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Abstract. We use an interpretation of projective planes to show the inherent non-
dualisability of some finite semigroups. The method is sufficiently flexible to demon-
strate the nondualisability of (asymptotically) almost all finite semigroups as well as
to give a fresh proof of the Quackenbush-Szabó result that any finite group with a
nonabelian Sylow subgroup is nondualisable. A novel feature is that the ostensibly
different notions of nilpotence for semigroups, nilpotence for groups, and the prop-
erty of being nonorthodox for a completely 0-simple semigroup are unified by way
of a single construction. We also give a semigroup example of two dualisable finite
semigroups whose direct product is inherently nondualisable.

1. Introduction

The general theory of natural dualities emerged from “classical” dualities

such as Stone’s duality for Boolean algebras, Pontryagin’s duality for abelian

groups and Priestley’s duality for distributive lattices. While these are in-

stances of category theoretic dualities, they share enough common features

at the algebra level to be treated concretely within a single algebraic frame-

work. This general theory of natural dualities was first developed by Davey

and Werner in [9] and has seen substantial development by many authors.

The standard reference is Davey and Clark [5]. Most natural dualities concern

quasivarieties generated by a single finite algebra; however, the idea extends

to relational structures, to quasivarieties generated by sets of algebras, and to

quasivarieties generated by infinite algebras. In general, the quasivariety of a

finite algebra M may not admit a natural duality and in this case we will say

that say that M is nondualisable. If no finite algebra N whose quasivariety

contains M is dualisable, then M is said to be inherently nondualisable.

The current article primarily concerns dualisability for finite semigroups. A

number of results have already been obtained in this area, though the results

are more negative than positive. On the positive side, Al Dhamri [2] has re-

cently shown that every normal band is dualisable. However in [15], the author
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showed that any non-normal band is inherently nondualisable. Quackenbush

and Szabó [27] showed that every finite group with cyclic Sylow subgroups is

dualisable, but also ([26]) that a finite group with a nonabelian Sylow sub-

group is inherently nondualisable. There is currently no published proof that

every finite group with abelian Sylow subgroups is dualisable, though such a

proof has been announced by Nickedemus [23].

Note added in proof. Kearnes and Szendrei [19] have recently posted

a manuscript to the arXiv which gives a proof of a general result implying

that a finite group with all Sylow subgroups abelian is dualisable (verifying

the statements in Nickodemus [23]). This implies the results alluded to in

Remarks 7.2 and 7.4 of the present paper.

Recall that a Clifford semigroup is a semilattice of groups: there is a congru-

ence θ whose blocks are subgroups, and for which the corresponding quotient

is a semilattice. Positive dualisability results for groups can be extended to

certain Clifford semigroups using results of Davey and Knox [7]. The result

can be stated as follows: if the quasivariety of a finite group G admits a nat-

ural duality, then the quasivariety consisting of all Clifford semigroups whose

subgroups lie in the quasivariety of G is finitely generated as a quasivariety

and is dualisable (see [15]). In particular, if it is true that every finite group

with abelian Sylow subgroups is dualisable, then a Clifford semigroup whose

subgroups have abelian Sylow subgroups lies within a dualisable variety of Clif-

ford semigroups. In the world of finite monoids (in either the monoid signature

or the semigroup signature) or the world of inverse semigroups (in either the

unary semigroup signature or the semigroup signature), there is a converse: if

a member of one of these classes has a subgroup with a nonabelian Sylow sub-

group, or has a subalgebra that is not a Clifford semigroup, then the member

is inherently nondualisable [15]. Problem 9.3 in the present article asks for an

understanding of when Clifford semigroups are dualisable.

The present article will add to this list of mostly negative results. We give

a general nondualisability result (Theorem 3.1), based on notions of nilpo-

tence in semigroups. This result is then applied to give our main results:

Theorem 5.1, which states that any finite semigroup whose variety contains a

proper 3-nilpotent semigroup is inherently nondualisable; a new proof of the

Quackenbush and Szabó [26] result that any group with a nonabelian Sylow

subgroup is inherently nondualisable (Theorem 6.1); and Theorem 7.1, which

states that any completely simple semigroup that is not isomorphic to the di-

rect product of a group with a rectangular band is inherently nondualisable.

There are a number of corollaries, including the result that the proportion of

n-element semigroups that are dualisable approaches 0 as n tends to infinity

(Corollary 5.4), the result that a dualisable finite semigroup must have in-

dex 1 (Corollary 5.5) and that a dualisable finite regular semigroup must be

completely regular and that each J -class must be a direct product of a group

with a rectangular band (Corollary 7.5). We also show that the class of finite
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semigroups admitting a natural duality fails to be closed under finite direct

products, by giving two 3-element semigroups that are dualisable but whose

direct product is inherently nondualisable.

A number of these results were obtained in 2003 but despite being widely

distributed amongst the algebra group at La Trobe University, they managed

to evade publication until this celebration of Brian Davey’s 65th birthday. A

stumbling block was Theorem 5.1, which (along with Theorem 7.1) existed

only the weaker form of Theorem 5.2 and Corollary 5.5 until early 2014.

2. Duality and nondualisability techniques

The present article will focus on nondualisability, but for context and com-

pleteness we give a very brief overview of what it means to admit a natural

duality. The reader is directed to Clark and Davey [5] for a far more complete

introduction to the topic. A “natural duality” is a particular form of category-

theoretic duality between a quasivariety of algebras (and more generally of

structures) and a topological quasivariety. For a quasivariety Q generated by

a single finite algebra M (so, Q = ISP(M)), the topological quasivariety will

be generated by a different structure M on the same underlying universe M

of M. This “alter ego” M will carry the discrete topology, but also operations,

partial operations and relations. In order for the alter ego M have any hope

of facilitating a natural duality, it is necessary [5, §1.5] that each operation of

M is a homomorphism from Mn into M, that each relation is a subalgebra

of Mn, and that each partial operation is a homomorphism from a subalgebra

of Mn into M (here n is the arity of the operation, relation or partial operation

being considered). The topological quasivariety X of M will be IScP
+(M), the

class of all structures of the same type as M that arise by way of (topolog-

ically and algebraically) isomorphic copies of closed substructures of powers

(with nonempty index sets) of M, where topology is extended to powers by

way of the product topology. Under these assumptions, for each A ∈ ISP(M),

the homset homQ(A,M) will always be a closed substructure of MA and thus

lies in X . This member of X is denoted by D(A). Similarly, for each object

A ∈ X , the homset homX (A,M) (the set of continuous homomorphisms from

A into M) will be a subuniverse of MA; the corresponding subalgebra is de-

noted E(A). It is always the case that for every A ∈ Q, there is a natural

evaluation map e : A → E(D(A)), given by ea(x) = x(a). Under the existing

assumptions on M, this map is necessarily an injective homomorphism. When

e is an isomorphism, then it is said that M yields a duality on A. If M yields

a duality on every A ∈ Q, then M is said to yield a (natural) duality on Q,

and M is said to admit a natural duality (by way of the alter ego M) or be

dualisable. Evidently, this is equivalent to each A ∈ Q being isomorphic to a

natural structure on the family of all continuous homomorphisms of an object

in X into M.
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The algebra M is inherently nondualisable (or IND) if it does not lie in the

quasivariety of any finite dualisable algebra. The standard tool for demonstrat-

ing inherent nondualisability is the following lemma from Clark and Davey [5]

(see [5, 10.5.5]).

