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Abstract. The two main objectives of this paper are (a) to prove purely topological
duality theorems for semilattices and bounded lattices, and (b) to show that the topo-
logical duality from (a) provides a construction of canonical extensions of bounded
lattices. In previously known dualities for semilattices and bounded lattices, the dual
spaces are compact 0-dimensional spaces with additional algebraic structure. For ex-
ample, semilattices are dual to 0-dimensional compact semilattices. Here we establish
dual categories in which the spaces are characterized purely in topological terms, with
no additional algebraic structure. Thus the results can be seen as generalizing Stone’s
duality for distributive lattices rather than Priestley’s. The paper is the first of two
parts. The main objective of the sequel is to establish a characterization of lattice
expansions, i.e., lattices with additional operations, in the topological setting built in
this paper.

1. Introduction

The two main objectives of this paper are (a) to prove topological dual-
ity theorems for semilattices and bounded lattices, and (b) to show that the
topological duality from (a) provides a construction of canonical extensions of
bounded lattices. The paper is the first of two parts. The main objective of the
sequel [11] is to establish a characterization of lattice expansions, i.e., lattices
with additional operations, in the topological setting built in this paper.

Regarding objective (a), consider the following simple question:

Is there a subcategory of Top that is dually equivalent to Lat?

Here, Top is the category of topological spaces and continuous maps and
Lat is the category of bounded lattices and lattice homomorphisms.

To date, the question has been answered positively either by specializing
Lat or by generalizing Top. The earliest examples are of the former sort.

Tarski [16] (treated in English, e.g., in [1]) showed that every complete
atomic Boolean lattice is represented by a powerset. Taking some historical
license, we can say this result shows that the category of complete atomic
Boolean lattices with complete lattice homomorphisms is dually equivalent to
the category of discrete topological spaces. Birkhoff [2] showed that every fi-
nite distributive lattice is represented by the lower sets of a finite partial order.
Again, we can now say that this shows that the category of finite distributive
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lattices is dually equivalent to the category of finite T0 spaces and continu-
ous maps. In the seminal papers, [14, 15], Stone generalized Tarski and then
Birkhoff, showing that (a) the category of Boolean lattices and lattice homo-
morphisms is dually equivalent to the category of zero-dimensional, regular
spaces and continuous maps, and then (b) the category of distributive lattices
and lattice homomorphisms is dually equivalent to the category of spectral
spaces and spectral maps. We will describe spectral spaces and spectral maps
below. For now, notice that all of these results can be viewed as specializing
Lat and obtaining a subcategory of Top. In the case of distributive lattices,
the topological category is not full because spectral maps are special continu-
ous maps.

As a conceptual bridge, Priestley [13] showed that distributive lattices can
also be dually represented in a category of certain topological spaces aug-
mented with a partial order. This is an example of the latter sort of result,
namely, a duality between lattices and a subcategory of a generalization of
Top.

Urquhart [17], Hartung [8], and Hartonas [7] developed similar dualities for
arbitrary bounded lattices. It is fair to say that they follow in the spirit of
Priestley duality for distributive lattices in that their dual objects are certain
topological spaces equipped with additional (partial order) structure. The
dual morphisms are continuous maps that suitably preserve the additional
structure. This is in contrast to the spirit of Stone duality, in which the dual
category is simply a subcategory of Top.

Urquhart’s construction equips the dual spaces with two quasi-orders in such
a way that Priestley duality is precisely the special case where the two orders
are converses of each other. Hartung takes a slightly different approach via
the theory of concept lattices. His construction yields two topological spaces
and a binary relation between them. Again, Priestley duality is a special case.
Whereas Urquhart and Hartung must appeal to the axiom of choice to show
that their spaces are inhabited with enough points, Hartonas avoids this in
his duality and develops some interesting applications. His spaces are certain
Stone spaces equipped with an auxiliary binary relation. So the sense in which
this follows Priestley is clear.

Another approach to dualities for arbitrary lattices is given an exposition
in Chapters 1 and 4 of Gierz et al, [4]. There, the duality between inf com-
plete semilattices and sup complete semilattices arising from adjoint pairs of
maps is specialized to various categories of algebraic and arithmetic lattices.
Since algebraic and arithmetic lattices are precisely the ideal completions of
join semilattices and lattices, respectively, the general duality specializes to
categories of lattices.

We take a different path via purely topological considerations that simplifies
the duality of Hartonas by eliminating the need for an auxiliary binary relation.
At the end of this path, we find algebraic and arithmetic lattices characterized
as topological spaces. This establishes an affirmative answer to our original
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question with no riders: the dual category to Lat is a subcategory of Top
simpliciter.

Like Stone, we find subcategories of Top (actually, of spectral spaces) that
are dually equivalent to the categories of arbitrary semilattices with unit and
arbitrary bounded lattices. The results make explicit the relation between the
duality of Hartonas and the duality via arithmetic lattices.

Because the sequel paper applies topological duality to problems of lattices
with additional operations such as modal operators, residuals, etc., the sense
in which a map between lattices is “structure-preserving” must be considered
carefully. We consider here meet semilattice homomorphisms (Halmos’ word
for these is hemimorphisms [6]), and lattice homomorphisms. In addition,
there is an obvious functor (−)∂ sending a lattice to its order opposite. This
allows us to consider order-reversing, or antitone, maps that send meets to
joins and so on.

