y\x)) = 0 • (y\x) = y\x,
(y\x) ◦ (x • y) = ((y\x) ◦ x) • ((y\x) ◦ y) = 0 • (y\x) = y\x.

It follows that x, y\x ≤ x • y. Thus, x ∨ (y\x) ≤ x • y. We now use the fact

that under the congruence R, whose natural map is denoted by p, we have that

p(x • y) = p(x ∨ (y\x)). It follows that x • y = x ∨ (y\x). �

3. The proof of Theorem 1.15

The proof is more complex than for our first theorem, and so we split it up

into steps.

3.1. From an étalé space to a Boolean set. In this subsection, we describe

how to construct a Boolean set from an étalé space (E, p,X). Denote by X∗ the

Boolean algebra of compact-open subsets of X and by E∗ the set of all compact-

open local sections of p : E → X. If A is a compact-open local section in E,

then p(A) is a compact-open set in X by Lemma 1.13. It follows that p induces

a map p̃ : E∗ → X∗. Let A,B be compact-open sets in X such that A ⊇ B and

let C ∈ E(A) be a compact-open local section. Define C|AB = C ∩ p−1(B) and

call it the restriction of C from A to B. It is clear that C|AB is a compact-open

local section in E(B). Thus, p̃ : E∗ → X∗ is a presheaf of sets with global

support.
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(1) x = x ◦ (x • y).
(2) x = (y • x) ◦ x.
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Proof. (1): By definition, x◦(x•y) = (x∨(y\x))|p(x)∨p(y\x)
p(x) . But x ≤ x∨(y\x).
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We have now proved the following.

Proposition 2.5. Let X
p
� B be a Boolean set. Then (X, ◦, •) is a right-hand

skew Boolean algebra.

Note that the natural partial order on (X, ◦, •) coincides with the partial

order on X given by (1.1).

The construction in the opposite direction is easier to prove.

Proposition 2.6. Let (X, ◦, •) be a right-hand skew Boolean algebra. Then

X is a Boolean set.

Proof. Put B = X/R. Then B is a Boolean algebra, using in particular [11,

Section 1.5]. Denote the elements of B by [x]R and define p(x) = [x]R. Then

X
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� B is a presheaf of sets by Theorem 1.4. Suppose that x ∼ y. Clearly,
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Note that the order (1.1) is just the natural partial order on (X, ◦, •).

Lemma 2.7. Let ϕ : X1 → X2 be a morphism of right-hand skew Boolean

algebras. Then ϕ is a morphism of Boolean sets.

Proof. Put B1 = X1/γ and B2 = X2/γ, letting p : X1 → B1 and q : X2 → B2

be the projection maps. Let ϕ : B1 → B2 be the morphism of Boolean algebras

that underlies ϕ. It is immediate that (BM1) holds.

Let a ≥ b in B1 and let x ∈ X1 be such that p(x) = a. Consider any

y ∈ B1 with p(y) = b. We have y ◦ x = x|ab . Since ϕ preserves ◦, we have

ϕ(y ◦ x) = ϕ(y) ◦ ϕ(x). On the other hand, we have that q(ϕ(x)) = ϕ(a)
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Lemma 2.8. Let ϕ : X1 → X2 be a morphism of Boolean sets. Then ϕ is a
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Proposition 3.1. E∗ p̃
� X∗ is a Boolean set.

Proof. It is clear by Lemma 1.13 that if p̃(x) = 0, then x is the empty local

section.

Let a, b ∈ E∗ be such that a ∼ b. We have to show that a∨ b exists. We can

assume that a, b �= ∅. Observe that p(b) \ p(a) ∈ X∗, and thus b|p(b)p(b)\p(a) ∈ E∗.

Let c = a ∪ b|p(b)p(b)\p(a). We have that c is compact-open as a union of two such

sets, and also the restriction of the map p to c is injective by the construction.

It follows that c ∈ E∗. Clearly, c ≥ a. Since a ∼ b and p(c) ≥ p(b), we have

c ≥ b. Let d ∈ E∗ be such that d ≥ a, b. Then d ≥ a, b|p(b)p(b)\p(a). It follows that

d ≥ a ∪ b|p(b)p(b)\p(a) = c. Hence, c = a ∨ b. �

We call the Boolean set (E∗, p̃, X∗) the dual of the étalé space (E, p,X).

3.2. From a Boolean set to an étalé space. The passage in this direction

will be a bit more involved.

Lemma 3.2. Let X
p
� B be a Boolean set and G a filter in X. If x, y ∈ G,

then x ◦ y ∈ G.

Proof. Let x, y ∈ X. Since G is downwards directed, there exists z ∈ G such

that z ≤ x, y. That is, z = z ◦ x = z ◦ y. Now observe that

z ◦ (x ◦ y) = (z ◦ x) ◦ y = z ◦ y = z.

It follows that z ≤ x ◦ y. But G is closed upwards, and so x ◦ y ∈ G. �

Lemma 3.3. Let X
p
� B be a Boolean set. If G is a proper filter in X, then

p(G) is a proper filter in B.