Inherent Nondualisability Lemma 2.1. [5] Let D be a finite algebra. Then

D is inherently nondualisable if there exists an infinite set S, a subalgebra A

of DS, an infinite subset A0 of A, and a function u : N → N such that

(i) if θ is a congruence on A of finite index at most n, then θ�A0
has only

one class with more than u(n) elements,

(ii) g /∈ A where g is the element of DS such that g(s) := ρs(b) (the projection

of b to coordinate s), for each s ∈ S, with b any element of the block of

ker ρs�A0 which has size greater than u(|D|).

The element g in this lemma is usually known as the ghost element.

We also make use of the following tool for demonstrating dualisability of a

finite algebra M.

IC Duality Theorem 2.2. [5, Corollary 2.2.12] Suppose that M is an alter

ego of M. Then M dualises M provided the following interpolation condition

is satisfied : for each n ∈ N and each substructure X ≤ Mn, every morphism

α : X → M extends to term function t : Mn → M of the algebra M.

3. Projective plane construction

In this section, we use the Inherent Nondualisability Lemma 2.1 (henceforth,

the IND Lemma) to give a general configuration causing inherent nondualis-

ability. The argument will apply to algebras in which there is a binary term

operation · and elements a, b, c, d, e, f (not necessarily distinct) such that the

following template T of products occur:

· c d

a e f

b f f

An algebra in which this occurs is said to interpret T. Our main result will

require an interpretation of T with e �= f, as well as a more technical “geomet-

ric” condition that we describe in due course. A very large array of algebraic

structures interpretT with e �= f, though many will fail the technical condition.

As an example, consider any algebra in which there is a fundamental binary

operation · for which there is a multiplicative 0 but such that not every product

(in ·) equals 0. So there are elements a and c (possibly equal) such that

e := a · c �= 0. Letting b = d = f := 0 we obtain an interpretation of T with

e �= f. We will see that asymptotically, almost all finite semigroups interpret

T in this way, as well as satisfying the additional geometric condition.

As a second example, consider any nonabelian group G, so that there are

elements a and c such that the commutator e := [a, c] �= 1. Then G interprets
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T via the binary term operation of commutator by letting b = d = f := 1.

The technical condition will be shown to hold when G contains a nonabelian

Sylow subgroup.

Recall that a projective plane P consists of a set of points P along with

a family L of sets of points, known as lines, satisfying the property that any

pair of distinct points are members of a unique line, any pair of distinct lines

intersect to a unique point, and there are four points in general position: no

three lying on the same line. Lines will be denoted by upper case L,K, possibly

with subscripts. For two distinct lines L,K, we let L ∧K denote the unique

point on both L and K; otherwise, if L = K, then L∧K = L. For two distinct

points p, q, the unique line containing both p and q is denoted by p ∨ q.

We will assume throughout that any projective plane we consider has in-

finitely many points. It is well known that there exist projective planes of all

infinite cardinalities (measured in terms of the cardinality of the set of points);

this follows from applications of the Löwenheim Skolem Theorems for example,

or from direct constructions based over fields. While we do not make explicit

use of this in the article, it can be used (by trivial adjustments to assumptions)

to push the inherent nondualisability results in this article to proofs of inherent

non-κ-dualisability in the sense of Davey, Idziak, Lampe and McNulty [6].

Let ∞ be a symbol not in P, and let P∞ denote P ∪ {∞}. The “point” ∞
is used as a book-keeping device, to record the ghost element.

We now describe some standard notation for certain elements of cartesian

powers. Let M,S be sets, and MS the usual cartesian power. If I1, . . . , In are

pairwise disjoint subsets of S and a, b1, . . . , bn are elements of M , then ab1,...,bnI1,...,In

denotes the element of MS given by

ab1,...,bnI1,...,In
(i) =

{
bj if i ∈ Ij ,

a otherwise.

In a slight abuse of notation, we allow elements of S in the subscript to be

considered as if they were singleton sets. For example, if S = Z (the integers),

then ab,c1,2Z is the same as ab,c{1},2Z, the tuple that is c on all even coordinates

and a on all odd coordinates except for coordinate 1 where it equals b.

Theorem 3.1. Let M be an algebra interpreting T via some binary term op-

eration. If the subalgebra of MP∞ generated by the following “ line generators”,

{ba,a∞,L, d
c,c
∞,L | L a line in P},

does not contain the ghost element g := fe∞, then M is inherently nondualis-

able.

Proof. We apply the Inherent Nondualisability Lemma 2.1 (the IND Lemma)

to the subalgebra A of MP∞ generated by the line generators. The set A0

of the IND Lemma is chosen as A0 := {fe,e∞,p | p ∈ P}, so that the ghost

element g is fe∞, in agreement with the statement of the present theorem.

Note that if L and K are lines with L ∧K = p, then fe,e∞,p arises in A by way
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of ba,a∞,Ld
c,c
∞,K = fe,e∞,L∧K = fe,e∞,p, so that A0 is indeed a subset of A. Item (ii)

of the IND Lemma holds by assumption. We need to establish item (i).

We consider a congruence θ on A of index strictly less than n (so that the

function u : N → N of the IND Lemma is given by u(n) := n + 1). We show

that the restriction of θ to A0 has at most one block of size n or more. For this,

assume that {p1, . . . , pn} and {q1, . . . , qn} are disjoint n-element subsets of the

plane P such that for each i, j ≤ n, we have fe,e∞,pi
θ fe,e∞,pj

and fe,e∞,qi θ fe,e∞,qj .

Our goal is to show that fe,e∞,pi
θ fe,e∞,qj , so that there is just one “large” block

of θ on A0.

