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Abstract. We prove a sufficient condition under which a semigroup admits no finite

identity basis. As an application, it is shown that the identities of the Kauffman

monoid Kn are nonfinitely based for each n ≥ 3. This result holds also for the

case when Kn is considered as an involution semigroup under either of its natural

involutions.

1. Introduction

Temperley and Lieb [22], motivated by some graph-theoretic problems in

statistical mechanics, introduced what are now called the Temperley–Lieb al-

gebras. These are associative linear algebras with 1 over a commutative ring

R. Given an integer n ≥ 2 and a scalar δ ∈ R, the Temperley–Lieb algebra

TLn(δ) is generated by elements h1, . . . , hn−1 subject to the relations

hihj = hjhi if |i− j| ≥ 2, for i, j = 1, . . . , n− 1; (1.1)

hihjhi = hi if |i− j| = 1, for i, j = 1, . . . , n− 1; (1.2)

hihi = δhi for each i = 1, . . . , n− 1. (1.3)

The relations (1.1)–(1.3) are ‘multiplicative’, i.e., they do not involve addition.

This observation suggests introducing a monoid whose monoid algebra over R

could be identified with TLn(δ). A tiny obstacle is the presence of the scalar

δ in (1.3), but it can be bypassed by adding a new generator c that imitates

δ. This way, one comes to the monoid Kn with n generators c, h1, . . . , hn−1

subject to the relations (1.1), (1.2), and the relations

hihi = chi = hic for each i = 1, . . . , n− 1, (1.4)

which both mimic (1.3) and mean that c behaves like a scalar. The monoids

Kn are called the Kauffman monoids after Kauffman [15] who independently
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invented these monoids as geometric objects. (The name was suggested by

Borisavljević, Došen and Petrić [6]; in the literature one also meets the name

Temperley–Lieb–Kauffman monoids, see, e.g., [5]. Kauffman himself used the

term connection monoids.) It turns out that Kauffman monoids play a ma-

jor role in several ‘fashionable’ parts of mathematics such as knot theory,

low-dimensional topology, topological quantum field theory, quantum groups,

etc. As algebraic objects, these monoids belong to the family of so-called di-

agram or Brauer-type monoids that originally arose in representation theory

and have gained much attention recently among semigroup theorists. In par-

ticular, the first-named author (solo and with collaborators) has considered

universal-algebraic aspects of some monoids from this family such as the finite

basis problem for their identities or the identification of the pseudovarieties

generated by certain series of such monoids, see, e.g., [1, 4]. In the present

paper, we follow this line of research and investigate the finite basis problem

for the identities holding in Kauffman monoids.

Whilst it is not clear whether a study of the identities of Kauffman monoids

may be of any use for any of their non-algebraic applications, such a study

constitutes an interesting challenge from the algebraic viewpoint since—in

contrast to other types of diagram monoids—Kauffman monoids are infinite.

We recall that there exist several powerful methods to attack the finite ba-

sis problem for finite semigroups (see the survey [23] for an overview), but,

to the best of our knowledge, so far the problem has been solved for only

one natural family of concrete infinite semigroups that contains semigroups

satisfying a nontrivial identity, namely, for non-cyclic one-relator semigroups

and monoids [21]. Here, we prove that for each n ≥ 3, the identities of the

monoid Kn are not finitely based. The monoid K2 is commutative, and thus,

its identities are finitely based.

The paper is structured as follows. In Section 2, we present geometric

definitions for some classes of diagram monoids including Kauffman monoids

and so-called Jones monoids. We also summarize properties of Kauffman and

Jones monoids which are essential for the proofs of our main results. Section 3

contains a new sufficient condition under which a semigroup admits no finite

identity basis. In Section 4, this condition is applied to the monoid Kn with

n ≥ 3, thus showing that the identities of Kn are nonfinitely based; we also

observe that the same result holds for the case when Kn is considered as an

involution semigroup under either of its natural involutions. Besides that, we

demonstrate a further application of our sufficient condition.

The fact that the identities of Kn with n ≥ 4 are nonfinitely based was

announced by the last-named author in his invited lecture at the 3rd Novi Sad

Algebraic Conference held in August 2009. Slides of this lecture (see http:

//csseminar.imkn.urfu.ru/SLIDES/nsac2009/volkov_nsac.pdf) included

an outline of the proof for n ≥ 4 as well as an explicit mentioning that the

case n = 3 was left open. This case has been recently analyzed by the first-

named author and, independently and by completely different methods, by the
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three ‘middle-named’ authors of the present paper: it turns out that also the

identities of K3 are nonfinitely based. Naturally, the authors have decided to

join their results into a single article, and so the present paper has been written.

The unified proof presented here is based on the approach by the first-named

and the last-named authors. The alternative approach by the three ‘middle-

named’ is of a syntactic flavor; it also has some further applications that will

be published in a separate paper.

2. Diagrams and their multiplication

The primary aim of this section is to present a geometric definition for

a series of diagram monoids which we call the wire monoids Wn, n ≥ 2.

Each Kauffman monoid Kn can be identified with a natural submonoid of the

corresponding wire monoidWn so that a geometric definition for the Kauffman

monoids appears as a special case. The reader should be advised that even

though this geometric definition certainly clarifies the nature of Kauffman

monoids and is crucial to their connections to various parts of mathematics,

knowing it is not really necessary for understanding the proofs in the present

paper. Therefore, those readers who are mainly interested in the finite basis

problem for Kn may skip the ‘geometric part’ of this section and rely on the

definition of Kauffman monoids in terms of generators and relations as stated

in the introduction and on a similar definition of Jones monoids given at the

end of the section.

We fix an integer n ≥ 2 and define the wire monoid Wn. Let

[n] := {1, . . . , n}, [n]′ := {1′, . . . , n′}

be two disjoint copies of the set of the first n positive integers. The base set

of Wn is the set of all pairs (π; d) where π is a partition of the 2n-element set

[n] ∪ [n]′ into 2-element blocks and d is a non-negative integer referred to as

the number of circles. Such a pair is represented by a wire diagram as shown

in Figure 1. We draw a rectangular ‘chip’ with 2n ‘pins’ and represent the

elements of [n] by pins on the left hand side of the chip (left pins) while the

elements of [n]′ are represented by pins on the right hand side of the chip

(right pins). Usually we omit the numbers 1, 2, . . . in our illustrations. Now,

for (π; d) ∈ Wn, we represent the number d by d closed curves (‘circles’) drawn

somewhere within the chip and each block of the partition π is represented by

a line referred to as a wire. Thus, each wire connects two pins; it is called an

ℓ-wire if it connects two left pins, an r-wire if it connects two right pins, and a

t-wire if it connects a left pin with a right pin. The wire diagram in Figure 1

corresponds to the pair
(

{

{1, 5′}, {2, 4}, {3, 5}, {6, 9′}, {7, 9}, {8, 8′}, {1′, 2′}, {3′, 4′}, {6′, 7′}
}

; 3
)

.

