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Algebra Universalis

Characteristic triangles of closure operators
with applications in general algebra

G. Czédli, M. Erné, B. Šešelja, and A. Tepavčević

Abstract. Our aim is to investigate groups and their weak congruence lattices in the
abstract setting of lattices L with (local) closure operators C in the categorical sense,
where L is regarded as a small category and C is a family of closure maps on the
principal ideals of L. A useful tool for structural investigations of such “lattices with
closure” is the so-called characteristic triangle, a certain substructure of the square
L2. For example, a purely order-theoretical investigation of the characteristic triangle
shows that the Dedekind groups (alias Hamiltonian groups) are precisely those with
modular weak congruence lattices; similar results are obtained for other classes of
algebras.

1. Introduction

Modern mathematics has some powerful tools that allow us to eliminate

elementwise calculations. Prominent disciplines in that area are order and

lattice theory (as applied in universal algebra, in pointfree topology, or in

the abstract treatment of geometry) and, of course, category theory — which

encompasses, under suitable identification, the theory of ordered sets. Such a

framework often provides the most transparent reason “why a theorem is true”.

In the present paper, we prove the following theorem (formulated already in

[28], however with an incorrect proof):

Theorem 1.1. A group is a Dedekind group if and only if its weak congruence

lattice is modular.

Here, by a Dedekind group we mean a group in which all subgroups are

normal. Sometimes, such groups are also called Hamiltonian (see e.g., [2]),

but often the latter name is reserved for the non-abelian case (cf. [25], [26]).
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Theorem 1.1, which is easily established in the finite case (cf. [32]), is mainly

a group-theoretical statement but involves certain lattices that gave rise to

the pointfree, i.e., purely lattice-theoretical treatment of the Congruence In-

tersection Property (CIP) discussed extensively in [27] (cf. Obraztsov [23] and

Traustason [30]). The CIP combined with the classical Congruence Extension

Property (CEP) provides a useful tool in universal algebra (see [27] again).

To accomplish our goal, we study certain closure operators on lattices L,

i.e., families of closure maps on the principal ideals

Lx = ↓x = { y ∈ L | y ≤ x} (x ∈ L) .

We translate the situation of weak congruence lattices into the abstract model,

establish a much more general analogue in the lattice environment (not dealing

with group elements any longer), and obtain Theorem 1.1 as a special instance.

Our construction mimics abstractly the formation of the weak congruence

lattice Conw(G) of a group G by means of the subgroup lattice Sub(G). Below,

we give a survey of the involved notions.

In a complete lattice L, an element y is way-below x, denoted y � x, if for

all directed subsets D of L, x ≤
∨

D implies that y belongs to the downset

↓D =
⋃
{ ↓z | z ∈ D} .

The elements x with x � x are the compact elements. The ideal { y ∈ L |

y � x} is called the way-below ideal of x. A continuous lattice is a complete

lattice in which each element is the join of its way-below ideal (see [16] and,

for more general continuity structures, [10] and [12]). A special class of con-

tinuous lattices is that of algebraic lattices, in which the compact elements

are join-dense; that is, each element is a join of compact elements. For more

background concerning algebraic lattices and their generalizations, see [2], [3],

[11] and [16]. Prominent examples of algebraic lattices are the lattices Sub(A)

of all subuniverses (carriers of subalgebras) of general (finitary) algebras A,

and their congruence lattices Con(A). In fact, any algebraic lattice arises as

an isomorphic copy of one in either of these two classes; the second, harder

representation is the classical Grätzer–Schmidt theorem, cf. [19]. By a much

stronger result due to Lampe (see [21]), for any two nontrivial algebraic lattices

L,K and any group G there is an algebra A whose subalgebra and congruence

lattice is isomorphic to L and K, respectively, and whose automorphism group

is isomorphic to G. Moreover, Tuma [31] has shown that every algebraic lattice

is isomorphic to an interval of a subgroup lattice Sub(G).

A weak congruence on an algebra A is a symmetric and transitive sub-

universe of A2. The weak congruences on A form an algebraic lattice under

inclusion, denoted by Conw(A); indeed, as in the congruence case, Conw(A)

is closed under arbitrary intersections and under directed unions. The con-

gruence lattice Con(A) of A is a principal filter in Conw(A), generated by the

diagonal (= identity) relation Δ of A. Moreover, the congruence lattice of any

subalgebra of A is an interval sublattice of Conw(A). On the other hand, the
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subalgebra lattice Sub(A) is isomorphic to the principal ideal generated by Δ,

by sending each weak congruence θ contained in Δ to its domain

Aθ = { a | a θ a} = {b | ∃ a (a θ b)}.

Therefore, both the subalgebra lattice and the congruence lattice of an algebra

may be recovered and investigated within a single algebraic lattice. More about

weak congruences and the corresponding lattices can be found in [27] (see also

[33]).