Let r be any point not amongst p1, . . . , pn, q1, . . . , qn and such that the n

lines of the form Li := pi ∨ r are pairwise distinct and do not contain qj for

any j ≤ n; see Figure 1.

p1
p2

pn q1
qn−1

qn

r

Figure 1. Points p1, . . . , pn, q1, . . . , qn and a choice of r.

As θ has index less than n, it follows that there are i �= j (both at most n)

such that ba,a∞,Li
θ ba,a∞,Lj

. Fixing such a choice of i, j, for every point p ∈ Li\{r}
and for all k = 1, . . . , n, we have

fe,e∞,p = ba,a∞,Li
dc,c∞,p∨pj

θ ba,a∞,Lj
dc,c∞,p∨pj

= fe,e∞,pj
θ fe,e∞,pk

.

Thus,

all points p on Li except possibly r have fe,e∞,p θ fe,e∞,p1
. (†)

Continuing with the fixed choice of i ≤ n, there are only finitely many points

on Li of the form (qk ∨ qk′) ∧ Li (for some k �= k′ in {1, . . . , n}). As P is

infinite, the number of points on Li is infinite, so we may select distinct points

r1, . . . , rn that are not r and are not of the form (qk ∨ qk′)∧Li. In particular,

for each k1 �= k2, the lines rk1
∨ qk1

and rk2
∨ qk2

are distinct; see Figure 2.

As the index of θ is less than n, it follows that there are k1 �= k2 such

that dc,c∞,rk1
∨qk1

θ dc,c∞,rk2
∨qk2

. Then using rk1
= (rk1

∨ qk2
) ∧ (rk1

∨ qk1
) and

q2 = (rk1
∨ qk2

) ∧ (rk2
∨ qk2

) (see Figure 3) we have, by (†),

fe,e∞,p1
θ fe,e∞,rk1

= ba,a∞,rk1
∨qk2

dc,c∞,rk1
∨qk1

θ ba,a∞,rk1
∨qk2

dc,c∞,rk2
∨qk2

= fe,e∞,qk2
,

completing the proof that there is exactly one block of θ with size ≥ n. �
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pi

r

r1

rn−1

rn

Li

q1

qn−1

qn

Figure 2. The line Li, the points r1, . . . , rn and connecting lines.

rk1

rk2

qk1

qk2

Figure 3. The lines rk1 ∨ qk2 , rk1 ∨ qk1 and rk2 ∨ qk2 .

4. Semigroup theoretic preliminaries

In this section, we set some basic notation and recall some of the funda-

mental structural theory of finite semigroups. The reader is directed to a text

such as Howie [13] for a full treatment; material on Rees matrix semigroups

may be found in [13, Chapter 3] for example.

Recall that the index of a finite semigroup S is the smallest number i such

that S |= xi ≈ xi+p for some p > 1. The smallest number p for which this

equation holds is called the period. If d ≥ i is such that d is congruent to 0

modulo p then sdsd = sd+d = sd for any s ∈ S. The element sd also arises

as the limn→∞ sn!, which is eventually constant in any finite semigroup. The

notation sω is usually used to denote this idempotent power and the notation

extends to sω+i for any i ∈ Z by setting sω+i to be sωsi
′
where i′ is any

positive integer congruent to i modulo p. Note that sω+isω+j = sω+i+j .

A semigroup is k-nilpotent if it satisfies the semigroup law x1x2 · · ·xk ≈
y1y2 · · · yk, which is equivalent to the property that there is a zero element

0 and every product of length k is equal to 0. A k-nilpotent semigroup is a

proper k-nilpotent semigroup if it is not (k − 1)-nilpotent. Semigroups that

are 2-nilpotent are often called null semigroups.

A semigroup S is said to be simple if the only ideal of S is S itself: this is not

the same as the universal algebraic notion of being simple, which in semigroup

theory is usually called congruence free. A semigroup S is 0-simple if it has

a 0 element and the only ideals are {0} and S. A (0-)simple semigroup is
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completely (0-)simple if it has a primitive idempotent; that is, an idempotent

e such that whenever f is idempotent with ef = fe = f �= 0 then e = f . It is

a classical result of semigroup theory that all finite (0-)simple semigroups are

completely (0-)simple.

We now recall Rees’ powerful classification theorem for completely (0)-

simple semigroups. Choose a group G and let 0 be a symbol not in G. Choose

a pair of nonempty sets I,Λ and a Λ× I matrix P with entries from G ∪ {0}
such that no row nor column consists entirely of 0. (Note that P is nota-

tionally distinct from the projective plane P on points P.) The Rees matrix

semigroup with 0 built from G and P , denoted M0[G, P ], is the semigroup on

the universe {0} ∪ {(i, g, λ) | i ∈ I, g ∈ G, λ ∈ Λ} with multiplication

(i, g, λ)(j, h, ρ) :=

{
(i, gPλ,jh, ρ) if Pλ,j ∈ G,

0 otherwise.

where Pλ,j is the (λ, j)
th entry of P . Rees matrix semigroups with 0 are always

completely 0-simple, and moreover every completely 0-simple semigroup arises

in this way. If all entries of P are from G, then the element 0 may be dropped

(the notation isM [G, P ]) and one obtains a construction for completely simple

semigroups. It is possible for different matrices P to give rise to the same

semigroup, up to isomorphism.

Completely 0-simple semigroups form a basic building block of any finite

semigroup. Recall that in a semigroup S, we say that a divides b if there are

elements c or d in S (or possibly empty) such that cad = b. The “divides”

relation defines a preorder on any semigroup, and the equivalence classes are

known as J -classes.

Theorem 4.1. Let S be a finite semigroup, s an element of S, and Js the

J -class of s. Let J be the semigroup generated by Js and I the ideal consisting

of all elements of J not in Js. If I is empty, then J is a completely simple

semigroup. If I is nonempty and Js contains an idempotent, then J/I is a

completely 0-simple semigroup. If I contains no idempotent, then J/I is a

null semigroup: all products equal 0.

Note that when Js is the minimum ideal for example, then I is empty, so

that the minimum ideal of a finite semigroup is always a completely simple

semigroup (of course it may be a degenerate, such as a single multiplicative 0).

Theorem 4.1 is one of the fundamental tools in semigroup theory. We use it

here to illustrate some further basic facts that will be used later in the article.

The facts are well known to researchers in semigroup varieties, though the

author is not aware of a location where they have been spelt out explicitly.