Proof. The function p maps non-zero elements to non-zero elements. Thus,

p(G) does not contain zero. It is clearly down directed. We prove that it is

upwardly closed. Let p(g) ≤ b. Then in the Boolean algebra B, we may form

the element b \ p(g). Let x ∈ X such that p(x) = b \ p(g). Observe that if

y ≤ g, x, then p(y) = 0, and so y = 0. It follows that g ∧ (b \ p(g)) = 0. Hence,

g ∼ x and so g ∨ x exists. By Lemma 1.8, we have that p(g ∨ x) = b. But

g ∨ x ∈ G, as required. �

Let X
p
� B be a Boolean set. Denote by X∗ the set of ultrafilters of

X and by B∗ the set of ultrafilters of B. Let F ⊆ B be an ultrafilter and

a, b ∈ p−1(F ). We say that a and b are conjugate over F , denoted by a ∼F b,

if there is c ∈ p−1(F ) such that c ≤ a, b. Using Lemma 1.5, it is easy to show

that conjugacy over F is an equivalence relation on p−1(F ). We denote the

equivalence class containing the element a by [a]F .

Lemma 3.4. Let F be an ultrafilter in B. Then p−1(F ) is a disjoint union of

ultrafilters in X. Each such ultrafilter is of the form [a]F for some a such that

p(a) ∈ F . In addition, p([a]F ) = F .
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Proof. It is immediate that [a]F is a filter.

We show first that p([a]F ) = F . To do this, it is enough to verify the

inclusion F ⊆ p([a]F ) since the opposite inclusion holds by the definition of

∼F . Let b ∈ X be such that p(b) ∈ F . Let e = a|p(a)p(a)∧p(b) and f = b|p(b)p(b)\p(a).

It is clear that e ∼ f . Put c = e ∨ f . We have p(c) = p(b) and c ∼F a. It

follows that p(b) ∈ p([a]F ).

Let G be a filter in X and [a]F ⊆ G. Then F = p([a]F ) ⊆ p(G). But p(G)

is a filter of B by Lemma 3.3. By maximality of F , it follows that p(G) = F .

Let b ∈ G. Since a, b ∈ G and G is down directed, then there is c ∈ G such

that c ≤ a, b. Since also p(c), p(b) ∈ F , then b ∈ [a]F . Hence, G ⊆ [a]F , and so

[a]F = G. �

We now prove that every ultrafilter has the above form.

Lemma 3.5. Let G be an ultrafilter of X. Then there is an ultrafilter F of B

such that G = [a]F for any a ∈ G. In particular, G ⊆ p−1(F ).

Proof. By Lemma 3.3, we have that p(G) is a filter in B. Since every filter of

a Boolean algebra is contained in some ultrafilter, then there is an ultrafilter

F in B such that p(G) ⊆ F . Consider an arbitrary a ∈ G. We show that

G = [a]F . In view of the maximality of G, it is enough to verify only the

inclusion G ⊆ [a]F . Let b ∈ G. Since G is down directed, then there is c ∈ G

such that c ≤ a, b. But p(a), p(b), p(c) ∈ F . It follows that b ∈ [a]F , so that the

inclusion G ⊆ [a]F is established. �

We summarize what we have found in the following.

Proposition 3.6. Let X
p
� B be a Boolean set. Every ultrafilter in X is of

the form [a]F where F is an ultrafilter in B and a is any element such that

p(a) ∈ F . We have that [a]F ∩ [b]F �= ∅ implies that [a]F = [b]F .

The following shows that ultrafilters in Boolean sets are ‘prime’.

Lemma 3.7. Let X
p
� B be a Boolean set and let G be an ultrafilter in X. If

x ∼ y and x ∨ y ∈ G, then either x ∈ G or y ∈ G.

Proof. By our results above, we may write G = [x ∨ y]F where F is an

ultrafilter in B. Since x ∨ y ∈ G, we have that p(x) ∨ p(y) ∈ F by Lemma 1.8.

By Proposition 1.1, we have that p(x) ∈ F or p(y) ∈ F . Suppose that p(x) ∈ F .

It is immediate that x ∈ G = [x ∨ y]F , as required. �

It follows from Lemma 3.4 and Lemma 3.5 that the assignment [a]F �→ F

defines a surjective map p̃ : X∗ → B∗. If G ∈ X∗ and p̃(G) = F , then we will

say that G is over F and F underlies G.

We now topologize the set X∗. Define

L(a) = {F ∈ X∗ : a ∈ F},

where a runs through X.
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Proposition 3.1. E∗ p̃
� X∗ is a Boolean set.

Proof. It is clear by Lemma 1.13 that if p̃(x) = 0, then x is the empty local

section.

Let a, b ∈ E∗ be such that a ∼ b. We have to show that a∨ b exists. We can

assume that a, b �= ∅. Observe that p(b) \ p(a) ∈ X∗, and thus b|p(b)p(b)\p(a) ∈ E∗.

Let c = a ∪ b|p(b)p(b)\p(a). We have that c is compact-open as a union of two such

sets, and also the restriction of the map p to c is injective by the construction.

It follows that c ∈ E∗. Clearly, c ≥ a. Since a ∼ b and p(c) ≥ p(b), we have

c ≥ b. Let d ∈ E∗ be such that d ≥ a, b. Then d ≥ a, b|p(b)p(b)\p(a). It follows that

d ≥ a ∪ b|p(b)p(b)\p(a) = c. Hence, c = a ∨ b. �

We call the Boolean set (E∗, p̃, X∗) the dual of the étalé space (E, p,X).