Next, we explain the multiplication in Wn. Pictorially, in order to multiply

two chips, we ‘shortcut’ the right pins of the first chip with the corresponding
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Figure 1. Wire diagram representing an element of W9

left pins of the second chip. Thus, we obtain a new chip whose left (respec-

tively, right) pins are the left (respectively, right) pins of the first (respectively,

second) chip and whose wires are sequences of consecutive wires of the factors,

see Figure 2. All circles of the factors are inherited by the product; in addi-

tion, some extra circles may arise from r-wires of the first chip combined with

ℓ-wires of the second chip.

× =

Figure 2. Multiplication of wire diagrams

In more precise terms, if ξ = (π1; d1) and η = (π2; d2), then a left pin p and

a right pin q′ of the product ξη are connected by a t-wire if and only if one of

the following conditions holds:

• p u′ is a t-wire in ξ and u q′ is a t-wire in η for some u ∈ [n];
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• for some s > 1 and some u1, v1, u2, . . . , vs−1, us ∈ [n] (all pairwise dis-

tinct), p u′

1 is a t-wire in ξ and us q′ is a t-wire in η, while all

ui vi are ℓ-wires in η and all v′i u′

i+1 are r-wires in ξ.

An analogous characterization holds for the ℓ-wires and r-wires of the product.

Each extra circle of ξη corresponds to a sequence u1, v1, . . . , us, vs ∈ [n] with

s ≥ 1 and pairwise distinct u1, v1, . . . , us, vs such that all ui vi are ℓ-wires

in η, while all v′i u′

i+1 and v′s u′

1 are r-wires in ξ.

It easy to see that the above defined multiplication in Wn is associative and

that the chip with 0 circles and the horizontal t-wires 1 1′, . . . , n n′ is

the identity element with respect to the multiplication. Thus, Wn is a monoid;

Wn also admits two natural unary operations. The first of them geometrically

amounts to the reflection of each chip along its vertical symmetry axis. To

formally introduce this reflection, consider the permutation ∗ on [n]∪ [n]′ that

swaps primed with unprimed elements, that is, set

k∗ := k′, (k′)∗ := k for all k ∈ [n].

Then define (π; d)∗ := (π∗; d), where

π∗ :=
{

{x∗, y∗} | {x, y} is a block of π
}

.

It is easy to verify that

ξ∗∗ = ξ, (ξη)∗ = η∗ξ∗ for all ξ, η ∈ Wn,

hence the operation ξ �→ ξ∗ is an involution of Wn. The second unary opera-

tion on Wn rotates each chip by the angle of 180 degrees. To define it formally,

let

α :=
(

{

{1, n′}, {2, (n− 1)′}, . . . , {n, 1′}
}

; 0
)

and define the unary operation ρ : Wn → Wn by ξρ := αξ∗α. Since α∗ = α

and α2 = 1, we get that ξ �→ ξρ is also an involution on Wn. We refer to the

involutions ∗ and ρ as the reflection and the rotation, respectively.

Kauffman [15] defined the connection monoid Cn as the submonoid of the

wire monoid Wn consisting of all elements of Wn that have a representation

as a chip whose wires do not cross. He has shown that Cn is generated by the

hooks h1, . . . , hn−1, where

hi :=
(

{

{i, i+ 1}, {i′, (i+ 1)′}, {j, j′} | for all j �= i, i+ 1
}

; 0
)

,

and the circle c :=
(

{

{j, j′} | for all j = 1, . . . , n
}

; 1
)

, see Figure 3 for an

illustration. It is immediate to check that the generators h1, . . . , hn−1, c satisfy

the relations (1.1), (1.2), and (1.4), whence there exists a homomorphism

from the Kauffman monoid Kn onto the connection monoid Cn. In fact, this

homomorphism turns out to be an isomorphism between Kn and Cn; a proof

was outlined in [15] and presented in full detail in [6].

Observe that the set {h1, . . . , hn−1, c} is closed under both the reflection

and the rotation in Wn: the reflection fixes each generator, while the rotation

fixes c and maps hi to hn−i for each i = 1, . . . , n−1. Therefore, the submonoid
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. . .

Figure 3. The hooks h1, . . . , h8 and the circle c in C9

Cn generated by {h1, . . . , hn−1, c} is also closed under these involutions that,

of course, transfer to the isomorphic monoid Kn, as well. The reader who

prefers to have a ‘picture-free’ definition of the two involutions in Kauffman

monoids may observe that the relations (1.1), (1.2), and (1.4) are left-right

symmetric: each of these relations coincides with its mirror image. Therefore,

the map that fixes each generator of the monoid Kn uniquely extends to an

involution of Kn; clearly, this extension is nothing but the reflection ∗, and this

gives a purely syntactic definition of the latter. In a similar way, one can give

a syntactic definition of the rotation ρ: it is the unique involutary extension

of the map that fixes c and swaps hi and hn−i for each i = 1, . . . , n− 1.

Since the involutions ξ �→ ξ∗ and ξ �→ ξρ (especially the first one) are

essential for many applications of Kauffman monoids, we find it appropriate

to extend our study of the finite basis problem for the identities holding in

Kn also to their identities as algebras of type (2,1), with the reflection or the

rotation in the role of the unary operation. The corresponding question was

stated in the last-named author’s lecture mentioned in the introduction; here

we will give a complete answer to it.

Let us return for a moment to the wire monoid Wn. Denote by Bn the set

of all 2n-pin chips without circles, in other words, the set of all partitions of

[n] ∪ [n]′ into 2-element blocks. Observe that this set is finite. We define the

multiplication of two chips in Bn as follows: we multiply the chips as elements

of Wn and then reduce the product to a chip in Bn by removing all circles.

This multiplication makes Bn a monoid known as the Brauer monoid : the

monoids Bn were introduced by Brauer [7] as vector space bases of certain

associative algebras relevant in representation theory and thus became the

historically first species of diagram monoids. We stress that even though the

base set of Bn has been defined as a subset in the base set of Wn, it is not

true that Bn forms a submonoid of Wn. On the other hand, it is easy to see

that the ‘forgetting’ map ϕ : Wn → Bn defined by ϕ(π; d) = π is a surjective

homomorphism (the homomorphism just forgets the circles of its argument).
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Clearly, both the reflection and the rotation respect Bn as a set and behave

as anti-isomorphisms with respect to multiplication in Bn. Thus, Bn forms

an involution monoid under each of these unary operations; moreover, the

homomorphism ϕ is compatible with both involutions ∗ and ρ. We summarize

and augment the above information about the wire monoids and the Brauer

monoids in the following lemma.

