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On order types of linear basic algebras

Alexander G. Pinus, Ivan Chajda, and Radoḿır Halaš

Abstract. Basic algebras form a common generalization of MV-algebras and of or-
thomodular lattices, the algebraic tool for axiomatization of many-valued �Lukasiewicz
logic and the logic of quantum mechanics. Hence, they are included among the so-
called quantum structures. An important role is played by linearly ordered basic
algebras because every subdirectly irreducible MV-algebra and every subdirectly ir-
reducible commutative basic algebra is linearly ordered. Since subdirectly irreducible
linearly ordered basic algebras exist of any infinite cardinality, the natural question
is to describe all possible order types of these algebras. This problem is solved in the
paper.

1. Introduction

The concept of a basic algebra was introduced by the second author with

J. Kühr; see e.g. [6]–[10] for details and the motivation. Recall that an algebra

A = (A;⊕,¬, 0) of type (2, 1, 0) is called a basic algebra if it satisfies the axioms

(BA1): x⊕ 0 = x,

(BA2): ¬¬x = x,

(BA3): ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

(BA4): ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.
As usual, we denote ¬0 by 1. It is elementary to prove that the following

identities hold in basic algebras:

0⊕ x = x, x⊕ ¬x = 1 = ¬x⊕ x.

In a basic algebra, the order relation can be introduced as follows:

x ≤ y if and only if ¬x⊕ y = 1. (1.1)

Then a basic algebra A = (A;⊕,¬, 0) can be considered as a bounded poset

and, moreover, it is a lattice where

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).
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It is known that a basic algebra becomes an MV-algebra if and only if the

operation ⊕ is associative. Moreover, every finite commutative basic algebra

is an MV-algebra but there exist infinite commutative basic algebras which

are not MV-algebras, see [2]. Commutative basic algebras [4] play an impor-

tant role because their underlying lattices are distributive. It was shown by

M. Botur [1] that every subdirectly irreducible commutative basic algebra is

linearly ordered. Moreover, for any infinite cardinality, there exists a linearly

ordered (commutative) subdirectly irreducible basic algebra, see [3]. Hence, it

is a natural task to search for order types of linearly ordered basic algebras.

Before starting our task, we recall another description of basic algebras.

Let A = (A;⊕,¬, 0) be a basic algebra and ≤ its induced order defined by

(1.1). As mentioned above, L(A) = (A;∨,∧, 0, 1) for 1 = ¬0 is a bounded

lattice with the property that for each element a ∈ A there exists an antitone

involution x �→ xa (=¬x⊕ a) in the interval [a, 1], i.e., for x, y ∈ [a, 1] we have

(xa)a = x and x ≤ y ⇒ ya ≤ xa.

Also conversely, having a bounded lattice L = (L;∨,∧, 0, 1) such that for each

a ∈ L there exists an antitone involution x �→ xa in the interval [a, 1], then it

can be organized into a basic algebra as follows:

¬x = x0 and x⊕ y = (x0 ∨ y)y.

Of course, ⊕ is a total operation because x0 ∨ y ∈ [y, 1] for all x, y ∈ L. As

shown e.g. in [2, 7], the above assignments form a one-to-one correspondence

between the variety of basic algebras and the class of bounded lattices with

antitone involutions in every interval [a, 1]. If this lattice is linearly ordered,

i.e., if it is a chain, then for any x, y we have either x0 ≤ y or y ≤ x0. In the

first case we have x⊕ y = 1 and in the second one x⊕ y = (x0)y.

In what follows, we will often use this representation and we will deal mainly

with linearly ordered sets with antitone involutions in every final interval. It

is evident that for each natural number n, there is a unique linearly ordered

n-element basic algebra on the chain 0 < 1 < · · · < n− 1 which is associative

and hence an MV-algebra (the so-called MV-chain). This algebra is simple

and consequently subdirectly irreducible.