In the case of a group G, a particular construction of the weak congruence

lattice Conw(G) is possible inside of the square L(G)
2

= L(G) × L(G) of the

subgroup lattice L(G) = Sub(G). Writing N(X) for the lattice of normal

subgroups of X ∈ L(G), we see that the set

L(G)C
≥ = { (X,Y ) | X ∈ L(G), Y ∈ N(X)}

is closed under arbitrary meets in L(G)
2
, hence is a complete lattice, and

the map θ �→ (Gθ, eθ) (where e is the neutral element) turns out to be an

isomorphism between Conw(G) and L(G)C
≥. As demonstrated in [7] and [27],

weak congruence lattices of groups are quite useful for various group-theoretical

investigations.

Every group G has a modular congruence lattice isomorphic to N(G),

whence every Dedekind group has a modular subgroup lattice; however, there

are also many other groups G with modular L(G) but non-modular L(G)C
≥,

the simplest example being the symmetric group G = S3.
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Sub(S3) = L(S3)

Con(S3) 	 N(S3)

Conw(S3) 	 L(S3)
C
≥

The point is that, by Theorem 1.1, Dedekind groups are characterized by the

modularity of their weak congruence lattices Conw(G) ⊆ L(G2); compare this

with the result of Lukács and Pálfy [20] that the whole of L(G2) is modular

if and only if G is abelian. For a comprehensive investigation of subgroup

lattices and their properties like modularity, distributivity etc., the reader is

referred to the monograph by R. Schmidt [26] (see also Birkhoff [2, Ch. VII],

Ore [24], and Suzuki [29] for earlier sources).

Replacing the normal closure of subgroups with a general categorical closure

operator C = (Cx | x ∈ L) on any lattice L (where each Cx is a closure map

on the principal ideal Lx, see Section 2), we shall construct a certain lattice
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contained in the square L2, viz. the characteristic triangle

LC
≥ = {(x, y) ∈ L2 | x ≥ y = Cx(y)} = {(x, y) ∈ L2 | y∈LC

x },

where LC
x denotes the range ( = fixpoint set) of the closure map Cx on the

principal ideal generated by x. As we shall see, important and valuable in-

formation about the closure operator is coded in the characteristic triangle.

This will enable us to prove an element-free generalization of Theorem 1.1,

saying that L is modular and equal to LC
1 (where 1 is the top element of L)

if and only if LC
≥ is modular and the “discrete” elements, i.e., the elements x

with LC
x = Lx , are join-dense in L. This and related results on the “corner

element” (1, 0) of LC
≥ (the abstract counterpart of the diagonal element Δ of

the weak congruence lattice Conw(A)) will apply not only to groups but also

to more general group-like algebras.

2. Lattices with closure operators

We shall make use of the fact that the class of algebraic lattices and that of

continuous lattices are closed under the formation of direct products, complete

sublattices (closed under arbitrary joins and meets) and intervals (see, e.g., [16,

Ch. I]). In particular, for any algebraic or continuous lattice L, each principal

ideal Lx = ↓x, the square L2 = L × L , and the triangle

L≥ = {(x, y) ∈ L2 | x ≥ y},

which is closed under arbitrary (coordinatewise) joins and meets in the square,

are again algebraic or continuous lattices, respectively.

Henceforth, let L be a lattice. A closure range in L is a subset M such

that for each x ∈ L there is a least y ∈ M with x ≤ y; in case L is complete,

the latter means that M is closed under arbitrary meets in L. A closure

map (or closure operation) on L is an extensive, isotone ( = order preserving)

and idempotent self-map of L, or equivalently, a map c : L → L such that

y ≤ c(z) ⇔ c(y) ≤ c(z). Associating with any such closure map its range c[L],

one obtains a dual isomorphism Φ between the pointwise ordered set of all

closure maps (which is complete if L is) and that of all closure ranges (ordered

by inclusion). We avoid here the terms closure operator and closure system,

because on the one hand, they are often reserved to the classical set-theoretical

case where L is a power set lattice, and on the other hand, we wish to prevent

confusion with the categorical notion of closure operator (see, e.g., [8]).

In order to ensure that a subposet M of an algebraic or continuous lattice

L is an algebraic or continuous lattice, too, it suffices to require that M be

closed under arbitrary meets and under directed joins (up-closed); although

the compact elements of M may differ from those of L, they are just the

closures of the compact elements of L (see [16, Ch. I–4]). A map f : L → M

between complete lattices is called (Scott) continuous if it preserves directed

joins, i.e., f(
∨

D) =
∨

f [D] whenever D is directed (see [15], [16]). Notice
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that every continuous map f is isotone, i.e., x≤ y implies f(x)≤ f(y). It is

straightforward to check that the above dual isomorphism Φ induces a one-

to-one correspondence between continuous closure maps and up-closed closure

ranges in a complete lattice. In particular, the range of any continuous closure

map on an algebraic or continuous lattice is again algebraic or continuous,

respectively (cf. [16, Ch. I–4]).