3.2. From a Boolean set to an étalé space. The passage in this direction

will be a bit more involved.

Lemma 3.2. Let X
p
� B be a Boolean set and G a filter in X. If x, y ∈ G,

then x ◦ y ∈ G.

Proof. Let x, y ∈ X. Since G is downwards directed, there exists z ∈ G such

that z ≤ x, y. That is, z = z ◦ x = z ◦ y. Now observe that

z ◦ (x ◦ y) = (z ◦ x) ◦ y = z ◦ y = z.

It follows that z ≤ x ◦ y. But G is closed upwards, and so x ◦ y ∈ G. �

Lemma 3.3. Let X
p
� B be a Boolean set. If G is a proper filter in X, then

p(G) is a proper filter in B.

Proof. The function p maps non-zero elements to non-zero elements. Thus,

p(G) does not contain zero. It is clearly down directed. We prove that it is

upwardly closed. Let p(g) ≤ b. Then in the Boolean algebra B, we may form

the element b \ p(g). Let x ∈ X such that p(x) = b \ p(g). Observe that if

y ≤ g, x, then p(y) = 0, and so y = 0. It follows that g ∧ (b \ p(g)) = 0. Hence,

g ∼ x and so g ∨ x exists. By Lemma 1.8, we have that p(g ∨ x) = b. But

g ∨ x ∈ G, as required. �

Let X
p
� B be a Boolean set. Denote by X∗ the set of ultrafilters of

X and by B∗ the set of ultrafilters of B. Let F ⊆ B be an ultrafilter and

a, b ∈ p−1(F ). We say that a and b are conjugate over F , denoted by a ∼F b,

if there is c ∈ p−1(F ) such that c ≤ a, b. Using Lemma 1.5, it is easy to show

that conjugacy over F is an equivalence relation on p−1(F ). We denote the

equivalence class containing the element a by [a]F .

Lemma 3.4. Let F be an ultrafilter in B. Then p−1(F ) is a disjoint union of

ultrafilters in X. Each such ultrafilter is of the form [a]F for some a such that

p(a) ∈ F . In addition, p([a]F ) = F .
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Lemma 3.8. Let X
p
� B be a Boolean set.

(1) The sets L(a) form a base for a topology on X.

(2) If a ∧ b exists, then L(a ∧ b) = L(a) ∩ L(b).

(3) L(a) = L(b) if and only if a = b.

(4) L(a) ⊆ L(b) if and only if a ≤ b.

(5) L(a) is a local section.

(6) If a ∼ b, then L(a) ∪ L(b) = L(a ∨ b).

(7) If L(a) ∪ L(b) is a local section then a ∼ b.

(8) p̃(L(a)) = M(p(a)) for each a ∈ X.

(9) The set L(a) is compact for each a ∈ X.

(10) Each compact-open local section of X∗ is of the form L(a) for some a ∈ X.

Proof. (1): Let a, b ∈ X. It is enough to verify that L(a)∩L(b) can be written

as a union of the sets L(c) for c ∈ X. Let F ∈ L(a)∩L(b). Then a, b ∈ F , and

since F is down directed, there is c ∈ F such that c ≤ a, b. Thus, F ∈ L(c). It

is now clear that L(a) ∩ L(b) =
⋃

0�=c≤a,b L(c).

(2): The proof is straightforward.

(3) Let L(a) = L(b). Suppose first that p(a) �= p(b). Then by Proposition 1.1,

we may find an ultrafilter F in B such that p(a) ∈ F and p(b) /∈ F . It follows

that a ∈ [a]F = G but that b /∈ [a]F . Thus, G ∈ L(a) but G /∈ L(b), which is a

contradiction. It follows that p(a) = p(b).

Put C = {c ∈ X : c ≤ a, b}. We show that p(C) is an ideal in the Boolean

algebra B. Because the function p reflects the partial order, we have that

p(C) is an order ideal of B. Now let d1, d2 ∈ p(C). Let x1, x2 ∈ C such that

p(x1) = d1 and p(x2) = d2. We have that x1, x2 ≤ a, b, and so by Lemma 1.5,

x1 ∼ x2. It follows that x1 ∨ x2 exists and clearly x1 ∨ x2 ∈ C. Finally,

p(x1 ∨ x2) = d1 ∨ d2 by Lemma 1.8, as required.

Next, observe that we cannot have p(a) = p(b) ∈ p(C) because then we

would have a = b. Therefore, p(a) /∈ p(C).

By Proposition 1.1, there is an ultrafilter F in the Boolean algebra B such

that p(C) ∩ F = ∅. Consider the ultrafilter G = [a]F . Suppose that b ∈ G.

Then there is some c ≤ a, b such that p(c) ∈ F . But c ∈ C and p(c) ∈ p(C).

Since p(C) and F are disjoint, this is a contradiction. It follows that a = b, as

required.

(4): Obviously, a ≤ b implies L(a) ⊆ L(b). We now prove the reverse

implication. By (3) above, it is only necessary to prove that L(a) = L(a ◦ b).
Let G ∈ L(a). Then G ∈ L(b). So a, b ∈ G, and thus a ◦ b ∈ G. It follows that

G ∈ L(a ◦ b). We have shown that L(a) ⊆ L(a ◦ b). Let G ∈ L(a ◦ b). Then

G = [a◦ b]p(G). But b ∈ G, and so G = [b]p(G). Observe that p(a)∧p(b) ∈ p(G).