2. Order types

Now we recall necessary concepts of the theory of linearly ordered sets. By

an order type of 〈L;≤〉 we mean the isomorphism type of this linearly ordered

set. For the sake of brevity, we will not distinguish between a linearly ordered

set and its isomorphism type whenever there is no danger of confusion. By ω

(respectively, ω∗, η, n) is denoted the order type of the linearly ordered set of

natural numbers with natural ordering (reverse ordering, natural ordering of

rational numbers, natural ordering of the set {1, 2, . . . , n}, respectively). For
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every linearly ordered set 〈L;≤〉, let 〈L;≤〉∗ denote 〈L;≤−1〉 where ≤−1 is the

inverse of ≤ (i.e., a ≤−1 b iff b ≤ a).

If α is an order type of a linearly ordered set 〈L;≤〉, then α∗ is the order type

of 〈L;≤〉∗. We call 〈L;≤〉 self-dual if 〈L;≤〉 is order isomorphic to 〈L;≤〉∗,
i.e., if α = α∗. For linearly ordered sets 〈L1;≤1〉 and 〈L2;≤2〉 where L1, L2 are

disjoint, we denote by 〈L1;≤1〉+ 〈L2;≤〉 the linearly ordered set 〈L1 ∪L2;≤〉
where ≤ coincides with ≤i on Li and a ≤ b for all a ∈ L1, b ∈ L2; it is the

ordinal sum of 〈L1;≤1〉 and 〈L2;≤2〉. Analogously, we define
∑

i∈(I,≤)〈Li;≤i〉
for every family of disjoint linearly ordered sets and a linearly ordered index

set 〈I,≤〉. This involves the sum of order types,
∑

i∈β αi, for order types αi

with i ∈ β.

The ordering on a subset B of 〈L;≤〉 is defined as a restriction of ≤ to the

set B. A subset B of 〈L;≤〉 is called an initial (final) interval whenever for all

b ∈ B and c ∈ L the inequality c ≤ b (respectively, b ≤ c) yields c ∈ B. Denote

by (a] (or [a)) the initial (or final) interval {c ∈ L | c ≤ a} (or {c ∈ L | a ≤ c}).
An element b covers an element a in 〈L;≤〉 if a < b and there does not exist

c ∈ L with a < c < b. The cover of a will be denoted by a′ if it exists. We

define the order type α to be finally self-dual if for any a ∈ α, the order type

of the interval [a) is self-dual. A linearly ordered set is called scattered if it

does not contain some dense ordered subset.

By induction on the ordinal δ, we define the order types (ω∗+ω)δ as follows:

(ω∗ + ω)0 = 1 and (ω∗ + ω)δ+1 is defined as the sum
∑

i∈ω∗+ω

αi

where αi = (ω∗ + ω)δ for all i ∈ ω∗ + ω.

Finally, for a limit ordinal δ, we consider the order spectrum

({(ω∗ + ω)γ ; γ < δ} ;ϕγ1,γ2
for γ1 ≤ γ2 < δ)

where ϕγ1,γ2 is some fixed embedding of (ω∗ + ω)γ1 as a convex interval into

(ω∗ + ω)γ2 . Clearly, this order type of the direct limit does not depend on

the choice of embedding ϕγ1,γ2
. This direct limit is (ω∗ + ω)δ. It is plain that

for every ordinal δ, the order type (ω∗ + ω)δ is self-dual and for each a ∈ L

(where L is a linearly ordered set of the order type (ω∗+ω)δ), its initial (final)

intervals (a] ([a), respectively) have the same order type. To express the fact

that it is an initial or final interval, we use the notation

(ω∗ + ω)δi or (ω∗ + ω)δf .

For any regular cardinal ℵα, we denote by ηα the order type of any ℵα-universal

homogeneous linearly ordered set of cardinality ℵα (for its definition, construc-

tion, and existence under Generalized Continuum Hypothesis (GCH) see, for

example, [12]). The following lemma can be found in [12].

Lemma 2.1. Let 〈L;≤〉 be a linearly ordered set of order type ηα. For any

a, b, c ∈ L with a < b, a < c, there exists an antitone involution (not necessarily

unique) of the interval {d ∈ L | a < d} onto itself which maps b to c.
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3. Subdirectly irreducible linear basic algebras

Using Lemma 2.1 and the GCH, we are able to prove the following result.

Theorem 3.1. Assume GCH. For any regular cardinal ℵα, there exist dense

subdirectly irreducible non-commutative linear basic algebras of cardinality ℵα.

Their order type is 1 + ηα + 1.