Observe that for any closure map c : L → L, joins in the range c[L] are

given by
∨

c[L]Y = c(
∨

L Y ), and the surjective corestriction of c from L onto

c[L] preserves arbitrary joins, whereas in general, c itself neither preserves

finite joins (as in the topological case) nor directed joins (as in most algebraic

situations).

Now, before introducing a new and central notion, we briefly outline its

categorical background. As it is well known, any lattice or ordered set (L,≤)

may be regarded as a small category L, with L as the set of objects and all

pairs in the order relation as morphisms. Under that categorical perspective,

a closure operator on L or, more precisely, on the isomorphic category of all

principal ideals of L, is a family C = (Cx | x ∈ L) of maps Cx : Lx → Lx such

that for all x, y, z ∈ L,

y ≤ z ≤ x implies y ≤ Cz(y) ≤ Cx(y) ≤ Cx(z).

In order to avoid confusion with closure maps, one could speak of local closure

operators, but we follow the general convention of category theorists and omit

the word “local”. The reader may refer to [8] for the theory of categorical

closure operators and to [1] for more categorical background.

Deviating from [8], we shall assume throughout that each Cx is a closure

map in the previous sense. In other words, for us, a closure operator on a

lattice L is a family C = (Cx | x ∈ L) of isotone maps Cx : Lx → Lx such that

C1: y ≤ Cx(y) = Cx(Cx(y)) for all y ≤ x in L;

C2: Cz(y) ≤ Cx(y) for all y ≤ z ≤ x in L.

Under that hypothesis, we call (L,C) a lattice with closure and put

LC
x = Cx[Lx] = {y ∈ Lx | Cx(y) = y} .

If the lattice L is bounded by a least element 0 and a greatest element 1, a

closure operator C on L is said to be grounded (see [8]) if

C0: Cx(0) = 0 for all x ∈ L.

In categorical contexts, Axiom C2 is often referred to as the continuity axiom,

but in order to make the machinery work in the desired area, we have to

consider here the stronger notion of Scott continuity. Namely, by a continuous

closure operator on a complete lattice L we mean a family of closure maps

Cx on the principal ideals Lx such that, instead of C2, the following two

conditions are fulfilled:

C3: each Cx is continuous, i.e., Cx preserves directed joins;
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C4: CW
D(y) =

∨
{Cx(y) | x ∈ D, x ≥ z}, for any directed subset D of L,

any z ∈ D and each element y ∈ Lz.

A pair (L,C) consisting of a complete lattice L and a closure operator C on

L satisfying C1, C3 and C4 will be referred to as a complete lattice with

continuous closure. In order to see that C4 entails C2, consider D = {x, z}.

Notice that for any closure operator C on a complete lattice L and each x ∈ L,

Cx(y) =
∧
{ z ∈ LC

x | y ≤ z}.

The structure of (L,C) may be recovered from the characteristic triangle

LC
≥ = { (x, y) | x ∈ L, y ∈ LC

x } = { (x, y) ∈ L≥ | Cx(y) = y} .

By definition, a closure operator is grounded if and only if (1, 0) ∈ LC
≥.

In that case, the principal ideal generated by (1, 0) in LC
≥ is isomorphic to

L via projection onto the first coordinate. On the other hand, the principal

filter generated by (1, 0) is isomorphic to LC
1 , and more generally, the interval

[(x, 0), (x, x)] in LC
≥ is isomorphic to LC

x via projection onto the second coor-

dinate. Hence, any lattice identity carries over from LC
≥ to each of the lattices

LC
x , whereas the converse fails (see Example 2.3).

Theorem 2.1. If (L,C) is a lattice with closure, then LC
≥ is a closure range

in L≥ (and so in L2). The corresponding closure map on L≥ is determined by

C∗(x, y) = (x,Cx(y)) for (x, y) ∈ L≥.

If L is complete, then LC
≥ is closed under arbitrary meets, and if C is con-

tinuous, then LC
≥ is also closed under directed joins in L≥ (and in L2). The

assignment C �→ C∗ yields a one-to-one correspondence between the (continu-

ous) closure operators on L and the (continuous) closure maps on L≥ keeping

the first coordinate fixed.

Proof. For (x, y) ∈ L≥ and (u, v) ∈ LC
≥, we have (x, y)≤ (u, v) ⇔ (x,Cx(y))≤

(u, v) (indeed, y ≤ x ≤ u and y ≤ v ≤ u imply Cx(y) ≤ Cu(y) ≤ Cu(v) = v

if v ∈ LC
u ), showing that (x,Cx(y)) is the closure of (x, y) with respect to the

closure range LC
≥. In particular, LC

≥ is closed under arbitrary meets in L≥ if

L is complete.