Theorem 4.2. A completely 0-simple semigroup M0[G, P ] generates a variety

containing a proper 3-nilpotent semigroup if and only if P contains a 0 entry.
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Proof. If P contains no nonzero elements, then M0[G, P ] satisfies xp+1 ≈ x,

where p is the exponent of the group G. This law fails on any proper 3-

nilpotent semigroup.

Now assume that P contains a 0 entry, say Pi,λ ∈ G. Factor by the congru-

ence whose equivalence classes are {0} along with the blocks {(i, g, λ) | g ∈ G}
for each (i, λ) ∈ I × Λ. Then we have a semigroup isomorphic to M0[1, P ′]

where 1 is the one element group on {1}, and P ′ is the matrix P with all

nonzero elements replaced by 1. Now let Pλ,i be a nonzero entry in P . Let

j, ρ be such that Pρ,i and Pλ,j are nonzero, which exists because each row and

column of P has a nonzero entry. Let e denote the element (i, 1, ρ), f denote

(j, 1, λ), and a denote (i, 1, λ). Then ea = a = af , while ae = aa = 0. Also,

ee = e and ff = f . In the square M0[1, P ′] × M0[1, P ′], consider the sub-

semigroup M generated by (e, a), (a, f). Now (e, a)(a, f) = (a, a), but because

ae = aa = 0, every other product produces a tuple with 0 in a coordinate.

These elements with a 0 coordinate form an ideal J , and M/J is a proper

3-nilpotent semigroup. �

Recall that a semigroup is regular if for every s there is a t such that sts = s.

This is equivalent to every J -class containing an idempotent (cf. Theorem 4.1).

A semigroup is completely regular if every element lies within a subgroup,

which is equivalent to every J -class being a completely simple semigroup.

Theorem 4.3. A finite regular semigroup generates a variety containing a

proper 3-nilpotent semigroup if and only if it is not completely regular.

Proof. If S is completely regular of period p, then it satisfies xp+1 ≈ x, which

fails on any proper 3-nilpotent semigroup. Now assume that S is a finite

regular semigroup containing an element s with sp+1 �= s. Then s2 is not in

the J -class of s, showing that the quotient J/I of Theorem 4.1 (built from Js)

is a completely 0-simple semigroup. Because s2 = 0 in J/I, it follows that

when presented as a Rees matrix semigroup M0[G, P ], the matrix P must

contain a zero entry. �

5. Nilpotent and monogenic semigroups

While 2-nilpotent semigroups do not exhibit any interesting properties,

proper 3-nilpotent semigroups present an interesting jump in the complexity of

certain algebraic properties: a proper 3-nilpotent semigroup generates a resid-

ually large variety (Golubov and Sapir [10], Kublanovski [14], or McKenzie

[22]); no proper 3-nilpotent semigroup has a finite basis for its quasi-identities

(Jackson and Volkov [17]); and 3-nilpotent semigroups provide a key role in

undecidability results relating to membership problems [11, 18]. We now add

to this list of complex behaviour by showing that they are inherently nond-

ualisable. We mention that the template T originated in the proof of early
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versions of the following theorem, using the notion of a “homotopy”, in the

style of [17].

Theorem 5.1. Let S be a finite semigroup whose variety contains a proper

3-nilpotent semigroup. Then S is inherently nondualisable.

Proof. Let N be a proper 3-nilpotent semigroup in HSP(S) and a, c, e ∈ N

such that ac = e �= 0 (possibly a = c, however we must have e /∈ {a, c} as

e �= 0, and e = a implies acc = ec = ac = e �= 0, with a similar contradiction

to 3-nilpotence if e = c). We may assume without loss of generality that

N is generated by a, c. Let M ∈ SP(S) be such that there is a surjective

homomorphism ν : M → N. By the definition of inherent nondualisability, it

will suffice to show that M is inherently nondualisable.

Select any a ∈ ν−1(a) and c ∈ ν−1(c) and set e := ac ∈ ν−1(e). Because N

is finite, we may assume thatM is finite, and moreover, becauseN is generated

by a, c, we may assume that M also is generated by a and c. Let I be the

minimum ideal of M. As M is generated by a, c, there is a word u in the

alphabet {a, c} such that the product u lies in I. Now observe that (aωucω)ω

is also in I and is additionally an idempotent element. We let this element

be denoted by v. Now as aω and cω are idempotents that occur at either end

of the product v, we have v = aωv = vcω. Thus, av = aaωv = aω+1v and

vc = vcωc = vcω+1, giving

aω+1vcω+1 = avcω+1 = aω+1vc = avc (�)

Now we may complete the interpretation of T into M. To the existing

choice of a, c, e with ac = e, add b := aω+1v and d := vcω+1 and f := avc. To

see that this is a valid interpretation, note that using Equation (�) and the

idempotence of v, we have

a · d = avcω+1 = f,

b · c = aω+1vc = f, and

b · d = aω+1vvcω+1 = aω+1vcω+1 = f.

Now we need to verify that the ghost element g of Theorem 3.1 cannot be

generated by the line generators in MP∞ . First, let J denote ν−1(0). Next,

let h be any element of MP∞ that is generated by line generators and which

has h(∞) = e. We show that there is a point q in P such that h(q) = e also,

showing that g �= h.

Now h must arise as a product of exactly two line generators. This is

because at the coordinate ∞, the line generators equal either a or c. Because

any product of length 3 or more in N equals 0, so too must any product of

length three or more lie in the ideal J of M. Because h(∞) /∈ J ∪ {a, c},
it arises as a product of exactly two line generators. Let L,K be the lines

corresponding to the two line generators, and let q be any point on L ∧ K.

Then h(q) = h(∞) as claimed. Thus, Theorem 3.1 applies to show that M is

inherently nondualisable as required. �
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It would be interesting if the requirement of associativity of S in this theo-

rem could be dropped. In the current proof, associativity is being used heavily

to identify the elements b, d, f. For a general finite binar (algebra with single bi-

nary operation), one can identify the corresponding notion of “minimum ideal”

I and identify some product—now requiring bracketing—lying in it [16]. But

it is not obvious how to obtain something like the equalities in (�), which

appear to require something like associativity. The next theorem circumvents

this by assuming that there is a minimum ideal that behaves nicely.

Theorem 5.2. Let B be a finite binar with a multiplicative 0 element and

such that the variety generated by B contains a proper 3-nilpotent semigroup.

Then B is inherently nondualisable.