Thus, p(a) ∈ p(G). It follows that we may form the ultrafilter [a]p(G). But this

must contain b, and so [a]p(G) = [b]p(G). It follows that G ∈ L(a). We have

therefore shown that L(a) = L(a ◦ b), and so a = a ◦ b giving a ≤ b, as required.

(5): Suppose that G1, G2 ∈ L(a) are such that p̃(G1) = p̃(G2). By assump-

tion, a ∈ G1 ∩G2. It follows by Proposition 3.6 that G1 = G2.



	 A non-commutative Stone duality	 15Vol. 00, XX A non-commutative Stone duality 15

(6): Clearly, L(a) ∪ L(b) ⊆ L(a ∨ b). Let G be an ultrafilter such that

a ∨ b ∈ G. Then we use Lemma 3.7 and deduce that either a ∈ G or b ∈ G.

(7): It is enough to prove that L(a◦ b) = L(b◦a) since then by (3), we would

have a ◦ b = b ◦a, and so from Lemma 1.5 , we would have a ∼ b. By symmetry,

it is enough to prove that L(a ◦ b) ⊆ L(b ◦ a). Let G ∈ L(a ◦ b). Then b ∈ G

and p(a) ∧ p(b) ∈ p(G). It follows that p(a) ∈ p(G). Thus, a ∈ [a]P (G) = G′ an

ultrafilter. Now, G,G′ ∈ L(a) ∪ L(b) and p̃(G) = p̃(G′). Thus by assumption,

G = G′. It follows that a ∈ G, and so b ◦ a ∈ G. We have shown that

G ∈ L(b ◦ a), as required.
(8): The proof is straightforward.

(9): This follows easily by (8), Lemma 3.5, and the compactness of the sets

M(p(a)) for a ∈ X.

(10): Each compact-open local section can be covered by a finite number of

the sets L(a). The result now follow by (6) and (7). �

We may now prove the following.

Proposition 3.9. p̃ : X∗ → B∗ is an étalé space.

Proof. The proof amounts to verifying that p̃ is a local homeomorphism. Let

F ∈ X∗. Consider any a ∈ X such F ∈ L(a). We shall show that the set

L(a) is homeomorphic to its p̃-image M(p(a)). The restriction of p̃ to L(a)

is a bijection between L(a) and M(p(a)) by Proposition 3.6. Therefore, we

need only show that p̃ establishes a bijection between basic opens in L(a) and

M(p(a)). If A ⊆ L(a) is a basic compact-open set, then applying Lemma 3.8,

it follows that A = L(b) where b ≤ a. The set p̃(L(b)) = M(p(b)) is a basic

open set contained in M(p(a)). Conversely, if A ⊆ M(p(a)) is a basic open

set, then A = M(c) for some c ∈ B such that c ≤ p(a). Since a|p(a)c ≤ a, then

L(a|p(a)c ) ⊆ L(a). We also have that p̃(L(a|p(a)c )) = M(c). This completes the

proof. �

We call the étalé space X∗ p̃→ B∗ the dual of the Boolean set X
p
� B.

3.3. Correspondence for morphisms.

Lemma 3.10. Let (E, p,X) and (F, q, Y ) be étalé spaces and let

ϕ : (E, p,X) → (F, q, Y )

be a proper continuous relational covering morphism. Then ϕ−1 induces a

morphism, ϕ̂, of Boolean sets from F ∗ to E∗.

Proof. Let x ∈ F ∗ be a compact-open local section. Since ϕ is locally injective,

then the restriction of the map p to ϕ−1(x) is injective, and since ϕ is proper and

continuous, then ϕ−1(x) is compact-open. It follows that the map ϕ̂ : F ∗ → E∗

given by x �→ ϕ−1(x) is well-defined. By Lemma 1.14, the map ϕ : X → Y is

proper and continuous. Therefore, ϕ−1 induces a homomorphism of Boolean

algebras from Y ∗ to X∗. We denote it by ϕ̂.
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Lemma 3.8. Let X
p
� B be a Boolean set.

(1) The sets L(a) form a base for a topology on X.

(2) If a ∧ b exists, then L(a ∧ b) = L(a) ∩ L(b).

(3) L(a) = L(b) if and only if a = b.

(4) L(a) ⊆ L(b) if and only if a ≤ b.

(5) L(a) is a local section.

(6) If a ∼ b, then L(a) ∪ L(b) = L(a ∨ b).

(7) If L(a) ∪ L(b) is a local section then a ∼ b.

(8) p̃(L(a)) = M(p(a)) for each a ∈ X.

(9) The set L(a) is compact for each a ∈ X.

(10) Each compact-open local section of X∗ is of the form L(a) for some a ∈ X.

Proof. (1): Let a, b ∈ X. It is enough to verify that L(a)∩L(b) can be written

as a union of the sets L(c) for c ∈ X. Let F ∈ L(a)∩L(b). Then a, b ∈ F , and

since F is down directed, there is c ∈ F such that c ≤ a, b. Thus, F ∈ L(c). It

is now clear that L(a) ∩ L(b) =
⋃

0�=c≤a,b L(c).