2. Background and definitions

In this paper, lattices are always bounded; semilattices always have a unit.
Also, we designate semilattices as meet or join semilattices according to which
order we intend. Lattice and semilattice homomorphisms preserve bounds. In
sympathy with this view, for a collection of subsets of a universal set X to
be “closed under finite intersections” includes empty intersection, so that X

belongs to the collection.
Since our main concern is an interplay between ordered structures and topo-

logical structures, we can lay some ground rules at the start.

• Order-theoretic terminology and notation, when applied to a T0 space,
refer to the specialization order (which we denote by � when X is under-
stood). For our purpose, the simplest characterization of specialization
is x � y if and only if N◦(x) ⊆ N◦(y) where N◦(x) is the filter of open
neighborhoods of x. For example, for x ∈ X, ↓x and ↑x denote the sets
of elements, respectively, below or equal to x and above or equal to x in
the specialization order. Evidently, ↓x is the closure of the singleton {x}.
Also, a set is directed if it has non-empty intersection with ↑x∩↑y for any
members x, y of the set. In general, we will reserve “square” symbols for
topological situations. For example x�y will mean the meet with respect
to specialization (if it exists).

• Topological terminology and notation, when applied to a partial order,
refer to the Scott topology : where open sets are upper sets U that are
inaccessible by directed joins, i.e., if

∨↑D exists for a directed set D and∨↑D ∈ U , then D∩U 	= ∅. Note that the specialization order of the Scott
topology coincides with the original order.

For a partially ordered set P , P ∂ denotes the order opposite. This notation
is used mostly with respect to lattices. So L∂ is again a lattice.
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In a topological space X, say that a point a ∈ X is finite if ↑a is open.
The term agrees with usage in lattice and domain theory, where an element a

of a dcpo (or complete lattice) is called finite if and only if ↑a is open in the
Scott topology. Finite points of a complete lattice were first called compact by
Nachbin [12] and that usage continues in order theory today, but so does the
term “finite.” Let Fin(X) denote the collection of finite points of X. We take
Fin(X) to be ordered by restriction of the specialization order on X. Again, if
C is a complete lattice, then Fin(C) is to be understood relative to the Scott
topology on C.

A topological space is said to be sober if the map x �→ N◦(x) is a bijection
between X and the collection of completely prime filters in the lattice of opens.
Equivalently, a space is sober if every closed irreducible set is of the form ↓x
for a unique point x (recall a set A is irreducible if A ⊆ B∪C for closed sets B,
C implies A ⊆ B or A ⊆ C). Sobriety is a topological condition that ensures
the space is T0 and has some nice order-theoretic behavior. We will use the
following well-known fact about sober spaces.

Lemma 2.1. In a sober space, any directed set D has a supremum
⊔↑D,

which is in the closure of D. Moreover, any continuous function between sober
spaces preserves directed suprema: f(

⊔↑D) =
⊔↑f(D).

In our deliberations, we will construct canonical extensions of lattices and
show that they too are topologically representable.

A complete lattice C is a completion of a lattice L if L is a sublattice of C

(more generally, L is embedded in C). L is lattice dense in C if

MeetsC(JoinsC(L)) = C = JoinsC(MeetsC(L)),

where

MeetsC(A) = {∧ A′ | A′ ⊆ A}
JoinsC(A) = {∨ A′ | A′ ⊆ A}

Furthermore, L is lattice compact in C if for all U, V ⊆ L, if
∧

C U ≤ ∨
C V ,

then there exist finite U0 ⊆ U and V0 ⊆ V for which
∧

U0 ≤
∨

V0.
Notice that lattice density and lattice compactness are not the same as

topological density and compactness with respect to the Scott topology, hence
the extra qualifier. In most work on canonical extension, these two properties
are referred to simply as density and compactness.

A completion C is a canonical extension of L if L is lattice dense and lattice
compact in C. In Section 4, we give a proof of the following theorem, originally
due to Gehrke and Harding [3].

Theorem 2.2 ([3]). Every lattice L has a canonical extension, denoted by Lδ,
unique up to isomorphism, i.e., if C is also a canonical extension of L, then
there is a lattice isomorphism between Lδ and C that keeps L fixed.

Our touchstone for topological duality is Stone’s representation theorem for
bounded distributive lattices:



 A topological construction of canonical extensions 113

Theorem 2.3. The category DL of distributive lattices and lattice homomor-
phisms is dually equivalent to the category Spec of spectral spaces and spectral
functions.

A spectral space is a sober space X in which the compact open sets form
a basis that is closed under finite intersections (in particular, X is itself com-
pact). A spectral function is a continuous f for which f−1 also preserves the
way below relation on opens, where U is way below V means that any open
cover of V contains a finite subcover of U . The way below relation is denoted
by U � V . On spectral spaces, this is equivalent to requiring that f−1 pre-
serves compact opens. Spectral functions (often in more general settings) are
also known as perfect functions. We prefer to avoid this terminology because
perfect has an entirely different meaning in lattice theory. Letting KO(X) de-
note the collection of compact open subsets of X, Stone’s Theorem establishes
that KO extends to a contravariant equivalence functor from Spec to DL.
The inverse equivalence functor is denoted by spec(L). It takes a distributive
lattice L to the space of its prime filters with topology generated by the sets
{P ∈ spec(L) | a ∈ P} for a ∈ L.

