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Idempotent generated algebras and Boolean powers of
commutative rings

Guram Bezhanishvili, Vincenzo Marra, Patrick J. Morandi,

and Bruce Olberding

Abstract. A Boolean power S of a commutative ring R has the structure of a com-

mutative R-algebra, and with respect to this structure, each element of S can be
written uniquely as an R-linear combination of orthogonal idempotents so that the
sum of the idempotents is 1 and their coefficients are distinct. In order to formalize
this decomposition property, we introduce the concept of a Specker R-algebra, and we
prove that the Boolean powers of R are up to isomorphism precisely the Specker R-
algebras. We also show that these algebras are characterized in terms of a functorial
construction having roots in the work of Bergman and Rota. When R is indecom-
posable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus
strengthening a theorem of Bergman, and when R is a domain, we show that S is a
Specker R-algebra iff S is a torsion-free R-module.

For indecomposable R, we prove that the category of Specker R-algebras is equiva-
lent to the category of Boolean algebras, and hence is dually equivalent to the category
of Stone spaces. In addition, when R is a domain, we show that the category of Baer
Specker R-algebras is equivalent to the category of complete Boolean algebras, and
hence is dually equivalent to the category of extremally disconnected compact Haus-
dorff spaces.

For totally ordered R, we prove that there is a unique partial order on a Specker
R-algebra S for which it is an f -algebra over R, and show that S is isomorphic to
the R-algebra of piecewise constant continuous functions from a Stone space X to R
equipped with the interval topology.

1. Introduction

For a commutative ring R and a Boolean algebra B, the Boolean power of R

by B is the R-algebra C(X,Rdisc) of continuous functions from the Stone space

X of B to the discrete space R (see, e.g., [2] or [7, Ch. IV, §5]). Each element

of a Boolean power of R can be written uniquely as an R-linear combination

of orthogonal idempotents so that the sum of the idempotents is 1 and their

coefficients are distinct. In this note we formalize this decomposition property

by introducing the class of Specker R-algebras. We prove that an R-algebra

S is isomorphic to a Boolean power of R iff S is a Specker R-algebra, and

we characterize Specker R-algebras (hence Boolean powers of R) in several
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other ways for various choices of the commutative ring R, such as when R is

indecomposable, an integral domain, or totally ordered.

Our terminology is motivated by Conrad’s concept of a Specker �-group.

We recall [8, Sec. 4.7] that an element g > 0 of an �-group G is singular if

h ∧ (g − h) = 0 for all h ∈ G with 0 ≤ h ≤ g, and that G is a Specker �-group

if it is generated by its singular elements. Conrad proved in [8, Sec. 4.7] that

a Specker �-group admits a unique multiplication such that gh = g ∧ h for

all singular elements g, h. Under this multiplication, the singular elements be-

come idempotents, and hence a Specker �-group with strong order unit, when

viewed as a ring, is generated as a Z-algebra by its idempotents. Moreover,

it is a torsion-free Z-algebra, and hence its elements admit a unique orthogo-

nal decomposition. Our definition of a Specker R-algebra extracts these key

features of Specker �-groups.

For a commutative ring R, we give several equivalent characterizations for

a commutative R-algebra to be a Specker R-algebra. One of these characteri-

zations produces a functor from the category BA of Boolean algebras to the

category SpR of Specker R-algebras. This functor has its roots in the work

of Bergman [3] and Rota [16]. We show this functor is left adjoint to the

functor that sends a Specker R-algebra to its Boolean algebra of idempotents.

We prove that the ring R is indecomposable iff these functors establish an

equivalence of SpR and BA. It follows then from Stone duality that when R

is indecomposable, SpR is dually equivalent to the category Stone of Stone

spaces (zero-dimensional compact Hausdorff spaces). Hence, when R is inde-

composable, Specker R-algebras are algebraic counterparts of Stone spaces in

the category of commutative R-algebras.

It follows from the work of Bergman [3] that every Specker R-algebra is a

free R-module. For indecomposable R, we show that the converse is also true.

In fact, we prove a stronger result: An idempotent generated commutative R-

algebra S (with R indecomposable) is a Specker R-algebra iff S is a projective

R-module. A simple example shows that the assumption of indecomposability

is necessary here. When R is a domain, an even stronger result is true: S is a

Specker R-algebra iff S is a torsion-free R-module. Thus, the case when R is

a domain provides the most direct generalization of the �-group case.

For a domain R, we prove that the Stone space of the idempotents of a

Specker R-algebra S can be described as the space of minimal prime ideals

of S, and that a Specker R-algebra S is an injective object in SpR iff S is

a Baer ring. This yields an equivalence between the category BSpR of Baer

Specker R-algebras and the category cBA of complete Boolean algebras, and

hence a dual equivalence between BSpR and the category ED of extremally

disconnected compact Hausdorff spaces.

We conclude the article by considering the case when R is a totally ordered

ring. Such a ring is then automatically indecomposable. We prove that there

is a unique partial order on a Specker R-algebra S for which it is an f -algebra

over R, and show that S is isomorphic to the R-algebra of piecewise constant
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continuous functions from a Stone space X to R, where R is given the interval

topology. These results give a more general point of view on similar results

obtained for R = Z by Ribenboim [15] and Conrad [8], and for R = R as

considered in [5].

2. Specker algebras and Boolean powers of a commutative ring

All algebras considered in this article are commutative and unital, and all

algebra homomorphisms are unital. Throughout, R will be a commutative

ring with 1. In this section, we introduce Specker R-algebras and use them

to characterize Boolean powers of R. A key property of Specker R-algebras is

that their elements can be decomposed uniquely into R-linear combinations of

idempotents so that the sum of the idempotents is 1 and their coefficients are

distinct. We begin the section by formalizing the terminology needed to make

precise this decomposition property.

Let S be a commutative R-algebra. As S is a commutative ring with 1, it

is well known that the set Id(S) of idempotents of S is a Boolean algebra via

the operations: e ∨ f = e+ f − ef, e ∧ f = ef, and ¬e = 1− e.

We call an R-algebra S idempotent generated if S is generated as an R-

algebra by a set of idempotents. If the idempotents belong to some Boolean

subalgebra B of Id(S), we say that B generates S. Because we are assuming

S is commutative, each monomial of idempotents is equal to e1 · · · er for some

ei ∈ Id(S). Therefore, each element is, in fact, an R-linear combination of

idempotents. Thus, an idempotent generated R-algebra S is generated as an

R-module by its idempotents, and if B generates S, then B generates S both

as an R-algebra and as an R-module.

We call a set E of nonzero idempotents of S orthogonal if e ∧ f = 0 for all

e �= f in E, and we say that s ∈ S has an orthogonal decomposition or that s

is in orthogonal form if s =
∑n

i=1 aiei with the ei ∈ Id(S) orthogonal. If, in

addition,
∨
ei = 1, we call the decomposition a full orthogonal decomposition

and the set {e1, . . . , en} a full orthogonal set. By possibly adding a term with a

0 coefficient, we can turn any orthogonal decomposition into a full orthogonal

decomposition.

We call a nonzero idempotent e of S faithful if for each a ∈ R, whenever

ae = 0, then a = 0. Let B be a Boolean subalgebra of Id(S) that generates S.

We say that B is a generating algebra of faithful idempotents of S if each

nonzero e ∈ B is faithful.

Lemma 2.1. Let S be a commutative R-algebra and let B be a Boolean sub-

algebra of Id(S) that generates S. Then each s ∈ S can be written in full

orthogonal form s =
∑n

i=1 aiei, where the ai ∈ R are distinct and ei ∈ B.

Moreover, such a decomposition is unique iff B is a generating algebra of

faithful idempotents of S.



186 G. Bezhanishvili, V. Marra, P. J. Morandi, and B. Olberding Algebra Univers.

Proof. The proof that each s ∈ S can be written in full orthogonal form is a

standard argument. Write s =
∑n

i=1 aiei with ai ∈ R and ei ∈ B. Each ei
can then be refined into a sum of idempotents, each of which is a meet of a

set of idempotents in {e1, . . . , en, 1 − e1, . . . , 1 − en}, in such a way that the

resulting refinements of the ei are orthogonal. By combining terms with the

same coefficient, s can be written in orthogonal form with distinct coefficients.