Proof. The proof is very similar to that of Theorem 5.1, so we give only a

sketch. Let N be a proper 3-nilpotent semigroup in HSP(B), and a, c, e ∈ N

such that ac = e �= 0. As in the proof of Theorem 5.1, we may assume that

N is generated by a, c, that there is a finite M ∈ SP(B), and a surjective

homomorphism ν : M → B and element a ∈ ν−1(a), c ∈ ν−1(c) with M

generated by a, c. In a slight deviation to the proof of Theorem 5.1, observe

that if the tuple (0, . . . , 0) is not already in M , then it may be added, and

the homomorphism ν extended by setting ν((0, . . . , 0)) := 0. Thus, we now

adjust M if necessary, by assuming that it does contain (0, . . . , 0). Now let

b = d = f := (0, . . . , 0). This gives an interpretation of T, and the remainder

of the argument is essentially a simplified version of the final stages of the

application of Theorem 3.1 in the proof of Theorem 5.1. �

Theorem 5.2 implies Theorem 2.5 of [3] (a fact that is alluded to in [3,

Remark 2.6]). Conversely, it appears that some cases where we apply Theorem

3.1 can alternatively be obtained using embellishments of the constructions in

the proof of [3, Theorem 2.5], though not when, for example, a = c.

To finish this section we give some corollaries to Theorem 5.1.

Corollary 5.3. If S is a finite proper k-nilpotent semigroup for k > 2, then

S is inherently nondualisable.

Proof. Let I be the ideal of S consisting of all elements that can be written

as a product of length 3. Then S/I is a 3-nilpotent semigroup. It is a proper

3-nilpotent semigroup because, by assumption, there are elements a1, . . . , ak−1

such that a1 · · · ak−1 �= 0. Then the element a1a2 cannot be equal to a product

b1b2b3 because of the contradiction 0 = b1b2b3a3 · · · ak−1 = a1 · · · ak−1 �= 0.

Thus, S is inherently nondualisable by Theorem 5.1. �

Kleitman, Rothschild and Spencer [21] showed that the proportion of all

n-element semigroups that are proper 3-nilpotent approaches 1 as n → ∞.

Thus, we obtain the following corollary to Theorem 5.1.

Corollary 5.4. As n → ∞, the proportion of all n-element semigroups which

are dualisable approaches 0.
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Corollary 5.5. A semigroup is inherently nondualisable if it has index more

than 2.

Proof. Let S be a finite semigroup with index i > 2 and period p. Thus, there

is an element a ∈ S such that ai = ai+p but ai−1 �= ai−1+p. Consider the

subsemigroup 〈a〉 generated by a, and factor by the ideal {aj | j > 2}. This

quotient is a proper 3-nilpotent semigroup. Thus, S is inherently nondualisable

by Theorem 5.1. �

6. Nilpotent groups

Quackenbush and Szabó [26] showed that any finite group containing a

nonabelian Sylow subgroup is nondualisable, and as observed in [15], their

proof in fact shows inherent nondualisability, though it predates the Inherent

Nondualisability Lemma 2.1. We now reprove this result by demonstrating an

interpretation of T. (We mention that Bentz and Mayr [4] have recently shown

how to obtain this as a special case of a much more general result concerning

supernilpotence in congruence modular varieties.)

Theorem 6.1 (Quackenbush and Szabó [26]). A finite group is inherently

nondualisable if it contains a nonabelian Sylow subgroup.

Proof. Let G be any finite group containing a nonabelian Sylow subgroup. We

first show that we may assume extra conditions onG without loss of generality.

Indeed, it will suffice to prove inherent nondualisability for a minimal subgroup

of G containing a nonabelian Sylow subgroup, in which case, we may assume

that G is its own Sylow subgroup, of order pk for some k > 1 and prime

p. Moreover, we can assume that G is 2-generated and nilpotency class 2;

indeed, if the nilpotency class is k > 2, then there are elements a, c such that

e := [a, c] ∈ Z(G)\{1}, and we may consider the subgroup generated by {a, c}.
We apply Theorem 3.1 with a = a, c = c, e = [a, c] = e, and b = d = f = f .

Observe that in a nilpotent group of nilpotency class 2, the term reduct to

the commutator operation is a proper 3-nilpotent semigroup: all commutator

products of length 3 equal 1, yet there are elements a, c with [a, c] = e �= 1.

So in fact we are in the same situation as in the proof of Theorem 5.1, except

that as the commutator is not the fundamental operation, we need to revisit

the proof that the ghost element g = 1e∞ is not in the subgroup A of GP∞

generated by the line generators 1a,a∞,L and 1c,c∞,L (for lines L).

Consider any h ∈ A with the property that h(q) = 1 for all points q ∈ P.

We show that h(∞) = 1 also, showing that g /∈ A as required.

First consider h written as a product of line generators. Each line generator

is built over a line from P (with each line giving rise to two generators), so

we may let L1, . . . , Lk be an enumeration of the lines involved in expressing

h as a product of line generators. Using the law xy = [x, y]yx (which holds

for any group) and centrality of commutators (which holds in G and in GP∞
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as they are nilpotent of class 2), we may arrange the line generators in this

product so that the line generators over L1 appear first, followed by the line

generators over L2 and so on, up to the line generators over Lk, followed by a

product of commutators arising from applications of xy = [x, y]yx. The order

of appearance of line generators over any individual line Li does not change.

For example, the product (1a,a∞,L1
)(1a,a∞,L3

)(1c,c∞,L1
)(1a,a∞,L1

)(1c,c∞,L2
) (with k = 3)

would become

(1a,a∞,L1
)(1c,c∞,L1

)(1a,a∞,L1
)(1c,c∞,L2

)(1a,a∞,L3
)

[(1a,a∞,L3
), (1c,c∞,L1

)][(1a,a∞,L3
), (1a,a∞,L1

)][(1a,a∞,L3
), (1c,c∞,L2

)].

(Of course, commutators such as [(1a,a∞,L3
), (1a,a∞,L1

)] will equal the constant

sequence equal to 1 on all coordinates; however, we ignore this and will even-

tually show that h itself is constantly equal to 1 also.) In the case of h, this

product will be abbreviated as

w1w2 · · ·wkv1,2v1,3 · · · v1,kv2,3 · · · vk−1,k,

where wi is a product of line generators over Li, while vi,j is a (possibly empty)

product of commutators between the line generators Li and Lj (where i �= j:

because we do not change the order of appearance of different line generators

over the same line Li, all commutators produced in the rearrangement involve

two distinct lines). Notice that wi(q) = 1 unless q ∈ Li, while vi,j(q) = 1 unless

q = Li ∧Lj . Also, for q ∈ Li, we have wi(q) = wi(∞), and for q = Li ∧Lj , we

have vi,j(q) = vi,j(∞). We now show that in fact wi(∞) = vi,j(∞) = 1 also.