Lemma 2.1. For each n ≥ 2, the map ϕ : (π; d) �→ π is a homomorphism

from the monoid Wn onto the finite monoid Bn; the homomorphism respects

both involutions ∗ and ρ. For every idempotent in Bn, its inverse image under

ϕ is a commutative subsemigroup in Wn.

Proof. It remains to verify the last claim of the lemma. By the definition of

ϕ, for each π ∈ Bn, its inverse image under ϕ coincides with the set

Π := {(π; d) | d = 0, 1, . . . }.

If π2 = π in the Brauer monoid, then the product (π; 0)(π; 0) in the wire

monoid belongs to Π, whence (π; 0)(π; 0) = (π;m) for some nonnegative integer

m. Therefore, if we multiply two arbitrary elements (π; k), (π; ℓ) ∈ Π, we get

(π; k + ℓ+m) independently of the order of the factors. �

The Jones monoid Jn can be defined as the submonoid of the Brauer monoid

Bn consisting of all elements of Bn that have a representation as a chip whose

wires do not cross. (The name was suggested by Lau and FitzGerald [16] to

honor the contribution of V. F.R. Jones to the theory, see, e.g., [14, Section 4].)

Thus, Jn relates to Bn precisely as the Kauffman monoidKn (in its incarnation

as the connection monoid Cn) relates to the wire monoid Wn. Alternatively,

one can define the Jones monoid as the image of the Kauffman monoid under

the restriction of the ‘forgetting’ homomorphism ϕ to the latter. Clearly, Jn
is closed under ∗ and ρ and forms an involution monoid with respect to each

of these operations. The following scheme summarizes the relations between

the four species of diagram monoids introduced so far:

Wn
ϕ

−−−−→ Bn
�





�





Kn
ϕ

−−−−→ Jn

The vertical arrows here stand for embeddings, the horizontal ones for surjec-

tions, and all maps respect multiplication and both involutions.

The following fact is just a specialization of Lemma 2.1.

Lemma 2.2. For each n ≥ 2, the map ϕ : (π; d) �→ π is a homomorphism

from the monoid Kn onto the finite monoid Jn; the homomorphism respects

both involutions ∗ and ρ. For every idempotent in Jn, its inverse image under

ϕ is a commutative subsemigroup in Kn.
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As promised at the beginning of this section, we conclude with showing

how one may bypass geometric considerations and define the Jones monoid in

terms of generators and relations. Since the monoid Jn is the image of Kn

under ϕ, it is generated by the hooks h1, . . . , hn−1 and the following relations

hold in Jn:

hihj = hjhi if |i− j| ≥ 2, i, j = 1, . . . , n− 1;

hihjhi = hi if |i− j| = 1, i, j = 1, . . . , n− 1; (2.1)

hihi = hi for each i = 1, . . . , n− 1.

In fact, it can be verified [6] that the monoid generated by h1, . . . , hn−1 subject

to the relations (2.1), i.e., the monoid that spans the Temperley–Lieb algebra

TLn(δ) with δ = 1, is isomorphic to Jn. Thus, one can define Jn by this pre-

sentation. Lemma 2.2 can be then recovered as follows. The homomorphism

ϕ : Kn ։ Jn arises in this setting as the unique homomorphic extension of

the map that sends the generators h1, . . . , hn−1 of Kn to the generators of Jn
with the same names and ‘erases’ the generator c by sending it to 1; the fact

that such an extension exists and enjoys all properties registered in Lemma 2.2

readily follows from the close similarity between the relations (1.1), (1.2), (1.4)

on the one hand and the relations (2.1) on the other hand. The only claim

in Lemma 2.2 which is not that apparent with this definition of Jn is the

finiteness of the monoid. This indeed requires some work, see [6] for details.

From the diagrammatic representation, it can be easily calculated that the

cardinality of Jn is the n-th Catalan number 1
n+1

(

2n
n

)

. For further interesting

results concerning the monoids Kn, Jn and similarly defined ones, the reader

may consult [12].

3. A sufficient condition for the non-existence of a finite basis

We assume the reader’s familiarity with the basic concepts of the theory of

varieties [10, Chapter II] and of semigroup theory [11, Chapter 1].

We aim to establish a condition for the nonfinite basis property that would

apply to both ‘plain’ semigroups and semigroups with involution as algebras of

type (2,1). The two cases have much in common, and we use square brackets to

indicate adjustments to be made in the involution case. First, let us formally

introduce involution semigroups.

An algebra S = �S, · , ⋆� of type (2,1) is called an involution semigroup

if �S, · � is a semigroup (referred to as the semigroup reduct of S) and the

identities

(xy)⋆ ≏ y⋆x⋆ and (x⋆)⋆ ≏ x

hold, in other words, if the unary operation x �→ x⋆ is an involutory anti-

automorphism of �S, · �.

The free involution semigroup FI(X) on a given alphabet X can be con-

structed as follows. Let X := {x⋆ | x ∈ X} be a disjoint copy of X . Define
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(x⋆)⋆ := x for all x⋆ ∈ X . Then FI(X) is the free semigroup (X∪X)+ endowed

with the involution defined by

(x1 · · ·xm)⋆ := x⋆
m · · ·x⋆

1

for all x1, . . . , xm ∈ X ∪X . We refer to elements of FI(X) as involutory words

over X while elements of X+ will be referred to as plain words over X .

If an involution semigroup T = �T, · , ⋆� is generated by a set Y ⊆ T , then

every element in T can be represented by an involutory word over Y and thus

by a plain word over Y ∪ Y where Y = {y⋆ | y ∈ Y }. Hence, the reduct

�T, · � is generated by the set Y ∪Y ; in particular, T is finitely generated if and

only if so is �T, · �. An algebra is said to be locally finite if each of its finitely

generated subalgebras is finite. From the above remark, it follows that an

involution semigroup S = �S, · , ⋆� is locally finite if and only if so is �S, · �. We

denote by L the class of all locally finite semigroups. A variety of [involution]

semigroups is locally finite if all its members are locally finite. Given a class

K of [involution] semigroups, we denote by varK the variety of [involution]

semigroups it generates; if K = {S}, we write var S rather than var{S}.

Let A and B be two subclasses of a fixed class C of algebras. The Mal’cev

product A�m B of A and B (within C) is the class of all algebras C ∈ C for

which there exists a congruence θ such that the quotient algebra C/θ lies in

B while all θ-classes that are subalgebras in C belong to A. Note that for a

congruence θ on a semigroup S, a congruence class sθ forms a subsemigroup

of S if and only if the element sθ is an idempotent of the quotient S/θ. Of

essential use will be a powerful result by Brown [8, 9] that can be stated in

terms of the Mal’cev product as follows.

Proposition 3.1 ([8, 9]). L�m L = L where the Mal’cev product is considered

within the class of all semigroups.