Proof. Let ℵα be a regular cardinal and consider a linearly ordered set 〈L;≤〉
of the order type 1 + ηα + 1. Let ¬ be an antitone involution on 〈L;≤〉 such
that for some c ∈ ηα, we have ¬c = c. According to Lemma 2.1, there are

antitone involutions on every final interval [a) of 〈L;≤〉; thus, we obtain dense

linear basic algebras of order types 1 + ηα + 1.

It is shown in [13] that there are dense linear basic algebras (MV-algebras)

which are subdirectly irreducible. It is well known (see [8]) that basic algebras

are congruence regular, i.e., their congruences θ are completely determined by

any of the congruence classes a/θ of θ, in particular by the class 0/θ, the so-

called ideal of L. It is also straightforward that the classes 0/θ are the initial

intervals of order types of linear basic algebras. However, not every initial

interval of a linear basic algebra which is closed under ⊕ will be necessarily

a congruence class 0/θ of some congruence θ. This will be the case if and

only if the initial interval is closed under three additional ideal terms, see [11].

Consequently, for the subdirect reducibility of the above constructed linear

basic algebra, it is sufficient that there does not exist a least ideal.

To obtain subdirectly irreducible algebras, we have to define the antitone

involutions on final sections of 〈L;≤〉 in an appropriate way. Clearly, for

a < b < c, we have a < b < c = ¬c < ¬b < ¬a. Denote by ba the element

a⊕ b = (¬a)b. We fix some element e ∈ (0, c) and define the antitone invo-

lutions ba in such a way that for all 0 < b ∈ (0, e) there exists 0 < a ∈ (0, b)

with e < ba. Due to Lemma 2.1, this choice is possible, and thus an arbitrary

initial interval which is closed under ⊕ contains also (e].

Hence, if we consider the set M of all proper ideals of L (i.e., non-zero

ones), then their intersection I = ∩M contains (e]. This shows that I is the

least non-zero ideal of L and, consequently, L is subdirectly irreducible. �

An open question remains whether there exist commutative basic algebras

with the above properties.

In fact, an analogous statement holds also for any not necessarily regular

cardinal. It is well known that the property of algebra to be or not to be

subdirectly irreducible is expressible by means of an Lω1ω-formula. Similarly,

the properties to be or not to be commutative, linear, or of dense order type

are expressible by Lωω-formulas.

Also, the well-known Löwenheim-Skolem theorem for the language Lω1ω

states that for any formula Φ having a model of an arbitrary infinite cardinality

ℵ, there are models of Φ of an arbitrary infinite cardinality less than ℵ.
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Since for any cardinal there is its preceeding regular cardinal, we conclude

that Theorem 4.1 and the Löwenheim-Skolem theorem for Lω1ω lead to the

following statement.

Theorem 3.2. Assume GCH. For any infinite cardinal ℵα, there exist dense

subdirectly irreducible linear basic algebras of cardinality ℵα.

Let us note that the necessity of GCH in Theorem 3.1 is an open question.

Since from definition of self-dual linearly ordered sets we conclude the equal-

ity of order types of their initial intervals, we immediately obtain the following

lemma.

Lemma 3.3. Order types of initial intervals of an arbitrary finally self-dual

linearly ordered set 〈L;≤〉 are dual to order types of its final intervals, and for

all a < b from L, there is d ∈ L such that the intervals (0, d) and (a, b) are

isomorphic.

4. Order types of linearly ordered basic algebras

Now we are ready to state our theorem characterizing order types of linearly

ordered basic algebras.

Theorem 4.1. The order type δ corresponding to a linear basic algebra is

equal to

δ = (ω∗ + ω)
(α)
f +

∑
i∈γ

(ω∗ + ω)
(α)
i + (ω∗ + ω)

(α)
i

for some ordinal α and some finite (possible empty) or finally self-dual dense

order type γ without least and greatest elements. Moreover, all the order types

(ω∗ + ω)
(α)
i are equal to (ω∗ + ω)(α).

Conversely, any order type δ described above is the order type of L(A) for

some (not necessarily unique) linear basic algebra A.