For each i = 1, . . . , k, let qi be any point on Li that is not on the other

lines L1, . . . , Li−1, Li+1, . . . , Lk. At any point q ∈ P, the value of wi(q) is

either 1 (if q /∈ Li) or wi(q) = wi(qi). However, because vj,k(qi) = 1 for

any j �= k (because qi is on the line Li only), we have wi(qi) = h(qi) = 1.

Thus, as wi(∞) = wi(qi) = 1, we have that wi is constantly equal to 1. As i

was arbitrary, we have that the product w1 · · ·wk is also constantly equal to 1.

Next, for each i �= j, let qi,j := Li∧Lj . Then 1 = h(qi,j) = vi,j(qi,j) = vi,j(∞).

At all other points q �= qi, we have vi,j(q) = 1 as well, thus vi,j , and hence

v1,2v1,3 · · · v1,kv2,3 · · · vk−1,k is constantly 1. Thus, h is the constant sequence

equal to 1, as claimed. �

We now observe that Theorem 6.1 extends to the semigroup variety setting

for trivial reasons.

Theorem 6.2. Let S be a finite semigroup whose variety contains a group with

a nonabelian Sylow subgroup. Then S contains a subgroup with a nonabelian

Sylow subgroup and hence is inherently nondualisable by Theorem 6.1.

Proof. It is well known that the variety generated by a finite group G contains

a group with a nonabelian Sylow subgroup if and only if G has a nonabelian

subgroup. This can be proved directly, but can also be seen to be a conse-

quence of results such as Ol′s̆hanskĭı’s classification of when a group generates
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a residually large variety (which is if and only if it has a nonabelian Sylow

subgroup [24]). Next, use another well-known fact: that the groups in the

semigroup variety generated by a finite semigroup S are precisely the groups

in the variety generated by the subgroups of S. To see why this is true, note

that one may find a term u that, under any evaluation of the variables in u

inside S, takes values in the minimum ideal of the subsemigroup S generated

by the variable interpretation. (This is roughly the idea used in the proof of

Theorem 5.1.) Then group equations may be expressed by replacing variables

x by expressions of the form uωxuω. Thus, if the variety of S contains a group

with a nonabelian Sylow subgroup, then S itself contains a subgroup with a

nonabelian Sylow subgroup. �

7. Completely simple semigroups

The general theory of completely simple semigroups easily implies that a

completely simple semigroup is isomorphic to the direct product of a group

with a rectangular band if and only if the product of any two idempotents

is idempotent (equivalently, idempotents form a subsemigroup), which in the

periodic case is equivalent to satisfaction of the identity (xy)p ≈ xpyp, where

p is the period. In general, a regular semigroup in which the idempotents form

a subsemigroup is known as an orthodox semigroup.

We now show that any completely simple semigroup that fails to be ortho-

dox interprets T in a way that enables application of Theorem 3.1.

Theorem 7.1. Let M [G, Q] be a completely simple semigroup that is not

orthodox (equivalently, is not isomorphic to a direct product of G with a rect-

angular band). Then M [G, Q] is inherently nondualisable.

Proof. In this case, it is routine to show that M [G, Q] contains a completely

simple subsemigroup of the formR := M [C, Q], whereC is a finite cyclic group

with generator γ and identity 1 and Q is the matrix
(
1 1
1 γ

)
(see Sapir [28] for ex-

ample, but otherwise, just select any two idempotent elements whose product

is not idempotent, and use these to generate a subsemigroup of M [G, Q]). We

show that R is inherently nondualisable by interpreting T. Let a := (1, 1, 2),

b = d = (1, 1, 1), c = (2, 1, 1), so that e = (1, γ, 1) and f = (1, 1, 1).

To apply Theorem 3.1, we need to show that the ghost element g = fe∞
cannot be generated by line generators. Let h be an element of RP∞ that can

be obtained as a product of line generators and has h(q) = f for all points

q ∈ P. We show that h(∞) = f also, showing that h �= g. Theorem 3.1 then

implies inherent nondualisability. Let f denote the element of {f}P∞ , which

is the constant sequence equal to f on all coordinates. We are going to show

that h = f.

Let � (built over L) be the first line generator in some product equalling h.

For a point q ∈ L, we have h(q) = f, so that � is the generator db,a∞,L rather
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than dc,c∞,L. Similarly, if �′ (over the line K) denotes the final line generator

involved in a product giving h, then �′ is dc,c∞,L.

Next, observe that for any pair of lines L,K, we have ba,a∞,Lb
a,a
∞,K = ba,a∞,K ,

while dc,c∞,Ld
c,c
∞,K = dc,c∞,L. Thus, any product equalling h can be assumed

to alternate between line generators of the form ba,a∞,L and those of the form

dc,c∞,L (where the line L varies). For lines K,L, let wK,L denote the product

ba,a∞,Kdc,c∞,L = fe,e∞,K∧L. If K �= L, then wK,L = fe,e∞,q, where q denotes K ∧ L. If

K = L, then wK,L = fe,e∞,L. Let wL denote wL,L = fe,e∞,L and wq = fe,e∞,q (which

is wK,L for any lines K,L with K ∧ L = q).

As each wK,L lies in the (abelian) group {(1, γ′, 1) | γ′ ∈ C}P∞ , elements of

the wK,L commute with each other. Thus, the observations so far imply that

h can be written as (wq1)
n1 · · · (wqk)

nk(wL1
)m1 · · · (wLk′ )

mk′ where k, k′ are

nonnegative integers, n1, . . . , nk,m1, . . . ,mk′ are positive integers, q1, . . . , qk
are some pairwise distinct points, and L1, . . . , Lk′ are some pairwise distinct

lines. For i ≤ k′, let pi denote a point on Li but not equal to qj for any j ≤ k,

and not on any line Lj for j ≤ k′ and i �= j. We show that all ni and mi are

multiples of p, showing that h equals f �= g, as required.

Let p denote the exponent of C (which is the order of γ, a generator for C).

We begin by showing that each mi is a multiple of p.

Let i ≤ k′. The choice of pi guarantees that h(pi) = (wLi(pi))
mi = emi .

But h(pi) = f, so that mi is a multiple of p as claimed. Thus, wmi

Li
= fP∞ ,

and so can be ignored in the product representation of h. As i ≤ k′ was

arbitrary, we can now assume without loss of generality that k′ = 0. That is,

h = (wq1)
n1 · · · (wqk)

nk .

