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Note on the description of join-distributive lattices by
permutations

Kira Adaricheva and Gábor Czédli

Abstract. Let L be a join-distributive lattice with length n and width(JiL) ≤ k.
There are two ways to describe L by k − 1 permutations acting on an n-element set:
a combinatorial way given by P.H. Edelman and R.E. Jamison in 1985 and a recent
lattice theoretical way of the second author. We prove that these two approaches are
equivalent. Also, we characterize join-distributive lattices by trajectories.

1. Introduction

For x �= 1 in a finite lattice L, let x∗ denote the join of upper covers of x.

A finite lattice L is join-distributive if the interval [x, x∗] is distributive for all

x ∈ L \ {1}. The join-width of L, denoted by width(JiL), is the largest k such

that there is a k-element antichain of join-irreducible elements of L. As usual,

Sn stands for the set of permutations acting on the set {1, . . . , n}. There are

two known ways, Theorems 3.1 and 4.1, to describe a join-distributive lattice

with join-width k and length n by k− 1 permutations; our goal is to enlighten

their connection; see Proposition 5.1. This connection exemplifies that lattice

theory can be applied in combinatorics and vice versa. Also, Proposition 6.1

gives a new characterization of join-distributive lattices.

2. Join-distributive lattices and related structures

The study of join-distributive lattices goes back to R.P. Dilworth [11], 1940.

There were many discoveries and rediscoveries of these lattices and equivalent

combinatorial structures; see K. Adaricheva, V.A. Gorbunov and V.I. Tu-

manov [3], B. Monjardet [17], and M. Stern [18] for surveys. For more recent

surveys and various definitions of these lattices, see also K. Adaricheva [2],

N. Caspard and B. Monjardet [6], and G. Czédli [7, Proposition 2.1 and Re-

mark 2.2]. Note that join-distributivity implies semimodularity (also called

upper semimodularity); the origin of this result is the combination of M.
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Ward [19] (see also [11, p. 771], where [19] is cited) and S. P. Avann [5] (see

also P.H. Edelman [13, Theorem 1.1(E,H)], where [5] is recalled).

The set of all subsets of a set A, also called the powerset of A, will be denoted

by Pow(A). Next, we recall some concepts and facts from P.H. Edelman

[12, Theorem 3.3], P.H. Edelman and R.E. Jamison [14, Theorem 4.1], and

R.E. Jamison-Waldner [16]; see also [3, Theorem 1.9 and Subsection 3.1], [7,

Section 7 and Lemma 7.4], and D. Armstrong [4, Lemma 2.5] for secondary

sources. For a finite set F , the pair 〈F ;F〉 is an antimatroid if ∅, F ∈ F, F is a

join-subsemilattice of
(
Pow(F );∪), and each X ∈ F\{∅} contains an element

a such that X\{a} ∈ F. Note that F is a lattice in this case. A pair G = 〈G;L〉
is a convex geometry if 〈G, {G \X : X ∈ L}〉 is an antimatroid. Equivalently,

if ∅, G ∈ L, G is a finite set, L is a meet-subsemilattice of 〈Pow(G);∩〉, and,
with the notation L(X) =

⋂{Y ∈ L : X ⊆ Y }, the anti-exchange property

(x /∈ A, y /∈ A, x �= y, and x ∈ L(A ∪ {y})) ⇒ y /∈ L(A ∪ {x})
holds for all x, y ∈ G and A ∈ L. Join-distributive lattices are characterized

as lattices F, where 〈F,F〉 is an antimatroid, and also as lattices dual to L,
where 〈G;L〉 is a convex geometry.

3. A combinatorial approach

For n ∈ N = {1, 2, . . . } and k ∈ {2, 3, . . . }, let �σ = 〈σ2, . . . , σk〉 ∈ Sk−1
n ,

where Sk−1
n denotes the (k − 1)-fold Cartesian product Sn × · · · × Sn. For

convenience, σ1 ∈ Sn will denote the identity permutation. In the power-

set join-semilattice 〈Pow({1, . . . , n});∪〉, consider the subsemilattice LEJ(�σ)

generated by

{∅} ∪ {{σi(1), . . . , σi(j)} : i ∈ {1, . . . , k}, j ∈ {0, . . . , n}}. (3.1)

Since it contains ∅, LEJ(�σ) is a lattice, the Edelman-Jamison lattice deter-

mined by �σ. Before pointing out how the definition of LEJ(�σ) comes from

P.H. Edelman and R.E. Jamison [14, Theorem 5.2], we present an example.

