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Lattice subordinations and Priestley duality

Guram Bezhanishvili

Abstract. There is a well-known correspondence between Heyting algebras and
S4-algebras. Our aim is to extend this correspondence to distributive lattices by
defining analogues of S4-algebras for them. For this purpose, we introduce binary re-
lations on Boolean algebras that resemble de Vries proximities. We term such binary
relations lattice subordinations. We show that the correspondence between Heyting
algebras and S4-algebras extends naturally to distributive lattices and Boolean alge-
bras with a lattice subordination. We also introduce Heyting lattice subordinations
and prove that the category of Boolean algebras with a Heyting lattice subordina-
tion is isomorphic to the category of S4-algebras, thus obtaining the correspondence
between Heyting algebras and S4-algebras as a particular case of our approach.

In addition, we provide a uniform approach to dualities for these classes of algebras.
Namely, we generalize Priestley spaces to quasi-ordered Priestley spaces and show
that lattice subordinations on a Boolean algebra B correspond to Priestley quasi-
orders on the Stone space of B. This results in a duality between the category
of Boolean algebras with a lattice subordination and the category of quasi-ordered
Priestley spaces that restricts to Priestley duality for distributive lattices. We also
prove that Heyting lattice subordinations on B correspond to Esakia quasi-orders on
the Stone space of B. This yields Esakia duality for S4-algebras, which restricts to
Esakia duality for Heyting algebras.

1. Introduction

A Priestley space is a partially ordered Stone space (X,≤) in which, when-
ever x �≤ y, there is a clopen up-set U containing x and missing y. The
well-known Priestley duality establishes that the category of bounded dis-
tributive lattices and bounded lattice homomorphisms is dually equivalent to
the category of Priestley spaces and continuous order-preserving maps. An
Esakia space is a Priestley space in which the down-set of each clopen set is
clopen. The well-known Esakia duality provides a dual equivalence between
the category of Heyting algebras with Heyting homomorphisms and the cate-
gory of Esakia spaces with continuous bounded morphisms (order-preserving
maps for which f(x) ≤ y implies that there exists z with x ≤ z and f(z) = y).
These landmark theorems were established by Priestley [16, 17] and Esakia
[9], respectively.
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A standard proof of Priestley duality exploits the prime spectrum functor
and the clopen up-set functor. The prime spectrum functor associates with
each bounded distributive lattice D the prime filters of D ordered by inclusion
and topologized by the patch topology of the Stone topology on the prime
filters of D. The clopen up-set functor associates with each Priestley space X

the bounded distributive lattice of clopen up-sets of X. The restriction of these
functors also yields Esakia duality. Namely, if D is a Heyting algebra, then the
prime spectrum of D is an Esakia space, and if X is an Esakia space, then the
clopen up-sets of X form a Heyting algebra. However, Esakia’s original proof
of his duality was different. He approached things from the point of view of
modal logic.

The celebrated Stone duality [20] between Boolean algebras and Stone
spaces was generalized by Halmos [13] to S5-algebras (monadic algebras
in Halmos’ terminology) and special equivalence relations on Stone spaces.
S4-algebras (also known as interior algebras [5], closure algebras [14], or topo-
logical Boolean algebras [18]) generalize S5-algebras. It was known from the
work of McKinsey and Tarski [15] (see also [18]) that there is a close corre-
spondence between S4-algebras and Heyting algebras. This correspondence is
at the heart of Gödel’s translation [12] of intuitionistic logic into S4. Esakia
generalized Halmos duality for S5-algebras to S4-algebras. The objects of the
resulting dual category are special quasi-ordered Stone spaces. Esakia studied
the S4-algebras that correspond to those quasi-ordered Stone spaces where the
quasi-order is a partial order (stencil S4-algebras in Esakia’s terminology), and
showed that they are equivalent to the category of Heyting algebras. Esakia
duality for Heyting algebras follows.

More precisely, S4-algebras (B, �) can be thought of as pairs (B, D), where
B is a Boolean algebra, D is a bounded sublattice of B (that is, containing
the 0 and 1 of B), and the inclusion D ↪→ B has a right adjoint [6, 10, 11].
This right adjoint is responsible for the existence of � : B → B such that
(B, �) is an S4-algebra. It is also this right adjoint that turns the bounded
distributive lattice D into a Heyting algebra. It follows that there is a functor
from S4-algebras to Heyting algebras (that sends each S4-algebra (B, D) to
D). This functor has a left adjoint (which sends each Heyting algebra to its
free Boolean extension). This yields an equivalence between the category of
Heyting algebras and the category of the S4-algebras that are generated by D

(the stencil S4-algebras). The dual spaces of stencil S4-algebras turn out to
be exactly the Esakia spaces, so Heyting algebras dually correspond to Esakia
spaces, and Esakia duality follows.

If the inclusion D ↪→ B does not have a right adjoint, then D is not a
Heyting algebra. This indicates an alternate route to Priestley duality for
bounded distributive lattices [11]. Consider the category consisting of the
pairs (B, D) where B is a Boolean algebra and D is a bounded sublattice
of B. Its full subcategory consisting of the pairs (B, D) where B is generated
by D is equivalent to the category of bounded distributive lattices. Moreover,
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the dual space of (B, D) is a Priestley space iff B is generated by D, and
Priestley duality follows.

Of course, the pairs (B, D) where D happens to be a Heyting algebra can
be described by means of S4-algebras (B, �): D consists of the fixed points
of �. This can no longer be done if D is merely a bounded distributive lattice.
The aim of this paper is to show that the pairs (B, D) where D is a bounded
sublattice of B can nevertheless be described by means of special binary re-
lations on B that resemble de Vries proximities on B. We term these binary
relations lattice subordinations. We prove that the correspondence between
S4-algebras and Heyting algebras extends naturally to the correspondence be-
tween Boolean algebras with a lattice subordination and bounded distributive
lattices. We also introduce Heyting lattice subordinations and Boolean lattice
subordinations. These are lattice subordinations that satisfy additional condi-
tions. We prove that the category of Boolean algebras with a Heyting lattice
subordination is isomorphic to the category of S4-algebras and that if the sub-
ordination is in addition Boolean, then the resulting category is isomorphic to
the category of S5-algebras. Thus, Boolean algebras with a lattice subordi-
nation can be viewed as analogues of S4-algebras for bounded distributive
lattices.

We also provide a uniform framework for presenting dualities for these
classes of algebras. We generalize Priestley spaces to quasi-ordered Priest-
ley spaces and show that quasi-ordered Priestley spaces dually correspond to
Boolean algebras with a lattice subordination. We also describe the Boolean
algebras with a lattice subordination that correspond to Priestley spaces.
Priestley duality follows. We prove that quasi-ordered Esakia spaces dually
correspond to Boolean algebras with a Heyting lattice subordination, and we
describe the Boolean algebras with a Heyting lattice subordination that cor-
respond to Esakia spaces. Esakia duality for both S4-algebras and Heyting
algebras as well as Halmos duality for S5-algebras follow.