For a space X, a filter of X is a filter in the usual order-theoretic sense: a
set F so that: (i) x ∈ F and x � y implies y ∈ F , (ii) F is non-empty, and
(iii) x, y ∈ F implies there exists z ∈ F so that z � x, y. Note that this is not
the same as the more familiar notion of a filter on X, i.e., a filter of subsets
of X.

A set satisfying (i) is an upper set with respect to specialization. In the
topological setting, such sets are said to be saturated. Evidently, any open set is
saturated and any intersection of saturated sets is again saturated. Moreover,
suppose A is saturated and x /∈ A. Then for each y ∈ A, we find an open set
Uy containing y but not x. The union of all such Uy covers A and excludes x.
Thus, A is exactly the intersection of its open neighborhoods.

We will be interested in special sorts of saturated sets: compact saturated
sets, open sets, and filters. In that light, we define

• K(X): the collection of compact saturated subsets of X;
• O(X): the collection of open subsets of X; and
• F(X): the collection of filters of X.

We denote intersections of these by concatenation, e.g., OF(X) = O(X) ∩ F(X).
In particular, OF, KO, and KOF will be important. As already noted, spectral
spaces are characterized by having KO(X) as a basis that is closed under finite
intersection. On spectral spaces, spectral maps are those maps f : X → Y for
which f−1 sends KO(Y ) into KO(X). We take each of these collections to be
ordered by inclusion.

The following technical observation is useful.

Lemma 2.4. In a topological space X, let F1, . . . , Fm be pairwise incomparable
filters. Then F1∪· · ·∪Fm is compact if and only if each Fi is a principal filter.
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P(X)

Up(X) = Sat(X)

K(X) O(X) F(X)

KO(X) KF(X) OF(X)

KOF(X)

X: T0 space ordered by specialization

P(X): all subsets of X

Up(X): up-closed subsets of X

Sat(X): saturated subsets of X

K(X): compact saturated subsets of X

O(X): open subsets of X

F(X): filters of X

Figure 1. Inclusion relations among collections of subsets.

Proof. Clearly, a principal filter ↑x is compact, so a finite union of principal
filters is compact.

Suppose F1, . . . , Fm are pairwise incomparable filters and Fm is not princi-
pal. Let D be the collection of opens U such that Fm \ U 	= ∅. For x ∈ Fm,
there is an element y ∈ Fm so that x 	� y. So there is an open U for which
x ∈ U and y /∈ U . For x ∈ Fi (i < m), the filters are pairwise incomparable, so
there is an element y ∈ Fm so that x 	� y. Again there is an open U separating
x from y. Thus, D is an open cover of F1 ∪ · · · ∪Fm. Suppose U, V ∈ D. Then
there are elements x ∈ Fm \ U and y ∈ Fm \ V . Because Fm is a filter, there
is also an element z ∈ Fm below both x and y. Hence, z ∈ Fm \ (U ∪ V ). So,
D is directed. By construction, no U ∈ D covers F1 ∪ · · · ∪ Fm. �

In particular, the compact filters are principal, and KOF(X) is in an order-
reversing bijection with Fin(X). For F ∈ KOF(X), we let min F denote the
generator of F .

Theorem 2.5. For a topological space X, the following are equivalent:

(1) X is spectral and OF(X) forms a basis that is closed under finite inter-
section;

(2) X is spectral, OF(X) forms a basis, X is a meet semilattice with respect
to specialization, and X has a least element;

(3) X is sober and KOF(X) forms a basis that is closed under finite intersec-
tion.

Proof. Suppose (3) holds; then the compact opens and the open filters sepa-
rately form bases. Furthermore, if K and H are compact opens, then K =
F1∪· · ·∪Fm for some compact open filters Fi, and likewise H = G1∪· · ·∪Gn.
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Since each set Fi ∩Gj is compact open, so is K ∩H. Similarly, X =
⋂ ∅ is a

compact open filter. So X is spectral and has a least element. Since KOF(X)
is closed under finite intersection, Fin(X) is itself a directed subset of X. By
sobriety, the supremum exists, which must be the greatest element of X. For
x0, x1 ∈ X, consider Bx0,x1 = {a ∈ Fin(X) | x0, x1 ∈ ↑a}. Because of (3), this
is a directed set which has a supremum, y :=

⊔↑Bx0,x1 . If y is in an open set
U , then y ∈ ↑a ⊆ U for some a ∈ Bx0,x1 . So y � x0, x1. Now consider y′, a
lower bound of x0 and x1. Then y′ ∈ U implies that y′ ∈ ↑a ⊆ U for some
finite a. But a ∈ Bx0,x1 , so y′ � y. Hence, (2) holds.