(2): The proof is straightforward.

(3) Let L(a) = L(b). Suppose first that p(a) �= p(b). Then by Proposition 1.1,

we may find an ultrafilter F in B such that p(a) ∈ F and p(b) /∈ F . It follows

that a ∈ [a]F = G but that b /∈ [a]F . Thus, G ∈ L(a) but G /∈ L(b), which is a

contradiction. It follows that p(a) = p(b).

Put C = {c ∈ X : c ≤ a, b}. We show that p(C) is an ideal in the Boolean

algebra B. Because the function p reflects the partial order, we have that

p(C) is an order ideal of B. Now let d1, d2 ∈ p(C). Let x1, x2 ∈ C such that

p(x1) = d1 and p(x2) = d2. We have that x1, x2 ≤ a, b, and so by Lemma 1.5,

x1 ∼ x2. It follows that x1 ∨ x2 exists and clearly x1 ∨ x2 ∈ C. Finally,

p(x1 ∨ x2) = d1 ∨ d2 by Lemma 1.8, as required.

Next, observe that we cannot have p(a) = p(b) ∈ p(C) because then we

would have a = b. Therefore, p(a) /∈ p(C).

By Proposition 1.1, there is an ultrafilter F in the Boolean algebra B such

that p(C) ∩ F = ∅. Consider the ultrafilter G = [a]F . Suppose that b ∈ G.

Then there is some c ≤ a, b such that p(c) ∈ F . But c ∈ C and p(c) ∈ p(C).

Since p(C) and F are disjoint, this is a contradiction. It follows that a = b, as

required.

(4): Obviously, a ≤ b implies L(a) ⊆ L(b). We now prove the reverse

implication. By (3) above, it is only necessary to prove that L(a) = L(a ◦ b).
Let G ∈ L(a). Then G ∈ L(b). So a, b ∈ G, and thus a ◦ b ∈ G. It follows that

G ∈ L(a ◦ b). We have shown that L(a) ⊆ L(a ◦ b). Let G ∈ L(a ◦ b). Then

G = [a◦ b]p(G). But b ∈ G, and so G = [b]p(G). Observe that p(a)∧p(b) ∈ p(G).

Thus, p(a) ∈ p(G). It follows that we may form the ultrafilter [a]p(G). But this

must contain b, and so [a]p(G) = [b]p(G). It follows that G ∈ L(a). We have

therefore shown that L(a) = L(a ◦ b), and so a = a ◦ b giving a ≤ b, as required.

(5): Suppose that G1, G2 ∈ L(a) are such that p̃(G1) = p̃(G2). By assump-

tion, a ∈ G1 ∩G2. It follows by Proposition 3.6 that G1 = G2.
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We claim that (BM1) holds. That is, given x ∈ Y ∗, we verify that p̃(ϕ̂(x)) =

ϕ̂(q̃(x)). This equality clearly holds when x = ∅, so we may assume that

x �= ∅. In the case ϕ−1(x) = ∅, we have p̃(ϕ−1(x)) = 0 and also ϕ−1(q̃(x)) = 0.

Assume that ϕ−1(x) �= ∅. Then the required equality follows from p(ϕ−1(x)) =

ϕ−1(q(x)) that holds by the construction of ϕ applying the local surjectivity

of ϕ.

We claim that (BM2) holds. Let a, b ∈ Y ∗, a ≥ b and x ∈ F ∗
a . We have to

show that ϕ−1(x|ab ) = ϕ−1(x)|ϕ
−1(a)

ϕ−1(b)
. Since x ≥ x|ab , then ϕ−1(x) ≥ ϕ−1(x|ab ).

By (BM1), we have that p̃(ϕ−1(x|ab )) = ϕ−1(b), and the required equality

follows. �

Lemma 3.11. Let X
p
� B1 and Y

q
� B2 be Boolean sets and let ϕ : X → Y be

a morphism of Boolean sets. Then ϕ−1 induces a proper continuous relational

covering morphism, ϕ̂, from Y ∗ to X∗.

Proof. Let G be an ultrafilter in Y . By Proposition 3.6, we can write G = [y]F
where y ∈ G and F = q([y]F ) is an ultrafilter in B2. By Theorem 1.2, we

have that ϕ−1(F ) is an ultrafilter in B1. By (BM1), ϕ(x) ∈ [y]F implies that

p(x) ∈ ϕ−1(F ). We show that

ϕ−1(G) =
⋃

x∈ϕ−1(G)

[x]ϕ−1(F ). (3.1)

To do this, we show that x ∈ ϕ−1(G) implies that [x]ϕ−1(F ) ⊆ ϕ−1(G). Let

t ∈ [x]ϕ−1(F ). Then there is z such that z ≤ t, x and p(z) ∈ ϕ−1(F ). Since

z = x|p(x)p(z) , then ϕ(z) = ϕ(x)|ϕ(p(x))
ϕ(p(z)) using (BM2). From ϕ(p(x)), ϕ(p(z)) ∈ F

and ϕ(x) ∈ [y]F , we conclude that ϕ(z) ∈ [y]F , and so z ∈ ϕ−1([y]F ). Now

t ≥ z implies ϕ(t) ≥ ϕ(z). It follows that ϕ(t) ∈ [y]F because ϕ(z) ∈ [y]F and

[y]∼F
is upwardly closed. Therefore, t ∈ ϕ−1([y]F ), and (3.1) is established.