If the decomposition is not in full orthogonal form, adding the term 0f , where

f is the negation of the join of the idempotents in the decomposition, turns it

into a full orthogonal decomposition.

Suppose that each element has a unique full orthogonal decomposition and

suppose that ae = 0 for some a ∈ R and nonzero e ∈ B. Then since ae = 0e,

uniqueness implies that a = 0, and hence e is faithful. Conversely, suppose

that B is a generating algebra of faithful idempotents of S. Let s ∈ S and

write s =
∑

i aiei =
∑

j bjfj with each sum a full orthogonal decomposition

with distinct coefficients. First consider i with ai �= 0. Multiplying both sides

by ei yields aiei =
∑

j bj(eifj). Since ei is faithful and ai �= 0, there is j

with eifj �= 0. Multiplying by fj yields aieifj = bjeifj . Therefore, since

eifj is faithful, ai = bj . Because the bj are distinct, there is a unique j

with eifj �= 0. Since ai = bj , we then have aiei = bjeifj = aieifj . Thus, 0 =

ai(ei−eifj) = aiei(1−fj) = ai(ei∧¬fj), so by faithfulness, ei∧¬fj = 0, hence

ei ≤ fj . Reversing the roles of i and j yields fj ≤ ei, so ei = fj . This implies

that, after suitable renumbering, ei = fi and ai = bi for each i with ai �= 0.

If the decomposition
∑

aiei has a zero coefficient, say 0 = ak, then as the

decomposition is full and the coefficients are distinct, ek = ¬(∨i �=k ei), which

implies that the idempotent corresponding to a zero coefficient is uniquely

determined. Consequently, s has a unique full orthogonal decomposition. �

Remark 2.2. (1) Orthogonal and full orthogonal decompositions will be our

main technical tool. As we already pointed out, any orthogonal decomposition

can be turned into a full orthogonal decomposition by possibly adding a term

with a 0 coefficient, so depending on our need, we will freely work with either

orthogonal or full orthogonal decompositions. If B is a generating algebra of

faithful idempotents of S and s ∈ S is nonzero, then by possibly dropping a

term with a 0 coefficient, the same argument as in the proof of Lemma 2.1

produces a unique orthogonal decomposition s =
∑n

i=1 aiei, where the ai ∈ R

are distinct and nonzero.

(2) If e1, . . . , en is an orthogonal set of faithful idempotents and
∑

aiei =∑
biei for ai, bi ∈ R, then ai = bi for each i; for, if we multiply by ej , we get

ajej = bjej , so (aj − bj)ej = 0, and thus aj − bj = 0 since ej is faithful. This

holds regardless of whether the coefficients in either expression are distinct.

We will use this fact several times.

Definition 2.3. We call an R-algebra S a Specker R-algebra if S is a com-

mutative R-algebra that has a generating algebra of faithful idempotents.
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Obviously, each Specker R-algebra is idempotent generated. Moreover, if

S is a Specker R-algebra, then 1 ∈ Id(S) is faithful, which means the natural

map R → S sending a ∈ R to a · 1 ∈ S is 1-1. Thus, R is isomorphic to an R-

subalgebra of S. Throughout, we will freely identify R with an R-subalgebra

of S.

To characterize Specker R-algebras among idempotent generated commuta-

tive R-algebras, we introduce a construction that associates with each Boolean

algebra B an idempotent generated commutative R-algebra R[B]. This con-

struction has its roots in the work of Bergman [3] and Rota [16].

Definition 2.4. Let B be a Boolean algebra. We denote by R[B] the quotient

ring R[{xe : e ∈ B}]/IB of the polynomial ring over R in variables indexed by

the elements of B modulo the ideal IB generated by the following elements,

as e, f range over B:

xe∧f − xexf , xe∨f − (xe + xf − xexf ), x¬e − (1− xe), x0.

For e ∈ B, we set ye = xe + IB ∈ R[B]. Considering the generators of IB ,

we see that for all e, f ∈ B:

ye∧f = yeyf , ye∨f = ye + yf − yeyf , y¬e = 1− ye, y0 = 0.

It is obvious that R[B] is a commutative R-algebra. From the relations

above, it is also clear that ye is an idempotent of R[B] for each e ∈ B. There-

fore, each s ∈ R[B] can be written as s =
∑

aiyei with ai ∈ R and ei ∈ B.

Thus, R[B] is idempotent generated. Moreover, iB : B → Id(R[B]), given by

iB(e) = ye, is a well-defined Boolean homomorphism. The following universal

mapping property is an easy consequence of the definition of R[B].

Lemma 2.5. Let S be a commutative R-algebra. If B is a Boolean algebra and

σ : B → Id(S) is a Boolean homomorphism, then there is a unique R-algebra

homomorphism α : R[B] → S satisfying α ◦ iB = σ.

Proof. There is an R-algebra homomorphism γ : R[{xe : e ∈ B}] → S such

that γ(xe) = σ(e) for each e ∈ B. Since σ is a Boolean homomorphism, each

generator of IB lies in the kernel of γ. Therefore, we get an induced R-algebra

homomorphism α : R[B] → S with α(xe + IB) = σ(e). Thus, α ◦ iB = σ.

Clearly, α is the unique R-algebra homomorphism satisfying this equation

since R[B] is generated by the ye. �

Lemma 2.6. Let B be a Boolean algebra.

(1) If e ∈ B is nonzero, then ye ∈ R[B] is faithful.

(2) iB is a Boolean isomorphism from B onto the generating algebra of faithful

idempotents {ye : e ∈ B} of Id(R[B]).

Proof. (1): Suppose e �= 0. Then there is a Boolean homomorphism σ from B

onto the two-element Boolean algebra 2 with σ(e) = 1. Viewing 2 as a subal-

gebra of Id(R), we can view σ as a Boolean homomorphism from B to Id(R).

Then by Lemma 2.5, there is an R-algebra homomorphism α : R[B] → R that
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sends ye to σ(e) = 1. Consequently, if aye = 0, then 0 = α(aye) = a. This

shows that ye is faithful.

(2): It is obvious that {ye : e ∈ B} is a generating algebra of idempotents of

Id(R[B]) and that iB : B → {ye : e ∈ B} is an onto Boolean homomorphism.

That {ye : e ∈ B} is faithful, and so iB is 1-1, follows from (1). �

We are ready to prove the main result of this section, which gives several

characterizations of Specker R-algebras, one of which is as Boolean powers

of R.

Theorem 2.7. Let S be a commutative R-algebra. The following are equiva-

lent.

(1) S is a Specker R-algebra.

(2) S is isomorphic to R[B] for some Boolean algebra B.

(3) S is isomorphic to a Boolean power of R.

(4) There is a Boolean subalgebra B of Id(S) such that S is generated by B and

every Boolean homomorphism B → 2 lifts to an R-algebra homomorphism

S → R.

Proof. (1) ⇒ (2): Let B be a generating algebra of faithful idempotents of S.

By Lemma 2.5, the identity map B → B lifts to an R-algebra homomorphism

α : R[B] → S. By assumption, B generates S, so α is onto. To see that α is

1–1, suppose that s ∈ R[B] with α(s) = 0. Since R[B] is idempotent generated,

by Lemma 2.1, we can write s =
∑

aiyei , where the ai ∈ R are distinct and

the ei ∈ B are orthogonal. Therefore, 0 = α(s) =
∑

aiei. Multiplying by ei
gives aiei = 0, which since the nonzero idempotents in B are faithful, implies

that ai = 0. This yields s = 0; hence, α is an isomorphism.