The paper is organized as follows. In Section 2 we introduce lattice sub-
ordinations on Boolean algebras and establish their basic properties. We also
compare lattice subordinations to de Vries proximities on Boolean algebras.
In Section 3 we introduce Boolean lattice subordinations and establish their
basic properties. In Section 4 we introduce Heyting lattice subordinations and
establish their basic properties. We prove that the category of Boolean al-
gebras with a Heyting lattice subordination is isomorphic to the category of
S4-algebras, and that the category of Boolean algebras with a Heyting lattice
subordination that in addition is a Boolean lattice subordination is isomor-
phic to the category of S5-algebras. In Section 5 we introduce quasi-ordered
Priestley spaces and quasi-ordered Esakia spaces, and prove our main duality
results. Esakia duality for S4-algebras and Halmos duality for S5-algebras
follow. Finally, in Section 6 we show how our results produce Priestley duality
for bounded distributive lattices and Esakia duality for Heyting algebras.
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2. Lattice subordinations

We begin by introducing the central concept of the paper.

Definition 2.1. Let B be a Boolean algebra. We call a binary relation ≺ on
B a lattice subordination if ≺ satisfies the following conditions:

(S1) 0 ≺ 0 and 1 ≺ 1.
(S2) a ≺ b, c implies a ≺ b ∧ c.
(S3) a, b ≺ c implies a ∨ b ≺ c.
(S4) a ≤ b ≺ c ≤ d implies a ≺ d.
(S5) a ≺ b implies that there exists c ∈ B with c ≺ c and a ≤ c ≤ b.

We next collect some basic properties of lattice subordinations.

Lemma 2.2. Let ≺ be a lattice subordination on a Boolean algebra B.

(1) a ≺ b implies a ≤ b.
(2) a ≺ b ≤ c implies a ≺ c, and a ≤ b ≺ c implies a ≺ c.
(3) 0 ≺ a and a ≺ 1 for each a ∈ B.
(4) a ≺ b and c ≺ d imply a ∧ c ≺ b ∧ d and a ∨ c ≺ b ∨ d.
(5) a ≺ b implies that there exists c ∈ B with a ≺ c ≺ b.
(6) a ≺ c ≺ b implies a ≺ b.
(7) a ≺ b iff there exists c ∈ B with c ≺ c and a ≤ c ≤ b.

Proof. (1): If a ≺ b, then by (S5), there exists c ≺ c with a ≤ c ≤ b. Therefore,
a ≤ b.

(2): This follows from (S4).
(3): Let a ∈ B. By (S1), 0 ≺ 0 ≤ a and a ≤ 1 ≺ 1. Therefore, by (2),

0 ≺ a ≺ 1.
(4): We have a ∧ c ≤ a ≺ b. So, by (2), a ∧ c ≺ b. Similarly, a ∧ c ≺ d.

Therefore, by (S2), a ∧ c ≺ b ∧ d. A similar argument (that uses (S3) instead)
gives a ∨ c ≺ b ∨ d.

(5): If a ≺ b, then by (S5), there exists c ≺ c with a ≤ c ≤ b. As a ≤ c ≺ c,
by (2) we have a ≺ c. That c ≺ b is similar.

(6): Let a ≺ c ≺ b. By (1), a ≤ c ≺ b, and by (2), a ≺ b.
(7): One implication is (S5). For the other implication, if we have c ≺ c

and a ≤ c ≤ b, then by (2), a ≺ c ≺ b. Now apply (6). �

Definition 2.3. For a lattice subordination ≺ on a Boolean algebra B, let
D≺ = {a ∈ B : a ≺ a} be the set of reflexive elements of ≺.

Lemma 2.4. Let ≺ be a lattice subordination on a Boolean algebra B. Then
D≺ is a bounded sublattice of B.

Proof. By (S1), 0, 1 ∈ D≺. Let a, b ∈ D≺. Then a ≺ a and b ≺ b. By
Lemma 2.2(4), a ∧ b ≺ a ∧ b and a ∨ b ≺ a ∨ b. Therefore, a ∧ b, a ∨ b ∈ D≺,
and so D≺ is a bounded sublattice of B. �
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Definition 2.5. For a bounded sublattice D of a Boolean algebra B, define
≺D on B by setting a ≺D b iff there exists c ∈ D with a ≤ c ≤ b.

Lemma 2.6. Let D be a bounded sublattice of a Boolean algebra B. Then ≺D

is a lattice subordination on B.

Proof. As 0, 1 ∈ D, we have that ≺D satisfies (S1). Let a ≺D b, c. Then there
exist x, y ∈ D such that a ≤ x ≤ b and a ≤ y ≤ c. Therefore, a ≤ x∧y ≤ b∧c.
As x ∧ y ∈ D, we conclude that a ≺D b ∧ c, so ≺D satisfies (S2). That ≺D

satisfies (S3) is similar and uses the fact that x, y ∈ D imply x ∨ y ∈ D. That
≺D satisfies (S4) is obvious. As D is the set of reflexive elements of ≺D, it is
immediate that ≺D satisfies (S5). �

Lemma 2.7. Let B be a Boolean algebra.

(1) If ≺ is a lattice subordination on B, then ≺ = ≺D≺ .
(2) If D is a bounded sublattice of B, then D = D≺D

.

Proof. (1) For a, b ∈ B, we have:

a ≺D≺ b ⇐⇒ ∃c ∈ D≺ : a ≤ c ≤ b

⇐⇒ ∃c ∈ B : c ≺ c & a ≤ c ≤ b ⇐⇒ a ≺ b.

Here the last equivalence follows from Lemma 2.2(7). Thus, ≺ = ≺D≺ .
(2) Let a ∈ B. Then

a ∈ D≺D
⇐⇒ a ≺D a ⇐⇒ ∃c ∈ D : a ≤ c ≤ a ⇐⇒ a ∈ D.

Thus, D = D≺D
. �

This establishes a 1–1 correspondence between lattice subordinations on B

and bounded sublattices of B. We extend this to an isomorphism of appropri-
ate categories.

Definition 2.8. (1) Let BLS be the category whose objects are pairs (B,≺),
where B is a Boolean algebra and ≺ is a lattice subordination on B, and whose
morphisms are Boolean homomorphisms h : B1 → B2 that satisfy a ≺1 b ⇒
h(a) ≺2 h(b); that is, Boolean homomorphisms preserving lattice subordina-
tion. It is straightforward that BLS is a category where composition of two
morphisms is the usual function composition.

(2) Let BDA be the category whose objects are pairs (B, D), where B is a
Boolean algebra and D is a bounded sublattice of B, and whose morphisms are
Boolean homomorphisms h : B1 → B2 satisfying a ∈ D1 ⇒ h(a) ∈ D2. It is
straightforward that BDA is a category where composition of two morphisms
is the usual function composition.
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Remark 2.9. If h : B1 → B2 is a morphism in BDA, then the restriction of h

to D1 is a bounded lattice homomorphism from D1 to D2.

Theorem 2.10. BLS is isomorphic to BDA.