Now consider a directed family of elements (xi, yi) in LC
≥ (i ∈ I). The index

set I may be directed by i ≤ j ⇔ (xi, yi) ≤ (xj , yj). Forming the directed

joins x∨ =
∨

i∈I xi, y∨ =
∨

i∈I yi and using first C3 and then C4, we obtain

Cx∨
(y∨) =

∨

j∈I

Cx∨
(yj) =

∨

j∈I

∨

xi≥xj

Cxi
(yj) ≤

∨

k∈I

Cxk
(yk) =

∨

k∈I

yk = y∨

(since Cxi
(yj) ≤ Cxk

(yk) for i, j ≤ k by C2), and therefore, y∨ ∈ LC
x∨

,

(x∨, y∨) ∈ LC
≥. Thus, if C is a continuous closure operator, then LC

≥ is up-

closed in L≥, and hence, C∗ is a continuous closure map.

Let p1 and p2 denote the first and second projection from L≥ onto L,

respectively. By definition, p1 ◦ C∗(x, y) = x = p1(x, y), and the original

closure operator C is obtained by Cx(y) = p2 ◦ C∗(x, y). Conversely, let
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c be a closure map on L≥ with p1 ◦ c = p1, and define Cx : Lx → Lx by

Cx(y) = p2 ◦ c(x, y). Then

y ≤ Cx(z) ⇔ (x, y) ≤ (x,Cx(z)) = c(x, z) ⇔ c(x, y) ≤ c(x, z)

⇔ Cx(y) ≤ Cx(z),

showing that each Cx is a closure map with c(x, y) = (x,Cx(y)), since p1 ◦ c =

p1. If c is continuous, then for directed D ⊆ Lx, respectively D ⊆ L and

y ≤ z ∈ D, we get

Cx(
∨

D)= p2(c(x,
∨

D)) = p2(
∨

c[{x}×D]) =
∨

p2[ c[{x}×D]] =
∨

Cx[D];

C∨
D

(y) = p2 ◦ c(
∨

D, y) = p2 ◦ c(
∨
{(x, y) | x ∈ D, x ≥ z})

= p2(
∨
{c(x, y) | x ∈ D, x ≥ z}) =

∨
{Cx(y) | x ∈ D, x ≥ z}.

Thus, C = (Cx | x ∈ L) is a continuous closure operator on L. �

The first projection from LC
≥ onto L preserves arbitrary joins and meets.

Hence, it transfers any finite or infinite lattice identity from LC
≥ to L and to

each of the principal ideals Lx. For example, if LC
≥ is modular then so is L —

but not conversely (see the introduction and Example 2.3 below). However,

there are important lattice properties that are transferred from L to LC
≥ and

vice versa:

Corollary 2.2. Let (L,C) be any complete lattice with continuous closure.

Then LC
≥ is continuous or algebraic, respectively, if and only if so is L.

In general, a complete homomorphism need not preserve compactness, nor

algebraicity: for example, the real unit interval is the image of the algebraic

Cantor discontinuum under the complete homomorphism identifying any two

adjacent endpoints—but [ 0, 1 ] has no compact elements except 0. However,

it can be shown that the first projection from LC
≥ onto L always preserves

compactness and the way-below relation.

We conclude this section with a few (large classes of) instructive examples.

Example 2.3. The primary situation we are concerned with in the present

note is that of a group G and its subgroup lattice L=L(G). For Y ≤ X in L,

let CX(Y ) denote the normal subgroup of X generated by Y . Then LC
X is the

lattice of normal subgroups of X; (L,C) is an algebraic lattice with continuous

closure, and

LC
≥ = {(X,Y ) | X ∈ L, Y ∈ LC

X}

is an algebraic lattice isomorphic to the weak congruence lattice Conw(G)

(see the introduction and Proposition 5.3). Moreover, C is clearly grounded.

Whereas the normal subgroup lattice LC
X is modular for each X ∈ L, Theorem

1.1 states that the characteristic triangle LC
≥ is modular if and only if G is a

Dedekind group.
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Example 2.4. Let L be a meet-continuous [2] or upper continuous [3] lattice,

i.e., a complete lattice enjoying the following identity for all x ∈ L and all

directed Y ⊆L:

(d) x ∧
∨

Y =
∨
{x ∧ y | y ∈ Y }.

If c is any continuous closure map on L, then the equation Cx(y) = x ∧ c(y)

defines a set of continuous closure maps Cx : Lx → Lx with C = (Cx | x ∈ L)

being a continuous closure operator.

Note that any continuous (and so any algebraic) lattice is meet-continuous.

Hence, in case L is algebraic (or continuous), the characteristic triangle

LC
≥ = {(x, y) ∈ L2 | y = c(y) ≤ x}

is again algebraic (or continuous), and C∗(x, y) = (x, x ∧ c(y)) defines a con-

tinuous closure map on L≥. In particular, this applies to any set-theoretical

algebraic closure operator like the subalgebra or congruence generator of an

arbitrary algebra.