(2) ⇒ (3): We show that R[B] is isomorphic to C(X,Rdisc), where X is

the Stone space of B. By Stone duality, we identify B with the Boolean

algebra of clopen subsets of X. For e a clopen subset of X, let χe be the

characteristic function of e, and define σ : B → C(X,Rdisc) by e �→ χe. It is

easy to see that this is a Boolean homomorphism from B to the idempotents

of C(X,Rdisc). Thus, by Lemma 2.5, there is an R-algebra homomorphism

α : R[B] → C(X,Rdisc) which sends ye to σ(e) for each e ∈ B. By Lemma 2.1,

each s ∈ R[B] can be written in the form s =
∑

aiyei with the ai ∈ R distinct

and the ei ∈ B orthogonal. Then α(s) is the continuous function X → R such

that

α(s)(x) =

{
ai if x ∈ ei,

0 otherwise.

If s �= 0, then there is i with ei �= ∅ and ai �= 0. So, α(s) �= 0 in C(X,Rdisc).

Thus, α is 1–1. To see α is onto, let f ∈ C(X,Rdisc). For each a ∈ R, we see

that f−1(a) is clopen in X, and the various f−1(a) cover X. By compactness,

there are finitely many distinct ai such that X = f−1(a1) ∪ · · · ∪ f−1(an).

If ei = f−1(ai), then f =
∑

aiχei , so f = α (
∑

aiyei). Thus, α is onto.

Consequently, α is an R-algebra isomorphism between R[B] and C(X,Rdisc).
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(3) ⇒ (1): Let X be a Stone space and set S = C(X,Rdisc). For each

clopen subset U of X, the characteristic function χU of U is an idempotent

of S. Let B = {χU : U is clopen in X}. Then B is a Boolean subalgebra of

Id(S). Moreover, each nonzero χU ∈ B is faithful since if a ∈ R with aχU = 0,

then aχU (x) = 0 for all x ∈ X. As χU is nonzero, U is nonempty. Let x ∈ U .

Then 0 = aχU (x) = a. Thus, χU is faithful. Finally, we show that B generates

S. Take s ∈ S. For each a ∈ R, the pullback s−1(a) is a clopen subset of X.

Moreover, X is covered by the various s−1(a). Since X is compact, there are

distinct a1, . . . , an ∈ R with X = s−1(a1)∪· · ·∪s−1(an). If Ui = s−1(ai), then

s =
∑

aiχUi
. Thus, B generates S. Consequently, S is a Specker R-algebra.

(2) ⇒ (4): Suppose that S ∼= R[C] for some Boolean algebra C. Let

B = {yc : c ∈ C}. By Lemma 2.6, B is isomorphic to C, so R[B] is iso-

morphic to R[C]. We identify S with R[B]. Let σ : B → 2 be a Boolean

homomorphism. By viewing 2 as a Boolean subalgebra of Id(R), we can view

σ as a Boolean homomorphism from B to Id(R). Then Lemma 2.5 yields an

R-algebra homomorphism S → R lifting σ.

(4) ⇒ (1): It suffices to show that every nonzero idempotent in B is faithful.

Let 0 �= e ∈ B, and let a ∈ R with ae = 0. Since 0 �= e, there is a Boolean

homomorphism σ : B → 2 such that σ(e) = 1. By (4), σ lifts to an R-algebra

homomorphism α : S → R. Thus, 0 = α(ae) = aσ(e) = a, so that e is

faithful. �

Remark 2.8. (1) Let S be a Specker R-algebra. We will see in Section 3

that a generating algebra of faithful idempotents of S need not be unique, but

that it is unique up to isomorphism.

(2) The proof of (1) ⇒ (2) of Theorem 2.7 shows that if B is a generating

algebra of faithful idempotents of S, then S ∼= R[B]. We will make use of this

fact later on.

(3) In the statement of Theorem 2.7(4), the requirement that S is generated

by B is not redundant. For let R be an integral domain and let S = R[x]/(x2).

As R has no zerodivisors, the only R-algebra homomorphism from S to R

sends the coset of x to 0. Therefore, each Boolean homomorphism 2 → 2 lifts

uniquely to an R-algebra homomorphism S → R. By the definition of S, each

element of S can be written uniquely as the coset of some linear polynomial

a + bx for a, b ∈ R. If s = a + bx + (x2) is idempotent, then s2 = s yields

a2 + 2abx+ (x2) = a+ bx+ (x2). Uniqueness then yields a2 = a and 2ab = b.

Therefore, a ∈ Id(R), and as R is a domain, this forces a ∈ {0, 1}, so b = 0.

Thus, s ∈ {0 + (x2), 1 + (x2)}, and so Id(S) = {0, 1}. It follows that S is not

generated over R by idempotents.

Remark 2.9. While in this article we focus on viewing Boolean powers as

C(X,Rdisc), Foster’s original conception of a Boolean power [9, 10, 11] also

has an interesting interpretation in our setting. Let R be a commutative ring

and let B be a Boolean algebra. Consider the set R[B]⊥ of all functions

f : R → B such that
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(1) f(a) = 0 for all but finitely many a ∈ R,

(2) f(a) ∧ f(b) = 0 for all a �= b in R,

(3)
∨
Imf = 1.

Then R[B]⊥ has an R-algebra structure given by

(4) (f + g)(a) =
∨

{f(b) ∧ g(c) : b+ c = a},
(5) (fg)(a) =

∨
{f(b) ∧ g(c) : bc = a},

(6) (bf)(a) =
∨{f(c) : bc = a}.

As noticed by Jónsson in the review of [11] and further elaborated by

Banaschewski and Nelson [2], R[B]⊥ is isomorphic to the Boolean power

C(X,Rdisc), where X is the Stone space of B.

As the notation (−)⊥ suggests, R[B]⊥ encodes full orthogonal decomposi-

tions of elements of R[B] into an algebra of functions from R to B. Indeed,

for a Specker R-algebra S with a generating algebra of faithful idempotents

B, define (−)⊥ : S → R[B]⊥ as follows. For s ∈ S, write s =
∑n

i=1 aiei in full

orthogonal form, and define s⊥ : R → B by

s⊥(a) =

{
ei if a = ai for some i,

0 otherwise.

One can show that (−)⊥ : S → R[B]⊥ is an R-algebra isomorphism. Thus,

the interpretation of a Specker R-algebra S in terms of R[B]⊥ is convenient

for applications where the decomposition data for elements in S needs to be

tracked under the algebraic operations of S.

3. Specker algebras over an indecomposable ring

In this section, we show that if R is an indecomposable ring (that is,

Id(R) = {0, 1}), then the results of the previous section can be strength-

ened considerably. Namely, we show that for indecomposable R, the category

SpR of Specker R-algebras is equivalent to the category BA of Boolean alge-

bras, and hence, by Stone duality, is dually equivalent to the category Stone

of Stone spaces (zero-dimensional compact Hausdorff spaces). We also show

that for indecomposable R, Specker R-algebras are exactly the idempotent

generated R-algebras which are projective as an R-module.

We start by pointing out that for indecomposable R, the representation

of Theorem 2.7 of Specker R-algebras as Boolean powers of R yields another

representation of Specker R-algebras as idempotent generated subalgebras of

RI for some set I.

Proposition 3.1. Let R be indecomposable. A commutative R-algebra S is a

Specker R-algebra iff S is isomorphic to an idempotent generated R-subalgebra

of RI for some set I.

Proof. Let S be a Specker R-algebra. By Theorem 2.7, S ∼= C(X,Rdisc) for

some Stone spaceX, so S is isomorphic to an idempotent generated subalgebra
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of RX . Conversely, suppose that S is an idempotent generated subalgebra of

RI for some set I. Since R is indecomposable, it is easy to see that Id(RI) =

{f ∈ RI : f(i) ∈ {0, 1} ∀i ∈ I}. From this description, it is clear that each

nonzero idempotent of RI is faithful. Therefore, S has a generating algebra of

faithful idempotents, hence is a Specker R-algebra. �

In the next lemma, we characterize the idempotents of R[B]. For this,

we view the Boolean algebra Id(R) as a Boolean ring. Then Id(R)[B] is an

Id(R)-algebra, which is a Boolean ring, and hence can be viewed as a Boolean

algebra.