Proof. First, we define a functor Φ: BLS → BDA as follows. For (B,≺) ∈ BLS,
let Φ(B,≺) = (B, D≺) and for h ∈ homBLS((B1,≺1), (B2,≺2)), let Φ(h) = h.
By Lemma 2.4, Φ(B,≺) ∈ BDA. Suppose h ∈ homBLS((B1,≺1), (B2,≺2)).
Then h is a Boolean homomorphism. Let a ∈ D≺1 . This implies a ≺1 a. As
h preserves lattice subordination, h(a) ≺2 h(a). Thus, h(a) ∈ D≺2 , and so
Φ(h) = h ∈ homBDA((B1, D≺1), (B2, D≺2)). It follows that Φ is a well-defined
functor.

Next, we define a functor Ψ: BDA → BLS as follows. For (B, D) ∈ BDA, let
Ψ(B, D) = (B,≺D) and for h ∈ homBDA((B1, D1), (B2, D2)), let Ψ(h) = h. By
Lemma 2.6, Ψ(B, D) ∈ BLS. Suppose that h ∈ homBDA((B1, D1), (B2, D2)).
Then h is a Boolean homomorphism. Let a, b ∈ B1 with a ≺D1 b. This implies
that there exists c ∈ D1 with a ≤1 c ≤1 b. Thus, h(a) ≤2 h(c) ≤2 h(b), and
as h(c) ∈ D2, this yields that h(a) ≺D2 h(b). From this we conclude that
Ψ(h) = h ∈ homBLS((B1,≺D1), (B2,≺D2)), so Ψ is also a well-defined functor.

Let (B,≺) ∈ BLS. By Lemma 2.7(1), ΨΦ(B,≺) = Ψ(B, D≺) = (B,≺D≺) =
(B,≺). Let (B, D) ∈ BDA. By Lemma 2.7(2), ΦΨ(B, D) = Φ(B,≺D) =
(B, D≺D

) = (B, D). Thus, BLS is isomorphic to BDA. �

Remark 2.11. We conclude this section by comparing lattice subordinations
to de Vries proximities. We recall [8] that a de Vries proximity on a Boolean
algebra B is a binary relation ≺ on B satisfying the following axioms:

(DV1) 1 ≺ 1.
(DV2) a ≺ b implies a ≤ b.
(DV3) a ≤ b ≺ c ≤ d implies a ≺ d.
(DV4) a ≺ b, c implies a ≺ b ∧ c.
(DV5) a ≺ b implies ¬b ≺ ¬a.
(DV6) a ≺ b implies that there exists c ∈ B with a ≺ c ≺ b.
(DV7) a �= 0 implies that there exists b �= 0 with b ≺ a.

A de Vries proximity ≺ is zero-dimensional [2] if in addition it satisfies the
following strong form of (DV6):

(SDV6) a ≺ b implies that there exists c ∈ B with c ≺ c and a ≺ c ≺ b.

It follows from Definition 2.1 and Lemma 2.2 that if ≺ is a lattice subordination
on B, then ≺ satisfies all the axioms of a zero-dimensional de Vries proximity
except (DV5) and (DV7). The following simple example shows that lattice
subordinations do not always satisfy these two axioms. Let B = {0, a,¬a, 1} be
the four-element Boolean algebra, let D = {0, a, 1} be its bounded sublattice,
and let ≺D be the corresponding lattice subordination. Then a ≺D a, but
¬a �≺D ¬a, so ≺D does not satisfy (DV5). Also, ¬a �= 0, but there is no b �= 0
in B with b ≺D ¬a. So ≺D does not satisfy (DV7).
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3. Boolean lattice subordinations

In this section, we introduce Boolean lattice subordinations and show that
the category of Boolean algebras with a Boolean lattice subordination is iso-
morphic to the category of pairs (B, D), where D is a Boolean subalgebra
of B.

Definition 3.1. Let ≺ be a lattice subordination on a Boolean algebra B.
We call ≺ a Boolean lattice subordination if a ≺ b implies ¬b ≺ ¬a.

Lemma 3.2. Let ≺ be a lattice subordination on B. Then the following con-
ditions are equivalent:

(1) ≺ is a Boolean lattice subordination.
(2) a ∈ D≺ implies ¬a ∈ D≺.
(3) D≺ is a Boolean subalgebra of B.

Proof. (1)⇒(2): If a ∈ D≺, then a ≺ a. As ≺ is a Boolean lattice subordina-
tion, this implies ¬a ≺ ¬a. Therefore, ¬a ∈ D≺.

(2)⇒(3): D≺ is a bounded sublattice of B that is closed under ¬, so D≺ is
a Boolean subalgebra of B.

(3)⇒(1): Let a ≺ b. Then there exists c ∈ D≺ with a ≤ c ≤ b. Therefore,
¬b ≤ ¬c ≤ ¬a, and as ¬c ∈ D≺, we conclude that ¬b ≺ ¬a. �

Lemma 3.3. Let D be a bounded sublattice of B. Then D is a Boolean
subalgebra of B iff ≺D is a Boolean lattice subordination on B.

Proof. First suppose that D is a Boolean subalgebra of B. Let a ≺D b. Then
there exists c ∈ D with a ≤ c ≤ b. Therefore, ¬b ≤ ¬c ≤ ¬a. As ¬c ∈ D,
we obtain that ¬b ≺D ¬a. Thus, ≺D is a Boolean lattice subordination on B.
Next suppose that ≺D is a Boolean lattice subordination on B and a ∈ D.
Then a ≺D a. Therefore, ¬a ≺D ¬a, which implies that ¬a ∈ D. Thus, D is
a Boolean subalgebra of B. �

Definition 3.4.
(1) Let BLB be the full subcategory of BLS consisting of Boolean algebras

with a Boolean lattice subordination.
(2) Let BBA be the full subcategory of BDA consisting of the pairs (B, D),

where D is a Boolean subalgebra of B.

Remark 3.5. If h : B1 → B2 is a morphism in BBA, then the restriction of h

to D1 is a Boolean algebra homomorphism from D1 to D2.

Theorem 3.6. BLB is isomorphic to BBA.

Proof. Apply Theorem 2.10, Lemma 3.2, and Lemma 3.3. �

Remark 3.7. Boolean lattice subordinations obviously satisfy (DV5). How-
ever, they still do not have to satisfy (DV7). Let B = {0, a,¬a, 1} be the
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four-element Boolean algebra, let D = {0, 1} be its two-element Boolean sub-
algebra, and let ≺D be the corresponding Boolean lattice subordination. Then
a �= 0, but there is no b �= 0 in B such that b ≺D a. So ≺D does not satisfy
(DV7).

4. Heyting lattice subordinations

In this section, we introduce Heyting lattice subordinations. We prove
that the category of Boolean algebras with a Heyting lattice subordination is
isomorphic to the category of S4-algebras, and that its full subcategory, where
the subordination is also Boolean, is isomorphic to the category of S5-algebras.

Definition 4.1. Let ≺ be a lattice subordination on a Boolean algebra B. We
call ≺ a Heyting lattice subordination if for each a ∈ B the set {b ∈ B : b ≺ a}
has a largest element, which we denote by �a.