Suppose (2) holds. The least element of X ensures that X itself is a filter.
Suppose F and G are open filters. Then F ∩G is open and is a filter because
X is a meet semilattice. Hence, (1) holds.

Suppose (1) holds. Spectral spaces are sober. Any compact open K equals
F1 ∪ · · · ∪ Fm for some open filters Fi. These can be chosen to be pairwise
incomparable. So KOF(X) forms a basis. Evidently, a finite intersection of
compact open filters is compact open because X is spectral. Separately, a
finite intersection of open filters is an open filter. Hence (3) holds. �

We refer to a topological space satisfying these conditions as an HMS space
in honor of Hofmann, Mislove and Stralka [9]. This naming is justified by
Theorem 3.7 below because these are precisely the spaces that arise as algebraic
lattices with the Scott topology.

3. F -saturation

Saturation can be relativized to any special class of opens in place of arbi-
trary opens. In particular, any intersection of open filters is saturated and is
either empty or is a filter. Because of the greatest element, in an HMS space,
an intersection of open filters is never empty. Say that a set is F -saturated
if it is an intersection of open filters. We have just noted that F -saturated
subsets of an HMS space are always filters. (In general spaces, the only pos-
sible F -saturated non-filter is ∅). We let FSat(X) denote the complete lattice
of F -saturated subsets of X ordered by inclusion, and define

fsat(A) :=
⋂{F ∈ OF(X) | A ⊆ F}.

Thus, arbitrary meets in FSat(X) are intersections, and joins are defined by∨A := fsat(
⋃A). In short, in any space fsat is a closure operator ; in any space

with a greatest element, fsat produces a filter.

Lemma 3.1. If X is an HMS space, then X is a complete lattice with respect
to specialization. Moreover, for a compact set A, fsat(A) is compact, hence is
a principal filter, and min fsat(A) =

�
A.

Proof. The earlier proof that X is a meet semilattice generalizes to arbitrary
meets. That is, for A ⊆ X, let B∗

A := {F ∈ KOF(X) | A ⊆ F}, writing it as
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B∗
x for singletons. Each F ∈ B∗

A is principal, so BA := {min F | F ∈ B∗
A} is

directed. Hence, x :=
⊔↑BA exists. Obviously, x is a lower bound of A. If

x′ is another lower bound of A, then Bx′ ⊆ BA. So,
⊔↑Bx′ � x. But since

KOF(X) is a basis of the topology, x′ � ⊔↑Bx′ .
If A is compact and A ⊆ F for an open filter F , then by compactness,

there is some G ∈ KOF(X) for which A ⊆ G ⊆ F . Thus, fsat(A) =
⋂

B∗
A =

↑�
A. �

FSat(X) has a bit more concrete structure. In particular, suppose D is a
directed set of open filters. Then the union is also an open filter. Hence, this
union is F -saturated. In other words, in FSat(X), a directed join of open filters
is simply a union.

We now consider what conditions on an HMS space are necessary and suf-
ficient for KOF(X) to form a lattice, not just a semilattice.

Theorem 3.2. For an HMS space, the following are equivalent.

(1) OF(X) forms a sublattice of FSat(X);
(2) KOF(X) forms a sublattice of FSat(X);
(3) fsat(U) is again open for any open U .

Proof. (1) implies (2): For compact open filters F and G, the join in FSat(X)
is fsat(F ∪G). But F ∪G is compact; hence, by Lemma 3.1, so is fsat(F ∪G).
Likewise, fsat(∅) is the least element of Fsat(X) and is compact.

(2) implies (3): Consider an open set U . Since X is a (complete) meet
semilattice, U generates a filter F . That is, x ∈ F if and only if for some
y0, . . . , ym ∈ U , y0 � · · · � ym � x. Evidently, it suffices to show that F is
open, for then F = fsat(U). For x ∈ F , pick y0, . . . , ym ∈ U that meet below
it. According to Lemma 3.1, yi =

⊔↑Byi . But U is open. So we may choose
an element of ai ∈ Byi

∩ U in place of yi. Now, ↑ai is a compact open filter,
so (2) tells us that fsat(↑a0 ∪ · · · ∪ ↑am) = ↑(a0 � · · · � am) ⊆ F is a compact
open filter that contains x. Hence, F = fsat(U) is open.

(3) implies (1): For any two open filters, fsat(F ∪ G) is open. It is a filter
because it is not empty. Likewise, fsat(∅) is open and non-empty. �

We refer to the spaces satisfying the conditions of the theorem as BL spaces
(BL abbreviating “bounded lattice”).

The next task is to show that every semilattice and every lattice occurs iso-
morphically as KOF(X) for some HMS space and some BL space, respectively.
The basic construction is the same in both cases, and establishes that HMS
and BL spaces are simply algebraic and arithmetic lattices with their Scott
topologies.

We know that HMS spaces and BL spaces are complete lattices with respect
to specialization. But in fact, they are more structured than that.

