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Natural extensions and profinite completions of algebras

B.A. Davey, M. J. Gouveia, M. Haviar, and H.A. Priestley

Abstract. This paper investigates profinite completions of residually finite algebras,
drawing on ideas from the theory of natural dualities. Given a class A = ISP(M),
where M is a set, not necessarily finite, of finite algebras, it is shown that each
A ∈ A embeds as a topologically dense subalgebra of a topological algebra nA(A)
(its natural extension), and that nA(A) is isomorphic, topologically and algebraically,
to the profinite completion of A. In addition it is shown how the natural extension
may be concretely described as a certain family of relation-preserving maps; in the
special case that M is finite and A possesses a single-sorted or multisorted natural
duality, the relations to be preserved can be taken to be those belonging to a dualising
set. For an algebra belonging to a finitely generated variety of lattice-based algebras, it
is known that the profinite completion coincides with the canonical extension. In this
situation the natural extension provides a new concrete realisation of the canonical
extension, generalising the well-known representation of the canonical extension of a
bounded distributive lattice as the lattice of up-sets of the underlying ordered set of
its Priestley dual. The paper concludes with a survey of classes of algebras to which
the main theorems do, and do not, apply.

1. Introduction

We study residually finite algebras and the profinite completions of such

algebras. We define an algebra to be residually finite if it belongs to some

class ISP(M), where M is a set of finite algebras; we shall call such a class

an internally residually finite prevariety. Background information on residual

finiteness is given in Section 2 (the basics) and in Section 5 (major theorems).

In Section 2 we also spell out precisely the definitions and elementary proper-

ties of profinite completions.

By way of introduction, we recall that we can associate with any algebra

A an algebra Â, known as its profinite completion. Loosely, Â is the inverse

(or projective) limit algebra formed from the finite quotients A/α, where the

indexing set is the set of congruences α of finite index, ordered by reverse

inclusion and the bonding maps are the natural homomorphisms. There is

a natural homomorphism from A into Â and this is an embedding precisely
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when A is residually finite (cf. Lemma 2.1). By definition, any residually

finite algebra lies in some class A = ISP(M), where M is a set of finite

algebras. We adopt a notion of profinite completion of A relativised to the

internally residually finite prevariety A. We denote this completion, into which

A embeds, by proA(A) (see Section 2 for the definition). When A is a variety,

proA(A) coincides with Â.

As observed by George Grätzer [35, p. 133], inverse limits of algebras can be

hard to visualise. Hence alternative concrete descriptions of profinite comple-

tions can be valuable. Our contribution is to provide a new concrete description

of the profinite completion of any residually finite algebra (Theorems 3.6 and

4.1 combined). This description is uniform, in that it takes the same form for

all such algebras. Interest in profinite completions has been boosted by the

discovery that, for residually finite lattice-based varieties, these completions

coincide with canonical extensions (see in particular J. Harding’s paper [36]).

Thus a by-product of our results is a new concrete characterisation of canonical

extensions in such varieties.

Projective limits are, of course, defined in the setting of an arbitrary cate-

gory and in particular in categories of topological algebras in which the finite

objects carry the discrete topology. In this situation profinite completions

are Boolean topological algebras with many desirable properties. For discus-

sions of such completions of particular relevance to our study see Clark et al.

[10, Section 8], Clark et al. [11, Sections 1 and 2], and also the papers of

B. Banaschewski [3] and K. Numakura [60]. Davey, Haviar and Priestley [18]

investigated profinite completions of distributive lattices from the standpoint

of topological algebra, revealing, inter alia, the relationship between profinite

completions and Priestley duality.

We shall exploit ideas from natural duality theory, as presented for exam-

ple in the monograph [9] by Clark and Davey. We stress however that our

principal results are applicable in a wider setting than that of [9]: we consider

classes A = ISP(M), where M is a set of finite algebras, without demanding,

as in [9], that M be finite. Even when working in that restricted setting, we

do not require dualisability; however we do get a more refined description of

the profinite completions of the members of ISP(M) when a natural duality is

available (Theorem 4.3). We do not give here the many definitions that would

be required if we were to explain precisely what is meant by a natural dual-

ity, but shall otherwise make our account as self-contained as possible. The

‘vanilla’ version of natural duality theory is developed for classes ISP(M), for

M a finite algebra. In this setting the determination of which quasivarieties

are dualisable and which are not is a challenging problem without a definitive

answer, but one on which there has been much fruitful research. More gener-

ally, a theory of multisorted dualities, initiated by Davey and Priestley in [22]

and sketched in [9, Section 7.1] is available for quasivarieties ISP(M), where

now M is a finite set of finite algebras. Conceptually this theory is no more
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difficult than that for the single-sorted case, though at first sight the notation

may look forbidding.

In outline, the basis of our approach to completions is as follows. Let

A = ISP(M) be an internally residually finite prevariety. In Section 2 we de-

fine, in a completely natural way, the promised profinite completion proA(A)

of A, relative to A. Then, in Section 3, we construct a covariant natural exten-

sion functor nA, derived via hom-functors, so that each nA(A) is a topological

algebra whose underlying algebra belongs to A and such that the original al-

gebra is isomorphic to a topologically dense subalgebra of nA(A). We then

prove, by an argument that is categorical in style, that the natural extension

of A is isomorphic, algebraically and topologically, to the A-profinite comple-

tion (Theorem 3.6). We indicate informally here how the construction of the

natural extension works at the object level in the case that A is a quasivariety

ISP(M), for some finite algebra M. Let A ∈ A. We form the topological

product M
A(A,M)
T

, where MT denotes M equipped with the discrete topology.

Within M
A(A,M)
T

we consider the subset e
A
(A) = { e

A
(a) | a ∈ A } consisting

of the evaluation maps. Then e
A
(A) is an algebra isomorphic to A, by virtue

of the fact that A ∈ ISP(M). The natural extension nA(A) is defined to be

the topological closure in M
A(A,M)
T

of e
A
(A).

Section 3 owes relatively little to duality theory. Those familiar with the

notion of an alter ego will find no mention of it there: we leapfrog the level of

the first dual when constructing the natural extension. In Section 4 the focus

changes. We recall what happens in the special situation that A = ISP(M) is

dualisable, by means of some alter ego M∼ of M. Then, for each A ∈ A, its

isomorphic copy e
A
(A) consists exactly of the continuous maps preserving all

finitary algebraic relations on M, or equivalently those continuous maps pre-

serving the structure derived from M∼ . Here we have an instance of entailment

of relations, a topic of key importance in duality theory (see [9, Chapters 8

and 9]). We adapt to our setting ideas of entailment. This enables us to de-

scribe the natural extension as the family of (not necessarily continuous) maps

preserving all finitary algebraic relations, or in the dualisable case, preserving

all members of a dualising set. The precise statements, for the multisorted

case, are given in Theorem 4.1 and Theorem 4.3.

The last two sections of the paper concern the applicability of our results.

Section 5 draws heavily on results from universal algebra, and on the existing

literature. We present a survey of classes of varieties of algebras to which the

main theorems do, and do not, apply. Specifically, we highlight the extent to

which residual finiteness correlates with dualisability. Classes considered in-

clude lattice-based varieties and more generally NU-varieties, those generated

by monotone clones, as well as affine complete, paraprimal and discrimina-

tor varieties and varieties of groups. In all these cases the results are largely

positive. We draw attention in particular to Theorems 5.1, 5.2 and 5.6. We

also consider briefly semilattice-based varieties, varieties of semigroups, and
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varieties generated by unary algebras; here the results are less complete, but

enough is known for contrasting behaviours to show up.

In Section 6 we focus on the natural extension, giving illustrations in pre-

varieties which are not varieties and in varieties which are not dualisable.

A comment on our policy on referencing is appropriate here. The scope

of this paper is, as we have indicated above, very wide, both as regards its

range of techniques and as regards the diversity of the examples. Limitations

of space have dictated that not all primary sources could be cited and, where

suitable secondary sources with comprehensive bibliographies were available,

we have taken advantage of them, especially for peripheral material and some

historical background.

2. Preliminaries: profinite completions

In this section we formally introduce profinite completions and present some

of their properties, including the relationship between profiniteness and resid-

ual finiteness. Basic facts on projective, alias inverse, limits in categories can

be found in S. Mac Lane [50]. For a discussion in the context of algebras see

for example G. Grätzer [35, Section 21] and of topological spaces see R. En-

gelking [27, Chapter 2, Section 6]. For further background on profinite limits

we recommend Ribes and Zalesskii [68, Chapter 1].

Consider a class A of algebras all of the same type. We call this a prevariety

if it is of the form ISP(M), the class of isomorphic copies of subalgebras of

products of algebras in M (where M may be a proper class). According to

our earlier definition, A is an internally residually finite prevariety, henceforth

usually abbreviated to IRF-prevariety, if in addition M is a set and every

algebra in M can be chosen to be finite. Residual finiteness is customarily

studied in the setting of varieties. There, a single algebra is called residually

finite (the term finitely approximable also occurs in the literature) if it is

isomorphic to a subalgebra of a product of finite algebras, and a variety is called

residually finite if all its members are residually finite. Thanks to Birkhoff’s

Subdirect Product Theorem, a variety is residually finite in this traditional

sense if and only if it is internally residually finite.

If ISP(M) is an IRF-prevariety in which M is a finite set of finite algebras,

then ISP(M) will be closed under ultraproducts and thus a quasivariety (see

Burris and Sankapannavar [8, p. 219]). On the other hand, an IRF-prevariety

need not be a quasivariety in general—see Example 6.2 below. We warn that

a prevariety which is such that each of its members is residually finite need not

be internally residually finite: the prevariety A = ISP(Z) of abelian groups

generated by the infinite cyclic group is residually finite (since Z is) but is not

internally residually finite as it contains no non-trivial finite members.
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We now fix a prevariety A = ISP(M), not yet assumed to be an IRF-

prevariety. Take A ∈ A. Consider the family of congruences

SA := {α ∈ Con(A) | A/α ∈ A and A/α is finite }.

Then SA is closed under finite intersections and hence is a directed set with

respect to ⊇. (In fact SA is a sublattice of ConA with respect to the inclusion

order.) There are then natural bonding homomorphisms ϕαβ : A/α → A/β,

for α ⊆ β, given by ϕαβ(a/α) = a/β. The algebras A/α, for α ∈ SA, together

with the bonding maps ϕαβ form an inverse system. The categorical inverse

limit of this inverse system is denoted by proA(A) and is called the A-profinite

completion of A. This limit is uniquely determined by A and is realised

concretely as the subalgebra

proA(A) :=
{

c ∈
∏

α∈SA

A/α
∣∣∣ (∀α, β ∈ SA) α ⊆ β =⇒ ϕαβ(c(α)) = c(β)

}
of the full product. There is a natural homomorphism μA : A → proA(A)

given by μA(a)(α) := a/α, for all a ∈ A and α ∈ SA. Furthermore, the

profinite completion has a universal mapping property which characterises it,

namely that, given any B ∈ A and any cone (fα : B → A/α)α∈SA
of A-

homomorphisms compatible with the bonding maps, there exists a unique

homomorphism f : B → proA(A) such that fα = πα ◦ f .