Let x1, x2, . . . , xn, . . . be a sequence of letters. The sequence {Zn}n=1,2,...

of Zimin words is defined inductively by Z1 := x1, Zn+1 := Znxn+1Zn. We

say that a word v is an [involutory] isoterm for a class C of semigroups [with

involution] if the only [involutory] word v′ such that all members of C satisfy

the [involution] semigroup identity v ≏ v′ is the word v itself.

If a semigroup S satisfies the identities x2y ≏ x2
≏ yx2, then S has a zero

and the value of the word x2 in S under every evaluation of the letter x in

S is equal to zero. Having this in mind, we use the expression x2
≏ 0 as an

abbreviation for the identities x2y ≏ x2
≏ yx2.

The last ingredient that we need comes from [19, Proposition 3] for the

plain case and from [3, Corollary 2.6] for the involution case.

Proposition 3.2 ([19, 3]). Let V be a variety of [involution] semigroups. If

(i) all members of V satisfying x2
≏ 0 are locally finite, and

(ii) each Zimin word is an [involutory] isoterm relative to V,

then V is nonfinitely based.
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As promised at the beginning of this section, we conclude with showing

how one may bypass geometric considerations and define the Jones monoid in

terms of generators and relations. Since the monoid Jn is the image of Kn

under ϕ, it is generated by the hooks h1, . . . , hn−1 and the following relations

hold in Jn:

hihj = hjhi if |i− j| ≥ 2, i, j = 1, . . . , n− 1;
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with the same names and ‘erases’ the generator c by sending it to 1; the fact

that such an extension exists and enjoys all properties registered in Lemma 2.2
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n+1

(

2n
n

)

. For further interesting

results concerning the monoids Kn, Jn and similarly defined ones, the reader

may consult [12].

3. A sufficient condition for the non-existence of a finite basis

We assume the reader’s familiarity with the basic concepts of the theory of

varieties [10, Chapter II] and of semigroup theory [11, Chapter 1].

We aim to establish a condition for the nonfinite basis property that would

apply to both ‘plain’ semigroups and semigroups with involution as algebras of

type (2,1). The two cases have much in common, and we use square brackets to

indicate adjustments to be made in the involution case. First, let us formally

introduce involution semigroups.

An algebra S = �S, · , ⋆� of type (2,1) is called an involution semigroup

if �S, · � is a semigroup (referred to as the semigroup reduct of S) and the

identities

(xy)⋆ ≏ y⋆x⋆ and (x⋆)⋆ ≏ x

hold, in other words, if the unary operation x �→ x⋆ is an involutory anti-

automorphism of �S, · �.

The free involution semigroup FI(X) on a given alphabet X can be con-

structed as follows. Let X := {x⋆ | x ∈ X} be a disjoint copy of X . Define
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In the following, we shall present a specialization of Proposition 3.2 by

presenting a sufficient condition for a variety V to satisfy condition (i). An

essential step towards this result is the next lemma whose proof is a refinement

of one of the crucial arguments in [20]. Here Com denotes the variety of all

commutative semigroups.

Lemma 3.3. Let T be a semigroup in Com�m L and let I be the ideal of T

generated by {t2 | t ∈ T}. Then the Rees quotient T/I is locally finite.

Proof. Let α be a congruence on T such that T/α is locally finite and the

idempotent α-classes are commutative subsemigroups of T. Let ρI be the

Rees congruence of T corresponding to the ideal I and β = α ∩ ρI . We have

the following commutative diagram in which all homomorphisms are canonical

projections.
T

T/β

T/α T/ρI = T/I

Recall that a semigroup is said to be periodic if each of its one-generated

subsemigroups is finite. The semigroup T/α is locally finite and thus periodic.

Moreover, since the restrictions of α and β to the ideal I coincide, we have

I/α = I/β whence I/β is periodic, as well. Since for each element of T/β,

its square belongs to I/β, it follows that T/β is also periodic, and so is each

subsemigroup of T/β.

Now let A ∈ T/α be an idempotent α-class; by assumption, A is a com-

mutative subsemigroup of T. Then the inverse image of A (considered as an

element of T/α) under the canonical projection T/β ։ T/α is the subsemi-

group A/β of T/β, and this subsemigroup is at the same time commutative

and periodic. It is well known (and easy to verify) that every commutative

periodic semigroup is locally finite. We see that the congruence α/β on T/β

satisfies the two conditions: (a) the quotient (T/β)/(α/β) ∼= T/α is locally

finite and (b) the α/β-classes which are subsemigroups are locally finite. By

Proposition 3.1, T/β is itself locally finite, and so is its quotient T/I. �

For two semigroup varietiesV andW, their Mal’cev productV�m W within

the class of all semigroups may fail to be a variety, but it is always closed

under forming subsemigroups and direct products, see [17, Theorems 1 and 2].

Therefore, the variety var(V�m W) generated by V�m W is comprised of all

homomorphic images of the members of V�m W. We are now in a position to

formulate and to prove our main result.

Theorem 3.4. A variety V of [involution] semigroups is nonfinitely based if

(i) for some locally finite semigroup variety W, [the class of all semigroup

reducts of ] V is contained in the variety var(Com�m W), and

(ii) each Zimin word is an [involutory] isoterm relative to V.
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Proof. By Proposition 3.2, it suffices to verify that all members of V satisfying

x2
≏ 0 are locally finite. Since an involution semigroup is locally finite if and

only if so is its semigroup reduct, it suffices to do so for the semigroup reducts

of the members of V. Let W be a locally finite semigroup variety as per

condition (i). We need to check that each semigroup S ∈ var(Com�m W)

which satisfies x2
≏ 0 is locally finite. As we observed prior to the formulation

of the theorem, S is a homomorphic image of a semigroup T ∈ Com�m W;

let ψ stand for the corresponding homomorphism. Consider the ideal I in T

generated by {t2 | t ∈ T}. Then I ⊆ ψ−1(0), and therefore, the homomorphism

ψ factors through T/I which is locally finite by Lemma 3.3. Consequently, S

is also locally finite. �

Remark 3.5. It follows immediately from the proof of Lemma 3.3 that The-

orem 3.4 remains valid if we replace the variety Com of all commutative

semigroups by an arbitrary semigroup variety all of whose periodic members

are locally finite. For an example of a situation in which this extended version

of Theorem 3.4 can be useful, we refer to [24].

Remark 3.6. For a locally finite [involution] semigroup variety V, condition

(i) is trivially satisfied with W = V. In this case, condition (ii) is sufficient

for V to be nonfinitely based; moreover, V then is even inherently nonfinitely

based, i.e., it is not contained in any finitely based locally finite variety. The

corresponding result is captured by Sapir [19] for plain semigroups and by

Auinger, Dolinka, and Volkov [3] for involution semigroups. It follows that the

novelty in the present paper, though not always explicitly mentioned, is about

infinite [involution] semigroups, or, to be more precise, [involution] semigroups

which do not generate a locally finite variety.