Lemma 4.2. Let ≺ be a Heyting lattice subordination on B. Then for each
a ∈ B, we have �a ≺ �a. Consequently, a ≺ b implies �a ≺ �b.

Proof. We clearly have �a ≺ a. Therefore, there exists c ∈ B with c ≺ c and
�a ≤ c ≤ a. Thus, �a ≤ c and c ≺ a, which implies �a = c. Consequently,
�a ≺ �a. Now suppose a ≺ b. Then there exists c ∈ B with c ≺ c and
a ≤ c ≤ b. Therefore, �c ≺ �c and �a ≤ �c ≤ �b. Thus, �a ≺ �b. �

Lemma 4.3. Let ≺ be a Heyting lattice subordination on B; then � : B → D≺
is a right adjoint to the inclusion D≺ ↪→ B.

Proof. That � : B → D≺ is well defined follows from Lemma 4.2. Let x ∈ D≺
and y ∈ B. As �y ≤ y, if x ≤ �y, then x ≤ y. Conversely, if x ≤ y, then
x ≺ x ≤ y, so x ≺ y, yielding x ≤ �y. Thus, x ≤ y iff x ≤ �y, which means
that � : B → D≺ is a right adjoint to the inclusion D≺ ↪→ B. �

Definition 4.4. ([10, Sec. II.5]) Let D be a bounded sublattice of B. We
call D relatively complete (in B) if the inclusion D ↪→ B has a right adjoint,
which we denote by � : B → D. In other words, D is relatively complete (in
B) iff for each a ∈ B, the set {d ∈ D : d ≤ a} has a largest element.

Lemma 4.5. Let D be a bounded sublattice of a Boolean algebra B. Then D

is relatively complete iff ≺D is a Heyting lattice subordination.

Proof. Let a ∈ B, and consider {d ∈ D : d ≤ a} and {b ∈ B : b ≺D a}.
Clearly, {d ∈ D : d ≤ a} is a cofinal subset of {b ∈ B : b ≺D a}. Therefore,
{d ∈ D : d ≤ a} has a largest element iff {b ∈ B : b ≺D a} has a largest
element. Thus, D is a relatively complete sublattice of B iff ≺D is a Heyting
lattice subordination on B. �

As follows from Theorem 2.10 and Lemma 4.5, the full subcategory of BLS

consisting of Boolean algebras with a Heyting lattice subordination is isomor-
phic to the full subcategory of BDA consisting of the pairs (B, D), where D
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is a relatively complete sublattice of B. However, it is more interesting to
consider the non-full subcategory of BLS whose morphisms also preserve the
right adjoint �.

Lemma 4.6. Let (B1,≺1) and (B2,≺2) be Boolean algebras with a Heyting
lattice subordination and let h : B1 → B2 be a morphism in BLS.

(1) h(�1a) ≤2 �2h(a).
(2) a ≺1 b implies h(�1a) ≺2 �2h(b) and �2h(a) ≺2 h(�1b).

Proof. (1): Since �1a ≤1 a, we have h(�1a) ≤2 h(a). Because �1a ∈ D≺1 and
h : B1 → B2 is a morphism in BLS, h(�1a) ∈ D≺2 . So, h(�1a) ≤2 �2h(a).

(2) Suppose a ≺1 b. Then h(a) ≺2 h(b). By Lemma 4.2, �2h(a) ≺2 �2h(b).
Thus, by (1), h(�1a) ≺2 �2h(b). Also, a ≺1 b implies a ≤1 �1b. Because
�1b ∈ D≺1 , so a ≺1 �1b. Therefore, h(a) ≺2 h(�1b). Since �2h(a) ≤2 h(a),
we conclude that �2h(a) ≺2 h(�1b). �

Definition 4.7. (1) Let BLH be the category whose objects are Boolean alge-
bras with a Heyting lattice subordination and whose morphisms are Boolean
homomorphisms h : B1 → B2 satisfying both a ≺1 b implies h(a)≺2 h(b) and
e ≺2 �2h(a) implies that there exists b with b ≺1 a and e ≺2 h(b). It is easy
to check that BLS is a category where composition of two morphisms is the
usual function composition.

(2) Let BHA be the category whose objects are pairs (B, D), where B is
a Boolean algebra and D is a relatively complete sublattice of B, and whose
morphisms are Boolean homomorphisms h : B1 → B2 satisfying a ∈ D1 implies
h(a) ∈ D2 and h(�1a) = �2h(a). It is straightforward that BHA is a category
where composition of two morphisms is the usual function composition.

Theorem 4.8. BLH is isomorphic to BHA.

Proof. By Theorem 2.10 and Lemma 4.5, it is sufficient to show that for a
morphism h : B1 → B2 in BLS (or equivalently in BDA), h(�1a) = �2h(a)
iff e ≺2 �2h(a) implies that there exists b with b ≺1 a and e ≺2 h(b). First,
suppose that h(�1a) = �2h(a). Let e ≺2 �2h(a). Set b = �1a. Because
�1a ∈ D≺1 , so b = �1a ≺1 �1a ≤1 a. Therefore, b ≺1 a. Moreover, h(b) =
h(�1a) = �2h(a), so e ≺2 h(b). Next, suppose that e ≺2 �2h(a) implies
that there exists b with b ≺1 a and e ≺2 h(b). Let a ∈ B1. By Lemma 4.6(1),
h(�1a) ≤2 �2h(a). Let e ≺2 �2h(a). Then there exists b such that b ≺1 a and
e ≺2 h(b). From b ≺1 a, it follows that b ≤1 �1a. So, h(b) ≤2 h(�1a). Thus,
e ≺2 h(�1a), which yields e ≤2 h(�1a). In particular, since �2h(a) ∈ D≺2 , we
have �2h(a) ≺2 �2h(a), so �2h(a) ≤2 h(�1a). Thus, h(�1a) = �2h(a). �

We recall that an S4-algebra (also known as an interior algebra [5], closure
algebra [14], or topological Boolean algebra [18]) is a pair (B, �) where B

is a Boolean algebra and � : B → B satisfies (i) �a ≤ a, (ii) �a ≤ ��a,
(iii) �(a∧b) = �a∧�b, and (iv) �1 = 1. Let S4 be the category of S4-algebras
and S4-algebra homomorphisms.
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Corollary 4.9. BLH is isomorphic to S4.

Proof. It is known (see, e.g., [10, Sec. II.5] or [11, Sec. 4]) that S4 is isomorphic
to BHA. By Theorem 4.8, BHA is isomorphic to BLH. The result follows. �

We recall that an S5-algebra (also known as a monadic algebra [13]) is an
S4-algebra satisfying ¬�a ≤ �¬�a. Let S5 be the full subcategory of S4

consisting of S5-algebras. Let BLHB be the full subcategory of BLH consisting
of those objects of BLH where the Heyting lattice subordination is Boolean,
and let BHBA be the full subcategory of BHA consisting of those pairs (B, D)
in BHA where D is a Boolean subalgebra of B.