Consider a variety V. Then the inverse system defining the profinite com-

pletion proV(A) of an algebra A ∈ V consists of all congruences α of finite

index, since A/α always belongs to V; in this context proV(A) is the traditional

profinite completion Â. Now suppose we have an IRF-prevariety A = ISP(M)

which is not a variety. Let V = Var(M), the variety generated by M. We

note that there is no reason to expect in general that, for A ∈ A, the profinite

completion Â (calculated relative to V) will coincide with proA(A).

The following straightforward lemma tells us that IRF-prevarieties provide

exactly the appropriate setting in which to work if we wish to demand that

algebras embed into their profinite completions.

Lemma 2.1. Let A be a class of algebras. Then the following are equivalent:

(i) there exists a set M of finite algebras such that A = ISP(M) (that is, A

is an IRF-prevariety);

(ii) given A ∈ A and a 
= b in A, there exists a homomorphism hab : A →

Mab, for some finite algebra Mab in A, such that hab(a) 
= hab(b);

(iii) the natural homomorphism μA : A → proA(A) is an embedding, for all

A ∈ A.

We now turn to topological algebras. Again let A = ISP(M) be an IRF-

prevariety. The A-profinite completion proA(A) of an algebra A ∈ A carries

a natural Boolean topology: for each α ∈ SA, endow the finite factor A/α

with the discrete topology, then proA(A) is a closed subspace of the product

of these discrete spaces. We need to formalise this. For a finite algebra M, we
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let MT denote M equipped with the discrete topology and for a set M of finite

algebras we let MT := {MT | M ∈ M }. The topological prevariety generated

by MT is then defined to be AT := IScP(MT), the class of isomorphic copies of

topologically closed subalgebras of products of members of MT. We note that

AT is a subclass of the class of Boolean topological algebras with algebraic

reduct in A. Here a Boolean topological algebra means an algebra equipped

with a Boolean (that is, compact and zero-dimensional) topology such that

the operations are continuous. We make AT into a category in the expected

way: the morphisms are the continuous homomorphisms. This category will

play an important role in the next section.

3. Natural extensions of algebras

Let A be an IRF-prevariety of algebras, so A = ISP(M) for a set M of

finite algebras in A, and let AT := IScP(MT) be the associated topological

prevariety defined above. Let � : AT → A denote the natural forgetful functor.

Take A ∈ A. Let XA := ·⋃{A(A,M) | M ∈ M }. For each M ∈ M and

x ∈ A(A,M), let Yx := MT, that is, Yx is the codomain M of the map x

with the discrete topology T added. We define a map

e
A

: A →
∏{

Yx

∣∣ x ∈ XA

}
by e

A
(a)(x) := x(a), for all a ∈ A and x ∈ XA. As A ∈ ISP(M), the

homomorphism e
A

is an embedding. Observe that
∏ {

Yx

∣∣ x ∈ XA

}
∈ AT.

We are ready to define the natural extension nA(A) of A in A (relative

to M): it is the topological closure of e
A
(A) in

∏
{Yx | x ∈ XA }. (We

give an alternative but equivalent definition in Remark 3.3 below.) We have

constructed a map A �→ nA(A) from A into AT. Ostensibly, this depends

upon the choice of the generating set M for the prevariety A. We shall see

later that nA(A) is in fact independent of M.

We now define nA on morphisms. Let u : A → B be a homomorphism with

A,B ∈ A. We shall define a map nA(u) : nA(A) → nA(B). We first note

that, if y ∈ XB, then y ◦ u ∈ XA; so (y ◦ u : A → Yy) ∈ XA. Now, for each

y ∈ XB, we define

uy :
∏

{Yx | x ∈ XA } → Yy

by uy(f) := f(y ◦ u). It is easy to see that Yy = Yy◦u, and that uy is

continuous as it is the projection at y ◦ u. Let us finally define

û :
∏

{Yx | x ∈ XA } →
∏

{Yy | y ∈ XB }

to be the natural product map �{uy | y ∈ XB }. That is,

(û(f))(y) := uy(f) = f(y ◦ u), for f ∈
∏

{Yx | x ∈ XA } and y ∈ XB.

Since each uy is continuous, so is û. We now establish properties of û, employ-

ing little more than careful definition chasing and elementary topology.
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Lemma 3.1. For algebras A and B in A,

(i) û(e
A
(A)) ⊆ e

B
(B), and

(ii) û(e
A
(A)) ⊆ e

B
(B).

Proof. Consider (i). Let a ∈ A. Then, for all y ∈ XB, we have

û(e
A
(a))(y) := uy(e

A
(a)) = e

A
(a)(y ◦ u) = y(u(a)) = e

B
(u(a))(y).

Thus û(e
A
(a)) = e

B
(u(a)) ∈ e

B
(B).

To prove (ii), observe that û(e
A
(A)) ⊆ û(e

A
(A)) ⊆ e

B
(B), by (i) and the

continuity of û. �

Thus, for each homomorphism u : A → B, we may define a continuous

homomorphism nA(u) : nA(A) → nA(B) by nA(u) := û�nA(A).

The first part of the following proposition is now a routine calculation and

the second is an easy consequence of Lemma 3.1.

Proposition 3.2. (i) nA : A → AT is a well-defined functor.

(ii) e : idA → n�
A

is a natural transformation, where n�
A

:= (nA)� : A → A.

Remark 3.3. We can elucidate the relationship between A and AT by taking

an alternative view of the natural extension. The codomain of the map e
A
, as

defined above, is
∏ {

Yx

∣∣ x ∈ XA

}
, where the indexing set XA is the disjoint

union over M ∈ M of the sets A(A,M). We may view this as an iterated

product ∏{ ∏
{Yx

∣∣ x ∈ A(A,M)
} ∣∣ M ∈ M

}
.

When adopting this perspective we write e
A
(a)(M)(x) = x(a), for any fixed

a ∈ A and for M ∈ M and x ∈ A(A,M), and refer to each e
A
(a) as a

multisorted evaluation map. We have

e
A

: A →
∏{

M
A(A,M)
T

∣∣ M ∈ M
}
.

The set A(A,M) can be regarded as a subspace—in fact a closed subspace—of

the topological product MA

T
. In this guise we denote it by A(A,M)T . (Note

that we are not claiming that A(A,M)T ∈ AT; in general it is not a subalgebra

of MA

T
.) Therefore it makes sense to consider the set C(A(A,M)T ,MT) of

continuous maps from A(A,M)T into MT. Since the map

e
A
(a)(M) : A(A,M)T → MT

is continuous, for all M ∈ M, it follows that we can restrict the codomain of

e
A

and write

e
A

: A →
∏{

C(A(A,M)T ,MT)
∣∣ M ∈ M

}
.

The natural extension nA(A) is then obviously the topological closure of e
A
(A)

in
∏ {

C(A(A,M)T ,MT)
∣∣ M ∈ M

}
.

We exploit this alternative description of the natural extension when pro-

ving below that the functor nA is a reflection. We shall not make use of this

result subsequently.
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Proposition 3.4. The natural extension functor nA : A → AT is a reflection

of A into the (non-full) subcategory AT, that is, for all A ∈ A, each B ∈

AT and every homomorphism g : A → B�, there exists a unique continuous

homomorphism h : nA(A) → B such that h ◦ e
A

= g.

Proof. Let A ∈ A, let B ∈ AT, and let g : A → B� be a homomorph-

ism. A simple diagram chase shows that to find a continuous homomorphism

h : nA(A) → B with h◦e
A

= g, it suffices to find a continuous homomorphism

γ : nA(B) → B with γ ◦ e
B

= idB . (We note that this is slightly stronger than

asking for B� to be a retract of nA(B)� in A. We cannot ask for B to be

a retract of nA(B) in AT as e
B

need not be continuous.) The uniqueness of

the continuous homomorphism h is an immediate consequence of the fact that

e
A
(A) is topologically dense in nA(A).

Let us consider the natural map

c : B →
∏{

M
AT(B,MT)
T

∣∣ M ∈ M
}

given by c(b)(M)(x) := x(b),

for all b ∈ B and x ∈ AT(B,MT). Since B ∈ AT, the map c is a continuous

embedding. Let

π :
∏{

M
A(B,M)
T

∣∣ M ∈ M
}
→

∏{
M

AT(B,MT)
T

∣∣ M ∈ M
}

be the obvious projection and define

ρ := π�nA(B) : nA(B) →
∏{

M
AT(B,MT)
T

∣∣ M ∈ M
}
.

Clearly, ρ ◦ e
B

= c and ρ is a bijective map from e
B
(B) to c(B). Since ρ is

continuous and c(B) is closed in
∏ {

M
AT(B,MT)
T

∣∣ M ∈ M
}
, we have

ρ(nA(B)) = ρ(e
B
(B)) ⊆ ρ(e

B
(B)) = c(B) = c(B).

Hence we can restrict the codomain of ρ and write ρ : nA(B) → c(B). Now

define γ := c−1 ◦ ρ. Then γ ◦ e
B

= c−1 ◦ ρ ◦ e
B

= c−1 ◦ c = idB , as required. �

We are now ready to prove our main theorem. But readers unfamiliar

with the constructs of natural duality theory in full generality may by now be

suffering from notation overload. So before proceeding with the development

of our theory we want to show how what we have done looks in a particular,

single-sorted, case—that of (bounded) distributive lattices.

Remark 3.5. Consider the case where A is the variety D = ISP(2) of

bounded distributive lattices. Here M is a 1-element set and XA := A(A,2)

is just the set of D-homomorphisms of A into 2 (alias the set of prime filters of

A), for each A ∈ D. Then the mapping e
A

embeds A into 2
A(A,2)
T

. Regarding

this power as a member of DT = IScP(2T), we may view this as a topological

distributive lattice. The image e
A
(A) of A is the set of evaluation maps, which

are certainly continuous homomorphisms; nD(A) is just the topological clo-

sure of e
A
(A) in 2

A(A,2)
T

. As a closed sublattice of a topological lattice, nD(A)

is a complete lattice. The alternative view of nD(A) comes from recognising

that we obtain a topological space by equipping D(A,2) with the topology it
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nA(A/β) �
e
A/β

−1
A/β

nA(A) �
nA(ηα)

�
�

��
nA(ηβ)

nA(A/α) �
e
A/α

−1

�
�

��
nA(ψα,β)

A/α

�
�

��
ψα,β

Figure 1. The proof of Theorem 3.6

inherits from 2A
T
, to yield the dual space D(A,2)T. Then nD(A) is the closure

of the set of evaluation maps, now regarded as a subset of the continuous maps

from A(A,2)T into 2T.

We return to the general situation, where A is a member of the IRF-

prevariety A = ISP(M) generated by a set M of finite algebras. As promised,

we shall prove that nA(A) is isomorphic, both algebraically and topologically,

to the A-profinite completion of A. As already noted in Section 2, we may

regard proA(A) as belonging to A or to AT, and we shall switch between the

two personae as is convenient, without a change of notation. We recall from

Lemma 2.1 that we have a natural embedding map μA : A → proA(A) given

by μA(a)(α) := a/α, for all a ∈ A and α ∈ SA.

Theorem 3.6. Let M be a set of finite algebras and let A belong to the IRF-

prevariety A = ISP(M). There exists a map v : nA(A) → proA(A) that is an

algebraic and topological isomorphism from the natural extension of A in A

to the A-profinite completion of A and which satisfies v ◦ e
A

= μA.

Proof. We first show how to construct v and confirm that it is a well-defined

continuous homomorphism.