Proof. Recall that 0 (¬0) denotes the least (greatest) element of an arbitrary

scattered finally self-dual linearly ordered set. Now let 〈L;≤〉 be a finally self-

dual linearly ordered set which is not dense. In this case, there are a, a′ ∈ L

and, by Lemma 3.3, elements 0 < 0′ = 1 < 0′′ = 2 < · · · < 0(n) = n < · · ·
where either 0(n) = n = ¬0 for some natural n (in this case, we have a finite

MV-algebra), or n �= ¬0 for all natural n. In the second case, for any final

interval [b) in 〈L;≤〉, there exists an initial interval {b, b′, . . . , b(n), . . . | n ∈ ω}
(where b(n+1) = (b(n))′); hence, there is a final interval {−n | n ∈ ω} of 〈L;≤〉
(where ′(−(n+ 1)) = −n) of order type ω∗.

We denote the corresponding intervals of 〈L;≤〉 by bω and ω∗
(¬0).

Apriori two cases can occur:

1. 〈L;≤〉 = 0ω + ω∗
(¬0); thus, the order type of 〈L;≤〉 is ω + ω∗;

2. 〈L;≤〉 �= 0ω + ω∗
(¬0), and hence there exists c ∈ L not contained in

0ω ∪ ω∗
(¬0); thus, n < c < (−n) for any natural n.
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Consider further Case 2. We define the relation ∼f on L as follows: for

a < b in L, a ∼f b if and only if (a, b) is finite. Evidently, ∼f is an equivalence

on L. Equivalence classes of ∼f are convex intervals in 〈L;≤〉 and their order

types are either n, ω, ω∗, or ω∗ + ω.

Due to Lemma 3.3 and to the non-finiteness of L, we conclude that these

classes are infinite. Moreover, for any isomorphism of 〈L;≤〉 onto its final

interval and for any antitone involution of this interval onto itself, they are

mapped one to the other, and consequently, have to be isomorphic and self-

dual. Thus, the order type of the class 0/∼f
(¬0/∼f

) is ω (ω∗), and for any

c /∈ 0ω ∪ ω∗
(¬0) the order type of the class c/∼f

is equal to ω∗ + ω.

We denote by 〈L;≤〉′ the factor set L/∼f
with the order induced from 〈L;≤〉.

We immediately conclude that 〈L;≤〉′ remains a finally self-dual linearly or-

dered set with the least element. Thus, 〈L;≤〉′ is either finite, or 〈L;≤〉′ is
dense, or the considerations mentioned above for 〈L;≤〉 can be repeated for

〈L;≤〉′. In conclusion, we obtain the poset 〈L;≤〉′′ = (〈L;≤〉′)′ of the type

〈L/∼1 ;≤〉, where∼1 is a preimage on 〈L;≤〉 of the relation∼f with respect to a

natural homomorphism of a poset 〈L;≤〉 onto a poset 〈L;≤〉′ = 〈L/∼f
;≤〉. We

iterate this process and for an arbitrary ordinal of type δ+1, we define the re-

lation ∼δ+1
f on 〈L;≤〉 to be a preimage of ∼f onto a poset 〈L;≤〉δ = 〈L/∼δ

f
;≤〉

with respect to the natural homomorphism of 〈L;≤〉 onto 〈L;≤〉δ.
For a limit ordinal δ, we consider the relation ∼δ

f to be a union of the

relations ∼γ
f on 〈L;≤〉 for γ < δ.

Since the sequence of intervals of the type 0/∼α
f

is a strongly increasing

chain, there exists an ordinal α of cardinality less than or equal to the cardi-

nality of L such that the finally self-dual poset 〈L;≤〉α with the least element

will be either finite or dense. Moreover, we have

〈L;≤〉 = 0/∼α
f
+
∑

{a/∼α
f
| a/∼α

f
∈ 〈L/∼α

f
\ {0/∼α

f
,¬0/∼α

f
};≤〉}+ ¬0/∼α

f
.

Clearly, order types of the intervals a/∼α
f

(distinct from 0/∼α
f

and ¬0/∼α
f
)

are equal to (ω∗ + ω)(α) and the intervals 0/∼α
f
and ¬0/∼α

f
have the types

(ω∗ + ω)
(α)
f and (ω∗ + ω)

(α)
i . �

Remark 4.2. If the order type mentioned in Theorem 4.1 is neither dense

nor finite (α �= 0), then δ has an initial interval of the order type ω. Due to

the congruence regularity of basic algebras, the order on their congruences is

determined by set-inclusion ⊆ on congruence classes with the least element 0.