Remark 3.7. Proposition 3.2 and therefore Theorem 3.4 formulate, in fact,

sufficient conditions that the variety in question be not only nonfinitely based

but even be of infinite axiomatic rank, that is, it has no identity basis that

uses only finitely many variables. Consequently, in all our applications, the

respective [involution] semigroups are also not only nonfinitely based but even

of infinite axiomatic rank. This is worth registering because an infinite [invo-

lution] semigroup can be nonfinitely based but of finite axiomatic rank.

Remark 3.8. If two given varieties X and Y of [involution] semigroups sat-

isfy X ⊆ Y, and Y satisfies condition (i) while X satisfies condition (ii), then

all varieties V such that X ⊆ V ⊆ Y satisfy both conditions, and therefore,

are nonfinitely based. Stated this way, Theorem 3.4 may be used to produce

intervals consisting entirely of nonfinitely based varieties in the lattice of [in-

volution] semigroup varieties. We conclude this section with an example of

such an application.

For two varieties V and W, we denote by V ∨ W their join, i.e., the

least variety containing both V and W. Sapir and Volkov [20] proved that

for each locally finite semigroup variety W which contains the variety B of
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In the following, we shall present a specialization of Proposition 3.2 by

presenting a sufficient condition for a variety V to satisfy condition (i). An

essential step towards this result is the next lemma whose proof is a refinement

of one of the crucial arguments in [20]. Here Com denotes the variety of all

commutative semigroups.

Lemma 3.3. Let T be a semigroup in Com�m L and let I be the ideal of T

generated by {t2 | t ∈ T}. Then the Rees quotient T/I is locally finite.

Proof. Let α be a congruence on T such that T/α is locally finite and the

idempotent α-classes are commutative subsemigroups of T. Let ρI be the

Rees congruence of T corresponding to the ideal I and β = α ∩ ρI . We have

the following commutative diagram in which all homomorphisms are canonical

projections.
T

T/β

T/α T/ρI = T/I

Recall that a semigroup is said to be periodic if each of its one-generated

subsemigroups is finite. The semigroup T/α is locally finite and thus periodic.

Moreover, since the restrictions of α and β to the ideal I coincide, we have

I/α = I/β whence I/β is periodic, as well. Since for each element of T/β,

its square belongs to I/β, it follows that T/β is also periodic, and so is each

subsemigroup of T/β.

Now let A ∈ T/α be an idempotent α-class; by assumption, A is a com-

mutative subsemigroup of T. Then the inverse image of A (considered as an

element of T/α) under the canonical projection T/β ։ T/α is the subsemi-

group A/β of T/β, and this subsemigroup is at the same time commutative

and periodic. It is well known (and easy to verify) that every commutative

periodic semigroup is locally finite. We see that the congruence α/β on T/β

satisfies the two conditions: (a) the quotient (T/β)/(α/β) ∼= T/α is locally

finite and (b) the α/β-classes which are subsemigroups are locally finite. By

Proposition 3.1, T/β is itself locally finite, and so is its quotient T/I. �

For two semigroup varietiesV andW, their Mal’cev productV�m W within

the class of all semigroups may fail to be a variety, but it is always closed

under forming subsemigroups and direct products, see [17, Theorems 1 and 2].

Therefore, the variety var(V�m W) generated by V�m W is comprised of all

homomorphic images of the members of V�m W. We are now in a position to

formulate and to prove our main result.

Theorem 3.4. A variety V of [involution] semigroups is nonfinitely based if

(i) for some locally finite semigroup variety W, [the class of all semigroup

reducts of ] V is contained in the variety var(Com�m W), and

(ii) each Zimin word is an [involutory] isoterm relative to V.
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all bands (idempotent semigroups), the join Com ∨ W is nonfinitely based.

More precisely, in [20] it is shown that each Zimin word is an isoterm relative to

Com∨B and each member of Com∨W which satisfies x2
≏ 0 is locally finite

(the latter by an argument that has been refined in the proof of Lemma 3.3).

By Theorem 3.4, it follows that each variety V for which Com ∨ B ⊆ V ⊆

var(Com�m W) is nonfinitely based. Notice that Com∨W ⊆ var(Com�m W)

so that the quoted result from [20] appears as a special case.

One can obtain an analogous result for involution semigroups ifB is replaced

by the variety B⋆ of all bands with involution and commutative semigroups

are considered to be equipped with trivial involution (for the verification that

all Zimin words are involutory isoterms relative to Com ∨ B⋆, one can use

Lemma 4.2 formulated in the next section).

4. Applications

For every n, there is an injective semigroup homomorphism Kn →֒ Kn+1

(induced by the map c �→ c, hi �→ hi for i = 1, . . . , n− 1) which is compatible

with the reflection. Consequently, for every n, we have the inclusion varKn ⊆

varKn+1. As mentioned earlier, Kn is a submonoid of Wn, whence varKn ⊆

varWn for every n. These inclusions are true if the respective structures are

considered either as semigroups or as involution semigroups with respect to

the reflection. We start by applying Theorem 3.4 to the Kauffman monoids

Kn and the wire monoids Wn with n ≥ 3.

Theorem 4.1. Let n ≥ 3 and consider K3 and Wn, either as semigroups or

as involution semigroups with respect to reflection. Then every [involution]

semigroup variety V such that varK3 ⊆ V ⊆ varWn is nonfinitely based.

Proof. We invoke Theorem 3.4 in the form of Remark 3.8 and show that varWn

satisfies (i) and varK3 satisfies (ii). Thus, we are to check that the semigroup

Wn belongs to the Mal’cev product of Com with a locally finite semigroup

variety and that each Zimin word is an [involutory] isoterm relative to K3.

The first claim readily follows from Lemma 2.1. Indeed, by this lemma,

there is a homomorphism ϕ : Wn ։ Bn with the property that for every

idempotent in Bn, its inverse image under ϕ is a commutative subsemigroup

in Wn. This immediately yields that Wn belongs to the Mal’cev product

Com�m varBn, and varBn is locally finite as a variety generated by a finite

algebra [10, Theorem 10.16].

In order to show that the Zimin words are isoterms relative to K3, consider

the ideal C of K3 generated by c. Clearly, K3 \ C = {1, h1, h2, h1h2, h2h1}.

If we denote the images of h1 and h2 in the Rees quotient K3/C by a and

b, respectively, then the relations of K3 translate into the following relations

for a and b: a2 = 0, b2 = 0, aba = a, bab = b. These relations define the

6-element Brandt monoid B1
2 (in the class of all monoids with 0). Thus, K3/C

satisfies the relations of B1
2 , and the Rees quotient also consists of 6 elements,
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so that K3/C ∼= B1
2 . It is well known [19, Lemma 3.7] that each Zimin word

is an isoterm relative to B1
2 . This completes the proof in the plain semigroup

case.