Corollary 4.10. The categories S5, BLHB, and BHBA are isomorphic.

Proof. It follows from [13, pp. 44–46] that S5 is isomorphic to BHBA. That
BLHB is isomorphic to BHBA follows from Theorem 4.8 and Theorem 3.6. The
result follows. �

5. Duality

In this section, we show that lattice subordinations and Heyting lattice
subordinations on a Boolean algebra B can be described by means of Priestley
quasi-orders and Esakia quasi-orders on the Stone space X of B. We also
show that Boolean subordinations on B can be described by means of Priestley
equivalence relations on X. Esakia duality for S4-algebras and Halmos duality
for S5-algebras follow.

Definition 5.1. Let X be a Stone space. We call a quasi-order ≤ on X a
Priestley quasi-order if x �≤ y implies that there exists a clopen up-set U of
X with x ∈ U and y /∈ U . We call a pair (X,≤) a quasi-ordered Priestley
space if X is a Stone space and ≤ is a Priestley quasi-order on X. If ≤ is a
partial order, then (X,≤) is a Priestley space. Let QPS be the category of
quasi-ordered Priestley spaces and continuous order-preserving maps, and let
PS be the full subcategory of QPS consisting of all Priestley spaces.

Let B be a Boolean algebra and let X be its Stone space. It follows from
the dual characterization of bounded sublattices of a bounded distributive
lattice [1, 7, 19, 3, 4] that bounded sublattices of B are in 1–1 correspondence
with Priestley quasi-orders on X. The correspondence is obtained as follows:
If D is a bounded sublattice of B, then the corresponding Priestley quasi-
order ≤D on X is defined by setting x ≤D y iff x ∩ D ⊆ y; and if ≤ is a
Priestley quasi-order on X, then the corresponding bounded sublattice of B is
D≤ = {a ∈ B : ϕ(a) is an up-set of X}, where ϕ(a) = {x ∈ X : a ∈ x}. This
yields a 1–1 correspondence between quasi-ordered Priestley spaces and the
pairs (B, D), where B is a Boolean algebra and D is a bounded sublattice of
D. This 1–1 correspondence extends naturally to a dual equivalence between
QPS and BDA.
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Theorem 5.2. BDA is dually equivalent to QPS.

Proof. First define a contravariant functor (−)∗ : BDA → QPS as follows. For
(B, D) ∈ BDA, let (B, D)∗ = (X,≤), with X the Stone space of B and x ≤ y

iff x ∩ D ⊆ y. From the paragraph above, ≤ is a Priestley quasi-order on X.
For h ∈ homBDA((B1, D1), (B2, D2)), let h∗ : (B2, D2)∗ → (B1, D1)∗ be given
by h∗(x) = h−1(x). That h∗ is a well-defined continuous map follows from
Stone duality. To see that h∗ is order-preserving, let x ≤ y. Then x ∩ D2 ⊆ y.
Therefore, h−1(x) ∩ D1 ⊆ h−1(y). Thus, h∗ is order-preserving, and it is
straightforward to see that (−)∗ is a well-defined contravariant functor.

Next, define a contravariant functor (−)∗ : QPS → BDA as follows. For
(X,≤) ∈ QPS, let (X,≤)∗ = (BX , DX), where BX is the Boolean algebra
of clopen subsets of X and DX is the bounded sublattice of BX consist-
ing of all clopen up-sets of (X,≤). For f ∈ homQPS((X1,≤1), (X2,≤2)), let
f∗ : (X2,≤2)∗ → (X1,≤1)∗ be given by f∗(U) = f−1(U). That f∗ is a well-
defined Boolean homomorphism follows from Stone duality. Moreover, as f is
continuous and order-preserving, the f -inverse image of each clopen up-set of
X2 is a clopen up-set of X1. Therefore, f∗ ∈ homBDA((X2,≤2)∗, (X1,≤1)∗),
and it is straightforward to see that (−)∗ is a well-defined contravariant func-
tor.

Finally, the 1–1 correspondence between bounded sublattices of Boolean
algebras and Priestley quasi-orders on Stone spaces yields that BDA is dually
equivalent to QPS. �

As an immediate consequence of Theorem 2.10 and Theorem 5.2 we obtain:

Corollary 5.3. BLS is dually equivalent to QPS.

For the reader’s convenience, we give a direct description of the contravari-
ant functors that establish this dual equivalence. Let (B,≺) ∈ BLS. For
S ⊆ B, let ↑↑S = {a ∈ B : ∃b ∈ S with b ≺ a}. Define (−)∗ : BLS → QPS

as follows. For (B,≺) ∈ BLS, let (B,≺)∗ = (X,≤), where X is the Stone
space of B and x ≤ y iff ↑↑x ⊆ y. For h ∈ homBLS((B1,≺1), (B2,≺2)), let
h∗ : (B2,≺2)∗ → (B1,≺1)∗ be given by h∗(x) = h−1(x). That (−)∗ is well
defined follows from the following lemma.

Lemma 5.4.
(1) Let (B,≺) ∈ BLS, D≺ = {a ∈ B : a ≺ a}, and x, y ∈ (B,≺)∗. Then

↑↑x ⊆ y iff x ∩ D≺ ⊆ y.
(2) Let h ∈ homBLS((B1,≺1), (B2,≺2)) and x, y ∈ (B2,≺2)∗. If ↑↑x ⊆ y, then

↑↑h−1(x) ⊆ h−1(y).

Proof. (1): First suppose that ↑↑x ⊆ y and a ∈ x∩D≺. Then a ∈ ↑↑x, so a ∈ y,
yielding x ∩ D≺ ⊆ y. Next, suppose that x ∩ D≺ ⊆ y and a ∈ ↑↑x. Then there
exists b ∈ x with b ≺ a. Therefore, there exists c ∈ D≺ with b ≤ c ≤ a. As
c ∈ x ∩ D≺, we have c ∈ y, so a ∈ y, yielding ↑↑x ⊆ y.
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(2): Let a ∈ ↑↑h−1(x). Then there exists b ∈ h−1(x) with b ≺1 a. Therefore,
h(b) ≺2 h(a), so h(a) ∈ ↑↑x. Thus, h(a) ∈ y, yielding a ∈ h−1(y). �

Define (−)∗ : QPS → BLS as follows. For (X,≤) ∈ QPS, let (X,≤)∗ =
(BX ,≺), where BX is the Boolean algebra of clopen subsets of X and U ≺ V

iff there exists a clopen up-set W of X such that U ⊆ W ⊆ V . As ∅, X are
clopen up-sets and finite intersections and unions of clopen up-sets are clopen
up-sets, ≺ satisfies axioms (S1)–(S3). It follows from the definition that ≺
satisfies axiom (S4). Finally, as clopen up-sets are the reflexive elements of ≺, it
is immediate that ≺ satisfies axiom (S5). For f ∈ homQPS((X1,≤1), (X2,≤2)),
let f∗ : (X2,≤2)∗ → (X1,≤1)∗ be given by f∗(U) = f−1(U). As the f -inverse
image of a clopen up-set of X2 is a clopen up-set of X1, it is obvious that
U ≺2 V implies f−1(U) ≺1 f−1(V ). Thus, (−)∗ is a well-defined contravariant
functor. The functors (−)∗ : BLS → QPS and (−)∗ : QPS → BLS provide the
dual equivalence of Corollary 5.3.