A complete lattice C is said to be algebraic if and only if it is isomorphic
to Idl(J) for some join semilattice J . Here Idl(J) simply refers to the lattice
of ideals of J , i.e., subsets that are closed under ↓ and finite joins. Of course,
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there is nothing preventing us from thinking of Idl(J) as being the lattice of
filters of J∂ instead, but the tradition is to characterize algebraicity in terms
of ideals. The reader familiar with classical universal algebra will recall that
algebraic lattices are precisely those lattices that occur as congruence lattices
of algebraic structures (where the ‘ideal formulation’ is natural). A complete
lattice C is said to be arithmetic if it is isomorphic to Idl(L) for some lattice L.
Again, this can just as well be defined in terms of filters. Of course, there
are several other useful internal characterizations of algebraic and arithmetic
lattices (details can be found in [5]), but this characterization is easiest to use
for our purposes.

For a meet semilattice M , let Filt(M) be the space of filters in M with the
Scott topology. Since filters of M correspond to ideals of M∂ , every algebraic
lattice occurs as Filt(M). This topology can be captured by a canonical basis.
Namely, for a ∈M , let

ϕa := {F ∈ Filt(M) | a ∈ F}.
Lemma 3.3. Let P be a partially ordered set. Then the opens of Filt(P ) are
order isomorphic with the collection of lower sets of P .

Proof. Suppose D ⊆ P is a lower set. Define UD := {F ∈ Filt(P ) | D∩F 	= ∅}.
Clearly, UD is an upper set of filters. Moreover, if D is a directed set of filters
and

⋃D ∈ UD, then for some F ∈ D, F ∈ UD. So, UD is Scott open.
Suppose U is a Scott open set of filters; define DU := {a ∈ P | ↑a ∈ U}.

Since U is an upper set, this is a lower set. Because any filter F is the directed
union of principal filters contained in it, F ∈ U if and only if there exists a ∈ F

such that a ∈ DU . Likewise, for a lower set D, a ∈ D if and only if ↑a ∈ UD.
So, the constructions DU and UD are order-preserving bijections. �

For a meet semilattice M , let DL(M) denote the free distributive lattice
over M . That is, DL(M) is concretely built as the collection of finite unions of
principal lower sets in M . Join is union and meet is computed in general by
extension of ↓a∩ ↓b = ↓(a∧ b). The map a �→ ↓a is the semilattice embedding
M → DL(M).

Lemma 3.4. For every meet semilattice M , Filt(M) is homeomorphic to
spec(DL(M)).

Proof. A filter F in M determines a filter basis {↓a | a ∈ F} in DL(M), which
evidently generates a prime filter. A prime filter P ⊆ DL(M) determines a
filter {a ∈ M | ↓a ∈ P} in M . These are easily checked to be inverses of one
another. It is also routine, using Lemma 3.3, to check that these two maps are
continuous. �

In the case that L is a lattice, Filt(L) has additional structure. We collect
various useful facts in the following.

Lemma 3.5. Let L be a lattice. In Filt(L), the following hold.
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Top

T0 spaces

Sober T1 spaces

StabCpt Haus

DLat ≡∂Spec KHaus

SLat ≡∂ HMS Bool

Lat ≡∂ BL

Figure 2. Inclusion relation among some subcategories of Top.

(1) An open UD is a filter if and only if D is an ideal in L.
(2) Finite joins in FSat(Filt(L)) of compact open filters are given by joins in

L. That is, fsat(U↓a ∪ U↓b) = U↓(a∨b) and similarly, fsat(∅) = U{0}.
(3) The way below relation is given by UD � UE if and only if for some finite

{a1, . . . , an} ⊆ E, D is a subset of
⋃n

i=1 ↓ai.

Proof. (1): Suppose D is an ideal in L, a ∈ F ∩D, and b ∈ G∩D. So, a∨b ∈ D

and x∨y ∈ F ∩G. So, UD is a filter of filters. Conversely, suppose UD is a filter
of filters and a, b ∈ D. Then ↑a ∈ UD and ↑b ∈ UD. So, ↑a∩↑b = ↑(a∨b) ∈ UD.
That is, a ∨ b ∈ D.

(2): U↓(a∨b) is an F -saturated set containing U↓a ∪ U↓b. If UI contains
U↓a ∪ U↓b, then in particular, a, b ∈ I. So, a ∨ b ∈ I. Evidently, U{0} = {L},
which is the smallest F -saturated set of filters of L.

(3): The characterization of � is a standard fact about the Scott topology
of an algebraic dcpo [5]. �

Lemma 3.6. For a meet semilattice M , Filt(M) is an HMS space. For a
lattice L, Filt(L) is a BL space.

Proof. For the first claim, because {1} and M are the least and greatest ele-
ments, it remains to check that the open filters form a basis. But the sets ϕa

for a ∈M form a basis, and these clearly are filters.
For a lattice L, it remains to check that fsat(UD) is open when D is a lower

set in L. The open filters containing UD are bijective with the ideals containing
D. So let I be the smallest ideal containing D. Then UI is evidently equal to
fsat(UD). �

Putting all these facts together, we obtain the following.
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Up(X) = Sat(X)

K(X) O(X) F(X)

FSat(X)

KO(X) KF(X) OF(X)

KOF(X)

Figure 3. Position of the canonical extension for a BL space X.