Note that if B ∈ A is finite, then nA(B) = e
B
(B) and hence e

B
: B →

nA(B) is an isomorphism. Let α ∈ SA and let ηα : A → A/α be the induced

homomorphism. As A/α is finite, the map

η̄α := (e
A/α)

−1 ◦ nA(ηα) : nA(A) → A/α

is a well-defined, continuous homomorphism. (We note that, in fact, η̄α is the

unique continuous extension of ηα.)

Let α, β ∈ SA with α ⊆ β and let ψα,β : A/α → A/β be the natural

homomorphism. The diagram shown in Figure 1 commutes. For the triangle

this uses the fact nA is a functor and for the parallelogram the fact that e is

a natural transformation (see Proposition 3.2).

Hence the homomorphisms η̄α : nA(A) → A/α are compatible with the

inverse system. Consequently, by the universal mapping property applied

within A, there is a unique homomorphism

v : nA(A) → proA(A) = lim
←−

{A/α | α ∈ SA }

satisfying πα ◦ v = η̄α, for all α ∈ SA.
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We now verify that v ◦ e
A

= μA. Let A ∈ A, a ∈ A, α ∈ SA and x ∈ XA/α,

say x : A/α → M. Then

v(e
A
(a))(α) = η̄α(e

A
(a)) = e

A/α
−1(nA(ηα)(e

A
(a))) = e

A/α
−1(η̂α(e

A
(a))).

So

e
A/α(v(e

A
(a))(α))(x) = η̂α(e

A
(a))(x) = e

A
(a)(x ◦ ηα) = (x ◦ ηα)(a)

= x(a/α) = e
A/α(a/α)(x).

Thus e
A/α(v(e

A
(a))(α)) = e

A/α(a/α) and so v(e
A
(a))(α) = a/α = μA(a)(α),

whence v(e
A
(a)) = μA(a) and hence v ◦ e

A
= μA, as required.

Since nA(A) is compact and proA(A) is Hausdorff, it only remains to prove

that v is a bijection.

Claim 1: v is one-to-one.

Let f, g ∈ nA(A) with f 
= g. Thus there exists M ∈ M and x : A → M such

that f(x) 
= g(x). Let α := kerx ∈ SA and let ϕ : A/α → M be the unique

homomorphism satisfying ϕ ◦ ηα = x.

To show that v(f) 
= v(g), it suffices to show that v(f)(α) 
= v(g)(α), that

is, that η̄α(f) 
= η̄α(g). Since η̄α = e
A/α

−1 ◦ nA(ηα) and e
A/α

−1 is one-to-one,

it suffices to prove that nA(ηα)(f) 
= nA(ηα)(g), that is, by the definition of

nA(ηα), it suffices to show that η̂α(f) 
= η̂α(g). But

(η̂α(f))(ϕ) = f(ϕ ◦ ηα) = f(x) 
= g(x) = g(ϕ ◦ ηα) = (η̂α(g))(ϕ),

as required.

Claim 2: v is surjective.

Since v ◦ e
A

= μA, the image of v contains μA(A). As v is a closed map, to

prove that v is surjective, it suffices to prove that μA(A) is topologically dense

in proA(A).

A typical basic open set in
∏
{A/α | α ∈ SA } is of the form

V :=
{

f ∈
∏

{A/α | α ∈ SA }
∣∣ f(αi) = ai/αi, for i = 1, . . . , n

}
,

for some α1, . . . , αn ∈ SA and a1, . . . , an ∈ A. Assume that f ∈ V ∩ proA(A).

Let a ∈ A with f(∩n
i=1αi) = a/(∩n

i=1αi). As f ∈ proA(A) we have f(αi) =

a/αi, for i = 1, . . . , n; hence μA(a) ∈ V . Thus, μA(A) is dense in proA(A). �

Corollary 3.7. Let A be an IRF-prevariety. Then, for all A ∈ A, the natural

extension nA(A) of A is independent of the set M of finite algebras chosen to

generate A.

We now briefly consider canonical extensions of lattice-based algebras (for

background and references see the work of Gehrke, Harding, Jónsson and oth-

ers [32, 36, 72]). For algebras with monotone operations the theorem below

follows from Theorem 3.6 and the theorem reconciling profinite and canonical

extensions in [36]; the extension of Harding’s result to arbitrary operations

can be found in M.J. Gouveia’s paper [34].



 Natural extensions and profi nite completions of algebras 215

Theorem 3.8. Let V be a residually finite variety of algebras having bounded

lattice reducts. Then, for all A ∈ V, the natural extension nV(A) coincides

with the canonical extension of A.

As Harding notes in [36], in lattice-based varieties of finite type, residual

finiteness occurs only for finitely generated varieties; this is an immediate

consequence of a theorem of Kearnes and Willard [46].

When V = D, the profinite completion of L ∈ V is very well known to

coincide with the canonical extension Lσ and to be identifiable with the lattice

of all up-sets of its Priestley dual space, or equivalently, with the lattice of all

order-preserving maps into the set {0, 1} with order 0 < 1 (see [18]). From

Theorem 4.3 below, this lattice is exactly nD(L).

The canonical extension of a lattice-based algebra is obtained by taking

a suitable completion of the underlying lattice and then extending appropri-

ately the non-lattice operations. Unlike the canonical extension, a profinite

completion, and likewise a natural extension, comes ready equipped with all

the necessary fundamental operations, and automatically lies in the same va-

riety as the original algebra (canonicity). A central tenet of the canonical

extension methodology is that one aims to work with the abstract characteri-

sation, without reference to any concrete realisation. However we contend that

this can be taken too far when an amenable concrete model of the canonical

extension, such as the natural extension supplies, thanks to Theorem 4.3.

4. Descriptions of the natural extension

Theorem 4.1 will allow us to give descriptions of the natural extension,

and so too of the profinite completion, which are not explicitly topological.

The techniques we employ draw on ideas from natural duality theory, but

we emphasise that our treatment is not confined to the setting of dualisable

quasivarieties. We are later, however, able to sharpen our main result in a

useful way in cases where a single-sorted or multisorted duality is available.

Until further notice, we fix a set M of finite algebras of the same type and

consider the prevariety A = ISP(M). We therefore generalize from the setting

for multisorted dualities in [9, Section 7.1], where the set M is assumed to be

finite, to our situation where M is in general infinite (but see also [22] where

the finiteness conditions on M are relaxed). We shall need to consider both

structures which carry a topology (as in natural duality theory) and structures

which do not. A superscript � on a structure indicates that no topology is

present; this usage is consistent with that whereby a superscript indicates the

application of a functor � forgetting the topology on a topological structure.

We begin by highlighting a key definition. Given a (non-empty) subset s

of a finite product M1 × · · · × Mm, (where Mi ∈ M, for i = 1, . . . , m), we

call s an m-ary multisorted algebraic relation on M if it is a subalgebra of
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M1 × · · · × Mm. A finitary multisorted algebraic relation is one which is m-

ary for some finite m. Likewise, a homomorphism from M1 × · · · × Mn to

Mn+1 (where Mi ∈ M, for all i), will be referred to as a (finitary) algebraic

multisorted operation on M, and a homomorphism from A to Mn+1 (where

A is a subalgebra of M1 × · · · × Mn and Mi ∈ M, for all i) will be called a

(finitary) algebraic multisorted partial operation on M.

We shall work until further notice with a fixed first-order language L whose

non-logical symbols consist of sets G and H of operation symbols and a set

R of relation symbols; any or all of these sets may be empty. We say that

M∼
� is a multisorted L-structure algebraic over M if the underlying set of

M∼
� is ·⋃{M | M ∈ M } and the members of G, H and R are interpreted,

respectively, as multisorted operations, partial operations and relations, all of

which are algebraic on M.

We form an associated category in the following way. Given M∼
�, by an

M-sorted structure (of the same type as M∼
�) we mean an L-structure X�

whose domain is of the form X = ·⋃{XM | M ∈ M } such that every g ∈ G,

with g : M1 × · · · × Mn → Mn+1, for some Mi ∈ M (i = 1, . . . , n + 1), is

interpreted as a map from XM1
× · · · × XMn

to XMn+1
, and similarly for the

operation symbols in H and relation symbols in R (here we do not distinguish

notationally between symbols in L and their interpretations). Given two such

structures X� and Y�, we say that a map

α :
·⋃
{XM | M ∈ M } →

·⋃
{YM | M ∈ M }

preserves the sorts or is an M-sorted map if, for every M ∈ M, it maps XM

into YM. We say that α is a multisorted homomorphism if it is an M-sorted

map that preserves the (partial) operations and relations in the standard sense.

We make the class of M-sorted structures into a category Z
� by adding all mul-

tisorted homomorphisms as morphisms. Within this category, concepts such

as substructure, isomorphism, embedding have their expected multisorted def-

initions. Also, for a non-empty set S, the power (M∼
�)S of M∼

� is the M-sorted

structure with underlying set ·⋃{MS | M ∈ M }, and the (partial) operations

and relations extended pointwise. (In fact it would suffice for our needs to

restrict attention to structures in Z
� which are isomorphic to substructures of

powers of M∼
�.)

Let X := ·⋃{A(A,M) | M ∈ M}. We adopt the notation F � X to

indicate that F ⊆ X with F finite. We say that an M-sorted map

b :
·⋃
{A(A,M) | M ∈ M } →

·⋃
{M | M ∈ M }

is locally an evaluation if, whenever F � X, there exists a ∈ A such that

b(x) = x(a), for all x ∈ F .

We preface Theorem 4.1 with some remarks. In the theorem, the equiva-

lence of (i), (ii), and (iii) in the single-sorted case is a long-known and very

elementary result in duality theory, relying on the definition of the product

topology; the equivalence appears as Exercise 2.1 in [9]. The addition of (iv)
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to the list of equivalences relies on the Preservation Lemma (see Pitkethly and

Davey [63, 1.4.4]); even for the multisorted case it will be already familiar to

those well versed in natural duality theory. For completeness and convenience

we include the proof of the theorem, since the argument is short, simple and

instructive.

Theorem 4.1. Let M be a set of finite algebras, let A := ISP (M) and let

A ∈ A. Assume that b : ·⋃{A(A,M) | M ∈ M } → ·⋃{M | M ∈ M } is an

M-sorted map. Then the following are equivalent:

(i) b belongs to nA(A), that is, b belongs to the topological closure of e
A
(A)

in
∏ {

M
A(A,M)
T

∣∣ M ∈ M
}
;

(ii) b is locally an evaluation;

(iii) b preserves every finitary multisorted algebraic relation on M;

(iv) b preserves every finitary multisorted algebraic relation on M of the form

rF := { (x1(a), . . . , xn(a)) | a ∈ A },

where F = {x1, . . . , xn} �
⋃
{A(A,M) | M ∈ M}.

Proof. The equivalence of (i) and (ii) is an immediate consequence of the

elementary fact that the closure of a subset S of a product of finite discrete

spaces consists precisely of those elements of the product that are locally in S.

The proof that (ii) implies (iii) is easy since evaluation maps preserve every

multisorted relation (defined pointwise on the product) because an evaluation

is essentially a projection.

It is trivial that (iii) implies (iv).

Finally we shall prove that (iv) implies (ii). Let us consider an M-sorted

map b :
⋃
{A(A,M) : M ∈ M } →

⋃
{M : M ∈ M } and assume that b

preserves all relations rF . Certainly each rF is a multisorted algebraic relation.