Lemma 3.2. Let B be a Boolean algebra.

(1) s ∈ Id(R[B]) iff s =
∑

aiyei with the ai ∈ Id(R) distinct and the ei ∈ B

a full orthogonal set.

(2) Id(R[B]) ∼= Id(R)[B] as Boolean algebras.

(3) Id(R[B]) is isomorphic to the coproduct of Id(R) and B.

(4) If R is indecomposable, then iB : B → Id(R[B]) is a Boolean isomorphism.

Proof. (1): Let s =
∑

aiyei with ai ∈ Id(R) and the ei ∈ B orthogonal. Then

yeiyej = 0 for i �= j, and so s2 =
∑

a2i (yei)
2 =

∑
aiyei = s. Thus, s is

idempotent. For the converse, let s ∈ R[B] be idempotent. By Lemma 2.6,

the ye form a generating algebra of faithful idempotents of R[B]. Thus, by

Lemma 2.1, we can write s =
∑

aiyei with the ai ∈ R distinct and the ei ∈ B

a full orthogonal set. If i �= j, then yeiyej = yei∧ej = y0 = 0. Therefore,

s2 =
∑

a2i yei . By Remark 2.2(2), the equation s2 = s implies a2i = ai for each

i, so ai ∈ Id(R).

(2): The inclusion map ι : Id(R) → Id(R[B]) is a Boolean homomorphism,

and so a ring homomorphism of Boolean rings. For Id(R[B]) as an Id(R)-

algebra, the Boolean homomorphism iB : B → Id(R[B]) sending e to ye ex-

tends to an Id(R)-algebra homomorphism α : Id(R)[B] → Id(R[B]), according

to Lemma 2.5. By (1) and Lemma 2.1, α is an isomorphism of Boolean rings,

hence an isomorphism of Boolean algebras.

(3): Let C be a Boolean algebra and suppose σ : Id(R) → C and ρ : B → C

are Boolean homomorphisms. Then we see that C, viewed as a Boolean ring,

is an Id(R)-algebra, and Lemma 2.5 gives an Id(R)-algebra homomorphism

η : Id(R)[B] → C, sending aye to σ(a)ρ(e) = σ(a) ∧ ρ(e). Clearly, η is

the unique Boolean homomorphism making the following diagram commute.

Thus, by (2), Id(R[B]) ∼= Id(R)[B] is the coproduct of Id(R) and B.

Id(R)

σ

��

ι

��

B

ρ

��

iB

��
Id(R)[B]

η

��
C
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(4): Since R is indecomposable, (1) implies that Id(R[B]) = {ye : e ∈ B}.
Now apply Lemma 2.6. �
Remark 3.3. As follows from the proofs of Lemma 3.2 and Theorem 2.7, for

Boolean algebras B and C, the coproduct of B and C in BA can be described

as the Boolean power of B by C. In particular, we see that B[C] ∼= C[B]. This

isomorphism is contained in [7, Exercise IV.5.1].

As promised in Remark 2.8, we next show that a generating algebra of

faithful idempotents of a Specker R-algebra is not unique.

Example 3.4. Suppose that the ring R is not indecomposable and let B =

{0, 1, e,¬e} be the four-element Boolean algebra. By Lemma 2.6, {yb : b ∈ B}
is a generating algebra of faithful idempotents of R[B]. Let a ∈ R be an

idempotent with a �= 0, 1 and set g = aye + (1− a)y¬e. By Lemma 3.2(1), g is

an idempotent in R[B]. Also,

1− g = ye + y¬e − (aye + (1− a)y¬e) = (1− a)ye + ay¬e.

Now, g is faithful since if c ∈ R with cg = 0, then caye + c(1− a)y¬e = 0. By

Remark 2.2(2), ca = c(1 − a) = 0, which forces c = 0. A similar argument

shows 1− g is faithful. Let C = {0, 1, g, 1− g}. Since ye = ag+(1− a)(1− g),

we see that C is a generating algebra of faithful idempotents of R[B] different

than {yb : b ∈ B}.
On the other hand, we next prove that a generating algebra of faithful

idempotents of a Specker R-algebra is unique up to isomorphism.

Theorem 3.5. Let S be a Specker R-algebra. If B and C are both generating

algebras of faithful idempotents of S, then B is isomorphic to C.

Proof. We identify S with R[B]. Let P be a prime ideal of R and let PS be

the ideal of S generated by P . Thus, PS consists of the sums of elements

of the form ps with p ∈ P and s ∈ S. We show that S/PS ∼= (R/P )[B].

We note that (R/P )[B] is an R-algebra, where scalar multiplication is given

by a · (∑(bi + P )yei) =
∑

(abi + P )yei for a, bi ∈ R and ei ∈ B. By

Lemma 2.5, the identity homomorphism B → B lifts to an R-algebra homo-

morphism α : R[B] → (R/P )[B]. It is clear that α is onto, and ker(α) contains

PS. If s ∈ ker(α), write s =
∑

aiyei in unique full orthogonal form. Then

0 = α(s) =
∑

(ai + P )yei . By Remark 2.2(2), each ai ∈ P , so s ∈ PS. There-

fore, ker(α) = PS, and so S/PS ∼= (R/P )[B]. Now, since R/P is a domain, it

is indecomposable. Thus, by Lemma 3.2(4), B ∼= Id((R/P )[B]) ∼= Id(S/PS).

Applying the same argument for C, for any prime ideal P of R, we then get

B ∼= Id(S/PS) ∼= C, so B ∼= C. �

Example 3.4 and Theorem 3.5 show that while a generating algebra B of

faithful idempotents of a Specker R-algebra may not be unique, it is unique up

to isomorphism. In the following theorem, we show that if R is indecompos-

able, then a Specker R-algebra S has a unique generating algebra of faithful

idempotents, namely Id(S).
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Theorem 3.6. Let R be indecomposable. An idempotent generated commuta-

tive R-algebra S is a Specker R-algebra iff each nonzero idempotent in Id(S)

is faithful. Consequently, if S is a Specker R-algebra, then Id(S) is the unique

generating algebra of faithful idempotents of S.

Proof. If each nonzero idempotent of S is faithful, then Id(S) is a generat-

ing algebra of faithful idempotents of S, and so S is a Specker R-algebra.

Conversely, suppose that S is a Specker R-algebra. Then S has a generating

algebra of faithful idempotents B, and we identify S with R[B]. Because R is

indecomposable, Lemma 3.2(4) implies that Id(S) = {ye : e ∈ B}. Thus, by

Lemma 2.6, each nonzero idempotent of S is faithful. �

The results of the previous section yield two functors, I : SpR → BA and

S : BA → SpR. The functor I associates with each S ∈ SpR the Boolean al-

gebra Id(S) of idempotents of S, and with each R-algebra homomorphism

α : S → S′ the restriction I(α) = α|Id(S) of α to Id(S). The functor S
associates with each B ∈ BA the Specker R-algebra R[B], and with each

Boolean homomorphism σ : B → B′ the induced R-algebra homomorphism

α : R[B] → R[B′] that sends each ye to yσ(e).

Lemma 3.7. The functor S is left adjoint to the functor I.
Proof. By definition, I(S(B)) = Id(R[B]). By [14, Ch. IV, Thm. 1.2], the

universal mapping property established in Lemma 2.5 is equivalent to the fact

that S is left adjoint to I. �

We show that the functors I,S form an equivalence of SpR and BA pre-

cisely when R is indecomposable.

Theorem 3.8. The following are equivalent.

(1) R is indecomposable.

(2) I ◦ S ∼= 1BA.

(3) S ◦ I ∼= 1SpR
.

(4) The functors I and S yield an equivalence of SpR and BA.