Definition 5.5. Let X be a Stone space and let ≤ be a Priestley quasi-order
on X.

(1) We call ≤ an Esakia quasi-order if ↓U is clopen for each clopen U of X,
where ↓U = {x ∈ X : ∃y ∈ U with x ≤ y}.

(2) We call a pair (X,≤) a quasi-ordered Esakia space if X is a Stone space
and ≤ is an Esakia quasi-order on X.

(3) Let QES be the category of quasi-ordered Esakia spaces and continuous
bounded morphisms between them, where f : (X1,≤1) → (X2,≤2) is a
bounded morphism if f is order-preserving and f(x) ≤2 y implies that
there exists z with x ≤1 z and f(z) = y.

Lemma 5.6.
(1) Suppose that (B,≺) ∈ BLS and (X,≤) = (B,≺)∗. If (B,≺) ∈ BLH, then

(X,≤) ∈ QES.
(2) Suppose that (X,≤) ∈ QPS and (B,≺) = (X,≤)∗. If (X,≤) ∈ QES, then

(B,≺) ∈ BLH.

Proof. (1): For a ∈ B, let �ϕ(a) = −↓−ϕ(a), where − is set-theoretic com-
plement. We show ϕ(�a) = �ϕ(a). For x ∈ X, let ↑x = {y ∈ X : x ≤ y}.
Then x ∈ ϕ(�a) iff �a ∈ x, and x ∈ �ϕ(a) iff ↑x ⊆ ϕ(a). Observe that
↑x ⊆ ϕ(a) iff (∀y ∈ X)(x ≤ y ⇒ a ∈ y) iff (∀y ∈ X)(↑↑x ⊆ y ⇒ a ∈ y). Since
↑↑x is a filter, by the ultrafilter theorem for Boolean algebras, the last condi-
tion is equivalent to a ∈ ↑↑x. As b ≺ a is equivalent to b ≺ �a, we obtain
a ∈ ↑↑x iff �a ∈ x. Therefore, ϕ(�a) = �ϕ(a). Let U be a clopen sub-
set of X. Then −U is also clopen, so there exists a ∈ B with −U = ϕ(a).
Thus, ↓U = −−↓−−U = −(−↓−ϕ(a)) = −�ϕ(a) = −ϕ(�a), and as ϕ(�a) is
clopen, so is ↓U = −ϕ(�a). Consequently, (X,≤) ∈ QES.

(2): Let BX be the Boolean algebra of clopen subsets of X. It is sufficient
to show that for each U ∈ BX , the largest element of {V ∈ BX : V ≺ U} is
−↓−U . Clearly, −↓−U ∈ {V ∈ BX : V ≺ U}. Let V ≺ U and let DX be
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the bounded sublattice of BX consisting of clopen up-sets of X. Then there
exists W ∈ DX with V ⊆ W ⊆ U . As W ∈ DX , we have W ⊆ −↓−U , so
V ⊆ −↓−U , and so −↓−U is the largest element of {V ∈ BX : V ≺ U}. �

Lemma 5.7.
(1) h ∈ homBLH((B1,≺1), (B2,≺2)) ⇒ h∗ ∈ homQES((B2,≺2)∗, (B1,≺1)∗).
(2) f ∈ homQES((X1,≤1), (X2,≤2)) ⇒ f∗ ∈ homBLH((X2,≤2)∗, (X1,≤1)∗).

Proof. (1): By Lemma 5.4(2), h∗ is order-preserving. Let h∗(x) ≤2 y. Then
↑↑h−1(x) ⊆ y. We claim that the filter F generated by ↑↑x∪h[y] has the empty
intersection with the ideal I generated by h[B1 − y]. If not, then there exist
a ∈ ↑↑x, b ∈ y and c /∈ y such that a ∧ h(b) ≤2 h(c). Thus, a ≤2 h(¬b ∨ c).
Since a ∈ ↑↑x, there exists e ∈ x with e ≺2 a, so e ≺2 h(¬b ∨ c), and so
e ≺2 �2h(¬b ∨ c). Since h is a morphism in BLH, there exists d with d ≺1 ¬b∨c

and e ≺2 h(d). Thus, h(d) ∈ x, so d ∈ h−1(x), and so ¬b∨ c ∈ ↑↑h−1(x). This
yields that ¬b∨c ∈ y, a contradiction. Consequently, there exists z ∈ (B2,≺2)∗
such that F ⊆ z and I ∩ z = ∅. From F ⊆ z, it follows that ↑↑x ⊆ z; from
h[y] ⊆ z, it follows that y ⊆ h−1(z), and from h[B1 −y]∩ z = ∅, it follows that
h−1(z) ⊆ y. Therefore, there exists z with x ≤1 z and h∗(z) = y, which then
implies that h∗ ∈ homQES((B2,≺2)∗, (B1,≺1)∗).

(2): Let U, V ∈ BX2 . Now, U ≺2 V implies f−1(U) ≺1 f−1(V ), as we
already saw. Let E ∈ BX1 , U ∈ BX2 , and E ≺1 �1f

−1(U). Then there exists
W ∈ DX1 with E ⊆ W ⊆ �1f

−1(U). From W ⊆ �1f
−1(U), it follows that

W ⊆ f−1(U), so f(W ) ⊆ U . Since W is a clopen up-set and f is a continuous
bounded morphism, f(W ) is a closed up-set of X2. As (X2,≤2) is a quasi-
ordered Priestley space, there exists V ∈ DX2 such that f(W ) ⊆ V ⊆ U .
From V ∈ DX2 , it follows that V ≺2 U , and from E ⊆ W and f(W ) ⊆ V ,
it follows that f(E) ⊆ V , so E ⊆ f−1(V ). Since f−1(V ) ∈ DX1 , this yields
E ≺1 f−1(V ). Therefore, there exists V ∈ BX2 such that V ≺2 U and
E ≺1 f−1(V ). Thus, f∗ ∈ homBLH((X2,≤2)∗, (X1,≤1)∗). �

Theorem 5.8. BLH is dually equivalent to QES.

Proof. By Lemmas 5.6 and 5.7, (−)∗ : BLH → QES and (−)∗ : QES → BLH are
well-defined contravariant functors. Now apply Corollary 5.3. �

Corollary 5.9. BHA is dually equivalent to QES.

Proof. Apply Theorems 4.8 and 5.8. �

Corollary 5.10 (Esakia Duality for S4-algebras). S4 is dually equivalent to
QES.

Proof. Apply Corollary 4.9 and Theorem 5.8. �

Definition 5.11. (1) We call an equivalence relation ∼ on a Stone space X

a Priestley equivalence relation if (X,∼) is a quasi-ordered Priestley space.
Let EPS be the category whose objects are pairs (X,∼), where X is a Stone
space and ∼ is a Priestley equivalence relation on X, and whose morphisms
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are continuous maps that preserve ∼ (that is, maps f : X1 → X2 such that
x ∼1 y implies f(x) ∼2 f(y)).