Let us consider F := {x1, . . . , xn} �
⋃
{A(A,M) | M ∈ M }. For the relation

rF assigned to F we have that (x1, . . . , xn) ∈ rF on the domain of b. Then

we have by assumption that (b(x1), . . . , b(xn)) ∈ rF . Hence there exists an

element a ∈ A such that b(xi) = xi(a) for i = 1, . . . , n, and this says exactly

that b is a local evaluation. �

The equivalence of (iii) and (iv) in Theorem 4.1 allows us to replace the

‘Brute Force’ condition of preservation of all multisorted algebraic relations

by a condition of preservation of a smaller set of relations ‘localised’ to the

algebra A whose natural extension is to be described. However there is another

way in which we might expect to be able to reduce the set of relations to be

preserved: by exploiting the theory of entailment. Specifically, we wish to

adapt to the present context the ideas used in natural duality theory to remove

redundant relations (or operations and partial operations) from a dualising set.

We now need to reconcile the topology-free M-sorted structures we have

employed above with their topological counterparts. Consider M∼
� as above,

and equip it with the discrete topology. We denote the resulting topological
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structure by M∼ (in line with the notation of [9, Chapter 7]). We shall always

be looking at topologically closed subsets of powers of M∼ and consequently we

restrict our attention to Boolean topologies. Thus the topological structures we

wish to consider are objects of Z
� equipped with a Boolean space topology. We

refer to these as the Boolean topological multisorted structures (of the same type

as M∼ ) and treat them as the objects of a category Z in which the morphisms

are the continuous multisorted homomorphisms. We now use M∼ to build a

full subcategory of the category Z introduced above, to serve as a potential

dual category X for the category A. As our objects we take the class X :=

IS
0
cP

+(M∼ ) of all Boolean topological M-sorted structures of the same type as

M∼ which are isomorphic to a (possibly empty) closed substructure of some

power M∼
S of M∼ , for a non-empty set S. Now S

0
c stands for possibly empty

M-sorted substructures with each sort topologically closed (so “Y is a closed

substructure of X” does not mean that Y is a closed subset of X but means

that each sort of Y is a closed subset of the corresponding sort of X). It is

routine to verify that, for every A ∈ A, the dual of A,

D(A) :=
·⋃
{A(A,M) | M ∈ M },

is a closed substructure of M∼
A, and for every X ∈ X, the hom-set E(X) :=

X(X,M∼ ) forms a subalgebra of
∏ {

MXM

∣∣ M ∈ M
}
; these facts stem from

the assumption that the structure M∼ is algebraic over M, just as in the single-

sorted case (see [9, 1.5.2]).

For each A ∈ A we have a natural embedding e
A

of A into ED(A),

given by multisorted evaluation: e
A
(a)(M)(x) := x(a), for all M ∈ M and

x ∈ A(A,M). Similarly, for each X ∈ X, one can define an embedding

ε
X

: X → DE(X) by ε
X

(x)(M)(α) := α(x), for all M ∈ M and α ∈ X(X,M∼ ).

Consequently, we have contravariant functors D: A → X and E: X → A (and

these set up in the usual way a dual adjunction 〈D,E, e, ε〉 between A and X).

If e
A

is an isomorphism for each A ∈ A, then we say that the structure M∼
yields a multisorted duality on A based on M. More explicitly, we say that

G∪H ∪R is a dualising set for A (or yields a duality on A). Here, as above,

we do not in our notation distinguish between symbols in L and their inter-

pretations on the domain of M∼ , or more generally on members of X, as sets of

(multisorted algebraic) operations, partial operations and relations. We shall

usually omit the word ‘multisorted’ below.

We shall now consider entailment. We cannot simply carry over the usual

notions as given for example in Davey, Haviar and Priestley [17] or [9, p. 55],

extended to the multisorted setting. Some care is needed: (duality-)entailment

makes use of continuous structure-preserving maps on the dual structures

of algebras in A, whereas here we are concerned with arbitrary structure-

preserving maps on (the images under � of) such structures. We formulate the

notion of entailment that we require by omitting the word ‘continuous’ from

the usual definitions. Specifically, we consider a fixed set of finitary algebraic

multisorted (partial) operations and relations G∪H∪R on M. For an algebra
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A ∈ ISP(M), we say G∪H ∪R discretely entails a finitary algebraic relation s

on D(A)� if every M-sorted map b : ·⋃{A(A,M) | M ∈ M } → ·⋃{M | M ∈

M } that preserves the members of G ∪ H ∪ R also preserves s, and that

G ∪ H ∪ R discretely entails s if, for every A ∈ ISP(M), it discretely entails

it on D(A)�.

Trivially, discrete entailment of a relation implies (duality-)entailment. At

first sight it might appear that discrete entailment is a stronger notion than

entailment. But it turns out that the two notions are equivalent, both globally

and when localised to ‘test algebras’. The proof we give of Lemma 4.2 is an

easy modification of the proof of the Test Algebra Lemma [9, 8.1.3, 9.1.2]; the

extension to cover multiple sorts requires only trivial, notational, modifications

to the proof for the single-sorted case. (It is easy to derive from Lemma 4.2

an analogue for discrete entailment, in the multisorted setting, of the Test

Algebra Lemma as given in [9]. We do not need this result and so omit it.)

Lemma 4.2. Let G ∪H ∪R be a set of finitary algebraic (partial) operations

and relations on M, where M is a set of finite algebras. Let s be a finitary

algebraic relation on M. Then G ∪ H ∪ R entails s if and only if G ∪ H ∪ R

discretely entails s.

Proof. We only need to prove that entailment implies discrete entailment.

Since s is algebraic, it is a subalgebra of M1 × · · · × Mm, where Mi ∈ M

for i = 1, . . . , m. We denote s by s when we are regarding it as a member

of A. We denote by ρi the restriction to s of the i-th projection map from

M1 × · · · ×Mm to Mi.

The dual of s is D(s) = ·⋃{A(s,M) | M ∈ M }. For x1, . . . , xm ∈ D(s) we

have, by definition, (x1, . . . , xm) ∈ s on D(s) if and only if for any a ∈ s we

have (x1(a), . . . , xm(a)) ∈ s.

Assume that G∪H ∪R entails s. Let A ∈ A and let b : ·⋃
A(A,M) → ·⋃M

be an M-sorted map which preserves G∪H ∪R. Assume (x1, . . . , xm) ∈ s on

D(s). Then the map u := x1 � · · · �xm : A → s is a homomorphism. Consider

the associated dual map D(u) : D(s) → D(A) given by D(u)(x) = x ◦ u (for

x ∈ D(s)). Now

b ◦ D(u) : D(s) →
·⋃
{M | M ∈ M }

preserves G∪H ∪R, and so preserves s, since G∪H ∪R entails s. (Note that,

as a map whose domain is finite, and hence discretely topologised, b ◦ D(u) is

necessarily continuous.) We have (ρ1, . . . , ρm) ∈ s on D(s) and hence

(b(x1), . . . , b(xm)) = ((b ◦ D(u))(ρ1), . . . , (b ◦ D(u))(ρm)) ∈ s.

Therefore b preserves s. �

When M is a finite set of finite algebras and ISP(M) possesses a multi-

sorted duality, we can combine Lemma 4.2 with Theorem 4.1 to add a further

condition to the list of equivalences in that theorem.
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Theorem 4.3. Let M be a finite set of finite algebras, let A := ISP(M) and

assume in addition that G ∪ H ∪ R yields a multisorted duality on A. Let

A ∈ A. Assume that b : ·⋃{A(A,M) | M ∈ M} → ·⋃{M | M ∈ M } is

an M-sorted map. Then b belongs to nA(A) (equivalently, satisfies any of

(ii)–(iv) in Theorem 4.1) if and only if it satisfies

(v) b preserves every element of G ∪ H ∪ R.

Proof. If G∪H ∪R is a dualising set for ISP(M) then G∪H ∪R entails, and

hence also discretely entails, every finitary algebraic relation on M. �

An interesting special case arises when the set G∪H∪R in Theorem 4.3 can

be taken to contain just the family of all isomorphisms between subalgebras

of members of M. In this situation, the natural extension turns out to be a

full direct product (Theorem 5.7). As we shall prove, this occurs in particular

when A is a discriminator variety (see Theorem 5.6).

We conclude this section with some comments on multisorted dualisabil-

ity. Corollary 3.7 confirmed that the natural extension of an algebra in an

IRF-prevariety A = ISP(M) is independent of the choice of generating set M.

There is a corresponding independence result concerning dualisability. Sup-

pose that we have a quasivariety A = ISP(M), where M is a finite set of

finite algebras. Then, as shown by the present authors [15], whether or not A

has a multisorted duality based on M is independent of the choice of M; this

generalises an earlier result for the single-sorted case. We thereby resolve a

natural question. Suppose we have a non-dualisable quasivariety A = ISP(M)

and suppose that this is alternatively expressed as ISP(N), where N is a finite

set of finite algebras. Could A have a multisorted duality based on N? The

independence result for the multisorted case tells us that it cannot.

5. Applications: residually finite varieties

In Section 3 we adopted a categorical approach and in Section 4 we made

use of ideas from duality theory. In this section the flavour of our presentation

changes again, to that of universal algebra. Basic background in universal al-

gebra for this section can be found in the text by Burris and Sankappanavar [8].

For a convenient and informative summary concentrating on the major deve-

lopments of the past twenty years we recommend R. Willard’s survey [74]. We

shall focus on varieties. This gives access to deep and powerful results, many

of them recent. In addition, for a residually finite variety V and A ∈ V we

may identify proV(A), as studied in Sections 3 and 4, with the ‘traditional’

profinite completion Â.

We have two objectives. First of all, we wish to look at the applicability

of our results. We concentrate on those classes of varieties and prevarieties

which have received major attention in other contexts: these include classes

arising in ‘classical’ algebra (groups and semigroups, for example) and classes
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of lattice-based algebras, within which profiniteness has hitherto been much

studied. Secondly, we seek to reveal the extent of the gap, or lack of a gap,

between the scope of Theorem 4.1, applicable to any IRF-prevariety, and of

Theorem 4.3, applicable to varieties and prevarieties which have a single-sorted

or multisorted duality. To this end, we survey the known theorems about va-

rieties, both general and specific, which conspire in interesting ways to restrict

the diversity of examples to which our results apply. We emphasise however

that our theorems do apply not only to dualisable varieties and quasivarieties,

which are prolific and varied, but also to some well-studied varieties which

have no natural duality. This can occur because either the variety is finitely

generated but non-dualisable or the variety is not finitely generated and so is

beyond the reach of duality theory. We make one disclaimer: our survey does

not seek to be exhaustive and we do not always strive for best possible results.

We need a few preliminaries. We recall that a variety V is of finite type

if the number of fundamental operations is finite (all operations are assumed

to be finitary). In that situation, there are, up to isomorphism, only finitely

many members of V of cardinality less than N , for any finite N . Our theorems

in Sections 3 and 4 do not require an assumption of finite type, so we shall

not impose this unless it is expedient to do so. Often we shall require that V

be finitely generated; such a variety V is necessarily locally finite.

Now consider any given variety V, not necessarily of finite type, and let

SiV denote a transversal of the isomorphism classes of subdirectly irreducible

algebras in V and, likewise, let Sifin V denote a set of representatives of the

finite subdirectly irreducibles. Our focus here is on the residual character of V.