Proof. (1) ⇔ (2): Suppose that R is indecomposable. We have I(S(B)) =

Id(R[B]). By Lemma 3.2(4), iB : B → Id(R[B]) is a Boolean isomorphism,

and by Lemma 3.7, iB is natural, so (2) follows. Conversely, if (2) holds,

then Id(R[2]) ∼= 2. Observe that R[2] ∼= R. To see this, let 2 = {0, 1}
and recall from Definition 2.4 the ideal I2 defining R[2]. By listing all the

generators for I2, we see that I2 is generated by x0, x1−1. Therefore, we have

R[2] ∼= R[x0, x1]/(x0, x1 − 1) ∼= R. Thus, 2 ∼= Id(R[2]) ∼= Id(R), which shows

that R is indecomposable.

(1) ⇔ (3): Suppose that R is indecomposable. We have S(I(S)) = R[Id(S)]

for each Specker R-algebra S. Furthermore, by Theorem 3.6, Id(S) is a gen-

erating algebra of faithful idempotents of S. Consequently, the R-algebra

homomorphism αS : R[Id(S)] → S sending ye to e for each e ∈ Id(S) is an
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isomorphism. By Lemma 3.7, αS is natural, so (3) follows. Conversely, if (3)

holds, then R[Id(R)] ∼= R via αR. If e �= 0, 1 is an idempotent in R, then

αR(ey¬e) = e(¬e) = 0, a contradiction to Lemma 2.6. Thus, Id(R) = {0, 1},
so R is indecomposable.

(1) ⇔ (4): In view of Lemma 3.7, (2) and (3) together are equivalent to

(4). Thus, by what we have proven already, (1) implies both (2) and (3), so

implies (4). Conversely, if (4) holds, then (2) holds, so (1) holds as (1) is

equivalent to (2). �

Corollary 3.9. If R is indecomposable, then SpR is dually equivalent to

Stone.

Proof. By Theorem 3.8, SpR is equivalent to BA. By Stone duality, BA is

dually equivalent to Stone. Combining these two results yields that SpR is

dually equivalent to Stone. �

Remark 3.10. In [15, Sec. 7], Ribenboim defines the category of Boolean

powers of Z and proves that this category is equivalent to BA. In view of

Theorem 2.7 and Remark 2.9, Ribenboim’s result is a particular case of The-

orem 3.8. Similarly, it follows from [5, Thm. 6.8] that Sp
R
is equivalent to

BA. Again, this result is a particular case of Theorem 3.8. Moreover, by

Theorem 2.7, Specker R-algebras are isomorphic to Boolean powers of R.

As noted in the proof of Corollary 3.9, the functors I and S of Theorem 3.8

compose with the functors of Stone duality to give functors between SpR

and Stone. The resulting contravariant functor from Stone to SpR is the

Boolean power functor (−)∗ : Stone → SpR that associates with each X ∈
Stone the Boolean power X∗ = C(X,Rdisc), and with each continuous map

ϕ : X → Y the R-algebra homomorphism ϕ∗ : Y ∗ → X∗ given by ϕ(f) =

f ◦ ϕ. The functor (−)∗ : SpR → Stone sends the Specker R-algebra S to

the Stone space of Id(S) and associates with each R-algebra homomorphism

S → T the continuous map from the Stone space of Id(S) to the Stone space

of Id(T ). By Corollary 3.9, these two functors yield a dual equivalence when

R is indecomposable. In general, we have the following diagram.

BA

S
��

�� Stone Duality �� Stone

(−)∗

		
SpR

(−)∗





I

��

We show in Proposition 3.11 that the functor (−)∗ : SpR → Stone has a

natural interpretation when R is indecomposable, one that does not require

reference to Id(S). Let S be a Specker R-algebra and let HomR(S,R) be

the set of R-algebra homomorphisms from S to R. We define a topology
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on HomR(S,R) by setting Us = {α ∈ HomR(S,R) : α(s) = 0} and taking

{Us : s ∈ S} as a subbasis. Recall that the Stone space of a Boolean algebra B

can be described as the set Hom(B,2) of Boolean homomorphisms from B to

2, topologized by the basis {ê : e ∈ B}, where ê = {σ ∈ Hom(B,2) : σ(e) = 0}.
Proposition 3.11. Let R be indecomposable, and let S be a Specker R-algebra.

Then HomR(S,R) is homeomorphic to Hom(Id(S),2).

Proof. Set B = Id(S); define ϕ : HomR(S,R) → Hom(B,2) by ϕ(α) = α|B .
By Theorem 2.7, ϕ is onto. It is 1–1 because if α|B = β|B , then α, β are

R-algebra homomorphisms which agree on a generating set of S, so α = β.

We have

ϕ−1(ê) = {α ∈ HomR(S,R) : α(e) = 0} = Ue,

which proves that ϕ is continuous. It also shows that ϕ(Ue) = ê. Now, let

s ∈ S. If s = 0, then Us = HomR(S,R), so ϕ(Us) = Hom(B,2) is open.

Otherwise, we can write s =
∑

i aiei with the ai ∈ R nonzero and the ei ∈ B

orthogonal. If α ∈ Us, then s ∈ ker(α), so aiei = sei ∈ ker(α). Thus,

ei ∈ ker(α) since otherwise α(ei) = 1, and this contradicts ai �= 0. Therefore,

α ∈ Ue1∩· · ·∩Uen . The reverse inclusion is obvious. Thus, Us = Ue1∩· · ·∩Uen ,

and so ϕ(Us) = ê1 ∩ · · · ∩ ên. Since the Us form a subbasis for HomR(S,R),

this proves that ϕ−1 is continuous. Consequently, ϕ is a homeomorphism. �

It follows that when R is indecomposable, the space HomR(S,R) of a

Specker R-algebra S is homeomorphic to the Stone space of Id(S). This allows

us to describe the contravariant functor (−)∗ : SpR → Stone as follows. As-

sociate with each S ∈ SpR the Stone space S∗ = HomR(S,R), and with each

R-algebra homomorphism α : S → T , the continuous map α∗ : T∗ → S∗ given

by α∗(δ) = δ ◦ α for each δ ∈ T∗ = HomR(T,R). Thus, we have a description

of (−)∗ that does not require passing to idempotents.

We conclude this section by giving a module-theoretic characterization of

Specker R-algebras for indecomposable R. Bergman [3, Cor. 3.5] has shown

that a Boolean power C(X,Rdisc) of the ring R is a free R-module having a

basis of idempotents. Thus, by Theorem 2.7, every Specker R-algebra is a free

R-module having a basis of idempotents. We prove in the next theorem that

the converse of the corollary is true when R is indecomposable, and that in

this case, freeness is equivalent to projectivity. For an R-module M , we denote

the annihilator of m in R by annR(m), so annR(m) := {r ∈ R : rm = 0}.
Theorem 3.12. Let R be indecomposable and let S be an idempotent generated

commutative R-algebra. Then the following are equivalent.

(1) S is a Specker R-algebra.

(2) S is a free R-module.

(3) S is a projective R-module.

Proof. (1) ⇒ (2): This follows from [3, Cor. 3.5] and Theorem 2.7.

(2) ⇒ (3): This is obvious.
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(3) ⇒ (1): Let B = Id(S). By Lemma 2.5, the inclusion B → S lifts

to an R-algebra homomorphism α : R[B] → S. Since S is generated by B,

we have that α is onto. In particular, for each idempotent e ∈ S, we have

α(ye) = e. Now since S is a projective R-module, there exists an R-module

homomorphism β : S → R[B] such that α(β(s)) = s for all s ∈ S. Let e be

an idempotent in S. Write β(e) =
∑

aiyei with ai ∈ R and the ei ∈ Id(S)

orthogonal. Then e = α(β(e)) =
∑

aiα(yei) =
∑

aiei.

First observe that for every a ∈ annR(e), we have aa1 = · · · = aan = 0.

Indeed, for a ∈ annR(e), we have 0 = β(ae) = aβ(e) =
∑

aaiyei , so that

since by Lemma 2.6, each yei is faithful, so aai = 0. This in turn implies

that if annR(e) �= 0, then
∑n

i=1 aiR is a proper ideal of R, as every element

in annR(e) annihilates
∑

aiR. We use these observations to show that every

nonzero idempotent is faithful.

Suppose annR(e) �= 0. We show e = 0. First we claim annR(e)+
∑

aiR = R.