Let σ2 =
(
1 2 3 4
3 2 4 1

)
and σ3 =

(
1 2 3 4
4 2 1 3

)
. Then �σ = 〈σ2, σ3〉 ∈ S2

4 , and LEJ(�σ)

is depicted in Figure 1. In the label of an element in LEJ(�σ), only the part

before the comma is relevant; to save space, subsets are denoted by listing

their elements without commas. For example, 134,111 stands for the subset

{1, 3, 4} of {1, 2, 3, 4}. The chain defined in (3.1), apart from its top {1, 2, 3, 4}
and bottom ∅, corresponds to the black-filled small squares for i = 1, the light

grey-filled pentagons for i = 2, and the dark grey-filled circles for i = 3. Note

that LEJ(�σ) consists of all subsets of {1, 2, 3, 4} but {2}.
If Gi = 〈G;Li〉 are convex geometries for i ∈ {1, 2}, then so is

G1 ∨G2 = 〈{X1 ∩X2 : X1 ∈ L1 and X2 ∈ L2};⊆〉
by [14, Theorem 5.1]. Furthermore, by [14, Theorem 5.2], each convex ge-

ometry is of the form
∨

i∈I〈G;Li〉 where the Li are (|G| + 1)-element chains.
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Figure 1. An example of LEJ(�σ) and LC(�π)

Note that if |G| = n and G = {g1, . . . , gn}, then each Li is of the form

{∅} ∪ {{xπ(i) : i ≤ j} : j ∈ {1, . . . , n}} for some permutation π ∈ Sn. By the

duality principle of lattice theory and by the facts of the present paragraph,

the following theorem is a straightforward consequence of [14, Theorem 5.2].

Theorem 3.1. Up to isomorphism, join-distributive lattices of length n and

join-width at most k are characterized as lattices LEJ(�σ) with �σ ∈ Sk−1
n .

4. A lattice theoretical approach

Next, we recall a related construction from [7]. Given �π = 〈π12, . . . , π1k〉 ∈
Sk−1
n , we let π11 = id and πij = π1j◦π−1

1i for i, j ∈ {1, . . . , k}. Here we compose

permutations from right to left, that is, (π1j ◦ π−1
1i )(x) = π1j(π

−1
1i (x)). Note

that πii = id, πij = π−1
ji , and πjt ◦ πij = πit hold for all i, j, t ∈ {1, . . . , k}. By

an eligible �π-tuple, we mean a k-tuple �x = 〈x1, . . . , xk〉 ∈ {0, 1, . . . , n}k such

that πij(xi + 1) ≥ xj + 1 holds for all i, j ∈ {1, . . . , k} such that xi < n. Note

that an eligible �π-tuple belongs to {0, 1, . . . , n−1}k∪{〈n, . . . , n〉} since xj = n

implies xi = n. The set of eligible �π-tuples is denoted by LC(�π). It is a poset

with respect to the componentwise order: �x ≤ �y means that xi ≤ yi for all

i ∈ {1, . . . , k}. It was not hard to show in [7, first paragraph of Proof 6.2] that

LC(�π) is a meet-subsemilattice of the k-th direct power {0 ≺ · · · ≺ n}k of the

chain {0 ≺ 1 ≺ · · · ≺ n} and that 〈n, . . . , n〉 ∈ LC(�π). Therefore, LC(�π) is a

lattice, the �π-coordinatized lattice. Its construction is motivated by G. Czédli

and E.T. Schmidt [8, Theorem 1], see also M. Stern [18], who proved that there

is a surjective cover-preserving join-homomorphism ϕ : {0 ≺ · · · ≺ n}k → L,

provided L is semimodular. Then, as it is easy to verify, u �→ ∨{x : ϕ(x) = u}
is a meet-embedding of L into {0 ≺ · · · ≺ n}k.
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To give an example, let π12 =
(
1 2 3 4
4 2 1 3

)
, π13 =

(
1 2 3 4
3 2 4 1

)
, and let �π =

〈π12, π13〉 ∈ S2
4 . Then Figure 1 also gives LC(�π); the eligible �π-tuples are given

after the commas in the labels. For example, 23,020 in the figure corresponds

to 〈0, 2, 0〉. Note that if μ12 =
(
1 2 3 4
3 2 1 4

)
and μ13 = π13, then LC(�π) ∼= LC(�μ).