So immediately verifying that the initial interval of the order type ω for

an infinite but non-dense δ is closed under ⊕, we obtain that for each non-

trivial congruence θ, 0/θ contains this interval. This shows that there is a least

non-trivial congruence θ0 and thus the algebra is subdirectly irreducible.

Altogether, we obtain the following class of subdirectly irreducible linear

basic algebras.
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Corollary 4.3. If A is a linear basic algebra whose underlying lattice is not

dense then A is subdirectly irreducible.

Further, choosing for ordinal types δ from Theorem 4.1 the ordinals α as

arbitrary ordinals of a fixed infinite cardinality ℵ, and as γ an empty ordered

type, we obtain the following statement.

Corollary 4.4. For an arbitrary infinite cardinality ℵ, there are at least ℵ+

subdirectly irreducible pairwise non-isomorphic linear basic algebras of cardi-

nality ℵ.

There is an interesting question whether there are MV-algebras correspond-

ing to order types δ from Theorem 4.1 (as mentioned before, this is equivalent

to associativity of ⊕). Also, commutativity of these algebras is of interest.

Recall that it is shown in [1] that subdirectly irreducible commutative basic

algebras are linear. We show that the converse is not true. First, we observe

that on an infinite linear basic algebra of order type ω + ω∗, the operations

⊕ and ¬ are defined uniquely (due to the uniqueness of antitone involutions

on their final intervals). Denoting further the elements of an initial interval of

order type ω (for an algebra of order type ω + ω∗) by the natural numbers n,

and for final interval of order type ω∗ by −n, we obtain the following relations

for the operations ¬ and ⊕:

¬n = −n, and ¬(−n) = n;

n1 ⊕ n2 = n1 + n2, and (−n1)⊕ (−n2) = −0;

n1 ⊕ (−n2) = −(n2)⊕ n1 =

{
−(n2 − n1) if n1 ≤ n2,

−0 if n2 < n1.

This means that an algebra of order type ω + ω∗ is commutative. Moreover,

it is an MV-algebra.

We prove by induction on ordinal α that the operations ¬ and ⊕ can be

defined on the order types (ω∗+ω)
(α)
f +(ω∗+ω)

(α)
i such that the corresponding

basic algebras are commutative and associative. By definition of the opera-

tions on δ, we require the following additional condition (4.1) on the antitone

bijections of final intervals of δ:

For any a, b ∈ δ and any γ < α, the antitone bijections of intervals [a)

and [b) on themselves restricted to the convex intervals of the order

types (ω∗ + ω)
(γ)
f do not depend on the choice of a and b.

(4.1)

It is obvious that the condition (4.1) can be fulfilled for the order type

δ = (ω∗ + ω)
(α)
f + (ω∗ + ω)

(α)
i .

Further, let us suppose that for the ordinals µ < α, on the order types

(ω∗ + ω)
(µ)
f + (ω∗ + ω)

(µ)
i we can define operations ¬ and ⊕ such that the

corresponding basic algebras are commutative and associative. We assume

that the condition (4.1) for the operations ¬ and ⊕ on the ordered type δ =

(ω∗+ω)
(α)
f +(ω∗+ω)

(α)
i is fulfilled. Let α be some ordinal of type β+1. Let θ

6 A. G. Pinus, I. Chajda, and R. Halaš Algebra univers.

Consider further Case 2. We define the relation ∼f on L as follows: for

a < b in L, a ∼f b if and only if (a, b) is finite. Evidently, ∼f is an equivalence

on L. Equivalence classes of ∼f are convex intervals in 〈L;≤〉 and their order

types are either n, ω, ω∗, or ω∗ + ω.

Due to Lemma 3.3 and to the non-finiteness of L, we conclude that these

classes are infinite. Moreover, for any isomorphism of 〈L;≤〉 onto its final

interval and for any antitone involution of this interval onto itself, they are

mapped one to the other, and consequently, have to be isomorphic and self-

dual. Thus, the order type of the class 0/∼f
(¬0/∼f

) is ω (ω∗), and for any

c /∈ 0ω ∪ ω∗
(¬0) the order type of the class c/∼f

is equal to ω∗ + ω.