Example 2.5. As we saw, a typical continuous but not algebraic lattice is

the unit interval L = [ 0, 1 ]. Let f : L → L be an isotone contraction (i.e.,

x≤ y implies f(x)≤ f(y)≤ y). Then Cx(y) = max{ y, f(x)} defines a closure

operator on L, and

f preserves arbitrary nonempty joins

⇔ f is continuous from the left (i.e., Scott continuous)

⇔ C is continuous

⇔ the closure map cf on L≥ with cf (x, y) = (x,Cx(y)) is continuous.

But C is grounded only for the zero map f(x) = 0, where cf is the identity

map.
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Two characteristic triangles.

Example 2.6. A nucleus on a lattice is a closure map c with c(x ∧ y) =

c(x)∧c(y); for closure maps, this equation is equivalent to the formally weaker

condition x∧ c(y) ≤ c(x∧ y). In view of Example 2.4, any continuous nucleus

c on a meet-continuous lattice induces a continuous closure operator C by

Cx(y) = x ∧ c(y). Nuclei play an important role in the theory of locales

or frames (enjoying the distributive law (d) for arbitrary Y ⊆ L) and their

applications in logic and pointfree topology (see, e.g., Johnstone [20]). As we

shall see in Proposition 4.1, a Boolean frame has only one grounded closure

operator — but there are many nuclei ∨a : x �→ x ∨ a.
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Of course, nuclei also occur in other parts of algebra. For example, an

algebra A has the Congruence Intersection Property if and only if the closure

map c associated with Con(A) induces a nucleus on the weak congruence

lattice Conw(A) (see, e.g., [27]). The corresponding closure operator C given

by Cθ(ρ) = θ ∩ c(ρ) is then continuous.

Or, let A be an algebra in a congruence modular variety; let L be the lattice

of tolerance relations (i.e., reflexive and symmetric relations compatible with

the operations) of A, and as before, let c(ρ) stand for the congruence generated

by ρ ∈ L. Then (L, c) is an algebraic closure lattice, c is a nucleus (cf. [4, 5, 6]),

and putting Cθ(ρ) = θ∩c(ρ) again yields a continuous closure operator C on L.

3. Distributive, standard, neutral, and modular elements

Recall from [17, Ch. III] the following notions which play a fundamental

role in the structure and decomposition theory of lattices: an element a of a

lattice L is

distributive if a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y),

standard if x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y),

neutral if (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = (a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a)

for all x, y ∈ L. It is known that each of the following properties equivalently

characterizes neutral elements a (see Grätzer and Schmidt [18] and [17, Ch.

III. 2, Theorems 3 and 4]):

– a is a codistributive (i.e., dually distributive) standard element;

– a together with any two other elements generates a distributive sublattice;

– a is mapped onto (1, 0) by an embedding of L in a product lattice A×B.

In modular lattices, the notions of (co)distributive, standard and neutral el-

ements coincide (see Birkhoff [2, Ch. II, Theorem 12]). More specifically, call

an element a of an arbitrary lattice L s-modular if

x ∧ (a ∨ y) = (x ∧ a) ∨ y for all x, y ∈ L with x ≥ y ,

or equivalently, if

a ∧ x = a ∧ y , a ∨ x = a ∨ y and x ≥ y imply x = y.

From the cited sources, one easily derives that an element is standard if and

only if it is distributive and s-modular. For various aspects of the above kinds

of special elements in the theory of weak congruence lattices, refer to [27].

Now, let C be a grounded closure operator on a lattice L and recall that

the LC
≥-closure of elements (x, y) ∈ L≥ is (x,Cx(y)). A “central” role in the

structure theory of (L,C) is played by the element (1, 0) of LC
≥, the abstract

counterpart of the diagonal Δ ∈ Conw(G) in the group case. Let us state some

of its properties.

Proposition 3.1. Let L be a bounded lattice with grounded closure C. Then

the “corner element” (1, 0) generates a principal ideal isomorphic to L and a
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principal filter isomorphic to LC
1 . The element (1, 0) is always a codistributive

element of LC
≥; hence, it is neutral if and only if it is a standard element of

LC
≥. Furthermore,

(1) (1, 0) is a distributive element of LC
≥ if and only if C1 is a nucleus, that

is, C1 preserves finite meets,

(2) (1, 0) is an s-modular element of LC
≥ if and only if C is hereditary, that

is, Cx(y) = x ∧ C1(y) for y ∈ Lx,

(3) (1, 0) is a standard (neutral) element of LC
≥ if and only if for y, z ∈ Lx,

Cx(y ∧ z) = x ∧ C1(y) ∧ C1(z)

or, equivalently,

z ≤ C1(y) implies z = Cz(y ∧ z).

Proof. (1, 0) is codistributive in LC
≥ on account of the equations (formed in

LC
≥)

(1, 0) ∧ ((x, u) ∨ (y, v))=(x ∨ y, 0)=(x ∨ y, Cx∨y(0))

=((1, 0)∧(x, u)) ∨ ((1, 0)∧(y, v)).