We recall that V is residually large if there is no bound on the cardinalities

of members of Si V or, equivalently, if SiV is a proper class, and is residually

small if SiV is a set. We are interested in particular in knowing whether

(1) V is residually finite, that is, all members of SiV are finite; or

(2) V is residually very finite, that is, there is a finite bound on the cardinal-

ities of the members of SiV; or

(3) SiV is a finite set of finite algebras.

Trivially (3) ⇒ (2) ⇒ (1), and if V is of finite type, then (2) ⇒ (3). To illustrate

how conditions (1), (2) and (3) compare, we note two contrasting old results.

With no assumption on the type, R.W. Quackenbush [66] proved that a finitely

generated variety V for which Sifin V is finite must be residually finite; in this

case, (2) and (3) hold. Following on from work of Baldwin and Berman [2],

J.T. Baldwin [1] constructed a locally finite, congruence distributive variety V

of finite type for which Sifin V is infinite and which has, up to isomorphism,

exactly one infinite subdirectly irreducible algebra.

The issue of when (1) forces (2) takes us into the realm of the famous

RS (gap) conjecture, originating with R.W. Quackenbush [66] (here RS is

shorthand for residually small). This asserted that, for any finite algebra A,

either V = Var(A) is residually very finite or is residually large. Freese and
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McKenzie proved the RS conjecture for any congruence modular variety [28,

Theorem 8]. However the RS conjecture in general was, famously, refuted in a

very strong sense by R. McKenzie [55]: for contextual introductions see K.A.

Kearnes [44, Section 1] and [74, Section 6]; note in particular Theorem 6.3 of

[74]. McKenzie’s example of a finitely generated variety which is residually

finite but not residually very finite was not of finite type. The Restricted

Quackenbush Conjecture—that a finitely generated residually finite variety of

finite type must be residually very finite—remains open, even for locally finite

varieties.

We now look more closely at varieties whose congruence lattices satisfy some

nontrivial lattice identity (a congruence identity). We have already noted that

a residually small and finitely generated congruence modular variety is forced

to be residually very finite. Hobby and McKenzie showed that a locally finite

variety V satisfying a nontrivial congruence identity is already congruence

modular [38, Theorems 9.18 and 10.4] (or see [74, Section 5.7]). This result has

since been sharpened to remove the locally finiteness requirement (see Kearnes

and Kiss [45, Theorem 9.5]). Thus, informally, the presence of a congruence

identity, however weak, may serve to rule out scenarios which might otherwise

arise.

Other congruence properties are also of interest to us, as regards both resid-

ual finiteness and, shortly, dualisability. Let us consider (a) congruence dis-

tributivity; (b) congruence join semidistributivity; and (c) congruence meet

semidistributivity. Trivially (a) implies (b) and (c). Kearnes and Kiss [45,

Theorem 8.14] prove that a variety V is congruence join semidistributive if

and only if it is congruence meet semidistributive and satisfies a nontrivial

congruence identity, so (b) implies (c). Kearnes and Willard [46] proved that

any residually finite variety V of finite type which is congruence meet semidis-

tributive is necessarily residually very finite. Much more recently, they have

announced [47] the same conclusion can be drawn if the assumption that V be

congruence meet semidistributive is replaced by the assumption that V satisfy

a nontrivial congruence identity. The results of Kearnes and Kiss subsume

the earlier verification of the Restricted Quackenbush Conjecture in particular

classes: groups, rings, lattices, and more, but not that obtained for semigroups

by Golubov and Sapir, and independently by R. McKenzie. (We briefly discuss

their results below.)

Now assume that V is a congruence distributive variety, not necessarily of

finite type, and that V is generated by a class K of finite algebras. By Jónsson’s

Lemma, Si V ⊆ M := HSPu(K); see for example [8, Chapter IV, Section 6,

Theorem 6.8]. If K is finite or forms an elementary class, then M = HS(K)

and Birkhoff’s Subdirect Product Theorem implies that V is residually very

finite. More particularly, if K is finite, then SiV is a finite set.

Some additional comments on the role of local finiteness are appropriate;

for criteria for this to hold, and examples, see G. Bezhanishvili [4]. As al-

ready noted, finite generation implies local finiteness; the converse fails, for
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example for monadic Boolean algebras and for relative Stone Heyting alge-

bras. A locally finite lattice-based variety of finite type need not be residually

finite; again relative Stone Heyting algebras provide an example. A locally

finite variety which is residually small is forced to be residually very finite

if it has definable principal congruences (DPC), and in particular if the con-

gruence extension property holds; see Baldwin and Berman [2], where exam-

ples of varieties both meeting and failing these conditions are given, and also

R. McKenzie [52].

Tables 1 and 2 summarise, for ease of reference, results on residual character

noted above, and draw attention to some landmark papers.

Residually small W. Taylor’s seminal

paper [71] gives many

conditions equivalent to

residual smallness

[71]

(and see also [74])

Residually finite V finitely generated and

|Sifin V| < ∞

R.W. Quackenbush

[66]

V is locally finite and

|Sifin V| < ∞

Baldwin & Berman [2]

and W. Dziobiak [26]

(independently)

Residually very finite V is of finite type and

congruence meet

semidistributive (in

particular congruence

distributive)

Kearnes & Willard

[46]

Table 1. Sufficient conditions for residual character

properties to hold for a variety V

Residually small + V satisfies DPC Baldwin & Berman

[2, Theorem 4]

Residually small + V is finitely generated

and congruence modular

Freese & McKenzie

[28]

Residually small + V is locally finite and

satisfies a nontrivial

congruence identity

Hobby & McKenzie

[38]

Residually finite + V is of finite type and

satisfies a nontrivial

congruence identity

Kearnes & Willard

[47]

Table 2. Conditions forcing a variety V to be residually very finite

We now turn to issues of dualisability. Consider a variety V, not assumed

to be of finite type. The condition V = ISP(M), with M a finite set of finite
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algebras is a prerequisite for V to have a multisorted duality (as defined in

Section 4).

We first review the role of near-unanimity terms. Recall that a term m

of arity at least 3 is a near-unanimity term or an NU-term for a class A of

algebras if A satisfies

m(x, . . . , x, y) ≈ m(x, . . . , x, y, x) ≈ · · · ≈ m(y, x, . . . , x) ≈ x.

A 3-ary NU-term is usually known as a majority term. Any lattice or lattice-

based algebra has such a term, viz. the median. We say a variety is an NU-

variety if it has an NU-term in its clone. Many alternative characterisations of

such varieties are known, with a central result in the area being the interpo-

lation theorem due to Baker and Pixley; for a full discussion see for example

Kaarli and Pixley [43, Section 3.2]. Any NU-variety is congruence distributive

but the converse fails; see Mitsckhe [57].

The NU Duality Theorem, obtained by Davey and Werner, was one of the

most useful results available in the early days of natural duality theory. Given

a prevariety ISP(M), where M is a finite algebra with a (k + 1)-ary NU-

term, the theorem asserts not only that ISP(M) is dualisable but also asserts

that S(Mk) provides a dualising set. A corresponding result is true in the

multisorted case: see the Multisorted NU Duality Theorem [9, 7.1.1].

The result of A. Mitschke [57] mentioned above establishes that the presence

of an NU-term in a variety forces it to be congruence distributive. This may

be viewed as an obstacle to dualisability: Davey, Heindorf and McKenzie

[16, Theorem 1.2] showed that if a quasivariety A = ISP(M) (M finite) is

dualisable then M has an NU-term if and only if every finite algebra in A

is congruence join semidistributive. There are now known to be precisely

eight two-element non-dualisable algebras M; each generates a congruence

distributive variety having, necessarily, no NU-term (see [16, 56, 57] and [9,

Chapter 10] and also Example 6.3 below).

We can now record the following theorem summarising properties of an

NU-variety.

Theorem 5.1. Let V be an NU-variety and consider the following conditions:

(1) V is residually finite;

(2) V is residually very finite;

(3) V has a multisorted duality;

(4) V is finitely generated.

Assume that V is of finite type. Then (1)–(4) are equivalent.

Assume that V is not necessarily of finite type. Then (2)–(4) are equivalent

and imply (1). Moreover they imply that V is term equivalent to a finitely

generated variety of finite type.

Proof. Without restriction on the type, (3) perforce implies (4) and the Mul-

tisorted NU Strong Duality Theorem gives the converse.
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The existence of an NU-term gives the congruence distributivity of V. As-

sume V = HSP(K), where K is a finite set of finite algebras. Then by

Jónsson’s Lemma every subdirectly irreducible algebra has cardinality at most

max{|A| : A ∈ K}, so (2) holds. Hence (2) and (4) are equivalent and, conse-

quently, (2)–(4) are equivalent and imply (1).

Now assume V is of finite type. Then (1) and (2) are equivalent because V

is congruence distributive [46]. But then also (1)–(4) are equivalent.

Finally, if V is finitely generated by an algebra A not of finite type, then

the existence of an NU-term implies that A is term-equivalent to an algebra

B which is of finite type (see for example [43, Theorem 3.2.5]). Consequently

V is term equivalent to HSP(B), which is of finite type. �

Residual finiteness and dualisability do not always go hand-in-hand. Davey,

Pitkethly and Willard [21] exhibit a four-element algebra M which is dualisable

yet generates a residually large variety; the algebra is a term reduct of a

commutative ring and the variety is congruence permutable. On the other

hand, residual largeness frequently does entail non-dualisability. For example,

a finite algebra M which generates a variety that is residually large and meet

semidistributive must be non-dualisable [21, Corollary 3.3]. In fact a stronger

statement is proved: the algebra M is inherently non-dualisable, meaning that

there is no dualisable algebra N such that M ∈ ISP(N); equivalently, M is

not a subalgebra of a dualisable algebra.

We are now ready to explore particular classes of varieties.

Varieties of lattices and lattice-based algebras. Let V be a variety of

lattices or of lattice-based algebras. Then V is congruence distributive and

has a majority term, so Theorem 5.1 applies. If V is residually finite, then

Theorems 4.3 and 3.8 give access to the natural extension, alias profinite com-

pletion, alias canonical extension, of any member of V.

In important particular cases, explicit descriptions are known for the resi-

dually finite subvarieties of a lattice-based variety which is not itself residually

finite. Consider, as an example, the variety of Heyting algebras. Drawing on

results of L. Maximova [51] and Bezhanishvili and Grigolia [5, Theorem 4.1], we

obtain that a variety V of Heyting algebras satisfies (the equivalent) conditions

(1)–(4) of Theorem 5.1 if and only if V contains none of

(a) the variety generated by all finite Heyting chains, that is, the variety L

of relative Stone algebras;

(b) the variety generated by algebras B ⊕ 1, where B is a Boolean algebra;

(c) the variety generated by algebras 1⊕B⊕1, where B is a Boolean algebra.

Varieties determined by monotone clones. These are varieties which are,

loosely speaking, ‘order-generated’. A clone C on a set P is a monotone clone
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if there exists an order � on P such that C is the clone of finitary order-

preserving functions on the ordered set 〈P ;≤〉. A finite nontrivial algebra P

is order primal if its clone of finitary term functions is monotone.

Varieties Var(P), where P is order-primal with respect to an order �, are

of intrinsic interest in clone theory, and reveal a fascinating interplay between

the order structure of 〈P,�〉 and properties of Var(P). But they were studied

most intensively, as a test case for the RS Conjecture, when the quest was at

its height for a proof or refutation outside the congruence modular case.