We denote by 〈L;≤〉′ the factor set L/∼f
with the order induced from 〈L;≤〉.

We immediately conclude that 〈L;≤〉′ remains a finally self-dual linearly or-

dered set with the least element. Thus, 〈L;≤〉′ is either finite, or 〈L;≤〉′ is
dense, or the considerations mentioned above for 〈L;≤〉 can be repeated for

〈L;≤〉′. In conclusion, we obtain the poset 〈L;≤〉′′ = (〈L;≤〉′)′ of the type

〈L/∼1 ;≤〉, where∼1 is a preimage on 〈L;≤〉 of the relation∼f with respect to a

natural homomorphism of a poset 〈L;≤〉 onto a poset 〈L;≤〉′ = 〈L/∼f
;≤〉. We

iterate this process and for an arbitrary ordinal of type δ+1, we define the re-

lation ∼δ+1
f on 〈L;≤〉 to be a preimage of ∼f onto a poset 〈L;≤〉δ = 〈L/∼δ

f
;≤〉

with respect to the natural homomorphism of 〈L;≤〉 onto 〈L;≤〉δ.
For a limit ordinal δ, we consider the relation ∼δ

f to be a union of the

relations ∼γ
f on 〈L;≤〉 for γ < δ.

Since the sequence of intervals of the type 0/∼α
f

is a strongly increasing

chain, there exists an ordinal α of cardinality less than or equal to the cardi-

nality of L such that the finally self-dual poset 〈L;≤〉α with the least element

will be either finite or dense. Moreover, we have

〈L;≤〉 = 0/∼α
f
+
∑

{a/∼α
f
| a/∼α

f
∈ 〈L/∼α

f
\ {0/∼α

f
,¬0/∼α

f
};≤〉}+ ¬0/∼α

f
.

Clearly, order types of the intervals a/∼α
f

(distinct from 0/∼α
f

and ¬0/∼α
f
)

are equal to (ω∗ + ω)(α) and the intervals 0/∼α
f
and ¬0/∼α

f
have the types

(ω∗ + ω)
(α)
f and (ω∗ + ω)

(α)
i . �

Remark 4.2. If the order type mentioned in Theorem 4.1 is neither dense

nor finite (α �= 0), then δ has an initial interval of the order type ω. Due to

the congruence regularity of basic algebras, the order on their congruences is

determined by set-inclusion ⊆ on congruence classes with the least element 0.

So immediately verifying that the initial interval of the order type ω for

an infinite but non-dense δ is closed under ⊕, we obtain that for each non-

trivial congruence θ, 0/θ contains this interval. This shows that there is a least

non-trivial congruence θ0 and thus the algebra is subdirectly irreducible.

Altogether, we obtain the following class of subdirectly irreducible linear

basic algebras.
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be a congruence of A of the order type δ such that its congruence class 0/θ has

the order type (ω∗+ω)
(β)
f . Then A/θ is a linear basic algebra of the order type

ω∗+ω which is commutative and associative. From (4.1) for A, it follows that

the algebra A is commutative and associative as well. If α is a limit ordinal,

then the algebra A is a union of increasing chains of its commutative and

associative subalgebras of order types (ω∗+ω)
(γ)
f +(ω∗+ω)

(γ)
i composed of its

initial and final intervals of the type (ω∗ + ω)
(γ)
f and (ω∗ + ω)

(γ)
i , respectively

(for γ < α). Consequently, the algebra A is commutative, associative, and its

order type is (ω∗ + ω)
(γ)
f + (ω∗ + ω)

(γ)
i .

This gives the lower bound for the cardinality of the class of subdirectly

irreducible MV-algebras.

Corollary 4.5. For each infinite cardinal ℵ, there are at least ℵ+ pairwise

non-isomorphic linear scattered subdirectly irreducible MV-algebras of cardi-

nality ℵ.

The situation is different for linear basic algebras of the order type δ =

ω+ω∗+ω+ω∗. Such a basic algebra can be commutative or non-commutative.