If we considerK3 as an involution semigroup under reflection, we can employ

the approach of Auinger et al. [2]. Recall that the 3-element twisted semilattice

is the involution semigroup TSL = �{e, f, 0}, · , ⋆� in which e2 = e, f2 = f ,

and all other products are equal to 0, while the unary operation is defined by

e⋆ = f , f⋆ = e, and 0⋆ = 0. The following observation has been made in the

proof of [2, Theorem 3.1].

Lemma 4.2. Let T = �T, · , ⋆� be an involution semigroup such that each

Zimin word is an isoterm relative to its semigroup reduct �T, · �. If the 3-

element twisted semilattice TSL belongs to the variety var T, then each Zimin

word is also an involution isoterm relative to T.

Clearly, the ideal C of K3 is closed under reflection, which therefore induces

an involution on K3/C ∼= B1
2 . The latter involution swaps the idempotents

ab and ba and fixes all other elements of B1
2 , whence the subset {ab, ba, 0} of

B1
2 constitutes an involution subsemigroup isomorphic to TSL. Hence, TSL

belongs to the variety generated by K3 as an involution semigroup under re-

flection and Lemma 4.2 applies. �

The situation is somewhat more delicate if we consider Kn and Wn as

involution semigroups under rotation; we denote these involution semigroups

by Kρ
n and Wρ

n, respectively. For every n we have the following embeddings.

• Kρ
n →֒ K

ρ
n+2 and Wρ

n →֒ W
ρ
n+2. These embeddings are obtained by

adding one t-wire on top and one on bottom of each chip; for the case of

Kauffman monoids, the embedding can be alternatively defined in terms of

generators: it is induced by the map c �→ c, hi �→ hi+1 for i = 1, . . . , n−1.

• Kρ
n →֒ K

ρ
2n and Wρ

n →֒ W
ρ
2n. These embeddings are obtained by ‘dou-

bling’ each chip; in terms of generators for Kρ
n, the embedding is induced

by the map c �→ c2, hi �→ hihn+i for i = 1, . . . , n− 1.

• W
ρ
2n →֒ W

ρ
2n+1. The embedding is obtained by inserting a t-wire just into

the middle of each chip.

• Kρ
n →֒ Wρ

n. This is the canonical embedding.

It follows that varKρ
3 ⊆ varWρ

n for n = 3 and each n ≥ 5, and varK
ρ
4 ⊆ varWρ

n

for each n ≥ 4. We do not know whether varKρ
3 ⊆ varW

ρ
4 or varKρ

3 ⊆ varK
ρ
4.

In any case, we have a version of Theorem 4.1 that is sufficient for our purposes.

Theorem 4.3. Let m ≥ 4; each variety V of involution semigroups satisfying

varK
ρ
3 ⊆ V ⊆ varW

ρ
m+1 or varK

ρ
4 ⊆ V ⊆ varWρ

m is nonfinitely based.

Proof. We have already shown in the proof of Theorem 4.1 that the semigroup

reducts of all members of varWρ
m satisfying x2

≏ 0 are locally finite. In order

to apply Theorem 3.4 (in the form of Remark 3.8), it remains to show that

each Zimin word is an involutory isoterm relative to varK
ρ
ℓ for ℓ = 3 and ℓ = 4.
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Com∨B and each member of Com∨W which satisfies x2
≏ 0 is locally finite

(the latter by an argument that has been refined in the proof of Lemma 3.3).

By Theorem 3.4, it follows that each variety V for which Com ∨ B ⊆ V ⊆
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so that the quoted result from [20] appears as a special case.
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are considered to be equipped with trivial involution (for the verification that

all Zimin words are involutory isoterms relative to Com ∨ B⋆, one can use

Lemma 4.2 formulated in the next section).

4. Applications

For every n, there is an injective semigroup homomorphism Kn →֒ Kn+1

(induced by the map c �→ c, hi �→ hi for i = 1, . . . , n− 1) which is compatible

with the reflection. Consequently, for every n, we have the inclusion varKn ⊆

varKn+1. As mentioned earlier, Kn is a submonoid of Wn, whence varKn ⊆

varWn for every n. These inclusions are true if the respective structures are
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the reflection. We start by applying Theorem 3.4 to the Kauffman monoids

Kn and the wire monoids Wn with n ≥ 3.

Theorem 4.1. Let n ≥ 3 and consider K3 and Wn, either as semigroups or

as involution semigroups with respect to reflection. Then every [involution]

semigroup variety V such that varK3 ⊆ V ⊆ varWn is nonfinitely based.

Proof. We invoke Theorem 3.4 in the form of Remark 3.8 and show that varWn

satisfies (i) and varK3 satisfies (ii). Thus, we are to check that the semigroup

Wn belongs to the Mal’cev product of Com with a locally finite semigroup

variety and that each Zimin word is an [involutory] isoterm relative to K3.

The first claim readily follows from Lemma 2.1. Indeed, by this lemma,

there is a homomorphism ϕ : Wn ։ Bn with the property that for every

idempotent in Bn, its inverse image under ϕ is a commutative subsemigroup

in Wn. This immediately yields that Wn belongs to the Mal’cev product

Com�m varBn, and varBn is locally finite as a variety generated by a finite

algebra [10, Theorem 10.16].

In order to show that the Zimin words are isoterms relative to K3, consider

the ideal C of K3 generated by c. Clearly, K3 \ C = {1, h1, h2, h1h2, h2h1}.

If we denote the images of h1 and h2 in the Rees quotient K3/C by a and

b, respectively, then the relations of K3 translate into the following relations

for a and b: a2 = 0, b2 = 0, aba = a, bab = b. These relations define the

6-element Brandt monoid B1
2 (in the class of all monoids with 0). Thus, K3/C

satisfies the relations of B1
2 , and the Rees quotient also consists of 6 elements,
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For ℓ = 4, this follows from the analogous fact for the monoid J4 considered

as an involution semigroup under rotation (this fact has been shown in [4,

Theorem 2.13]); by Lemma 2.2, the latter monoid is a quotient of Kρ
4.

It remains to consider the case ℓ = 3. We do not know whether or not TSL

belongs to the variety varK
ρ
3; hence, we do not know if we can proceed as in

the proof of Theorem 4.1. Nevertheless, we will show that each Zimin word is

an involution isoterm relative to K
ρ
3.