Assume henceforth that P is an order-primal algebra with underlying or-

dered set 〈P ;�〉. R. McKenzie [54] proved that, provided P is bounded, the

following conditions are equivalent: (a) Var(P) is residually small, (b) Var(P)

is congruence modular, (c) Var(P) is congruence distributive, (d) the subdi-

rectly irreducibles in Var(P) have size at most |P |. He also gave order-theoretic

conditions under which this occurs. (See also B.A. Davey [14].)

Around the same time, Davey, Quackenbush and Schweigert [23, Lemma 1.1]

showed that HS(P) = I(P) if P is an antichain or connected; in general

HS(P) = I(P,Q), where Q = P/θ and θ identifies the points of the con-

nected order-components of P. They then proved that ISP(P,Q) has a gen-

eralised form of multisorted duality in which infinitary algebraic relations are

allowed [23, Theorem 1.4]; by exploiting the relative congruence distributivity

this duality entails [23, Theorem 1.6], they were able to prove that Var(P) is

congruence distributive if and only if Si(Var(P)) ⊆ {P,Q} [23, Theorem 1.7],

in which case Var(P) = ISP(P,Q), so Var(P) is residually very finite.

Now assume that P is both finite and bounded. L. Zádori [75, Theorem 4.1]

gave necessary and sufficient conditions for Var(P) to have an NU-term. One

of these is the condition that P has the Jónsson terms supplied by congruence

distributivity. Hence CD implies NU here. Other conditions provide charac-

terisations of the ordered sets for which an NU term exists. See [16, 54, 75] for

further information including references to papers analysing the ordered sets

meeting these criteria.

We can now record the following portmanteau theorem. In (6), the dualising

set consists of finitary algebraic relations, as in Section 4. The implication

(6) ⇒ (5) follows from the fact that ISP(P) is relatively congruence distributive

[16, Theorem 1.2].

Theorem 5.2. Let Var(P) be the variety generated by an order-primal algebra,

where P is a finite bounded ordered set. Then the following are equivalent:

(1) Var(P) is residually small;

(2) Var(P) is residually very finite, with the subdirectly irreducibles in Var(P)

of size at most |P |;

(3) Var(P) is congruence modular;

(4) Var(P) is congruence distributive;

(5) Var(P) has an NU-term;

(6) ISP(P) has a natural duality.



 Natural extensions and profi nite completions of algebras 227

Moreover, these conditions imply that

(7) Var(P) has a multisorted natural duality.

Affine complete varieties. We refer to the monograph of Kaarli and Pixley

[43] for background, recalling only that an algebra A is affine complete if every

congruence-compatible operation on A is a polynomial function of A and that

a variety is affine complete if every member is affine complete. Classic examples

are the variety of Boolean algebras, and more generally any arithmetical variety

generated by a finite set of primal algebras [43, p. 158]. (For a full discussion of

the close relationship between arithmeticity and affine completeness, see [43].)

Deep results of Kaarli and Pixley [41] and Kaarli and McKenzie [42] estab-

lish the following facts about any affine complete variety V: it is residually

finite ([41, Theorem 2.1] and [43, Theorem 4.2.1]), congruence distributive

([42, Theorem 4.1] and [43, Theorem 4.2.2]), and every member of SiV has no

proper subalgebras ([41, Theorem 3.4] and [43, Corollary 4.2.6]).

The following surprising result [43, Theorem 4.4.3] is due to K. Kaarli [40].

Theorem 5.3. For an affine complete variety V the following are equivalent:

(1) V is locally finite;

(2) V is finitely generated;

(3) V is term equivalent to a variety of finite type;

(4) V has only finitely many subvarieties.

In practice we mostly deal with affine complete varieties of finite type. Such

varieties have very strong properties: in the theorem below, (i)–(iii) come

from [40, 42, 41], see [43, 4.4.1, 4.3.7, 4.2.6, 4.2.7], while (iv) follows from the

Multisorted NU Duality Theorem [9, Theorem 7.1.1], see also [9, p. 192].

Theorem 5.4. Every affine complete variety V of finite type satisfies the

following conditions:

(i) V is an NU-variety and so is congruence distributive;

(ii) V is residually very finite (up to isomorphism SiV consists of a finite set

of finite algebras each of which has no proper subalgebras);

(iii) V = HSP(M), where M is finite and has no proper subalgebras;

(iv) V has a multisorted duality.

Paraprimal and discriminator varieties. We take as our principal refer-

ences here the paper of R. McKenzie [52] and H. Werner’s monograph [73], but

acknowledge also the important contributions of Clark and Krauss, Quacken-

bush, Pixley and others in relation to paraprimality and the special cases of

quasiprimality and primality. An overview of primality and its generalisations

is provided by R. Quackenbush [35, Appendix 5].

Throughout this subsection we restrict to algebras of finite type. A non-

trivial algebra A is paraprimal if it is finite, every subalgebra of A is simple

and Var(A) is congruence permutable. If, in addition, Var(A) is congruence
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distributive, then A is quasiprimal . We note that a paraprimal algebra A

is quasiprimal if and only if Var(A) contains no non-trivial affine algebras

(R. McKenzie [52, Theorem 21]). (An algebra A is affine if there is an abelian

group structure on the underlying set of A such all of the fundamental op-

erations of A are translates of group homomorphisms.) Paraprimal algebras

hybridise quasiprimal algebras and affine algebras in a precise way which leads

to a very satisfactory structure theory for the varieties they generate (see [52,

Section 2]).

R. McKenzie [52] defined a variety to be paraprimal , respectively quasi-

primal , if it is congruence permutable and generated by a finite set of para-

primal, respectively quasiprimal, algebras, and proved that a variety is quasi-

primal if and only if it is congruence distributive and paraprimal [52, Theo-

rem 21]. Our interest in paraprimal varieties stems from a result of McKenzie

[52, Theorem 17]: a paraprimal variety is directly representable by its set of

finite simple members and this set has only finitely many members up to iso-

morphism. Explicitly, if V = HSP({P1, . . . ,Pn}), where P1, . . . ,Pn are para-

primal, then every finite subdirectly irreducible algebra in V is simple and of

cardinality at most max{|P1|, . . . , |Pn|}. Moreover, because V is congruence

permutable, every subdirect product of a finite system of (necessarily finite)

simple algebras is isomorphic to a finite product of simple algebras (see the

proof of Theorem 17 in [52] for the earlier results in the paper on which these

claims rely). Therefore, by Quackenbush’s theorem [66], we have V = ISP(M),

where M is a finite set of finite simple algebras and every finite algebra in V

is isomorphic to a direct product of algebras belonging to M. There are two

natural choices for the set M: the largest one being (a transversal of the set of

isomorphism classes of) the set of all simple algebras, and the smallest being

the set of maximal simple algebras, that is, those that do not embed into a

strictly larger simple algebra. Either of these sets may therefore be used to

construct the natural extension of an algebra in V.

We now specialise to the quasiprimal case. Let V be a quasiprimal variety.

Then V = Var(M), for some finite set M of quasiprimal algebras. By a well-

known characterisation of quasiprimality (see [8, IV.10.7]), for each algebra

M in M, there is a term tM which yields the ternary discriminator function

on M, that is, M satisfies tM(x, y, z) = x if x 
= y and tM(x, x, z) = z. In fact,

as we shall soon see, there is a single term that yields the ternary discriminator

on every algebra in M.

Werner’s single-sorted natural duality for the variety generated by a quasi-

primal algebra (see [9, 3.3.13]) extends easily to a multisorted duality for V

based on M. In order to state the result, and the lemma which precedes it,

we require some terminology and notation. Every n-ary term induces a term

function tM : Mn → M on each algebra M ∈ M. We refer to the corresponding

M-sorted map as an n-ary term function on M. Define

M∼ Iso :=
〈 ·⋃{M | M ∈ M }; Iso(M),T

〉
,
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where Iso(M) is the set of isomorphisms between subalgebras of algebras in M.

Note that Iso(M) forms an inverse semigroup when endowed with the usual

composition of partial maps: for all g, h ∈ Iso(M), we define g ◦ h to be

the map with domain { a ∈ dom(h) | g(a) ∈ dom(g) } given, of course, by

(g ◦ h)(a) := g(h(a)), for all a ∈ dom(g ◦ h).

Lemma 5.5. Let V = Var(M) with M a finite set of finite algebras and

assume that V is congruence permutable and that each M in M is such that

each of its subalgebras is simple. Then Iso(M) entails (and so also discretely

entails) every binary multisorted algebraic relation on M.

Proof. Let M1,M2 ∈ M and let B be a subalgebra of M1×M2. By Fleischer’s

Theorem (see [8, IV.10.1]), there exist subalgebras A1 and A2 of M1 and M2,

respectively, and surjective homomorphisms u1 : A1 → C and u1 : A1 → C

such that

B = { (a1, a2) ∈ A1 × A2 | u1(a1) = u2(a2) }.

As A1 and A2 are simple, it follows that either |C| = 1, in which case B =

A1 × A2, or u1 and u2 are isomorphisms, in which case B is the graph of the

isomorphism u−1
2 ◦ u1 : A1 → A2. It follows immediately that Iso(M) entails

the algebraic relation B (via the constructs domain, product and graph—see [9,

2.4.5]). �

Theorem 5.6. Let V = Var(M) with M a finite set of finite algebras. The

following are equivalent:

(1) V is arithmetical and every nontrivial subalgebra of each algebra in M is

simple;

(2) there is a term that yields the ternary discriminator on every algebra

in M;

(3) every M-sorted morphism from (M∼ Iso)
n to M∼ Iso is a term function on M;

(4) the structure M∼ Iso yields a multisorted duality on V based on M.

Moreover, the duality given in (4) can be upgraded to a strong duality by

adding each element that forms a one-element subalgebra of an algebra in M

as a nullary operation to the type of M∼ Iso.

Proof. The implication (4) ⇒ (3) is a basic fact from duality theory: a dual-

ising structure determines the term functions. It is trivial that the M-sorted

function built from ternary discriminator functions on (the underlying sets of)

the algebras in M preserves isomorphisms between subalgebras of members

of M; hence, (3) ⇒ (2). Now assume that (2) holds and let t be a term that

yields the ternary discriminator on every algebra in M. It follows at once that

each member of M is quasiprimal. Since t is a Pixley (two-thirds minority)
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term on M, that is, M satisfies the equations

t(x, y, y) = t(x, y, x) = t(y, y, x) = x,

it follows that t is a Pixley term on V = Var(M) and hence V is arithmeti-

cal (see [8, II.12.5]). Hence, (1) holds. Finally, assume that (1) holds. By

Lemma 5.5 and the Multisorted NU Duality Theorem [9, 7.1.1], (4) holds.

The claim regarding the upgrade of the duality in (4) to a strong duality

comes straight from the Multisorted NU Strong Duality Theorem [9, 7.1.2]. �

Werner [73] defines a variety V to be a discriminator variety if V = Var(M)

for some class M of algebras such that there is a term t that yields the ternary

discriminator on every algebra in M. It follows from Theorem 5.6 that quasi-

primal varieties and finitely generated discriminator varieties are one and the

same. Indeed, assume that V is a finitely generated discriminator variety.