(2) We call an equivalence relation ∼ on a Stone space X an Esakia equiv-
alence relation if (X,∼) is a quasi-ordered Esakia space, and we call such a
pair (X,∼) a Halmos space because these spaces were first considered by Hal-
mos [13]. Let HS be the category of Halmos spaces and continuous bounded
morphisms between them.

Clearly EPS is a full subcategory of QPS and HS is a full subcategory of
QES.

Theorem 5.12.
(1) BBA is dually equivalent to EPS.
(2) BLB is dually equivalent to EPS.
(3) BLHB is dually equivalent to HS.
(4) BHBA is dually equivalent to HS.
(5) (Halmos Duality for S5-algebras) S5 is dually equivalent to HS.

Proof. (1): Let (B, D) ∈ BBA. Then D is a Boolean subalgebra of B, so ≤
given by x ≤ y iff x ∩ D ⊆ y is an equivalence relation on the Stone space
X of B. Theorem 5.2 now yields (B,≺)∗ ∈ EPS. Let (X,∼) ∈ EPS. As
∼ is an equivalence relation, ∼-up-sets are closed under set-theoretic com-
plement, so U ≺ V implies −V ≺ −U , and hence applying Theorem 5.2
again yields (X,∼)∗ ∈ BBA. One more application of Theorem 5.2 gives
that the restrictions of (−)∗ and (−)∗ are well-defined contravariant functors
(−)∗ : BBA → EPS and (−)∗ : EPS → BBA that establish a dual equivalence
of BBA and EPS.

(2): This follows from (1) and Theorem 3.6.
(3): Let (B,≺) ∈ BLHB. By (2) and Lemma 5.6(1), (B,≺)∗ is a Halmos

space. If h ∈ homBLHB((B1,≺1), (B2,≺2)), then by (2) and Lemma 5.7(1),
h∗ ∈ homHS((B2,≺2)∗, (B1,≺1)∗). This implies that the restriction of (−)∗ to
BLHB is a well-defined contravariant functor to HS. Let (X,∼) ∈ HS. By (2)
and Lemma 5.6(2), (X,∼)∗ ∈ BLHB. If f ∈ homHS((X1,∼1), (X2,∼2)), then
by (2) and Lemma 5.7(2), f∗ ∈ homBLHB((X2,∼2)∗, (X1,∼1)∗). This implies
that the restriction of (−)∗ to HS is a well-defined contravariant functor to
BLHB. Now apply Theorem 5.8.

(4) and (5): These follow from (3) and Corollary 4.10. �

6. Boolean envelopes

In this final section, we introduce full subcategories of BLS and BLH con-
sisting of the objects that are generated by the reflexive elements of the sub-
ordination. We prove that such objects (B,≺) can dually be described by
Priestley orders and Esakia orders on the Stone space of B. Priestley dual-
ity for bounded distributive lattices and Esakia duality for Heyting algebras
follow.
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Definition 6.1. (1) Let D be a bounded sublattice of a Boolean algebra B.
We call B the Boolean envelope of D if B is generated by D; that is, B is the
smallest Boolean subalgebra of B containing D.

(2) Let (B, D) ∈ BDA. We call (B, D) D-generated if B is the Boolean
envelope of D. Let GBDA be the full subcategory of BDA consisting of the
D-generated objects of BDA. Also, let GBHA be the full subcategory of BHA

consisting of D-generated objects of BHA.
(3) Let (B,≺) ∈ BLS. We call (B,≺) D-generated if B is the Boolean

envelope of D≺. Let GBLS be the full subcategory of BLS consisting of the
D-generated objects of BLS. Also, let GBLH be the full subcategory of BLH

consisting of D-generated objects of BLH.

The next theorem is an immediate consequence of Theorem 2.10, Theo-
rem 4.8, and Definition 6.1.

Theorem 6.2. GBLS is isomorphic to GBDA and GBLH is isomorphic to
GBHA.

Let DL be the category of bounded distributive lattices and bounded lattice
homomorphisms. There is a natural functor Γ: BDA → DL that sends each
(B, D) to D and each h ∈ homBDA((B1, D1), (B2, D2)) to the restriction of h

to D1. Equivalently there is a functor Γ: BLS → DL that sends each (B,≺)
to D≺ and each h ∈ homBLS((B1,≺1), (B2,≺2)) to the restriction of h to D≺1 .

Let HA be the category of Heyting algebras and Heyting homomorphisms.
Then HA is a non-full subcategory of DL. If (B, D) ∈ BHA, then D ∈ HA;
also, if h ∈ homBHA((B1, D1), (B2, D2)), then the restriction of h to D1 is a
morphism in HA (see, e.g., [10, Sec. II.2]). Therefore, Γ restricts to a functor
from BHA to HA. Equivalently, if (B,≺) ∈ BLH, then D≺ ∈ HA; and if
h ∈ homBLH((B1,≺1), (B2,≺2)), then the restriction of h to D≺1 is a morphism
in HA. Therefore, Γ restricts to a functor from BLH to HA.

The functor Γ: BDA → DL has a left adjoint Δ: DL → BDA sending each D

to the pair Δ(D) = (B(D), D), where B(D) is the free Boolean extension of D,
and each h ∈ homDL(D1, D2) to its unique extension Δ(h) : B(D1) → B(D2)
(see, e.g., [6, 10, 11]). Equivalently, the left adjoint from Δ: DL → BLS

to Γ: BLS → DL sends each D to the pair Δ(D) = (B(D),≺D) and each
h ∈ homDL(D1, D2) to Δ(h) : B(D1) → B(D2).

Similarly, Γ: BHA → HA has a left adjoint Δ: HA → BHA, or equiva-
lently, Γ: BLH → HA has a left adjoint Δ: HA → BLH. If D ∈ DL, then
(B(D), D) ∈ GBDA, and if D ∈ HA, then (B(D), D) ∈ GBHA. Equivalently, if
D ∈ DL, then (B(D),≺D) ∈ GBLS, and if D ∈ HA, then (B(D),≺D) ∈ GBLH.
Therefore, we arrive at the following theorem.

Theorem 6.3.
(1) (see [6, 10, 11]) DL is equivalent to GBDA and HA is equivalent to GBHA.
(2) DL is equivalent to GBLS and HA is equivalent to GBLH.
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Lemma 6.4.
(1) Let (B,≺) ∈ BLS and let (X,≤) = (B,≺)∗. Then (B,≺) ∈ GBLS iff ≤ is

a partial order.
(2) Let (B, D) ∈ BDA and let (X,≤) = (B, D)∗. Then (B, D) ∈ GBDA iff ≤

is a partial order.
(3) Let (B,≺) ∈ BLH and let (X,≤) = (B,≺)∗. Then (B,≺) ∈ GBLH iff ≤

is a partial order.
(4) Let (B, D) ∈ BHA and let (X,≤) = (B, D)∗. Then (B, D) ∈ GBHA iff ≤

is a partial order.