The problem of characterizing those pairs of members of Sk−1
n that determine

the same lattice is not solved yet if k ≥ 3. For k = 2, the solution is given in

G. Czédli and E.T. Schmidt [10]; besides LC(�π) ∼= LC(�μ) above, see also [7,

Example 5.3] for the difficulty. The next theorem was motivated and proved

by the second author [7] in a purely lattice theoretical way.

Theorem 4.1. Up to isomorphism, join-distributive lattices of length n and

join-width at most k are characterized as the �π-coordinatized lattices LC(�π)

with �π ∈ Sk−1
n .

5. The two constructions are equivalent

For 〈γ2, . . . , γk〉 ∈ Sk−1
n , we let 〈γ2, . . . , γk〉−1 = 〈γ−1

2 , . . . , γ−1
k 〉.

Proposition 5.1. For every �σ ∈ Sk−1
n , LEJ(�σ) is isomorphic to LC(�σ

−1).

In some vague sense, Figure 1 reveals why LEJ(�σ) could be of the form

LC(�π) for some �π. Namely, for x ∈ LEJ(�σ) and i ∈ {1, . . . , k}, we can define

the i-th coordinate of x as the length of the intersection of the chain given in

(3.1) and the ideal {y ∈ LEJ(�σ) : y ≤ x}. However, the proof is more complex

than this initial idea.

Proof. Denote �σ−1 by �π = 〈π12, . . . , π1k〉. Note that π11 = σ−1
1 = id ∈ Sn. For

U ∈ LEJ(�σ) and i ∈ {1, . . . , k}, let U(i) = max
{
j : {σi(1), . . . , σi(j)} ⊆ U

}
,

where max∅ is defined to be 0. We assert that the map

ϕ : LEJ(�σ)→ LC(�π), defined by U �→ 〈U(1), . . . , U(k)〉,
is a lattice isomorphism. To prove that ϕ(U) is an eligible �π-tuple, assume

that i, j ∈ {1, . . . , k} such that U(i) < n. Then σi(U(i) + 1) /∈ U yields

σi(U(i) + 1) /∈ {σj(1), . . . , σj(U(j))}. However, σi(U(i) + 1) ∈ {1, . . . , n} =

{σj(1), . . . , σj(n)}, and we conclude that σi(U(i) + 1) = σj(t) holds for some

t ∈ {U(j) + 1, . . . , n}. Hence,

πij(U(i) + 1) = (π1j ◦ πi1)(U(i) + 1) = π1j

(
πi1(U(i) + 1)

)

= π1j

(
π−1
1i (U(i) + 1)

)
= σ−1

j

(
σi(U(i) + 1)

)

= σ−1
j

(
σj(t)

)
= t ≥ U(j) + 1.

This proves that ϕ(U) is an eligible �π-tuple, and ϕ is a map from LEJ(�σ) to

LC(�π). Since LEJ(�σ) is generated by the set given in (3.1), we conclude

U =
k⋃

i=1

{σi(1), . . . , σi(U(i))}.



 Join-distributive lattices by permutations 159

This implies that U is determined by 〈U(1), . . . , U(k)〉 = ϕ(U), that is, ϕ is

injective. To prove that ϕ is surjective, let �x = 〈x1, . . . , xk〉 be a �π-eligible

tuple, that is, �x ∈ LC(�π). Define

V =
k⋃

i=1

{σi(1), . . . , σi(xi)}. (5.1)

(Note that if xi = 0, then {σi(1), . . . , σi(xi)} denotes the empty set.) For

the sake of contradiction, suppose ϕ(V ) �= �x. Then, by the definition of ϕ,

there exists an i ∈ {1, . . . , k} such that xi < n and σi(xi + 1) ∈ V . Hence,

there is a j ∈ {1, . . . , k} such that σi(xi + 1) ∈ {σj(1), . . . , σj(xj)}. That is,

σi(xi + 1) = σj(t) for some t ∈ {1, . . . , xj}. Therefore,
πij(xi + 1) = π1j(πi1(xi + 1)) = π1j(π

−1
1i (xi + 1)) = σ−1

j (σi(xi + 1))

= σ−1
j (σj(t)) = t ≤ xj ,

which contradicts the �π-eligibility of �x. Thus ϕ(V ) = �x and ϕ is surjective.