Theorem 3.7. Any meet semilattice M is isomorphic to KOF(Filt(M)). Any
HMS space X is homeomorphic to Filt(KOF(X)). These constructions restrict
to lattices and BL spaces.

Proof. The map sending a ∈ M to ϕa := {f ∈ Filt(M) | a ∈ f} is an isomor-
phism. Similarly, the map sending x ∈ X to θx := {F ∈ KOF(X) | x ∈ F} is a
homeomorphism. �

Notice that these results also tell us that the HMS spaces are exactly the
algebraic lattices and the BL spaces are exactly the arithmetic lattices, both
with their Scott topologies.

4. Canonical extension

Jónsson and Tarski [10] introduced canonical extensions of Boolean alge-
bras to provide an algebraic setting for relational semantics of Boolean al-
gebras with operators. Canonical extensions of bounded lattices are due to
Gehrke and Harding [3], and they have applications to bounded residuated
lattices, positive (even non-distributive) logics, linear logics and various other
non-classical logics. As mentioned in Section 2, canonical extensions are char-
acterized abstractly as completions that are lattice dense and lattice compact.
In the current section, we show that canonical extension arise naturally from
BL spaces.

Theorem 4.1. For every BL space X, FSat(X) is a canonical extension of
KOF(X).
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Proof. One half of lattice density is almost trivial. Consider an open filter
F =

⋃{↑a | a ∈ F ∩ Fin(X)}. From Lemma 3.1, this union is directed, so it is
the join in FSat(X). Hence, any S ∈ FSat(X) takes the form

S =
⋂{F ∈ OF(X) | S ⊆ F}

=
⋂ { ⋃{↑a | a ∈ F ∩ Fin(X)} | F ∈ OF(X) and S ⊆ F

}

=
⋂ { ∨{↑a | a ∈ F ∩ Fin(X)} | F ∈ OF(X) and S ⊆ F

}
.

For the other half of density, consider S ∈ FSat(X). Then S =
⋂

i∈I Fi for
some family of open filters {Fi}. Each Fi is a directed join, hence union, of
compact open filters {↑aij}j∈Ji . So,

S =
⋃

γ∈Q
i∈IJi

⋂
i∈I

↑ai,γ(i) ⊆ fsat(
⋃

γ∈Q
i∈IJi

⋂
i∈I

↑ai,γ(i))

=
∨

γ∈Q
i∈IJi

⋂
i∈I

↑ai,γ(i) ⊆ S.

For lattice compactness, it suffices to show that when {Fi}i is a downward
directed family of compact open filters and {Gj}j is an upward directed family
of compact open filters, if

⋂
i Fi ⊆

⋃
j Gj , then for some i and j, Fi ⊆ Gj .

Each Fi is a principal filter, so let ai = minFi. Because the family {Fi}i is
downward directed, the set of these generators {ai}i is directed. By sobriety of
X, this directed set has a least upper bound, say x. Evidently, x ∈ ⋂

i Fi, and
every open neighborhood of x includes some ai. In particular,

⋃
j Gj is such a

neighborhood. So, for some i, ai ∈
⋃

j Gj . Hence, for some j, ai ∈ Gj . �

Corollary 4.2. Every lattice has a canonical extension, unique up to isomor-
phism.

Proof. For a lattice L, let X = Filt(L). By Theorems 4.1 and 3.7, FSat(X) is
a canonical extension of KOF(X) which is isomorphic to L.

Suppose C is also a canonical extension of L. To simplify notation, assume
that L is a sublattice of C.

Define maps j : OF(X) → JoinsC(L) and m : X → MeetsC(L) by

j(F ) =
∨
C

{a ∈ L | ↑a ⊆ F},

m(x) =
∧
C

{a ∈ L | a ∈ x}.

By lattice compactness of the completion C, m(x) ≤ j(F ) holds if and only if
x ∈ F . Also, by lattice density, for every γ ∈ C,

∨
C

{m(x) | m(x) ≤ γ} = γ =
∧
C

{j(F ) | γ ≤ j(F )}.
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Now define four maps f∗, g∗ : FSat(X) → C and g∗, f∗ : C → FSat(X) as
follows:

f∗(S) =
∨
C

{m(x) | x ∈ S}, f∗(γ) =
⋂{F | γ ≤ j(F )},

g∗(γ) = fsat({x | m(x) ≤ γ}), g∗(S) =
∧
C

{j(F ) | S ⊆ F}.

Variables appearing here and for the remainder of this proof are implicitly
typed as x ∈ X, F ∈ OF(X), S ∈ FSat(X), and γ ∈ C.

Now we check four facts: (i) f∗ is left adjoint to f∗, (ii) g∗ is left adjoint to
g∗, (iii) f∗ = g∗, and (iv) f∗ = g∗. These suffice to establish that f∗ and f∗
(equivalently, g∗ and g∗) are the desired isomorphisms.

Fact (i): f∗(S) ≤ γ if and only if x ∈ S implies m(x) ≤ γ. And S ⊆ f∗(γ)
if and only if x ∈ S implies x ∈ F for every F such that γ ≤ j(F ). Lattice
compactness and density mean that m(x) ≤ γ is equivalent to x ∈ F for every
F such that γ ≤ j(F ).