Proof. (1): First suppose that (B,≺) ∈ GBLS. To see that ≤ is a partial
order, let x, y ∈ X with x ≤ y and y ≤ x. Then ↑↑x ⊆ y and ↑↑y ⊆ x. We must
show that x = y. If not, then as x, y are ultrafilters of B, we may assume that
x �⊆ y. Therefore, there exists a ∈ x − y. Since B is the Boolean envelope of
D≺, there exist ai, bi ∈ D≺ such that a =

∨n
i=1(ai ∧ ¬bi). As a ∈ x and x is

an ultrafilter, there exists k such that ak ∧ ¬bk ∈ x, so ak ∈ x and bk /∈ x.
Since a /∈ y, for each i we have ai ∧ ¬bi /∈ y, so ak /∈ y or bk ∈ y. If ak /∈ y,
then ak /∈ ↑↑x. But ak ≺ ak, so ak /∈ ↑↑x implies ak /∈ x, a contradiction. If
bk ∈ y, then as bk ≺ bk, we have bk ∈ ↑↑y. Therefore, bk ∈ x, which is again a
contradiction. Thus, such an a does not exist, so x = y, and so ≤ is a partial
order.

Let ≤ be a partial order. As B is isomorphic to the Boolean algebra of
clopen subsets of X and D≺ is isomorphic to the bounded sublattice of clopen
up-sets of X, it is sufficient to show that each clopen of X is a Boolean com-
bination of clopen up-sets of X. Let U be a clopen subset of X and let x ∈ U .
As ≤ is a partial order, for each y /∈ U , either x �≤ y or y �≤ x. If x �≤ y,
then there exists a clopen up-set Vy of X such that x ∈ Vy and y /∈ Vy; and
if y �≤ x, then there exists a clopen up-set Wy of X such that y ∈ Wy and
x /∈ Wy. Therefore, x ∈ ⋂{Vy : x �≤ y} ∩ ⋂{−Wy : y �≤ x} ⊆ U , which by
compactness implies that there are finitely many V1, . . . , Vn and W1, . . . , Wm

such that x ∈ V1 ∩ · · · ∩ Vn ∩ −W1 ∩ · · · ∩ −Wm ⊆ U . Thus, for each x ∈ U ,
there is a neighborhood of x that is a Boolean combination of clopen up-sets
of X and is contained in U . Applying compactness again yields that U is a
finite union of Boolean combinations of clopen up-sets of X, hence is a Boolean
combination of clopen up-sets of X. Consequently, (B,≺) ∈ GBLS.

(2): This follows from (1).
(3): This is a particular case of (1).
(4): This follows from (3). �

Definition 6.5. (1) Let (X,≤) be a quasi-ordered Priestley space. We call
(X,≤) a (partially ordered) Priestley space if ≤ is a partial order. Let PS be
the full subcategory of QPS consisting of Priestley spaces.

(2) Let (X,≤) be a quasi-ordered Esakia space. We call (X,≤) a (partially
ordered) Esakia space if ≤ is a partial order. Let ES be the full subcategory
of QES consisting of Esakia spaces.
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Theorem 6.6.
(1) GBLS is dually equivalent to PS.
(2) GBDA is dually equivalent to PS.
(3) GBLH is dually equivalent to ES.
(4) GBHA is dually equivalent to ES.

Proof. (1): Apply Corollary 5.3 and Lemma 6.4(1).
(2): This follows from (1) and Theorem 6.2.
(3): This follows from Theorem 5.8 and Lemma 6.4(3).
(4): This follows from (3) and Theorem 6.2. �

Corollary 6.7.
(1) (Priestley Duality for Bounded Distributive Lattices) DL is dually equiv-

alent to PS.
(2) (Esakia Duality for Heyting Algebras) HA is dually equivalent to ES.

Proof. Apply Theorem 6.3 and Theorem 6.6. �

Remark 6.8. If (B, D) ∈ BBA, then D is a Boolean subalgebra of B, so (B, D)
is D-generated iff B = D. Therefore, the full subcategory GBBA of BBA

consisting of D-generated objects of BBA is isomorphic to the category BA

of Boolean algebras and Boolean homomorphisms. Applying Theorem 3.6,
we obtain that the full subcategory GBLB of BLB consisting of D-generated
objects of BLB is also isomorphic to BA. This implies that each of GBLB and
GBBA is dually equivalent to the category Stone of Stone spaces and continuous
maps.

We conclude the paper with five tables. In the first four tables we list the
categories considered in this paper. For readability, we only list the objects
of the categories. In the fifth table, we describe the obtained isomorphisms,
equivalences, and dual equivalences, together with relevant theorem numbers.
For two categories C and D, we write C ∼= D if C and D are isomorphic, C ∼ D
if C and D are equivalent, and C d∼ D if C and D are dually equivalent.

Table 1. Categories of Boolean algebras with subordination

Category Objects

BLS Boolean algebras with a lattice subordination
GBLS D-generated objects of BLS

BLB objects of BLS where the lattice subordination is Boolean
GBLB D-generated objects of BLB

BLH Boolean algebras with a Heyting lattice subordination
GBLH D-generated objects of BLH

BLHB objects of BLH where the Heyting lattice subordination is
Boolean
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Table 2. Categories of pairs (B, D) with D subordinate to B

Category Objects

BDA pairs (B, D) where B is a Boolean algebra and D is a bounded
sublattice of B

GBDA D-generated objects of BDA

BBA objects of BDA where D is a Boolean subalgebra of B

GBBA D-generated objects of BBA

BHA pairs (B, D) where B is a Boolean algebra and D is a relatively
complete sublattice of B

GBHA D-generated objects of BHA

BHBA objects of BHA where D is a Boolean subalgebra of B

Table 3. Categories of algebras

Category Objects

S4 S4-algebras
S5 S5-algebras
DL bounded distributive lattices
HA Heyting algebras
BA Boolean algebras

Table 4. Categories of spaces

Category Objects

QPS quasi-ordered Priestley spaces
EPS objects of QPS where the quasi-order is an equivalence relation
PS Priestley spaces
QES quasi-ordered Esakia spaces
HS Halmos spaces
ES Esakia spaces
Stone Stone spaces

Table 5. Isomorphisms, equivalences, and dual equivalences

BLS ∼= BDA
d∼ QPS Thm. 2.10, 5.2, Cor. 5.3

BLB ∼= BBA
d∼ EPS Thm. 3.6, 5.12

BLH ∼= BHA ∼= S4
d∼ QES Thm. 4.8, 5.8, Cor. 4.9,

5.9, 5.10

BLHB ∼= BHBA ∼= S5
d∼ HS Cor. 4.10, Thm. 5.12

GBLS ∼= GBDA ∼ DL
d∼ PS Thm. 6.3, 6.6, Cor. 6.7

GBLH ∼= GBHA ∼ HA
d∼ ES Thm. 6.3, 6.6, Cor. 6.7

GBLB ∼= GBBA ∼= BA
d∼ Stone Rem. 6.8
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