Since e =
∑

aiei is an orthogonal decomposition of e and e is idempotent,

it follows that aiei = a2i ei, and hence ai(1 − ai)ei = 0 for each i. Thus,

(1− a1) · · · (1− an) ∈ annR(e). But 1− (1− a1) · · · (1− an) ∈
∑

aiR, yielding

annR(e) +
∑

aiR = R, as desired. Therefore, there exist a ∈ annR(e) and

b1, . . . , bn ∈ R such that a +
∑

aibi = 1. By assumption, annR(e) �= 0, so as

established above,
∑

aiR is a proper ideal of R. In particular, 1 �= ∑
aibi,

so since 1 = a +
∑

aibi, this forces a �= 0. As noted above, aa1 = · · · =

aan = 0. Thus, a(
∑

aibi) = 0, so that multiplying both sides of the equation

a +
∑

aibi = 1 by a yields a2 = a. Therefore, a ∈ Id(R), and since R is

indecomposable and a �= 0, this forces a = 1. But ae = 0, so we conclude that

e = 0. This proves that every nonzero idempotent in S is faithful, and hence,

as S is idempotent generated, S is a Specker R-algebra. �

Remark 3.13. The assumption of indecomposability in the theorem is nec-

essary: If R is not indecomposable, then there exists an idempotent a in R

distinct from 0, 1, so that R = aR⊕ (1−a)R, and hence S := R/aR is isomor-

phic as an R-module to (1− a)R, a direct summand of the free R-module R,

and thus is a projective R-module. The algebra S is generated as an R-algebra

by the idempotent 1+ aR. Yet 1 + aR is not faithful because it is annihilated

by a, so S is not a Specker R-algebra.

4. Specker algebras over a domain

As follows from the previous section, having R indecomposable allows one

to prove several strong results about Specker R-algebras. Some of these re-

sults can be strengthened further provided R is a domain, a case we consider

in more detail in this section. We first show that among idempotent generated

commutative algebras over a domain R, the Specker R-algebras are simply

those that are torsion-free R-modules. We then give a necessary and sufficient

condition for a Specker R-algebra S to be a weak Baer ring and a Baer ring.
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For a domain R, the characterization of Specker R-algebras that are Baer rings

yields a characterization of injective objects as well as the construction of in-

jective hulls in SpR. In addition, it provides a description of S∗ = HomR(S,R)

by means of minimal prime ideals of S.

Proposition 4.1. Let R be a domain and let S be an idempotent generated

commutative R-algebra. Then S is a Specker R-algebra iff S is a torsion-free

R-module.

Proof. As discussed before Theorem 3.12, a Specker R-algebra S is a free

R-module, and hence with R a domain, S is torsion-free. Conversely, if S

is an idempotent generated commutative R-algebra that is torsion-free, then

nonzero idempotents are faithful, and hence by Theorem 3.6, S is a Specker

R-algebra. �

Next, we recall the well-known definition of a Baer ring and a weak Baer

ring in the case of a commutative ring.

Definition 4.2. A commutative ring R is a Baer ring if the annihilator ideal

of each subset of R is a principal ideal generated by an idempotent, and R is

a weak Baer ring if the annihilator ideal of each element of R is a principal

ideal generated by an idempotent.

As we noted after Definition 2.3, we will view R as an R-subalgebra of each

Specker R-algebra S.

Theorem 4.3. Let S be a Specker R-algebra.

(1) S is weak Baer iff R is weak Baer.

(2) S is Baer iff S is weak Baer and Id(S) is a complete Boolean algebra.

Proof. (1): Let B be a generating algebra of faithful idempotents of S. Sup-

pose that S is weak Baer and let a ∈ R. Then there is e ∈ Id(S) with

annS(a) = eS. By Lemma 3.2(1) and Theorem 2.7, we can write e =
∑

biei
in full orthogonal form with bi ∈ Id(R) and ei ∈ B. Since 0 = ae =

∑
(abi)ei,

by Remark 2.2(2), we see that abi = 0 for all i. Therefore, bj ∈ eS for each

j, hence bj = es for some s ∈ S. Then ebj = e(es) = es = bj . The equation

ebj = bj yields
∑

(bibj)ei = bj =
∑

bjei since
∑

ei =
∨
ei = 1. Remark 2.2(2)

yields bibj = bj . Applying the same argument to ebi = bi gives bibj = bi,

so bi = bj for each i, j. Thus, e =
∑

biei = b1
∑

ei = b1. Consequently,

e = b1 ∈ R. From this it follows that annR(a) = b1R is generated by the

idempotent b1, so R is weak Baer.

Conversely, suppose that R is weak Baer. Let s ∈ S and write s =
∑

aiei
in full orthogonal form with the ai ∈ R distinct and ei ∈ B. Since R is weak

Baer, annR(ai) = biR for some idempotent bi ∈ R. Let e =
∑

biei. By

Lemma 3.2(1), e is an idempotent in S. We claim that annS(s) = eS. We

have es = (
∑

biei) (
∑

aiei) =
∑

(biai)ei = 0 because the ei are orthogonal

and the bi annihilate the ai. So eS ⊆ annS(s). To prove the reverse inclusion,
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we first show that if b ∈ R and g ∈ Id(S) with bg ∈ annS(s), then bg ∈ eS.

If bgs = 0, then
∑

(bai)(eig) = 0. Thus, by Remark 2.2(2), for each i with

eig �= 0, we have bai = 0. When this occurs, b ∈ biR, so b = bbi. Consequently,

e(bg) =
(∑

biei

)
bg =

∑
(bib)(eig) =

∑
b(eig) =

(∑
ei

)
bg

= 1 · bg = bg.

Thus, bg ∈ eS. In general, if t ∈ annS(s), write t =
∑

cjfj in orthogonal form.

Then each cjfj = tfj ∈ annS(s). By the previous argument, each cjfj ∈ eS,

so t ∈ eS. This proves that annS(s) = eS, so S is weak Baer.

(2): First suppose that S is weak Baer and Id(S) is complete, and let I ⊆ S.

Then annS(I) =
⋂

s∈I annS(s). Since S is weak Baer, there is es ∈ Id(S) with

annS(s) = esS. Consequently, annS(I) =
⋂

s∈I esS. Let e =
∧
es. We

show that annS(I) = eS. Since e ≤ es for each s, we have ees = e, so

e ∈ ⋂
esS = annS(I). Conversely, let t ∈ annS(I). Then ts = 0 for all

s ∈ I, so t ∈ esS for each s, which yields tes = t. Let t =
∑

bifi be the

full orthogonal decomposition of t with the bi ∈ R distinct and fi ∈ B. Then

tes = t yields
∑

bifies =
∑

bifi. By Remark 2.2(2), fies = fi, so fi ≤ es for

each s. Therefore, fi ≤ e, so fie = fi. Since this is true for all i, we have

te = t. This yields t ∈ eS. Thus, annS(I) = eS, and so S is Baer.

Next suppose that S is Baer. Then S is weak Baer. Let {ei : i ∈ I} be a

family of idempotents of S. Set K = {1−ei : i ∈ I}. Then annS(1−ei) = eiS,

so annS(K) =
⋂
eiS. Since S is Baer, annS(K) = eS for some e ∈ Id(S). We

show that e =
∧
ei. First, as e ∈ annS(K), we have eei = e, so e ≤ ei. Thus,

e is a lower bound of the ei. Next, let f ∈ Id(S) be a lower bound of the ei.

Then fei = f , so (1 − ei)f = 0. Therefore, f ∈ annS(K) = eS. This implies

that fe = f , so f ≤ e. Thus, e =
∧

i ei. Consequently, Id(S) is a complete

Boolean algebra. �

Corollary 4.4. Let S be a Specker R-algebra.

(1) If R is indecomposable, then S is Baer iff R is a domain and Id(S) is a

complete Boolean algebra.

(2) If R is a domain, then S is weak Baer.