We can now construct ϕ̂. Let F ∈ Y ∗. We define ϕ̂(F ) to be the set of all

ultrafilters G in X such that G ⊆ ϕ−1(F ). We put ϕ̂ = ϕ−1. It follows that ϕ̂

is a relational morphism.

We claim that ϕ̂ is locally injective. Suppose that F1 and F2 are two

ultrafilters of Y such that q(F1) = q(F2) and ϕ̂(F1) ∩ ϕ̂(F2) �= ∅. Then

F1 ∩ F2 �= ∅, and so by Proposition 3.6, F1 = F2.

We claim that ϕ̂ is locally surjective. Let H ∈ X∗ be such that p(H) =

ϕ−1(F ) where F is an ultrafilter in B2. Let h ∈ H. Then ϕ(h) ∈ Y . Observe

that q(ϕ(h)) = ϕ(p(h)). Thus, we have that G = [ϕ(h)]F is an ultrafilter in Y

and H ∈ ϕ̂(G).

Finally, to show that ϕ̂ is proper and continuous, it is enough to show that

ϕ̂−1 takes compact-open local sections to compact-open local sections. But

this is the case since compact-open local sections of X∗ are of the form L(a)

for a ∈ X, and it is easy to see that ϕ̂−1(L(a)) = L(ϕ(a)), the latter being a

compact-open local section. �
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Proposition 3.12.

(1) The assignment that takes the étalé space p : E → X to the Boolean

set p̃ : E∗ → X∗ of compact-open local sections and a proper continuous

relational covering morphism ϕ to the morphism of Boolean sets ϕ̂ is a

contravariant functor.

(2) The assignment that takes a Boolean set p : X → B to the étalé space

p̃ : X∗ → B∗ of ultrafilters and a morphism ϕ of Boolean sets to a proper

continuous relational covering morphism ϕ̂ is a contravariant functor.

Proof. The only thing that needs verification is functoriality of these assign-

ments. This is straightforward to show and is left to the reader. �

3.4. Proof of the duality theorem.

Proposition 3.13. Let X = (X, p,B) be a Boolean set. The map α : X → X∗∗

given by a �→ L(a) is an isomorphism of Boolean sets.

Proof. The fact that α is a bijection follows by Lemma 3.8. It only remains

to show that α is an morphism of Boolean sets and α is given via a �→ M(a)

for a ∈ B. Axiom (BM1) holds because M(p(x)) = p̃(L(x)) for each x ∈ X.

For Axiom (BM2), let x ∈ X. Put a = p(x) and let b ≤ a. We are to check

that L(x)|M(a)
M(b) = L(x|ab ). But this equality holds because x ∈ F and b ∈ p(x)

is equivalent to saying that x|ab ∈ F . The proof is complete. �

Let (E, f,X) and (F, g, Y ) be étalé spaces. They are called isomorphic,

provided that there exist homeomorphisms ϕ : E → F and ψ : X → Y such

that gϕ = ψf .

Proposition 3.14. Let E = (E, p,X) be an étalé space. Then E∗∗ is isomor-

phic to E via the map β : a �→ Ka = {x ∈ E∗ : a ∈ x}, for a ∈ E.

Proof. We first verify that the map β is well-defined, that is, that Ka is an

ultrafilter in E∗ for each a ∈ E. From Theorem 1.2, we have that Np(a) =

{y ∈ X∗ : p(a) ∈ y} is an ultrafilter in X∗. Now, applying the fact that p is a

local homeomorphism, it easily follows that Ka = [x]Np(a)
for any x ∈ Ka. In

particular, Ka is an ultrafilter of E∗.

We claim that β is injective. Assume a, b ∈ E and a �= b. If p(a) �= p(b),

then by Theorem 1.2, Np(a) �= Np(b), and so Ka �= Kb since Np(a) = p̃(Ka)

and Np(b) = p̃(Kb). Assume now that p(a) = p(b). Let x ∈ Ka. Since x is a

compact-open local section and a ∈ x, then b �∈ x. It follows that x �∈ Kb, and

so Ka �= Kb in this case as well.

We claim that β is surjective. Let G be an ultrafilter in E∗. By Lemma

3.5 and since any ultrafilter of X∗ is of the form Na for some a ∈ X∗, we

can assume that G = [x]Na for some x ∈ E∗ and a ∈ X∗ with a ∈ p̃(x). Let

y = x(a). Then G = [x]Np(y)
, and therefore G = Ky, as is shown in the first

paragraph of this proof.
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We claim that (BM1) holds. That is, given x ∈ Y ∗, we verify that p̃(ϕ̂(x)) =

ϕ̂(q̃(x)). This equality clearly holds when x = ∅, so we may assume that

x �= ∅. In the case ϕ−1(x) = ∅, we have p̃(ϕ−1(x)) = 0 and also ϕ−1(q̃(x)) = 0.

Assume that ϕ−1(x) �= ∅. Then the required equality follows from p(ϕ−1(x)) =

ϕ−1(q(x)) that holds by the construction of ϕ applying the local surjectivity

of ϕ.