(1): (1, 0) is distributive if and only if

(1, 0) ∨ ((x, u) ∧ (y, v)) = ((1, 0)∨(x, u)) ∧ ((1, 0)∨(y, v)),

i.e., C1(u∧ v) = C1(u)∧C1(v) for all u, v ∈ L (consider the case u = x, v = y

in order to verify the necessity of the latter condition).

(2): (1, 0) is an s-modular element of LC
≥ if and only if

((x, u) ∧ (1, 0)) ∨ (y, v) = (x, u) ∧ ((1, 0) ∨ (y, v)) for all (x, u) ≥ (y, v) in LC
≥,

i.e., Cx(v) = u ∧ C1(v) for all (x, u) ≥ (y, v) in LC
≥, and that implies Cx(y) =

x ∧ C1(y) for all x ≥ y in L (take again u = x, v = y). For the converse, note

that (x, u) ≥ (y, v) in LC
≥ and Cu(v) = u ∧ C1(v) imply Cx(v) ≥ u ∧ C1(v) ≥

Cx(v).

(3): Suppose (1, 0) is standard, i.e., distributive and s-modular. Then, by

the previous equivalences, z ≤ C1(y) entails Cz(y∧z) = z∧C1(y)∧C1(z) = z.

Conversely, assume the equality z = Cz(y ∧ z) holds for z ≤ C1(y). Given

x, y ∈ L, put z = x ∧ C1(y). Then z = Cz(y ∧ z) ≤ C1(x ∧ y); whence,

C1 is a nucleus. And if y ≤ x, then z ≤ Cx(y) ≤ x ∧ C1(y), showing that

C is hereditary. Thus, (1, 0) is distributive and s-modular, i.e., a standard

element. �

Corollary 3.2. Suppose C is a grounded closure operator on a bounded lattice

L and (1, 0) is a standard element of LC
≥. Then z ≤ C1(y) and y ∧ z ∈ LC

z

imply z ≤ y. In particular, the only z ≤ C1(y) with y ∧ z = 0 is z = 0.

Recall that a bounded lattice L is disjunctive (Wallman [34]) if

for x �≤ y in L, there is a z ∈ L with x ∧ z �= 0, but y ∧ z = 0.

This is equivalent to postulating that
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for y < x in L, there is a z ∈ L with 0<z ≤ x and y ∧ z = 0.

Large classes of disjunctive lattices are formed by

– all sectionally complemented lattices (and so by all modular comple-

mented lattices)

– all atomistic lattices (and so by all geometric lattices and all dual T1-

topologies).

Proposition 3.3. A closure operator C on a disjunctive lattice L is the iden-

tity operator if and only if (1, 0) is a standard (neutral) element of LC
≥.

Proof. Clearly, if C1 = idL, then (1, 0) is neutral (hence, standard) in LC
≥ =

L≥. Conversely, if (1, 0) is a standard element of LC
≥ = L≥, then C is grounded,

and by Corollary 3.2, z ≤ C1(y) and y ∧ z = 0 imply z = 0. Hence, y < C1(y)

cannot occur in case L is disjunctive. Thus, C1 is the identity on L (and so

Cx = idLx
). �

Next, consider the map

ϕC : LC
≥ → L × LC

1 , where (x, u) �→ (x,C1(u)) .

Proposition 3.4. For any grounded closure operator C on a bounded lattice

L, the map ϕC is a ∨-homomorphism, and

(1) (1, 0) is a distributive element of LC
≥ ⇔ ϕC is a lattice homomorphism;

(2) (1, 0) is an s-modular element of LC
≥ ⇔ ϕC is injective (an order em-

bedding);

(3) (1, 0) is a standard element of LC
≥ ⇔ ϕC is a lattice embedding.

Proof. By the closure properties of C1, it is clear that C1(u ∨ v) is the join of

C1(u) and C1(v) in LC
1 ; consequently, ϕC is a ∨-homomorphism.

(1): ϕC is a ∧-homomorphism (hence, a lattice homomorphism) if and only

if C1 is one, which is tantamount to distributivity of (1, 0), by Proposition 3.1.

(2): If ϕC is injective and x ≥ y, then for u = Cx(y) and v = Cx(x∧C1(y)),

the equation (x,C1(u)) = (x,C1(y)) = (x,C1(x ∧ C1(y))) = (x,C1(v)) entails

u = v; hence, Cx(y) ≥ x ∧ C1(y), and the reverse inequality is clear. Thus,

C is hereditary, i.e., (1, 0) is s-modular by Proposition 3.1. Conversely, if the

latter holds, then for (x, u), (y, v) ∈ LC
≥, the equation (x,C1(u)) = (y, C1(v))

entails x = y and then u = Cx(u) = x ∧ C1(u) = y ∧ C1(v) = Cy(v) = v ,

proving injectivity of ϕC .