Proof. (1): By Theorem 4.3(2), S is Baer iff S is weak Baer and Id(S) is

complete. By Theorem 4.3(1), S is weak Baer iff R is weak Baer. Now, since

R is indecomposable, the only idempotents are 0, 1, so if R is weak Baer, then

annR(a) = 0 for each non-zero a ∈ R, which means each nonzero element is a

nonzerodivisor, so R is a domain. Conversely, if R is a domain, then trivially

R is Baer. Thus, (1) follows from Theorem 4.3.

(2) This follows from Theorem 4.3 since a domain is a Baer ring. �

Next we show that when R is a domain, then the Stone space S∗ is also

homeomorphic to the space Min(S) of minimal prime ideals of S with the

subspace topology inherited from the Zariski topology on the prime spectrum

of S. Therefore, the closed sets of Min(S) are the sets of the form Z(I) =
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{P ∈ Min(S) : I ⊆ P} for some ideal I of S. For s ∈ S, we set Z(s) = Z(sS).

Let s =
∑n

i=1 aiei with the ai nonzero and the ei orthogonal. As eis = aiei,

it follows that Z(s) = Z(e1) ∩ · · · ∩ Z(en), and so Z(s) is a clopen subset of

Min(S). This contrasts the case of the prime spectrum of S, where Z(s) is

clopen iff s is an idempotent.

Lemma 4.5. When R is a domain, the following are equivalent for a prime

ideal P of a Specker R-algebra S.

(1) P is a minimal prime ideal of S.

(2) P ∩R = 0.

(3) Every element of P is a zerodivisor.

Proof. (1) ⇒ (2): Suppose P is a minimal prime ideal of S. Then every

element of P is a zerodivisor in S (see, e.g., [13, Cor. 1.2]). Thus, if a ∈ P ∩R,

then there exists 0 �= s ∈ S such that as = 0. But by Proposition 4.1, S is a

torsion-free R-module, so necessarily a = 0, and hence P ∩R = 0.

(2) ⇒ (3): Let s ∈ P be nonzero and write s =
∑

aiei in orthogonal

form with the ai distinct and nonzero. Then aiei = sei ∈ P for each i, so

since P ∩ R = 0, it must be that ei ∈ P . Thus, 1 �= ∑
ei, and hence since

(1−∑
ei)s = 0, we see that s is a zerodivisor in S.

(3) ⇒ (1): By Corollary 4.4, S is a weak Baer ring. Statement (1) now

follows from [13, Lem. 3.8] �

Theorem 4.6. If R is a domain and S is a Specker R-algebra, then S∗ is

homeomorphic to Min(S).

Proof. By Proposition 3.11, we identify S∗ with HomR(S,R). If α ∈ S∗, then
as R is a domain, P := ker(α) is a prime ideal. Moreover, P ∩ R = 0 since

a ∈ R implies α(a) = a. Consequently, by Lemma 4.5, P is a minimal prime

ideal of S. Conversely, if P is a minimal prime ideal of S, then consider

the composition of the canonical R-algebra homomorphisms R → S → S/P .

By Lemma 4.5, R ∩ P = 0, so this composition is 1–1. To see that it is onto,

observe that since S/P is a domain, e+P ∈ {0+P, 1+P} for each idempotent

e ∈ S. Therefore, S/P is generated over R by 1+P , and so the homomorphism

R → S/P is onto. Thus, there is α ∈ S∗ with P = ker(α). This shows that

there is a bijection ψ : S∗ → Min(S), given by ψ(α) = ker(α). We note that

ψ−1(Z(s)) = {α ∈ S∗ : α(s) = 0} = Us. Now, to see that ψ is continuous, if I

is an ideal of S, then

ψ−1(Z(I)) = ψ−1
( ⋂
s∈I

Z(s)
)
=

⋂
s∈I

ψ−1(Z(s)) =
⋂
s∈I

Us. (4.1)

It follows from the proof of Proposition 3.11 that if s =
∑

aiei is in orthogonal

form, then Us = Ue1 ∩· · ·∩Uen . Because Ue = S∗−U¬e for each e ∈ Id(S), we

see that each Ue is clopen, and so Us is clopen. Therefore, Equation (4.1) shows

that ψ is continuous. In addition, because ψ is onto and ψ−1(Z(s)) = Us, we

have ψ(Us) = Z(s). Thus, ψ−1 is continuous, so ψ is a homeomorphism. �
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Let BSpR be the full subcategory of SpR consisting of Baer Specker R-

algebras; let cBA be the full subcategory ofBA consisting of complete Boolean

algebras, and let ED be the full subcategory of Stone consisting of extremally

disconnected spaces.

Theorem 4.7. Let R be a domain.

(1) The categories BSpR and cBA are equivalent.

(2) The categories BSpR and ED are dually equivalent.

Proof. (1): By Corollary 4.4, when R is a domain, a Specker R-algebra is a

Baer ring iff Id(S) is a complete Boolean algebra. Now apply Theorem 3.8

to obtain that the restrictions of the functors I and S yield an equivalence of

BSpR and cBA.

(2): Stone duality yields that the restriction of (−)∗ to BSpR lands in ED.

When R is a domain, Id(X∗) consists of the characteristic functions of clopen

subsets of X. Stone duality and Corollary 4.4 then yield that the restriction

of (−)∗ to ED lands in BSpR. Now apply Corollary 3.9 to conclude that the

restrictions of (−)∗ and (−)∗ yield a dual equivalence of BSpR and ED. �

Since injectives in BA are exactly the complete Boolean algebras, as an

immediate consequence of Theorem 4.7, we obtain the following corollary.

Corollary 4.8. When R is a domain, the injective objects in SpR are the

Baer Specker R-algebras.

Remark 4.9. In fact, when R is a domain, each S ∈ SpR has its injective hull

in SpR, which can be constructed as follows. Let DM(Id(S)) be the Dedekind-

MacNeille completion of the Boolean algebra Id(S). Then, by [1, Prop. 3] and

Theorem 3.8, R[DM(Id(S))] is the injective hull of S in SpR.

5. Specker algebras over a totally ordered ring

Recall (see, e.g., [6, Ch. XVII]) that a ring R with a partial order ≤ is an �-

ring (lattice-ordered ring) if (i) (R,≤) is a lattice, (ii) a ≤ b implies a+c ≤ b+c

for each c, and (iii) 0 ≤ a, b implies 0 ≤ ab. An �-ring R is totally ordered if

the order on R is a total order, and it is an f -ring if it is a subdirect product

of totally ordered rings. It is well known (see, e.g., [6, Ch. XVII, Corollary to

Thm. 8]) that an �-ring R is an f -ring iff for each a, b, c ∈ R with a ∧ b = 0

and c ≥ 0, we have ac ∧ b = 0.

In this final section we consider the case when R is a totally ordered ring.

Our motivation for considering Specker algebras over totally ordered rings

stems from the case when R = Z as treated by Ribenboim [15] and Conrad

[8], and the case R = R studied in [5]. These approaches all have in common a

lifting of the order from the totally ordered ring to what is a fortiori a Specker

R-algebra, and in all three cases the lift produces the same order. We show in
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Theorem 5.1 that if R is totally ordered, then there is a unique partial order

on a Specker R-algebra that makes it into an f -algebra over R.

We start by noting that each totally ordered ring R is indecomposable. To

see this, we first note that if a ∈ R, then a2 ≥ 0, since if a ≥ 0, then a2 ≥ 0,

and if a ≤ 0, then −a ≥ 0, so a2 = (−a)2 ≥ 0. Let e ∈ R be idempotent. Then

0 ≤ e since e = e2. Either e ≤ 1−e or vice versa. If e ≤ 1−e, then multiplying

by e yields e2 ≤ 0, which forces e = 0. On the other hand, if 1 − e ≤ e, then

multiplying by 1 − e, which is nonnegative since it is an idempotent, we get

1− e ≤ 0. Like before this forces 1− e = 0, so e = 1. Thus, Id(R) = {0, 1}.
Let (S,≤) be a partially ordered R-algebra, where R is totally ordered. We

call S an �-algebra over R if S is both an �-ring and an R-algebra such that

whenever 0 ≤ s ∈ S and 0 ≤ a ∈ R, then as ≥ 0. Furthermore, we call S an

f -algebra over R if S is both an �-algebra over R and an f -ring.