Fact (ii): g∗(γ) ⊆ S if and only if m(x) ≤ γ implies x ∈ S because S is
f-saturated. And γ ≤ g∗(S) if and only if γ ≤ j(F ) for every F ⊇ S. Again,
lattice compactness and density mean these conditions are equivalent.

Fact (iii): By density, f∗(S) =
∧

C{j(F ) | f∗(S) ≤ j(F )}. But the con-
dition f∗(S) ≤ j(F ) holds if and only if m(x) ≤ j(F ) for all x ∈ S. So by
compactness, this is equivalent to S ⊆ F .

Fact (iv): g∗(γ) =
⋂{F | {x | m(x) ≤ γ} ⊆ F} as an f-saturation. But

{x | m(x) ≤ γ} ⊆ F is equivalent to γ ≤ j(F ). �

For comparison, we note that for Boolean algebras and distributive lattices,
the canonical extension can also be obtained from the dual space by taking the
powerset of the Stone space and all upsets of the Priestley space, respectively.

5. Morphisms

Clearly, the next thing to do is to extend Theorem 3.7 to a duality of
categories. We do this by first characterizing those (continuous) functions
between HMS spaces that correspond to meet semilattice homomorphisms.
Subsequently, we cut this down to lattice homomorphisms.

Lemma 5.1. For a function f : X → Y between HMS spaces, the following
are equivalent.

(1) f−1 restricted to KOF(Y ) co-restricts to KOF(X).
(2) f is spectral and f−1 restricted to OF(Y ) co-restricts to OF(X).
(3) f is spectral and fsat(f−1(B)) ⊆ f−1(fsat(B)) for all B ⊆ Y .
(4) f is spectral and fsat(f−1(U)) ⊆ f−1(fsat(U)) for all opens U ⊆ Y .

Proof. (1) implies (2): Immediately from (1), f is continuous. Also, U �
V holds if and only if there is a compact open K so that U ⊆ K ⊆ V .
But K is simply a finite union of compact open filters F1 ∪ · · · ∪ Fm. So,
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f−1(U) ⊆ f−1(F1)∪ · · ·∪f−1(Fm) ⊆ f−1(V ). The middle set is a finite union
of compact open filters. Therefore, f is spectral. Suppose F ∈ OF(Y ). Then
F is a directed union of compact open filters. So, f−1(F ) is a directed union
of compact open filters, hence is an open filter.

(2) implies (3): Consider B ⊆ Y . Since fsat(B) =
⋂{F ∈ OF(X) | B ⊆ F}

and f−1(F ) ∈ OF(X) for any F ∈ OF(Y ), f−1(fsat(B)) is an intersection of
fewer open filters than fsat(f−1(B)).

(3) implies (4): This is trivial.
(4) implies (1): In particular, fsat(f−1(↑a)) ⊆ f−1(↑a) because ↑a is al-

ready F -saturated. Obviously, f−1(↑a) ⊆ fsat(f−1(↑a)). Because f is spec-
tral, f−1(↑a) is compact open. Because X is a HMS space (hence has a top
element), fsat(f−1(↑a)) = f−1(↑a) is a compact open filter. �

A function f is called F -continuous if it satisfies the equivalent conditions
of the lemma. This leads to our first duality theorem.

Theorem 5.2. The category of semilattices and meet-preserving functions is
dually equivalent to the category of HMS spaces and F -continuous functions.
This cuts down to the full subcategory of lattices and meet-preserving functions
and the full subcategory of BL spaces and F -continuous functions.

Proof. Lemma 5.1 clearly indicates that KOF extends to a functor into the
category of meet semilattices via the restriction of KOF(f) = f−1 to compact
open filters.

Likewise for h : L → M , Filt(h) = h−1 sends filters to filters because h

preserves meets. Moreover, for a compact open filter ϕa ∈ KOF(Filt(L)), we
have F ∈ Filt(h)−1(ϕa) if and only if h(a) ∈ F if and only if F ∈ ϕh(a).
Therefore, Filt(h) is F -continuous.

Evidently, the isomorphism and homeomorphism of Theorem 3.7 are natural
in these functors. �

To cut this duality down to lattice homomorphisms, we recall that OF(X) is
the BL space dual to Fin(X). So an F -continuous map from OF(X) to OF(Y )
corresponds dually to a join-preserving map between KOF(Y ) and KOF(X).

Lemma 5.3. For an F -continuous map f : X → Y between BL spaces, the
following are equivalent.

(1) f−1 preserves finite joins of compact open filters.
(2) f−1 preserves finite joins of open filters.
(3) f−1 preserves all joins of open filters.
(4) f−1(fsat(U)) ⊆ fsat(f−1(U)) for any open U ⊆ Y .

Proof. (3) implies (2) and (2) implies (1): These are obvious.
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(4) implies (3): Let Fi be an indexed family of open filters. Then

f−1(
∨
i

Fi) = f−1(fsat(
⋃
i

Fi)) = fsat(f−1(
⋃
i

Fi))

= fsat(
⋃
i

f−1(Fi)) =
∨
i

f−1(Fi).