Then Jónsson’s Lemma implies that V = Var(M), where M is a finite set of

quasiprimal algebras. As a discriminator variety is arithmetical (see the proof

above), it follows that V is a quasiprimal variety. For the converse, note that

V quasiprimal implies V is arithmetical, by [52, Theorem 21]; then (1) ⇒ (2)

of Theorem 5.6 applies.

By way of illustration, we highlight lattice-based discriminator varieties

arising in algebraic logic. At the heart of this application lie residuated lat-

tices, which have been intensively studied in recent years in connection with

substructural logics; see, for example, Galatos et al. [30]. Residuated lat-

tices serve as models for the full Lambek calculus without contraction; they

generalise Heyting algebras, which model intuitionistic propositional calculus.

A residuated lattice (or FLwe-algebra) is an algebra A = (A;∧,∨, · ,→, 0, 1)

such that (i) (A;∧,∨, 0, 1) is a bounded lattice, (ii) (A; · , 1) is a commutative

monoid and (iii) x · y � z if and only if x � y → z for all x, y, z ∈ A. The

nontrivial finitely generated varieties of residuated lattices which are discrim-

inator varieties have been completely characterised by T. Kowalski [48] (or

see [30, Chapter 11]): they are exactly those which are semisimple, and are

equationally characterised as those satisfying x ∨ ¬xn ≈ 1 for some n � 1.

Under this umbrella falls (to within term-equivalence) any MV-algebra variety

generated by a single finite chain. For these particular varieties, Theorem 5.6

gives nothing new, but does set well-known facts in a wider context. Now con-

sider a variety V whose members are Boolean algebras with (finitely many)

modal operators. Semisimplicity is again a necessary and sufficient condition

for V to be a discriminator variety, and an intrinsic characterisation has also

been found (Kowalski and Kracht [49]). We note too the intimate connection

between the presence of a discriminator term, semisimplicity and the property

EDPC (equationally definable principal congruences) which commonly occurs

in varieties arising from logics (see Blok and Pigozzi [6]).

Finally in this subsection we show that in finitely generated discriminator

varieties the natural extension has a particularly simple description.
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Theorem 5.7. Let A = ISP(M), where M is a finite set of finite algebras,

let A ∈ A and let B be the algebra of all M-sorted maps

b : ·⋃{A(A,M) | M ∈ M } → ·⋃{M | M ∈ M }

that preserve Iso(M). Then B is isomorphic to a full direct product of algebras

from S(M). In particular, the natural extensions of algebras in a finitely gen-

erated discriminator variety are, up to isomorphism, direct products of quasi-

primal algebras.

Proof. Let X := ·⋃
A(A,M) | M ∈ M } and note that Iso(M) acts on X via

composition: for h ∈ Iso(M) and x ∈ X we have x ∈ dom(hX) if and only if

x(A) ⊆ dom(h) and h(x) := h ◦ x, for all x ∈ dom(hX). Define an equivalence

relation ∼ on X by x ∼ y if and only if there exists h ∈ Iso(M) such that

y ∈ dom(hX) and x = hX(y). Take Y to be a set of representatives of the

equivalence classes.

As each b ∈ B preserves idN, for each N ∈ S(M), we have b(x) ∈ x(A), for

all x ∈ X. Hence the map ϕ : B →
∏

y∈Y y(A), given by ϕ(b) = (b(y))y∈Y , for

all b ∈ B, is a well-defined homomorphism. We claim that ϕ is an isomorphism.

Let b1, b2 ∈ B with b1 
= b2. Then there exists x ∈ X such that b1(x) 
= b2(x).

Choose y ∈ Y and h ∈ Iso(M) such that x = hX(y). Since b1 and b2 preserve h,

we have h(b1(y)) = b1(h
X(y)) = b1(x) 
= b2(x) = b2(h

X(y)) = h(b2(y)), so that

b1(y) 
= b2(y). Hence ϕ is one-to-one.

Now assume that (y(ay))y∈Y ∈
∏

y∈Y y(A), where ay ∈ A, for all y ∈ Y .

Let x ∈ X, and let y1, y2 ∈ Y and h1, h2 ∈ Iso(M), with hX
1 (y1) = x = hX

2 (y2).

Then y1 = y2 (since Y is a transversal of the ∼-equivalence classes) and

h1(y1(a)) = h2(y2(a)), for all a ∈ A, by the definition of hX
i (yi). Hence we

may unambiguously define an M-sorted map b from X to ·⋃{M | M ∈ M }

by b(x) = h(y(ay)), where y ∈ Y and h ∈ Iso(M) are such that x = hX(y).

We shall prove that b preserves each k ∈ Iso(M). Assume that x ∈ X with

x ∈ dom(kX); hence x(a) ∈ dom(k), for all a ∈ A. We have x = hX(y), for

some h ∈ Iso(M) and y ∈ Y . We also have kX(x) = k ◦ (h ◦ y) = (k ◦ h) ◦ y =

(k ◦ h)X(y), and k ◦ h ∈ Iso(M). Therefore, by the definition of b, we have

b(kX(x)) = b(kX(hX(y))) = b((k ◦ h)X(y))

= (k ◦ h)(y(ay)) = k(h(y(ay))) = k(b(x));

so b preserves k. Finally note that ϕ(b) = (y(ay))y∈Y , whence ϕ is surjective.

The final assertions of the theorem follow from Theorems 4.1 and 5.6. �

Remark 5.8. By combining Theorem 5.7 with Theorem 3.8 we obtain a

description of the canonical extension Aσ of any algebra A in a finitely gen-

erated discriminator variety of algebras having a (bounded) lattice reduct. In

the case that the reduct is distributive, such a description was obtained by

Gehrke and Jónsson [32, Section 3]; their result can now be seen in a wider

context. We remark that
∏

h∈H h(A) is a dense and compact completion of
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A via the embedding ϕ ◦ j, where j is the natural embedding of A into B and

ϕ : B →
∏

y∈Y y(A) is the isomorphism given by Theorem 5.7.

Semilattice-based varieties. Semilattice-based algebras have become in-

creasingly prominent, due particularly to their role in R. McKenzie’s ground-

breaking undecidability results from the late 1990s, following on from [55];

these are discussed in [74].

Semilattices fail to satisfy any nontrivial congruence identity (Freese and

Nation [29]). However every semilattice-based algebra is congruence meet

semidistributive: a direct proof appears in D. Papert [62] but the result also

follows from [38, 9.10]. Therefore a semilattice-based variety of finite type

which is residually finite is residually very finite [46].

Particular attention has been given to flat algebras, that is, those with an

underlying meet-semilattice of height 1, as these are the algebras that occur

in McKenzie’s work. In this case, more can be said. Davey, Jackson, Pitkethly

and Talukder [19] prove the equivalence of the following conditions for a finite

flat algebra M whose bottom is absorbing (that is, the zero of the semilattice

acts as a zero for every operation):

(i) Var(M) is residually small;

(ii) Var(M) is residually very finite;

(iii) M is dualisable;

(iv) each fundamental operation of M is compatible with the semilattice

operation.

In [19] extensive classes of algebras M which satisfy these conditions are pre-

sented, as well as many classes for which they fail, with M not merely non-

dualisable but inherently non-dualisable. The case where the bottom of M is

not absorbing is necessarily more complex as it includes the algebras deter-

mined by the Turing machines in McKenzie’s work on undecidability. Nev-

ertheless, Clark, Davey, Pitkethly and Rifqui [12] succeed in characterising

completely those finite flat unars M with non-absorbing bottom which are

dualisable.

Varieties of groups and semigroups. McKenzie, in [53], verified the RS

Conjecture for semigroups. The class Sfin of finite semigroups therefore splits

into two classes:

• L = {M ∈ Sfin | Var(M) is residually large }, and

• F = {M ∈ Sfin | Var(M) is residually very finite }.

The class F , which coincides with the class of semigroups that generate a

residually finite variety, has been completely described. In 1979, Golubov and

Sapir [33] proved that every residually finite variety of semigroups must be

a subvariety of some member of a particular class of varieties of semigroups

{Vn
i | i ∈ {1, 2, 3} and n > 1}. They also showed that a residually finite variety

of semigroups is residually very finite and that every such variety is generated
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by a member of a distinguished list of twenty types of finite semigroups (for a

convenient summary see A.C.J. Bonato [7]). Using their characterisation Gol-

ubov and Sapir were able to identify all the subdirectly irreducible semigroups

in a residually finite semigroup variety. The characterisation was, essentially,

also obtained independently by McKenzie as a corollary of the main result in

[53]; this same result enabled him to verify the RS Conjecture for semigroups.

We now turn to duality issues, and ask how far it is known that dualisability

of a finite semigroup M correlates with the residual character of HSP(M).

Complete results are not available, but the theorems which have been proved

so far indicate uniform behaviour: a dichotomy between the properties of

dualisability and residual finiteness on the one hand and those of inherent

non-dualisability and residual largeness on the other.

Groups illustrate this well. A finite group is congruence permutable and

in particular congruence modular. Therefore it generates a variety which is

either residually large or residually very finite. A. Ju. Ol’shankskii [61] proved

that a variety of groups is residually finite if and only if it is generated by a

finite group whose Sylow subgroups are all abelian. Quackenbush and Szabó

[67] proved that a finite group is dualisable if all its Sylow subgroups are cyclic

and conjectured that ‘cyclic’ here could be replaced by ‘abelian’. A positive

solution to this—the Quackenbush–Szabó-conjecture (QSC)—was announced

by M. H. Nickodemus [58]. It is also known that a finite group with a non-

abelian Sylow subgroup is inherently non-dualisable (see [39]). We conclude

that a finitely generated variety of groups is residually finite if and only if it

is generated by a dualisable finite group and that this holds if and only if it is

generated by a finite group with abelian Sylow subgroups.

We now turn to monoids and to semigroups in general. It follows from

Jackson [39, Theorem 15] that, since QSC is true, a finite inverse semigroup is

inherently non-dualisable if and only if it generates a variety which is not resid-

ually finite. Moreover this implies that the class of inherently non-dualisable

finite algebras includes finite monoids containing a non-group element, com-

pletely regular non-Clifford monoids and finite non-Clifford inverse semigroups

(see [39]).

Like the finite semigroups, the finite monoids split into two classes, which

we denote by F1 and L1; these classes consist, respectively, of monoids which

are residually very finite and residually large. No non-dualisable monoid in F1

has yet been found. For finite monoids of various particular types, dualisabil-

ity is equivalent to membership of F1 (this happens, for example, for aperiodic

monoids) and inherent non-dualisability to membership of L1 (true for com-

mutative monoids); see [39] for details. The only members of F1 whose dual-

isability status remains unresolved are the semilattices of dualisable groups.

For finite semigroups in general the picture is less complete. There are

members M of F and of L for which it is unknown whether M is dualisable,

inherently non-dualisable, or neither. Nevertheless, the uniform pattern seems



234 B.A. Davey, M. J. Gouveia, M. Haviar, and H.A. Priestley Algebra Univers.

to persist: all semigroups in F , where the answer is known, are dualisable; all

semigroups in L, where the answer is known, are inherently non-dualisable.

There is one niggling issue on which we should comment. The classification

of finite semigroups concerns varieties HSP(M), whereas when we refer to

dualisability of M, we are referring to a duality for the prevariety ISP(M).

The classes HSP(M) and ISP(M) do not always coincide; note that HSP(M) =

ISP(M) if and only if each subdirectly irreducible of HSP(M) embeds into M.