We claim that (BM2) holds. Let a, b ∈ Y ∗, a ≥ b and x ∈ F ∗
a . We have to

show that ϕ−1(x|ab ) = ϕ−1(x)|ϕ
−1(a)

ϕ−1(b)
. Since x ≥ x|ab , then ϕ−1(x) ≥ ϕ−1(x|ab ).

By (BM1), we have that p̃(ϕ−1(x|ab )) = ϕ−1(b), and the required equality

follows. �

Lemma 3.11. Let X
p
� B1 and Y

q
� B2 be Boolean sets and let ϕ : X → Y be

a morphism of Boolean sets. Then ϕ−1 induces a proper continuous relational

covering morphism, ϕ̂, from Y ∗ to X∗.

Proof. Let G be an ultrafilter in Y . By Proposition 3.6, we can write G = [y]F
where y ∈ G and F = q([y]F ) is an ultrafilter in B2. By Theorem 1.2, we

have that ϕ−1(F ) is an ultrafilter in B1. By (BM1), ϕ(x) ∈ [y]F implies that

p(x) ∈ ϕ−1(F ). We show that

ϕ−1(G) =
⋃

x∈ϕ−1(G)

[x]ϕ−1(F ). (3.1)

To do this, we show that x ∈ ϕ−1(G) implies that [x]ϕ−1(F ) ⊆ ϕ−1(G). Let

t ∈ [x]ϕ−1(F ). Then there is z such that z ≤ t, x and p(z) ∈ ϕ−1(F ). Since

z = x|p(x)p(z) , then ϕ(z) = ϕ(x)|ϕ(p(x))
ϕ(p(z)) using (BM2). From ϕ(p(x)), ϕ(p(z)) ∈ F

and ϕ(x) ∈ [y]F , we conclude that ϕ(z) ∈ [y]F , and so z ∈ ϕ−1([y]F ). Now

t ≥ z implies ϕ(t) ≥ ϕ(z). It follows that ϕ(t) ∈ [y]F because ϕ(z) ∈ [y]F and

[y]∼F
is upwardly closed. Therefore, t ∈ ϕ−1([y]F ), and (3.1) is established.

We can now construct ϕ̂. Let F ∈ Y ∗. We define ϕ̂(F ) to be the set of all

ultrafilters G in X such that G ⊆ ϕ−1(F ). We put ϕ̂ = ϕ−1. It follows that ϕ̂

is a relational morphism.

We claim that ϕ̂ is locally injective. Suppose that F1 and F2 are two

ultrafilters of Y such that q(F1) = q(F2) and ϕ̂(F1) ∩ ϕ̂(F2) �= ∅. Then

F1 ∩ F2 �= ∅, and so by Proposition 3.6, F1 = F2.

We claim that ϕ̂ is locally surjective. Let H ∈ X∗ be such that p(H) =

ϕ−1(F ) where F is an ultrafilter in B2. Let h ∈ H. Then ϕ(h) ∈ Y . Observe

that q(ϕ(h)) = ϕ(p(h)). Thus, we have that G = [ϕ(h)]F is an ultrafilter in Y

and H ∈ ϕ̂(G).

Finally, to show that ϕ̂ is proper and continuous, it is enough to show that

ϕ̂−1 takes compact-open local sections to compact-open local sections. But

this is the case since compact-open local sections of X∗ are of the form L(a)

for a ∈ X, and it is easy to see that ϕ̂−1(L(a)) = L(ϕ(a)), the latter being a

compact-open local section. �
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Finally, it follows from Theorem 1.2 that the map β : X → X∗∗ given by

a �→ Na is a homeomorphism. It is straightforward to verify that both β and

β−1 are continuous and that β and β commute with projection maps. It follows

that E and E∗∗ are isomorphic. �

The first part of Theorem 1.15 now follows from Propositions 3.13 and 3.14.

The second part of Theorem 1.15 is a consequence of the first part of Theorem

1.15 and the following two statements.

Proposition 3.15. A Boolean set X has binary meets if and only if its dual

étalé space X∗ is Hausdorff.

Proof. AssumeX
p
� B has binary meets and let x, y ∈ X∗. Since the base space

B∗ is Hausdorff, it is clear that if p̃(x) �= p̃(y), there are some neighborhoods of

x and y separating them. So we can assume that p̃(x) = p̃(y). Consider some

a, b ∈ X∗∗ such that x ∈ a and y ∈ b. Restricting a and b to p̃(a) ∧ p̃(b), if

needed, we can assume that p̃(a) = p̃(b). Since the Boolean set X∗∗ has binary

meets, we can consider a∧ b ∈ X∗∗. Then both a \ (a∧ b) and b \ (a∧ b) are in

X∗∗ and are disjoint neighborhoods of x and y, respectively.

Assume X∗ is Hausdorff. Let a, b ∈ X∗∗. It is enough to show that the

set-theoretic intersection a ∩ b also belongs to X∗∗. By the construction of

a dual Boolean set, both a and b are compact-open local sections. As X∗ is

Hausdorff, then a and b are also closed. Then a ∩ b is also a compact clopen

local section. By Lemma 3.8, any compact-open local section in X∗ equals

L(c) for some c ∈ X. �

Proposition 3.16. Let X
p
� B1 and Y

q
� B2 be Boolean sets with binary

meets and ϕ : X → Y a morphism. Then ϕ preserves binary meets if and only

if the relational covering morphism ϕ̂ : Y ∗ → X∗ is a partial map.