Theorem 5.1. Let R be totally ordered and let S be a Specker R-algebra.

Then there is a unique partial order on S for which (S,≤) is an f -algebra

over R.

Proof. By Theorem 2.7, we identify S with C(X,Rdisc) for some Stone space

X. Since R is totally ordered, there is a partial order on S, defined by f ≤ g

if f(x) ≤ g(x) for each x ∈ X. It is elementary to see that S with this partial

order is an �-algebra over R. Let f, g ∈ S with f ∧ g = 0 and let h ≥ 0. Then

for each x ∈ X, either f(x) = 0 or g(x) = 0. Therefore, fh(x) = 0 or g(x) = 0,

so fh ∧ g = 0. Thus, S is an f -ring, and so is an f -algebra.

To prove uniqueness, suppose we have a partial order ≤′ on S for which

(S,≤′) is an f -algebra over R. As squares in S are positive [6, Ch. XVII,

Lem. 6.2], idempotents in S are positive. Let f ∈ S be nonzero, and write

f =
∑

aiχUi for some nonzero ai ∈ R and Ui nonempty pairwise disjoint

clopen subsets of X. Since the ai are distinct nonzero values of f , we see

that 0 ≤ f iff each ai ≥ 0. Therefore, if 0 ≤ f , then 0 ≤′ f . Conversely,

let 0 ≤′ f and let f =
∑

aiχUi
as above. Note that fχUj

= ajχUj
for

each j. Since 0 ≤′ f, χUj
, we have 0 ≤′ fχUj

, so 0 ≤′ ajχUj
. As 0 �= χUj

, if

aj < 0, then −aj > 0, and since S is an f -algebra, 0 ≤′ (−aj)χUj . Therefore,

ajχUj
≤′ 0. This implies ajχUj

= 0, which is impossible since the χUj
are

faithful idempotents and aj �= 0. Thus, aj ≥ 0 for each j. Consequently,

0 ≤ f , and so ≤′ is equal to ≤. �

Remark 5.2. Ribenboim [15, Thm. 5] shows that when B is a Boolean alge-

bra, the order on Z lifts to the Boolean power of Z by B in such a way that the

resulting abelian group is an �-group. His approach is through Foster’s version

of Boolean powers (see Remark 2.9), while Theorem 5.1 recovers his result via

Jónsson’s interpretation of Boolean powers. In this sense, our proof is similar

in spirit to Conrad’s point of view of Specker �-groups, which emphasizes the

fact that such an �-group can be viewed as a subdirect product of copies of Z,

and hence inherits the order from this product; see [8, Sec. 4].
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Let R be totally ordered and let S and T be �-algebras over R. We recall

that an �-algebra homomorphism α : S → T is an R-algebra homomorphism

that is in addition a lattice homomorphism. The following corollary allows us

to conclude that when R is totally ordered, an R-algebra homomorphism be-

tween Specker R-algebras is automatically an �-algebra homomorphism. Thus,

the category of Specker R-algebras and �-algebra homomorphisms is a full sub-

category of the category of commutative R-algebras and R-algebra homomor-

phisms. The corollary is motivated by a similar result for rings of real-valued

continuous functions [12, Thm. 1.6], and its proof is a modification of the proof

of that result.

Corollary 5.3. If S, T ∈ SpR, then each R-algebra homomorphism α : S → T

is an �-algebra homomorphism.

Proof. Identifying S with C(X,Rdisc) and using f ≥ 0 iff f(x) ≥ 0 for all

x ∈ X, we see that the unique partial order on S has positive cone{∑
aiei : ai ≥ 0, ei ∈ Id(S)

}
.

From the description of the positive cone it follows that α is order-preserving.

Let s ∈ S. We recall that the �-ring S has an absolute value. Since S =

C(X,Rdisc), we can define it explicitly as |s|(x) = |s(x)| for each x ∈ X. Then

|s|2 = s2 and α(|s|)2 = α(|s|2) = α(s2) = α(s)2. Therefore, as α(|s|) ≥ 0 and

an element of an �-ring has at most one positive square root, α(|s|) = |α(s)|
(see, e.g., [6, Ch. XVII]). Because of the �-ring formula

2(a ∨ b) = a+ b+ |a− b|,
we have α(2(a ∨ b)) = α(a) + α(b) + |α(a)− α(b)|. Consequently, 2α(a ∨ b) =

2(α(a)∨α(b)). Since each nonzero element of an �-group has infinite order (see,

e.g., [6, Ch. XIII, Cor. 3.1]), α(a ∨ b) = α(a) ∨ α(b). Thus, α is an �-algebra

homomorphism. �

We conclude this article with a few comments on the interpretation of the

Boolean power representation of a Specker R-algebra when R is a totally or-

dered ring. As follows from Theorem 2.7, Specker R-algebras are represented

asX∗ = C(X,Rdisc), whereX is a Stone space and Rdisc is viewed as a discrete

space. Since R is totally ordered, we can equip R with the interval topology.

Sometimes this interval topology is discrete, e.g., when R = Z, but often it

is not, e.g., when R = R. In this situation, there is another natural object

to study, namely the algebra C(X,R) of continuous functions from a Stone

space X to R, where R has the interval topology. As the discrete topology is

finer than the interval topology, we have that C(X,Rdisc) is an R-subalgebra

of C(X,R). Often C(X,Rdisc) is a proper R-subalgebra of C(X,R). For ex-

ample, if X is the one-point compactification of the positive integers, then

f : X → R given by f(n) = 1/n and f(∞) = 0 is in C(X,R) − C(X,Rdisc).

Let FC(X,R) be the set of finitely-valued continuous functions from X to R.

It is obvious that FC(X,R) is an R-subalgebra of C(X,R).
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Proposition 5.4. C(X,Rdisc) = FC(X,R).

Proof. Let f ∈ C(X,Rdisc). Since C(X,Rdisc) is a Specker R-algebra, f is

finitely valued. Let {a1, . . . , an} be the values of f ; {f−1(a1), . . . , f
−1(an)}

is then a partition of R. As the interval topology is Hausdorff, points of

X are closed, so each f−1(ai) is closed. Thus, {f−1(a1), . . . , f
−1(an)} is a

partition of R into finitely many closed sets. This implies that each f−1(ai) is

clopen. Therefore, f ∈ FC(X,R). Conversely, if f ∈ FC(X,R), then f is a

finitely-valued function in C(X,R). Using again that points of X are closed,

we conclude that f ∈ C(X,Rdisc). Thus, FC(X,R) = C(X,Rdisc). �

Remark 5.5. One way to think about FC(X,R) is as piecewise constant con-

tinuous functions from X to R. We recall (see, e.g., [5, Example 2.4(3)]) that a

continuous function f : X → R is piecewise constant if there exist a clopen par-

tition {P1, . . . , Pn} of X and ai ∈ R such that f(x) = ai for each x ∈ Pi. Let

PC(X,R) be the subset of C(X,R) consisting of piecewise constant functions.

Then it is obvious that PC(X,R) is an R-subalgebra of C(X,R), and it follows

from the definitions of FC(X,R) and PC(X,R) that FC(X,R) = PC(X,R).

By Proposition 5.4, PC(X,R) = C(X,Rdisc). Thus, when R is totally ordered,

another way to think about the Boolean power of R by B is as the R-algebra

of piecewise constant continuous functions from the Stone space X of B to R,

where R has the interval topology. Consequently, for a totally ordered ring

R, we obtain the following two representations of a Specker R-algebra: as the

R-algebra C(X,Rdisc) or as the R-algebra PC(X,R). In [5, Thm. 6.2], it is

proved that a Specker R-algebra is isomorphic to PC(X,R). As follows from

the discussion above, this result is a particular case of Theorem 2.7.

In the following work [4], we use the ideas developed in the present article to

generalize the Boolean power construction to the setting of compact Hausdorff

spaces.
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