First observe that the operations ⊕ and ¬ of such an algebra are not defined

uniquely: there is a countable set of antitone bijections of type δ onto itself

(due to the possible choice of bijections of the interval ω∗+ω). Thus, there are

countably many choices of different operations ¬ on the order type δ. Further,

by a we denote the elements of A from the initial interval of the type ω, and

by b those from the interval ω∗ + ω. Due to the different antitone involutions

of the interval ω∗+ω onto itself, for any fixed choice of ¬, there are countably
many operations ⊕ on δ. Then b ⊕ a can be chosen as an arbitrary element

of the interval ω∗ + ω. The situation is different for a⊕ b which is defined for

this type uniquely.

Hence, there is a possibility of the choice of ⊕ for a linear basic algebra A of

the type ω+ω∗+ω+ω∗ such that a⊕b �= b⊕a (for some a, b or even for every

a, b). The corresponding basic algebra will not be commutative. The same

considerations are valid for the order types (ω∗+ω)
(α)
f +(ω∗+ω)(α)+(ω∗+ω)

(α)
i

for any ordinal α.

As a consequence, we obtain the following statement.

Corollary 4.6. For any infinite cardinal ℵ, there are at least ℵ+ pairwise

non-isomorphic linear scattered non-commutative subdirectly irreducible basic

algebras of cardinality ℵ.

Let us mention some papers devoted to subdirectly irreducible basic alge-

bras. It is proved in [3] that for every infinite cardinality, there are subdirectly

irreducible commutative basic algebras which are not MV-algebras. We also

mention the papers [2, 5] devoted to similar problems.
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be a congruence of A of the order type δ such that its congruence class 0/θ has

the order type (ω∗+ω)
(β)
f . Then A/θ is a linear basic algebra of the order type

ω∗+ω which is commutative and associative. From (4.1) for A, it follows that

the algebra A is commutative and associative as well. If α is a limit ordinal,

then the algebra A is a union of increasing chains of its commutative and

associative subalgebras of order types (ω∗+ω)
(γ)
f +(ω∗+ω)

(γ)
i composed of its

initial and final intervals of the type (ω∗ + ω)
(γ)
f and (ω∗ + ω)

(γ)
i , respectively

(for γ < α). Consequently, the algebra A is commutative, associative, and its

order type is (ω∗ + ω)
(γ)
f + (ω∗ + ω)

(γ)
i .

This gives the lower bound for the cardinality of the class of subdirectly

irreducible MV-algebras.

Corollary 4.5. For each infinite cardinal ℵ, there are at least ℵ+ pairwise

non-isomorphic linear scattered subdirectly irreducible MV-algebras of cardi-

nality ℵ.

The situation is different for linear basic algebras of the order type δ =

ω+ω∗+ω+ω∗. Such a basic algebra can be commutative or non-commutative.

First observe that the operations ⊕ and ¬ of such an algebra are not defined

uniquely: there is a countable set of antitone bijections of type δ onto itself

(due to the possible choice of bijections of the interval ω∗+ω). Thus, there are

countably many choices of different operations ¬ on the order type δ. Further,

by a we denote the elements of A from the initial interval of the type ω, and

by b those from the interval ω∗ + ω. Due to the different antitone involutions

of the interval ω∗+ω onto itself, for any fixed choice of ¬, there are countably
many operations ⊕ on δ. Then b ⊕ a can be chosen as an arbitrary element

of the interval ω∗ + ω. The situation is different for a⊕ b which is defined for

this type uniquely.

Hence, there is a possibility of the choice of ⊕ for a linear basic algebra A of

the type ω+ω∗+ω+ω∗ such that a⊕b �= b⊕a (for some a, b or even for every

a, b). The corresponding basic algebra will not be commutative. The same

considerations are valid for the order types (ω∗+ω)
(α)
f +(ω∗+ω)(α)+(ω∗+ω)

(α)
i

for any ordinal α.

As a consequence, we obtain the following statement.

Corollary 4.6. For any infinite cardinal ℵ, there are at least ℵ+ pairwise

non-isomorphic linear scattered non-commutative subdirectly irreducible basic

algebras of cardinality ℵ.

Let us mention some papers devoted to subdirectly irreducible basic alge-

bras. It is proved in [3] that for every infinite cardinality, there are subdirectly

irreducible commutative basic algebras which are not MV-algebras. We also

mention the papers [2, 5] devoted to similar problems.
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