(3) follows from the previous two equivalences. �

We are now ready for the main result of this section, providing a modular-

ity criterion for characteristic triangles (see [27] for a similar result on weak

congruences).

Theorem 3.5. Let C be a grounded closure operator on a bounded lattice L,

and let V be a variety of modular lattices. Then LC
≥ is modular (resp. a member

of V) if and only if L is modular (resp. a member of V) and (1, 0) is a neutral

element of LC
≥ .
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Proof. If LC
≥ is modular then so is L, as observed earlier; also, (1, 0) is a

neutral element of LC
≥, being codistributive (see Proposition 3.1). Conversely,

if L is modular and (1, 0) is neutral then, by Proposition 3.1 again, LC
1 is

modular as well, being the homomorphic image of L under the nucleus C1. By

Proposition 3.4, the map ϕC is a lattice embedding of LC
≥ in L×LC

1 ; whence,

LC
≥ is modular, too. Analogous reasoning holds for any equational property

stronger than modularity. �

4. Discrete elements

As before, let C be a closure operator on a lattice L. With the obvious

spatial interpretation in mind, we call an element x ∈ L (C-)discrete if Cx is

the identity map, i.e., LC
x = Lx. Notice that if x is C-discrete, then so is each

z ≤ x, because of the inequality Cz(y) ≤ Cx(y) = y for y ≤ z ≤ x (see C2).

Thus, by definition, the following conditions are equivalent.

(1) The top element of L is C-discrete, i.e., C1 = idL.

(2) Each element of L is C-discrete.

(3) C is the identity operator, i.e., Cx = idLx
for each x ∈ L.

(4) The characteristic triangle LC
≥ is the whole triangle L≥.

Seemingly weak assumptions together with the modularity of LC
≥ already force

C to be the identity operator. By Proposition 3.3, disjunctivity of L is such a

hypothesis. In particular, we have:

Proposition 4.1. A grounded closure operator C on a complemented lattice

L has a modular characteristic triangle LC
≥ if and only if L is modular and C

is the identity operator.

Proof. An alternative argument is the following. If LC
≥ is modular, then so

is L. But a ∧- and 0-preserving closure map c on a complemented modular

lattice (like C1 on L = L1, by virtue of Proposition 3.1) must be the identity

map (cf. [9]), since for complementary elements x and x′,

0 = c(0) = c(x ∧ x′) = c(x) ∧ c(x′) ; 1 = x′ ∨ x = c(x′) ∨ x ;

c(x) = c(x) ∧ (c(x′) ∨ x) = (c(x) ∧ c(x′)) ∨ x = 0 ∨ x = x. �

A similar result is obtained if the complementation property is replaced

by a rich supply of discrete elements (see Corollary 4.3 below). The key to

group-theoretical and other algebraic applications is:

Theorem 4.2. Let C be a closure operator on a bounded lattice L whose

elements are joins of C-discrete elements. Then the following statements are

equivalent.

(1) The top element 1 is C-discrete, i.e., C is the identity operator.

(2) LC
≥ is a sublattice of L2 containing (1, 0).

(3) (1, 0) is a standard (equivalently, a neutral) element of LC
≥.
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Proof. Notice first that each of the conditions (1)–(3) entails the groundedness

of C. The implications (1)⇒ (2)⇒ (3) are straightforward. For (3)⇒ (1),

apply Corollary 3.2: each element C1(y) is a join of C-discrete elements z, and

these satisfy z ≤ y; whence, C1(y) = y. �

Now, invoking Theorem 3.5, we arrive at

Corollary 4.3. Let C be a grounded closure operator on a bounded lattice L.

Then L is a modular lattice whose top element (and so, each element) is C-

discrete if and only if the characteristic triangle LC
≥ is modular and the C-

discrete elements of L are join-dense. In this equivalence, “modular” may be

replaced by “distributive”.

Since atoms are certainly discrete for any grounded closure operator, we

obtain:

Corollary 4.4. If L is an atomistic lattice, then a grounded closure operator

C on L with modular LC
≥ must be the identity operator. This applies to any set-

theoretical closure operator on a power set. Thus, the only topological spaces

whose closure operator has a modular characteristic triangle are the discrete

ones.

Note that this corollary also immediately follows from Proposition 3.3.

5. Applications to group-like algebras

We deduce now various consequences of the previous lattice-theoretical re-

sults in general algebra; some of them have been stated earlier (cf. [27]), but

the original arguments relied on Theorem 1.1, whose proof in [28] was erro-

neous. The first complete proofs are based on Theorems 3.5 and 4.2. Let us

recall from [27] a few facts about the weak congruence lattices Conw(A) of

arbitrary algebras A (cf. Proposition 3.1):

• The diagonal Δ is always a codistributive element of Conw(A).

• Δ is a distributive element of Conw(A) if and only if A has the Congruence

Intersection Property (CIP), requiring that the congruence generating

closure operator of A preserves finite intersections of weak congruences.