Now let i ≤ k, and consider the point qi. The choice of qi guarantees that

h(qi) = (wqi(qi))
ni = eni . But h(qi) = f, showing that ni is a multiple of p as

claimed. This completes the proof that h = f �= g. Hence, by Theorem 3.1,

we have that R is inherently nondualisable. �

Remark 7.2. Al Dhamri [1] has shown that a completely simple semigroup

is dualisable when it is isomorphic to the direct product of a dualisable group

with rectangular band. Thus, if it is true that every finite group whose Sylow

subgroups are abelian is dualisable, then a finite completely simple semigroup

is dualisable if and only if it is orthodox and has only abelian Sylow subgroups.

By Theorem 4.2 and Theorem 5.1, a dualisable completely 0-simple semi-

group M0[G, Q] must be such that Q has all entries in G. Then Theorem

7.1 and the inherent nondualisability of finite groups with nonabelian Sylow

subgroups [26] (or see Theorem 6.1 above) give the following corollary.

Corollary 7.3. If a completely 0-simple semigroup M0[G, Q] is dualisable,

then G has all Sylow subgroups abelian, and M0[G, Q] is orthodox. Equiva-

lently, M0[G, Q] is isomorphic to the semigroup obtained by adjoining a zero

element to the direct product of G (with all Sylow subgroups abelian) with a

rectangular band of the same dimensions as Q.
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Remark 7.4. If every group with abelian Sylow subgroups is dualisable, then

the result suggested in Remark 7.2 implies that the converse to Corollary 7.3

also holds. Indeed, if p is the period of the group G, and M [G, Q] is orthodox,

then M [G, Q] |= (xy)px ≈ x. Thus, the term t(x, y) := (xy)px is a projection

for M [G, Q], and the result of Davey and Knox [7] implies that if M [G, Q] is

dualisable, then so is M0[G, Q].

Let L1 denote the 3-element semigroup formed by adjoining an identity ele-

ment to the two element left zero semigroup. Let R1 denote the corresponding

right zero semigroup with adjoined identity. It is shown in [15] that both L1

and R1 are inherently nondualisable. In [25, Proposition 3.5], Petrich shows

that a completely regular semigroup fails to be a normal band of groups if and

only if it contains L1 or R1 as a subsemigroup. Thus, a dualisable completely

regular semigroup must be a normal band of groups. Using Theorem 4.3, we

obtain the following corollary to Corollary 7.3.

Corollary 7.5. A dualisable regular semigroup S must be a normal band of

groups, with each J -class isomorphic to the direct product of a rectangular

band with a group whose Sylow subgroups are abelian.

Finally, we mention that Theorem 7.1 extends to variety membership for

trivial reasons.

Theorem 7.6. Let S be a finite semigroup whose variety contains a nonortho-

dox completely simple semigroup. Then the quasivariety of S also contains a

nonorthodox completely simple semigroup; hence, S is inherently nondualisable

by Theorem 7.1.

Proof. Let A be the nonorthodox completely simple semigroup in the variety

of S. Without loss of generality, we may assume A is finite and we may select

a finite semigroup B in the quasivariety of S such that there is a surjective

homomorphism from B onto A. Now let I be the minimal ideal of B. We

claim that I is a nonorthodox completely simple semigroup.

To see why I has this structure, select any s ∈ A that is the image under

ν of some element s′ ∈ I. Now, s divides every element t ∈ A, but in B,

the element s′ only divides elements of I (as I is the minimum ideal). Thus,

every element of t ∈ A is the image under ν of some element of I. Therefore,

A is quotient of I, which is a completely simple semigroup (by the remark

immediately following Theorem 4.1). As A fails the identity (xy)p ≈ xpyp for

p the period of S, so also does I. Hence, I is nonorthodox. �
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8. Other small inherently nondualisable semigroups

In [15], the author showed that the following three 3-element semigroups

are inherently nondualisable.

· 1 a 0

1 1 a 0

a a 0 0

0 0 0 0

C1
2,1

· 1 a b

1 1 a b

a a a a

b b b b

L1

· 1 a b

1 1 a b

a a a b

b b a b

R1

The following theorem parallels Theorems 5.1, 6.2, and 7.6.

Theorem 8.1. (1) If S is a finite semigroup whose variety contains C1
2,1,

then the variety of S contains a proper 3-nilpotent semigroup, hence S is

inherently nondualisable.

(2) If S is a finite semigroup whose variety contains L1 or R1, then the

quasivariety of S contains L1 or R1 and so is inherently nondualisable.

Proof. (1): Assume that C1
2,1 is in HSP(S). In the subalgebra of C1

2,1×C1
2,1 on

{(1, a), (a, 1), (a, a), (1, 0), (0, 1), (0, 0)}, the set {(1, 0), (0, 1), (0, 0)} is an ideal

I and the corresponding quotient is a proper 3-nilpotent semigroup. So the

claim follows from Theorem 5.1. (In only a few more lines, this can also be

proved using [15, Proposition 17].)

(2): Assume that L1 is in the variety of S. So there is a finite M ∈ SP(S)

and a surjective homomorphism ν : M → L1. Let p be the period of M.

Again, we may let e be an idempotent element of ν−1(1) and consider an

element a with a = eae from intersection of the minimum ideal of M with

ν−1(a). By replacing a with ap for some power p if necessary, we may assume

that a is idempotent. Next, select any b′ from the intersection of ν−1(b) with

the minimum ideal of M and such that eb′e = b′. Finally, select b := (b′a)p,

which is idempotent and has ba = b. As this minimal ideal is a completely

simple semigroup (see Section 4: the minimal ideal is isomorphic to a Rees

matrix semigroup), it follows that ab = a as well. Then the subsemigroup on

{e, a, b} is isomorphic to L1. The case of R1 is by symmetry. �

We mention that L1 and R1 are orthodox completely regular semigroups.

These provide a further restriction on potential dualisability that can be added

to Corollary 7.5.

9. Instability of dualisability under direct products

We now give an example of two dualisable semigroups whose direct product

is inherently nondualisable. First consider the semigroup M on {a, b, e, f, 0}
whose nonzero products are ea = a, bf = b, ee = e, and ff = f . The subsemi-

group on {a, e, 0} is often denoted by P, while the subsemigroup on {b, f, 0}
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is often denoted by Q. These semigroups arise mysteriously in a number of

algorithmic issues for varieties of semigroups (see Kharlampovich and Sapir

[20]), but also in other issues that might possibly have a relationship to dual-

isability, such as in [10]. The semigroup M generates the same quasivariety as

the direct product P×Q as it embeds both P and Q and is very easily seen to

be isomorphic to the subsemigroup of P×Q on (a, 0), (e, 0), (0, b), (0, f), (0, 0).