We have shown that ϕ is bijective. For �x ∈ LC(�π), ϕ
−1(�x) is the set V given

in (5.1). Thus, ϕ and ϕ−1 are monotone, and ϕ is a lattice isomorphism. �

Remark 5.2. Since there is no restriction on (n, k) ∈ N×{2, 3, . . . } in Theo-

rems 3.1 and 4.1, one might have the feeling that, for a given n, the join-width

of a join-distributive lattice of length n can be arbitrarily large. This is not

so, because up to isomorphism there are only finitely many join-distributive

lattices of length n; this folkloric fact follows trivially from (6.1), given later.

Remark 5.3. Clearly, Proposition 5.1 and Theorem 3.1 imply Theorem 4.1.

Thus, we obtain a new, combinatorial proof of Theorem 4.1. Similarly, Propo-

sition 5.1 and Theorem 4.1 imply Theorem 3.1. Hence, we obtain a new, lattice

theoretical proof of Theorem 3.1 and that of P.H. Edelman and R.E. Jami-

son [14, Theorem 5.2].

Comparison. We can compare Theorems 3.1 and 4.1, and the corresponding

original approaches, as follows. In case of Theorem 3.1, the construction of

the lattice LEJ(�σ) is very simple, and a join-generating subset is also given.

In case of Theorem 4.1, the elements of the lattice LC(�π) are exactly given

by their coordinates, the eligible �π-tuples. Moreover, the meet operation is

easy, and we have a satisfactory description of the optimal meet-generating

subset, since it was proved in [7, Lemma 6.5] that the set of meet-irreducible

elements of LC(�π) is Mi(LC(�π)) =
{〈π11(i)−1, . . . , π1k(i)−1〉 : i ∈ {1, . . . , n}

}
.

6. Characterization by trajectories

For a lattice L of finite length, the set
{
[a, b] : a ≺ b, a, b ∈ L

}
of prime

intervals of L will be denoted by PrInt(L). For [a, b], [c, d] ∈ PrInt(L), we say

that [a, b] and [c, d] are consecutive if {a, b, c, d} is a covering square, that is,

a 4-element cover-preserving boolean sublattice of L. The transitive reflexive
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closure of the consecutiveness relation on PrInt(L) is an equivalence, and the

blocks of this equivalence relation are called the trajectories of L; this con-

cept was introduced for some particular semimodular lattices in G. Czédli and

E.T. Schmidt [9]. For distinct [a, b], [c, d] ∈ PrInt(L), these two prime intervals

are comparable if either b ≤ c, or d ≤ a.

Proposition 6.1. For a semimodular lattice L, the following three conditions

are equivalent.

(i) L is join-distributive.

(ii) L is of finite length, and for every trajectory T of L and every maximal

chain C of L, |PrInt(C) ∩ T | = 1.

(iii) L is of finite length, and no two distinct comparable prime intervals of L

belong to the same trajectory.

Since we intend to bring the lattice theoretical and the combinatorial ap-

proaches closer and to enlighten their connection, we give two proofs.

Lattice theoretical proof of Proposition 6.1. Since any two comparable prime

intervals belong to the set of prime intervals of an appropriate maximal chain C,

(ii) trivially implies (iii).

Assume (i). By a cover-preserving diamond of L, we mean a cover-preser-

ving sublattice that is (isomorphic to) the five element, non-distributive, mod-

ular lattice M3. Referencing [5] and [19], we have already mentioned that

join-distributivity implies semimodularity. Clearly, it also implies that L con-

tains no cover-preserving diamond. Thus, [7, Lemma 3.3] yields (ii).

Next, assume (iii). Since any two prime intervals of a cover-preserving

diamond would belong to the same trajectory, L contains no such diamond.

By [7, Corollary 4.4 and Proposition 6.1(A)], (i) holds. �

Combinatorial proof of Proposition 6.1. (ii) ⇒ (iii) is trivial, as before.

Assume (i). We can also assume that L = F, where 〈{1, . . . , n};F〉 is an

antimatroid. We assert that, for any X,Y ∈ F,

X ≺ Y iff X ⊂ Y and |Y \X| = 1. (6.1)

The “if” part is clear. Suppose, for a contradiction, that X ≺ Y and x and y

are distinct elements in Y \X. Pick a sequence Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Yt = ∅

in F with |Yi−1 \ Yi| = 1 for i ∈ {1, . . . , t}, and a j such that |Yj ∩ {x, y}| = 1.