Proof. For one direction, assume that ϕ̂ is not a partial map and show that

ϕ does not preserve all binary meets. Let a ∈ Y ∗ be such that |ϕ̂(a)| ≥ 2.

Let x, y ∈ ϕ̂(a). Since X∗ is a Hausdorff space, then there are disjoint basic

neighborhoods of x and y. By Lemma 3.8, we can assume that x ∈ L(a),

y ∈ L(b), and L(a) ∩ L(b) = ∅. Then a ∧ b = 0, and hence ϕ(a ∧ b) = 0.

But note that ϕ(a) ∧ ϕ(b) �= 0 as both sections ϕ̂−1(L(a)) and ϕ̂−1(L(b)) go

through a, and so since we are in an étalé space, there is c ∈ Y ∗∗ such that

ϕ̂−1(L(a)), ϕ̂−1(L(b)) ≥ c.

For the other direction, observe that morphisms of Boolean sets preserve

partial order, and so ϕ(a ∧ b) ≤ ϕ(a) ∧ ϕ(b) for any a, b ∈ X. Assume that for

some a, b, this inequality is strict. This means that there is x ∈ Y ∗ such that

x ∈ ϕ̂−1(L(a))∧ ϕ̂−1(L(b)) and x �∈ ϕ̂−1(L(a∧ b)). Then ϕ̂(x) has a non-empty

intersection with each of L(a) and L(b), and has an empty intersection with

L(a) ∩ L(b). It follows that |ϕ̂(x)| ≥ 2. �
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Finally, it follows from Theorem 1.2 that the map β : X → X∗∗ given by

a �→ Na is a homeomorphism. It is straightforward to verify that both β and

β−1 are continuous and that β and β commute with projection maps. It follows

that E and E∗∗ are isomorphic. �

The first part of Theorem 1.15 now follows from Propositions 3.13 and 3.14.

The second part of Theorem 1.15 is a consequence of the first part of Theorem

1.15 and the following two statements.

Proposition 3.15. A Boolean set X has binary meets if and only if its dual

étalé space X∗ is Hausdorff.

Proof. AssumeX
p
� B has binary meets and let x, y ∈ X∗. Since the base space

B∗ is Hausdorff, it is clear that if p̃(x) �= p̃(y), there are some neighborhoods of

x and y separating them. So we can assume that p̃(x) = p̃(y). Consider some

a, b ∈ X∗∗ such that x ∈ a and y ∈ b. Restricting a and b to p̃(a) ∧ p̃(b), if

needed, we can assume that p̃(a) = p̃(b). Since the Boolean set X∗∗ has binary

meets, we can consider a∧ b ∈ X∗∗. Then both a \ (a∧ b) and b \ (a∧ b) are in

X∗∗ and are disjoint neighborhoods of x and y, respectively.

Assume X∗ is Hausdorff. Let a, b ∈ X∗∗. It is enough to show that the

set-theoretic intersection a ∩ b also belongs to X∗∗. By the construction of

a dual Boolean set, both a and b are compact-open local sections. As X∗ is

Hausdorff, then a and b are also closed. Then a ∩ b is also a compact clopen

local section. By Lemma 3.8, any compact-open local section in X∗ equals

L(c) for some c ∈ X. �

Proposition 3.16. Let X
p
� B1 and Y

q
� B2 be Boolean sets with binary

meets and ϕ : X → Y a morphism. Then ϕ preserves binary meets if and only

if the relational covering morphism ϕ̂ : Y ∗ → X∗ is a partial map.

Proof. For one direction, assume that ϕ̂ is not a partial map and show that

ϕ does not preserve all binary meets. Let a ∈ Y ∗ be such that |ϕ̂(a)| ≥ 2.

Let x, y ∈ ϕ̂(a). Since X∗ is a Hausdorff space, then there are disjoint basic

neighborhoods of x and y. By Lemma 3.8, we can assume that x ∈ L(a),

y ∈ L(b), and L(a) ∩ L(b) = ∅. Then a ∧ b = 0, and hence ϕ(a ∧ b) = 0.

But note that ϕ(a) ∧ ϕ(b) �= 0 as both sections ϕ̂−1(L(a)) and ϕ̂−1(L(b)) go

through a, and so since we are in an étalé space, there is c ∈ Y ∗∗ such that

ϕ̂−1(L(a)), ϕ̂−1(L(b)) ≥ c.

For the other direction, observe that morphisms of Boolean sets preserve

partial order, and so ϕ(a ∧ b) ≤ ϕ(a) ∧ ϕ(b) for any a, b ∈ X. Assume that for

some a, b, this inequality is strict. This means that there is x ∈ Y ∗ such that

x ∈ ϕ̂−1(L(a))∧ ϕ̂−1(L(b)) and x �∈ ϕ̂−1(L(a∧ b)). Then ϕ̂(x) has a non-empty

intersection with each of L(a) and L(b), and has an empty intersection with

L(a) ∩ L(b). It follows that |ϕ̂(x)| ≥ 2. �
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