(1) implies (4): Consider an open U ⊆ Y and F ∈ OF(X) so that f−1(U) ⊆
F . Per Theorem 3.2,

fsat(U) =
⋃{↑(a1 � . . . � am) | a1, . . . , am ∈ U ∩ Fin(Y )}.

Since f−1 preserves finite joins, we also have f−1(fsat(U)) ⊆ F . �

Say that a spectral function is F -stable if f−1(fsat(U)) = fsat(f−1(U)) for
any open U .

Theorem 5.4. The category of lattices and lattice homomorphisms is dually
equivalent to the category of BL spaces and F -stable functions.

Proof. Evidently, the dual equivalence of Theorem 5.2 cuts down to this, so
long as the functor Filt cuts down. That is, we need to check that Filt(h) is
F -stable when h : L → M is a lattice homomorphism. We already know it is
F -continuous.

Suppose L and M are lattices and h : L → M is a lattice homomorphism.
Consider two compact open filters ϕa, ϕb ∈ KOF(Filt(L)), and observe that
Filt(h)−1(ϕa) = ϕh(a). The join of ϕa and ϕb in KOF(Filt(L)) is fsat(ϕa∪ϕb) =
ϕa∨b. And of course Filt(h)−1(ϕa∨b) = ϕh(a)∨h(b) is the join of ϕh(a) and
ϕh(b). �

In a finite lattice, Filt(L) is isomorphic to L∂ , and since all upper sets in
Filt(L) are open, KOF(Filt(L)) is isomorphic to Filt(L)∂ . That is, the natural
isomorphism from a finite lattice L to KOF(Filt(L)) is rather trivial. For a
non-trivial example, consider the lattice consisting of two copies of [0, 1] with
0’s and 1’s identified. We can write x for elements of one copy and x′ for the
corresponding elements of the other copy. So there are two types of filter:

(1) ↑x, the principal filter generated by any x ∈ L;
(2) � x = ↑x \ {x}, the ‘round’ filter of elements strictly above x by any

x ∈ L \ {1}. In the special case of 0, we make a distinction between � 0
and � 0′ according to which copy of [0, 1] is used.

Figure 4 illustrates L and Filt(L).
In Filt(L) (specialization order being inclusion), we have three types of

filters,

Hx := {F ∈ Filt(L) | � x ⊆ F} [x 	= 1]

Gx := {F ∈ Filt(L) | ↑x ⊆ F}
Fx :=

⋃
y<x

Hy [x 	= 0]
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1′ = 1

1
2
′ 1

2

0′ = 0

L

↑0

� 0′ � 0

↑ 1
2
′ ↑ 1

2

� 12
′

� 12

↑1

Filt(L)

Figure 4. A non-distributive lattice and its filters.

Clearly, Fx ⊆ Gx ⊆ Hx when these exist. The filters Hx and Gx are compact.
The filters Gx and Fx are open. So, the filters Gx constitute KOF(X). Figure 5
illustrates F(Filt(L)), KF(Filt(L)), OF(Filt(L)) and KOF(Filt(L)). In this exam-
ple, every member of F(Filt(L)) is saturated; hence, the canonical extension of
L is isomorphic to F(Filt(L)).

Note that the dual space X = Filt(L) of a lattice L is at least as large as L,
and can be considerably larger (up to 2|L| in the case of an infinite Boolean
algebra). This agrees with the duality of Hartonas, but is in contrast to so-
called reduced dualities such as Urquhart’s L-spaces and Hartung’s topological
contexts which can be logarithmically smaller than the size of L. However, the
description of morphisms for such dualities is less intuitive since one has to
resort to certain (pairs of) relations or consider only duals of surjective lattice
morphisms. Moreover, the reduction in size makes use of the axiom of choice,
whereas dualities that use all filters are constructive.

6. Conclusion

We have established a dual equivalence between Lat and the category of BL
spaces and F -stable maps, an easily described subcategory of Top. In addition,
in a BL space X, the very natural construction of the complete lattice of F -
saturated subsets produces the canonical extension of KOF(X). Along the way,
we also have established a dual equivalence between the category of semilattice
reducts of lattices and the category of HMS spaces and F -continuous maps.

In the sequel paper, we extend the topological duality for lattices to handle
n-ary operations that are join-reversing or meet-preserving in each argument,
or dually that are meet-reversing or join-preserving in each argument. Such
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G1

H 1
2
′ H 1

2

G 1
2
′ G 1

2

H0′ H0

G0

KF(Filt(L))

G1

G 1
2
′ G 1

2

G0

KOF(Filt(L))

G1

F1′ F1

H 1
2
′ H 1

2

G 1
2
′ G 1

2

F 1
2
′ F 1

2

H0′ H0

G0

F(Filt(L))

G1

F1′ F1

G 1
2
′ G 1

2

F 1
2
′ F 1

2

G0

OF(Filt(L))

Figure 5. Sets of filters of Filt(L) ordered by inclusion.

operations are called quasioperators, and we consider several examples to il-
lustrate the general case. Similar extensions have been discussed by Hartonas,
but our topological duality for the underlying lattices simplifies the description
of morphisms in the dual category.
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