This is a contradiction proving (6.1), since X ∪ Yj ∈ F but X ⊂ X ∪ Yj ⊂ Y .

Armed with (6.1), assume that {A = B ∧C,B,C,D = B ∪C} is a covering

square in F. Note that A and B ∩ C can be different; however, A ⊆ B ∩ C.

By (6.1), there exist u, x ∈ D such that B = D \ {u} and C = D \ {x}. These
elements are distinct since B �= C. Hence, x ∈ B and, by A ⊆ C, x /∈ A.

Using (6.1) again, we obtain A = B \ {x}. We have seen that whenever [A,B]

and [C,D] are consecutive prime intervals, then there is a common x such

that A = B \ {x} and C = D \ {x}. This implies that for each trajectory T
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of F, there exists an xT ∈ {1, . . . , n} such that X = Y \ {xT } holds for all

[X,Y ] ∈ T . Clearly, this implies that

|C ∩ T | ≤ 1 (6.2)

holds for every trajectory T and every maximal chain C. To prove that (6.2)

is actually an equality, pick a prime interval [A,A∪ {xT }] of T . The maximal

chain C has a unique prime interval of the form [B,B ∪ {xT }]. Since F is

∪-closed, [A ∪B,A ∪B ∪ {xT }] is a prime interval of F. Let

E0 = A ≺ E1 ≺ · · · ≺ Et = A ∪B

be a maximal chain of F in the interval [A,A ∪ B]. Using (6.1) or semimod-

ularity, it follows that [Ei−1, Ei−1 ∪ {xT }] and [Ei, Ei ∪ {xT }] form a pair of

consecutive prime intervals for i ∈ {1, . . . , t}. This implies that [A,A ∪ {xT }]
and [A∪B,A∪B∪{xT }] belong to the same trajectory, which is T . We obtain

similarly that [B,B ∪ {xT }] and [A ∪ B,A ∪ B ∪ {xT }] belong to the same

trajectory. Hence, [B,B ∪ {xT }] ∈ T , and |C ∩ T | ≥ 1. This, together with

(6.2), proves that F satisfies (ii), and so does L.

Next, in order to prove that (iii) implies (i), assume (iii). Let n = lengthL.

Obviously, as in the previous proof, L contains no cover-preserving diamond.

H. Abels [1, Theorem 3.9(a⇒b)] implies that L is a cover-preserving join-

subsemilattice of a finite distributive lattice D. Thus, if x ∈ L \ {1}, then
the interval [x, x∗]L of L is a cover-preserving join-subsemilattice of D. Let

a1, . . . , at be the covers of x in L, that is, the atoms of [x, x∗]L. If we had,

say, a1 ≤ a2 ∨ · · · ∨ at, then we would get a contradiction in D as follows:

a1 = a1 ∧ (a2 ∨ · · · ∨ at) = (a1 ∧ a2) ∨ · · · ∨ (a1 ∧ at) = x ∧ · · · ∧ x = x.

Thus, a1, . . . , at are independent atoms in [x, x∗]L. Therefore, it follows from

G. Grätzer [15, Theorem 380] and the semimodularity of [x, x∗]L that the

sublattice S generated by {a1, . . . , at} in L is the 2t-element boolean lattice. In

particular, lengthS = t = length
(
[x, x∗]L

)
since {x, x∗} ⊆ S ⊆ [x, x∗]L. Since

the embedding is cover-preserving, the length of the interval [x, x∗]D in D is

also t. Hence, | Ji([x, x∗]D)| = t by [15, Corollary 112], which clearly implies

|[x, x∗]D| ≤ 2t. Now from [x, x∗]L ⊆ [x, x∗]D and 2t = |S| ≤ |[x, x∗]L| ≤
|[x, x∗]D| ≤ 2t, we conclude [x, x∗]L = [x, x∗]D. This implies that [x, x∗]L is

distributive. Thus, (i) holds. �

Corollary 6.2. If no two distinct comparable prime intervals of a semimodular

lattice L of finite length belong to the same trajectory, then L is finite.

Proof. Join-distributive lattices are finite. Hence, Proposition 6.1 applies. �
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