Arguing by contradiction, assume that for some n and some involutory word

w �= Zn, the identity Zn ≏ w holds in K
ρ
3. First we observe that each letter

xi, for i = 1, 2, . . . , n, occurs the same number of times in Zn and w. For this,

we substitute c for xi and 1 for all other letters. The value of the word Zn

under this substitution is c2
n−i

since it is easy to see that xi occurs 2
n−i times

in Zn. Similarly, since cρ = c, the value of w is ck, where k is the number of

occurrences of xi in w. As Zn ≏ w holds in K
ρ
3, the two values should coincide

whence k = 2n−i. In a similar manner, one can verify that the only letters

occurring in w are x1, x2, . . . , xn.

We have already shown that Zn is an isoterm relative to K3 considered as

a plain semigroup. Hence, w must be a proper involutory word, that is, it has

at least one occurrence of a ‘starred’ letter. We fix an i ∈ {1, 2, . . . , n} such

that x⋆
i occurs in w and substitute h1 for xi and 1 for all other letters. It

is easy to calculate that the value of the word Zn under this substitution is

c2
n−i

−1h1. Since hρ
1 = h2 in K

ρ
3 and xi occurs 2n−i times in w, the word w

evaluates to a product p of 2n−i factors, each of which is either h1 or h2 and at

least one of which is h2. As Zn ≏ w holds in K
ρ
3, the value of p must coincide

with c2
n−i

−1h1, which is only possible when the first and the last factors of p

are h1. Then the relations (1.2) and (1.4) ensure that the value of p is ckh1,

where k is the total number of occurrences of the factors h1h1 and h2h2 in p.

However, p has at least one occurrence of h1h2 and at least one occurrence of

h2h1, and therefore k ≤ 2n−i − 3, a contradiction. �

Remark 4.4. To get a version of Theorem 4.1 that could be stated and

justified without any appeal to geometric considerations, one should change

Wn to Kn in the formulation of Theorem 4.1 and refer to Lemma 2.2 instead

of Lemma 2.1 in its proof. (Recall that we outlined a ‘picture-free’ proof of

Lemma 2.2 at the end of Section 2.) This reduced version of Theorem 4.1

still suffices to solve the finite basis problem for the identities holding in the

Kauffman monoids. The same observation applies to Theorem 4.3.

Remark 4.5. Theorems 4.1 and 4.3 imply that each of the monoids Wn and

Kn with n ≥ 3 is nonfinitely based as both a plain semigroup and an involution

semigroup with either reflection or rotation. For the sake of completeness, we

mention that the monoids W2 and K2 are easily seen to be commutative, and

hence they are finitely based by a classical result of Perkins [18]. Moreover,

both reflection and rotation act trivially in W2, and therefore, W2 and K2 are

also finitely based as involution semigroups.
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In a similar manner, Theorem 3.4 allows one to solve the finite basis problem

for many other species of infinite diagram monoids in the setting of both

plain and involution semigroups. These applications of Theorem 3.4 will be

published in a separate paper, while here we restrict ourselves to demonstrating

another application of rather a different flavor.

Recall the classical Rees matrix construction (see [11, Chapter 3] for details

and for the explanation of the role played by this construction in the structure

theory of semigroups). Let G = �G, · � be a semigroup, 0 a symbol not in G,

and I,Λ non-empty sets. Given a Λ × I-matrix P = (pλi) over G ∪ {0}, we

define a multiplication · on the set (I ×G× Λ) ∪ {0} by the following rules:

a · 0 = 0 · a := 0 for all a ∈ (I ×G× Λ) ∪ {0},

(i, g, λ) · (j, h, µ) :=

{

(i, gpλjh, µ) if pλj �= 0,

0 if pλj = 0.

Then �(I×G×Λ)∪{0}, · � becomes a semigroup denoted by M0(I,G,Λ;P ) and

is called the Rees matrix semigroup over G with the sandwich matrix P . For a

semigroup S, we let S1 stand for the monoid obtained from S by adjoining a

new identity element.

Theorem 4.6. Let G = �G, · � be an abelian group and S = M0(I,G,Λ;P ) a

Rees matrix semigroup over G. If the matrix P has a submatrix of one of the

forms ( a b
c 0 ) or ( 0 b

c 0 ) where a, b, c ∈ G, or ( e e
e d ) where e is the identity of G

and d ∈ G has infinite order, then the monoid S1 is nonfinitely based.

Proof. Let E = �{e}, · � be the trivial group and P = (p̄λi) the Λ × I-matrix

over {e, 0} obtained when each non-zero entry of P gets substituted by e.

Consider the Rees matrix semigroup T = M0(I,E,Λ;P ). It is easy to see that

the map ψ defined by

1 �→ 1, 0 �→ 0, (i, g, λ) �→ (i, e, λ)

is a homomorphism from S1 onto T1. It is known (see, e.g., the proof of [13,

Theorem 3.3]) that every Rees matrix semigroup over E belongs to the variety

generated by the 5-element semigroup A2 that can be defined as the Rees

matrix semigroup over E with the sandwich matrix ( e e
e 0 ). Therefore, T

1 lies in

the variety varA1
2. The inverse image of an arbitrary element (i, e, λ) ∈ T under

ψ consists of all triples of the form (i, g, λ) where g runs over G. If for some

j ∈ I, µ ∈ Λ, the triple (j, e, µ) is an idempotent in T, then p̄µj �= 0, whence

pµj �= 0 as well. Therefore, the product of any two triples (j, g, µ), (j, h, µ) ∈

ψ−1(j, e, µ) is equal to (j, gpµjh, µ) and this result does not depend on the

order of the factors since the group G is abelian. Taking into account that

ψ−1(0) = {0} and ψ−1(1) = {1}, we see that the inverse image under ϕ of

every idempotent in T1 is a commutative subsemigroup in S1. Thus, S1 belongs

to the Mal’cev product Com�m varA1
2, and varA1

2 is locally finite as a variety

generated by a finite algebra [10, Theorem 10.16].
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For ℓ = 4, this follows from the analogous fact for the monoid J4 considered

as an involution semigroup under rotation (this fact has been shown in [4,

Theorem 2.13]); by Lemma 2.2, the latter monoid is a quotient of Kρ
4.

It remains to consider the case ℓ = 3. We do not know whether or not TSL

belongs to the variety varK
ρ
3; hence, we do not know if we can proceed as in

the proof of Theorem 4.1. Nevertheless, we will show that each Zimin word is

an involution isoterm relative to K
ρ
3.
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since it is easy to see that xi occurs 2
n−i times

in Zn. Similarly, since cρ = c, the value of w is ck, where k is the number of

occurrences of xi in w. As Zn ≏ w holds in K
ρ
3, the two values should coincide

whence k = 2n−i. In a similar manner, one can verify that the only letters

occurring in w are x1, x2, . . . , xn.