Theorem 9.1. The semigroup P×Q generates a variety containing a proper

3-nilpotent semigroup. Hence, it is inherently nondualisable.

Proof. The second claim will follow from the first and Theorem 5.1. Observe

that in the square M2, the elements (a, f), (e, b) generate a subsemigroup S in

which the only elements failing to have a zero coordinate are (a, f), (e, b), (a, b).

Thus, the set I := S\{(a, f), (e, b), (a, b)} is an ideal and the Rees quotient

S/I is very easily verified to be a proper 3-nilpotent semigroup. Hence, M is

inherently nondualisable by Theorem 5.1. �

Theorem 9.2. P and Q are dualisable.

Proof. We apply the IC Duality Theorem 2.2 to P, with the result for Q

following by symmetry (as Q is anti-isomorphic to P). We construct an alter

ego P on the set {0, a, e}. First observe that P is entropic: multiplication itself

is a homomorphism from P2 to P, and we include it in the signature of P; we
write it as concatenation. A second homomorphism from P2 to P we denote

by ∧ and is a flat semilattice operation, with 0 as the bottom element, and a,

e incomparable elements at height 1. We also include the two constants 0 and

e in the signature as well as the idempotent partial operation ∨ with domain

{0, a}2 ∪ {(e, e)} with 0 ∨ a = a ∨ 0 = a.

We now consider any X ≤ Pn and any α : X → P. To apply the IC Duality

Theorem 2.2, we must show that α coincides with a term function of P. First

note that {0, e} is a subuniverse of P term equivalent to the two element

semilattice with constants. This is well known to form a dualising alter ego for

the semilattice 〈{0, e}; · 〉. Thus, if α(X) = {0, e}, then we may use semilattice

duality to find a term t with t(x) = α(x) for any x ∈ X ∩ {0, e}n. But in

this situation, α(x) = α(x)α(x) = α(x2) and x2 ∈ {0, e}n for all x ∈ X.

Thus, t(x2) = α(x) for all x ∈ X, as required. So now we assume that

α(X) = {0, e, a}.
As X is a finite semilattice with respect to the operation ∧, we may select

a smallest element e∧ of X that α maps to e and an element a∧ that is

smallest with respect to mapping to a. Let I := {i ≤ n | a∧(i) = a}, which
is non-empty, as elements in X ∩ {0, e}n are mapped by α into {0, e} because

they are beneath the constant e with respect to the order induced by ∧. Let

J = {j ≤ n | a∧(j) = e}, which may possibly be empty. Let j1, . . . , jk be

an enumeration of the elements in J . For each i ∈ I, let ti(x) be the term

xix
2
j1
· · ·x2

jk
(which is simply xi if J is empty). We claim that there is i ∈ I

such that α(x) = ti(x). First observe that α(a
∧e∧) = ae = a, so that e∧(j) = e
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for j ∈ I ∪ J . Thus, for any x ∈ α−1({a, e}), we have α(x) = ti(x), for any

i ∈ I.

Now let us assume for contradiction that for every i ∈ I, there is a z(i)

such that α(z(i)) = 0 but ti(z
(i)) �= 0. Note that the only nonzero products

in P are of the form ae · · · e or e · · · e. Thus, if ti(z
(i)) �= 0, it follows that

a∧(j) = e implies z(i)(j) = e. If ti(z
(i)) = e, we may replace z(i) by a∧z(i) (we

will keep the notation z(i) for this possibly new choice). Thus, we may assume

that ti(z
(i)) = a. Then ti(a

∧ ∧ z(i)) = a ∧ a = a, so that we may replace

z(i) by a∧ ∧ z(i) (again, keeping the notation z(i) for this possibly new choice).

Summarising the properties of the elements z(i) (for i ∈ I), we have

z(i)(j) ∈




{a} if i = j,

{0, a} if j ∈ I,

{e} if j ∈ J,

{0} otherwise.

Such elements are in the domain of ∨ on X, giving
∨

i∈I z
(i) = a∧ and yielding

the contradiction 0 = 0 ∨ 0 ∨ · · · ∨ 0 = α(
∨

i∈I z
(i)) = α(a∧) = a. Hence, we

conclude that there is i ∈ I such that ti(x) = α(x) for all x ∈ X, showing that

P dualises P by the IC Duality Theorem 2.2. �

We conclude with some open problems, which should guide future directions

in the goal of a classification of dualisable semigroups.

Problem 9.3. When is a finite Clifford semigroup dualisable?

Clearly, it is necessary that all subgroups have only abelian Sylow sub-

groups. But is this sufficient? A number of families of Clifford semigroups

over abelian groups were shown to be dualisable by Nadia Al Dhamri in her

thesis [1]. Problem 9.3 is also of interest in the monoid signature (and in the

inverse semigroup signature, but the inverse is term definable from multiplica-

tion in a finite Clifford semigroup, so the inverse semigroup theoretic version

coincides with the straight semigroup version). Even the restriction of Prob-

lem 9.3 to commutative semigroups is of interest. A broader target would be

to characterise dualisability for regular semigroups. Must such a semigroup

be a normal band of dualisable groups?

In [8], Davey, Pitkethly and Willard showed that a finite algebra generating

a residually large congruence meet semidistributive variety is inherently nond-

ualisable. Semigroups do not typically generate congruence meet semidistribu-

tive varieties; however, all nondualisable semigroups discovered to date gen-

erate residually large varieties and all semigroups generating residually large

varieties for which the dualisability question has been resolved, are inherently

nondualisable (see Golubov and Sapir [10], Kublanovsky [14] or McKenzie [22]

for a classification of residually large semigroup varieties, while results in the

present article imply all known nondualisability results for finite semigroups).
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Problem 9.4. Is it true that a finite semigroup generating a residually large

variety is inherently nondualisable?

The present article already covers a number of the cases required to com-

plete a solution to Problem 9.4. We note also, that all of the currently known

nondualisable finite semigroups are now known to be inherently nondualisable:

the one example left unresolved in [15] (see second example on page 488) con-

tains both P and Q as subsemigroups, and hence is inherently nondualisable

by Theorem 9.1.

Problem 9.5. Is there a nondualisable but not inherently nondualisable finite

semigroup?
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