The studies of residually finite and residually small semigroups in [33, 53]

provide many examples of finite semigroups M generating varieties that do

not satisfy HSP(M) = ISP(M). Clark et al. [10] ask if there is an algorithm to

decide when it is the case that HSP(M) = ISP(M). They observe that we can

decide if HSP(M) = ISP(M) for algebras in a class K whenever, within K, we

have

(1) an effective method to determine if HSP(M) is residually finite, and

(2) in case HSP(M) is residually finite, an effective method to compute a

number f(|M |) ∈ N such that each member of Si(HSP(M)) has size at

most f(|M |).

(Given (1) and (2), we may check if each subdirectly irreducible quotient of the

free algebra in HSP(M) on f(M) generators embeds into M.) For semigroups,

algorithms for (1) and (2) can be extracted from [33] and [53].

Unary algebras. Finally in this section we turn to a class of algebras that

exhibits a wealth of different behaviours, both good and very bad.

Results on the residual character of varieties of unary algebras date back to

the seventies. W. Taylor [71, p. 39] argued why every variety of unary alge-

bras is residually small. Since unary algebras have the congruence extension

property, the results of Baldwin and Berman [2] then show that every locally

finite variety of unary algebras has DPC and so is residually very finite. Even

for unars the assumption of local finiteness cannot be dropped here. The va-

riety of all unars 〈A; f〉 is not locally finite (the natural numbers with f the

successor function is one-generated) and also not residually finite (take f to

be the predecessor function on the natural numbers with f(1) = 1, then every

non-trivial subalgebra is subdirectly irreducible).

The monograph of Pitkethly and Davey [63] contains a detailed analysis

of dualisability for unary algebras. The issue of dualisability is revealed to be

surprisingly subtle and complex. Every finite unar is dualisable [63, 3.5.1], but

not every three-element unary algebra is dualisable. In addition, there are no

inherently non-dualisable unary algebras ([63, 2.1.4]).

6. Applications: internally residually finite prevarieties

In this section we venture into the territory where Theorem 4.1 applies but

Theorem 4.3 does not, and present some examples.
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In certain circumstances, useful information can be derived from Theo-

rem 4.3 even for prevarieties ISP(M) for which M is infinite. Assume M has

the property that every finite subset N of M is such that ISP(N) is dualisable;

this occurs for example whenever the algebras in M have an NU-term. The

following result can be viewed as being in the spirit of a compactness theo-

rem, but we note that there is no connection with the Duality Compactness

Theorem (see for example [9, Theorem 2.2.11]).

Theorem 6.1. Let F be a directed family of finite sets of finite algebras of

the same type. For each N ∈ F , assume that AN := ISP(N) is dualisable,

with a dualising set SN∼. Let M :=
⋃
F , A := ISP(M) and let A ∈ A. Then

an M-sorted map b : ·⋃{A(A,M) | M ∈ M } → ·⋃{M | M ∈ M } belongs to

nA(A) if and only if b preserves S :=
⋃
{SN∼ | N ∈ F }.

Proof. The idea of the proof is to localise to a finitely generated quasivariety

within A and to exploit (duality-)entailment there. We know, by Theorem 4.1,

that the map b belongs to nA(A) if and only if b preserves all finitary multi-

sorted algebraic relations on M. So the forward implication is trivial.

For the backward implication, let s be a finitary multisorted algebraic re-

lation on M of arity m. Since the family F is directed we can choose N ∈ F

such that s ∈ AN. Assume that the M-sorted map b preserves S and let

(x1, . . . , xm) ∈ sD(s), where D(s) = ·⋃{A(s,M) | M ∈ M }, the dual space

of s, viewed as a member of A.

Define c to be the restriction of b to the subset ·⋃{AN(s,N) | N ∈ N } of

its domain. We know that SN∼ dualises AN and that s is a finitary algebraic

relation on N. Working with (duality-)entailment as it applies to AN, we

deduce that SN∼ entails s. By Lemma 4.2, SN∼ discretely entails s. In partic-

ular c, which by assumption preserves SN∼, must preserves s. Since we know

that (x1, . . . , xm) ∈ s on the dual space of s, derived as for a member of AN,

we deduce that (c(x1), . . . , c(xm)) ∈ s. Therefore (b(x1), . . . , b(xm)) ∈ s and

we have proved that b preserves s. �

A few comments should be made here. By insisting that the generating sets

for the prevarieties, rather than the prevarieties themselves, be directed, we

have ensured that each relation we have to consider lies in a single dualisable

sub-prevariety and that the set of relations determining the natural extension

can be simply described. There are situations where directedness is automatic

or can be engineered. If M is a family of finite algebras, directed with re-

spect to ‘is isomorphic to a subalgebra of’, then the family of prevarieties

{ISP(M)}M∈M satisfies the condition demanded of the family AN of prevari-

eties in Theorem 6.1. Given a variety V which is not residually finite, one may

consider A := ISP(M), where M is the family of finite algebras in V; then A

is properly contained in V since V contains infinite subdirectly algebras while

A contains none.
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Now assume V is congruence distributive and let F := {Fn}
∞
n=2, where

Fn consists of the members of V of cardinality less than n; this is certainly

directed. By Jónsson’s Lemma, ISP(Fn) = HSP(Fn) and, since Fn is an

elementary class, this variety contains, and is generated by, all subdirectly

irreducible members of V of size less than n. If in addition V is of finite

type then, up to isomorphism, HSP(Fn) is generated by a finite set of finite

algebras. This is the scenario in the examples we present.

As a first application of Theorem 6.1 we consider a particular example.

Example 6.2. Let Cn be the n-element chain, regarded as a Heyting algebra

and let M := {Cn}
∞
n=1. Then ISP(M) is a prevariety properly contained

in the variety H of Heyting algebras (proper containment because H is not

residually finite). Indeed, Var(M) is the variety L of relative Stone algebras

and ISP(M) is the prevariety generated by the finite members of L. Let C be

the chain {0} ∪ {1/m}m�1 and embed each chain Cn into C so that Cn\{0}

is an up-set of C\{0}. We can therefore assume that we have

C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C.

Furthermore, with this representation, Cn is a Heyting subalgebra of Cn+1 for

each n. Here ISP({C1, . . . ,CN}) is simply ISP(CN ) and this is dualised by

EndCN—for a very short proof of this fact due to Davey and Priestley, see [9,

Theorem 8.1.5]. Theorem 6.1 implies that the natural extension nA(A), for

any A ∈ A, is the family of M-sorted maps preserving the set
⋃∞

N=1 EndCN .

Varieties within the scope of Theorem 6.1 are plentiful. We draw attention

in particular to varieties V whose lattice of subvarieties is an (ω + 1)-chain

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V, where V0 is the trivial variety and each Vn is

finitely generated and dualisable, but V is not residually finite. Here we have

an IRF-prevariety W := ISP(M), where M :=
⋃

n�1 SiVn, which is properly

contained in V. Examples of this type include:

• relative Stone Heyting algebras, the variety L from Example 6.2;

• monadic Boolean algebras (here we have a discriminator variety in which

Vn for n � 1 is the quasiprimal variety generated by the simple monadic

algebra with reduct 2n);

• monadic distributive lattices;

• modular ortholattices;

• distributive p-algebras.

For definitions and properties of these varieties, see for example [13, 4] and for

dualities for their finitely generated subvarieties see [9, 65, 37].

We observe that changing the type can radically alter the picture. The

variety of p-semilattices behaves quite differently from the variety Bω of dis-

tributive p-algebras: in both cases the finite subdirectly irreducibles are the

algebras 2n ⊕ 1. But, qua p-semilattices, HSP(2n ⊕ 1) is the same for every

n � 1 and is residually large. The associated quasivarieties ISP(2n ⊕ 1) are

distinct, but fail to be dualisable for n > 1. See [20, 69, 70] for details.
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Examples where Theorem 6.1 applies to the prevariety generated by all finite

subdirectly irreducible algebras but where we do not have an (ω + 1)-chain of

subvarieties are supplied by the variety MV of MV-algebras. Here the ordered

set of finitely generated subvarieties is isomorphic to the finite down-sets of

N ∪ {0} under divisibility (see for example P. Niederkorn [59, Theorem 1.1]).

As noted earlier, Theorem 5.6 applies to each variety generated by a finite

MV-chain. More generally we may consider the variety BL of BL-lattices

(see Di Nola and Niederkorn [25, Section 2]); BL is a subvariety of the variety

of residuated lattices and its members model Hájek’s Basic Logic. The finite

BL-chains are ordinal sums of finite MV-chains, and are directed, by [25,

Lemma 2.1]. Hence we may apply Theorem 6.1 to the prevariety generated by

all finite BL-chains. Each single chain is dualised by its endomorphisms and

partial endomorphisms (see [25, Theorems 2.6 and 4.1] and [9, Theorem 6.4.2]).

We now move on from consideration of varieties which fail to be finitely

generated and discuss briefly finitely generated (quasi)varieties which fail to

be dualisable.

A very important technique in duality theory for proving that a quasivariety

ISP(M), where M is finite, is non-dualisable is the Ghost Element Method (see

[9, Section 10.5] and [63, 1.4.6 and Section 3.4]). The underlying idea is to

manufacture continuous maps which lie in the second dual of an algebra A, but

which cannot be evaluations. We remark that such ghost elements witnessing

non-dualisability do lie in the cloud of elements in nA(A)\e
A
(A).

By way of illustration we present an example of the natural extension of an

algebra in a non-dualisable quasivariety.

Example 6.3. Let I be the variety of implication algebras. Then I = ISP(I).

Here I = 〈{0, 1};→〉 is the two-element implication algebra: x → y = 0

if and only if x = 1 and y = 0. It was the first non-dualisable algebra to be

discovered by Davey and Werner ([24] and [9, 10.5.4]). The implication algebra

they used [24] to witness non-dualisability was the algebra A∗ consisting of the

non-empty finite or cofinite subsets of N. They showed that the double dual

ED(A∗), that is, the algebra consisting of all continuous maps from I(A∗, I)

to {0, 1} that are locally evaluations, has a bottom and so can’t be isomorphic

to A∗. We now show, with very little extra work, that ED(A∗) is isomorphic

to the algebra A of all finite or cofinite subsets of N, and that the natural

extension of A∗ is isomorphic to the powerset algebra ℘(N).

Since congruences on an implication algebra correspond to filters, we see

easily that

I(A∗, I) = {xn | n ∈ N } ∪ {z, 1},

where xn := χ
↑{n} is the characteristic function of the principal ultrafilter,

z := χ
C is the characteristic function of the ultrafilter C of cofinite subsets

of N, and 1 is the constant map onto {1}. Topologically, I(A∗, I) is the one-

point compactification of a countably infinite discrete space with z as the
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compactification point. For each a ∈ A∗, the evaluation map e
A
(a) is given by

e
A
(a)(y) =

{
1, if y = 1 or (y = xn and n ∈ a) or (y = z and a is cofinite),

0, if (y = xn and n /∈ a) or (y = z and a is finite).

A map from I(A∗, I) to {0, 1} is locally an evaluation if and only if it maps

1 to 1. Consequently, by Theorem 4.1, nI(A) is isomorphic to the powerset

algebra ℘(N). The only continuous map from I(A∗, I) to {0, 1} that is locally

an evaluation but not an evaluation is the map 0̂ given by 0̂(y) = 1 ⇔ y = 1.

It follows that ED(A∗) is isomorphic to A∗ with a least element added.
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