We have already shown that Zn is an isoterm relative to K3 considered as

a plain semigroup. Hence, w must be a proper involutory word, that is, it has

at least one occurrence of a ‘starred’ letter. We fix an i ∈ {1, 2, . . . , n} such

that x⋆
i occurs in w and substitute h1 for xi and 1 for all other letters. It

is easy to calculate that the value of the word Zn under this substitution is

c2
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−1h1. Since hρ
1 = h2 in K

ρ
3 and xi occurs 2n−i times in w, the word w

evaluates to a product p of 2n−i factors, each of which is either h1 or h2 and at

least one of which is h2. As Zn ≏ w holds in K
ρ
3, the value of p must coincide

with c2
n−i

−1h1, which is only possible when the first and the last factors of p

are h1. Then the relations (1.2) and (1.4) ensure that the value of p is ckh1,

where k is the total number of occurrences of the factors h1h1 and h2h2 in p.

However, p has at least one occurrence of h1h2 and at least one occurrence of

h2h1, and therefore k ≤ 2n−i − 3, a contradiction. �

Remark 4.4. To get a version of Theorem 4.1 that could be stated and

justified without any appeal to geometric considerations, one should change

Wn to Kn in the formulation of Theorem 4.1 and refer to Lemma 2.2 instead

of Lemma 2.1 in its proof. (Recall that we outlined a ‘picture-free’ proof of

Lemma 2.2 at the end of Section 2.) This reduced version of Theorem 4.1

still suffices to solve the finite basis problem for the identities holding in the

Kauffman monoids. The same observation applies to Theorem 4.3.

Remark 4.5. Theorems 4.1 and 4.3 imply that each of the monoids Wn and

Kn with n ≥ 3 is nonfinitely based as both a plain semigroup and an involution

semigroup with either reflection or rotation. For the sake of completeness, we

mention that the monoids W2 and K2 are easily seen to be commutative, and

hence they are finitely based by a classical result of Perkins [18]. Moreover,

both reflection and rotation act trivially in W2, and therefore, W2 and K2 are

also finitely based as involution semigroups.
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In view of Theorem 3.4, it remains to verify that each Zimin word is an

isoterm relative to S1. Here we invoke the premise that the matrix P has a

2 × 2-submatrix of a specific form. We fix such a submatrix P ′ of one of the

given forms and let Λ′ = {λ, µ} ⊆ Λ and I ′ = {i, j} ⊆ I be such that P ′ occurs

at the intersection of the rows whose indices are in Λ′ with the columns whose

indices are in I ′.

First consider the case when P ′ is either ( a b
c 0 ) or ( 0 b

c 0 ). Clearly, the Rees

matrix semigroup U = M0(I ′,G,Λ′;P ′) is a subsemigroup of S, whence U1 is

a subsemigroup of S1. Then the image of U1 under the homomorphism ϕ is a

subsemigroup V1 of T1 where V can be identified with the Rees matrix semi-

group over E whose sandwich matrix is either ( 0 e
e 0 ) or (

e e
e 0 ). In the latter case,

the semigroup V is isomorphic to the semigroup A2. We have already used the

fact that every Rees matrix semigroup over E belongs to the variety varA2; this

implies that in any case, the Rees matrix semigroup B = M0(I ′,E,Λ′; ( 0 e
e 0 ))

belongs to the variety varV. Hence, B1 ∈ varV1, and it is easy to verify that

the bijection

1 �→ 1, 0 �→ 0, (i, e, λ) �→ a, (j, e, µ) �→ b, (i, e, µ) �→ b, (j, e, λ) �→ ba

is an isomorphism between B1 and the 6-element Brandt monoid B1
2 defined

in the proof of Theorem 4.1. Thus, B1
2 lies in the variety var S1, and each

Zimin word is an isoterm relative to B1
2 [19, Lemma 3.7].

Now suppose that P ′ = ( e e
e d ) with d ∈ G being an element of infinite order.

One readily verifies that the set

R =
{

(k, dn, ν) | k ∈ I ′, ν ∈ Λ′, n = 0, 1, 2, . . .
}

forms a subsemigroup in S while the set

J =
{

(k, dn, ν) | k ∈ I ′, ν ∈ Λ′, n = 1, 2, . . .
}

forms an ideal in R. It is easy to calculate that the Rees quotient R/J is

isomorphic to the semigroup A2, and we again conclude that B1
2 lies in the

variety var S1. �

Remark 4.7. Suppose that G = �G, · � is an abelian group, I is a non-empty

set, 0 is a symbol not in G, and P = (pij) is a symmetric I × I-matrix over

G∪{0}. Then one can equip the Rees matrix semigroup M0(I,G, I;P ) with an

involution by letting 0⋆ := 0, (i, g, j)⋆ := (j, g, i). A version of Theorem 4.6

holds also for involution monoids that are obtained from such involution semi-

groups by adjoining a new identity element.

Remark 4.8. Theorem 4.6 remains valid if we replace the abelian group G

by an arbitrary semigroup H from a variety U all of whose periodic members

are locally finite. In the matrix ( e e
e d ), the elements e, d ∈ H have to be chosen

such that e2 = e, ed = d = de, and dn �= e for all positive integers n.

Remark 4.9. Readers familiar with the role of Rees matrix semigroups in the

structure theory of semigroups will notice that Theorem 4.6 shows that for each
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completely simple semigroup S which admits two idempotents whose product

has infinite order and whose maximal subgroups are abelian, the monoid S1 is

nonfinitely based. Indeed, S admits a Rees matrix representationM(I,G,Λ;P )

(the construction mentioned above but without 0) such that P has a submatrix

of the form ( e e
e d ) and d has infinite order in G. The proof of Theorem 4.6 then

shows that S1 ∈ var(Com�m B) and A1
2 ∈ var S1; hence, each Zimin word is

an isoterm relative to S1.

Remark 4.10. The results presented in this paper may create the impression

that an involution semigroup and its semigroup reduct are always (non)finitely

based at the same time. This is not true in general even in the case when one

deals with groups (with the group inversion playing the role of the involution):

there exists a nonfinitely based group �G1, · ,
−1� such that the semigroup

�G1, · � is finitely based and on the other hand, there exists a finitely based

group �G2, · ,
−1� such that the semigroup �G2, · � is nonfinitely based, see [23,

Section 2] for references and a discussion.
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References

[1] Auinger, K.: Pseudovarieties generated by Brauer-type monoids. Forum Math. 26,

1–24 (2014)

[2] Auinger, K., Dolinka, I., Pervukhina, T.V., Volkov, M.V.: Unary enhancements of

inherently non-finitely based semigroups. Semigroup Forum 89, 41–51 (2014)

[3] Auinger, K., Dolinka, I., Volkov, M.V.: Matrix identities involving multiplication and

transposition. J. European Math. Soc. 14, 937–969 (2012)

[4] Auinger, K., Dolinka, I., Volkov, M.V.: Equational theories of semigroups with

involution. J. Algebra 369, 203–225 (2012)
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