• Δ is an s-modular element of Conw(A) if and only if A has the Con-

gruence Extension Property (CEP), requiring that every congruence on a

subalgebra is induced by a congruence on A.

• Δ is a standard (equivalently, a neutral) element of Conw(A) if and only

if A has the CIP and the CEP, while Δ is always a neutral element of

Con(A).

• The weak congruence lattice Conw(A) is modular if and only if Sub(A)

and Con(A) are modular and Δ is a neutral element of Conw(A).

First, we focus on the special case of groups. For each group G, the discrete

elements of L(G) = Sub(G) with respect to the normal closure operator C
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(see Example 2.3) are just the Dedekind subgroups. Each group is the union

of its cyclic subgroups, which are, of course, Dedekind subgroups. Since the

lattice of all normal subgroups of G is modular and there is an isomorphism

between Conw(G) and L(G)C
≥ sending Δ to (1, 0) = (G, {e}), Corollary 4.3

applies to establish Theorem 1.1. Moreover, from Theorems 3.5 and 4.2 we

derive a stronger result:

Corollary 5.1. The following statements on a group G are equivalent.

(1) G is a Dedekind group.

(2) Conw(G) is modular.

(3) Δ is a standard (equivalently, a neutral) element of Conw(G).

(4) G has the CIP and the CEP.

A further immediate consequence of Corollary 4.3 and Ore’s Theorem,

which says that the locally cyclic groups are exactly those with a distribu-

tive subgroup lattice (see [24] and [26, Thm 1.2.3]), is the following

Corollary 5.2. A group is locally cyclic if and only if its weak congruence

lattice is distributive.

As the reader might guess, Theorems 3.5, 4.2 and their corollaries also

apply to algebras other than groups. To extract the essential ingredient, we

call a general algebra A group-like if it has a least subuniverse {e} and there

is some function q : A2 → A (not necessarily an algebraic one) such that for

all θ ∈ Conw(A),

a θ b ⇔ e θ q(a, b) and a, b ∈ Aθ .

Of course, in groups, q(a, b) = ab−1 is such a function (other examples will

be discussed later on). As in the group case, in any algebra with a least

subuniverse {e}, the congruence classes eθ are precisely the kernels ϕ−1(e′) of

homomorphisms ϕ from A to similar algebras A′ with least subuniverses {e′}.

Proposition 5.3. Let L = Sub(A) be the algebraic lattice of all subuniverses

(subalgebras) of a group-like algebra A. For each subalgebra X, the algebraic

closure system LX = Sub(X) contains the algebraic closure system LC
X = {eθ |

θ ∈ Con(X)}, which is isomorphic to Con(X). The corresponding closure

maps CX define a grounded closure operator C so that

Ψ: Conw(A) → LC
≥ = {(X,Y ) | X∈ L, Y ∈ LC

X}, where θ �→ (Aθ, eθ)

is an isomorphism of algebraic lattices. Hence, the weak congruence lattice of

A is isomorphic to the characteristic triangle of Sub(A). If A has the CEP,

then C is hereditary and continuous.

Proof. Since {e} is a subuniverse, so is each congruence class eθ for θ ∈

Con(X), and the equations

e(
⋂
{θi | i∈I}) =

⋂
{eθi | i∈I} and e(

⋃
{θi | i∈I}) =

⋃
{e θi | i∈I}
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for θi ∈ Con(X) (and unions over directed systems) show that not only Con(X)

but also LC
X = {eθ | θ ∈ Con(X)} is an algebraic closure system, hence closed

under arbitrary meets and directed joins in L. Therefore, the corresponding

closure map CX preserves directed joins ( = unions). In order to ensure that

C = (Cx | x ∈ L) is a closure operator, it remains to verify C2. Let Y ≤

Z ≤ X in L. Then CX(Y ) = eθ for some θ ∈ Con(X), while CZ(Y ) = eρ for

some ρ ∈ Con(Z). Since Y ⊆ Z ∩ eθ = e θ|Z and θ|Z ∈ Con(Z), we conclude

CZ(Y ) ⊆ e θ|Z ⊆ eθ = CX(Y ). The equality CX({e}) = {e} means that the

closure operator C is grounded. For θ, ρ ∈ Conw(A), the implications

θ ⊆ ρ ⇒ Aθ ⊆ Aρ and eθ ⊆ eρ

⇒ θ = {(a, b) ∈(Aθ)2 | e θ q(a, b)} ⊆ {(a, b) ∈(Aρ)2 | e ρ q(a, b)} = ρ

ensure that Ψ is an embedding of Conw(A) in LC
≥, and in particular, that

Con(X) is isomorphic to LC
X via θ �→ eθ. Concerning the surjectivity of Ψ,

simply observe that for X ∈ L and Y = eθ ∈ LC
X with θ ∈ Con(X), we have

θ ∈Conw(A) and X = Aθ.

For the last statement in Proposition 5.3, see Example 2.4. �

Generalizing the group case, we call a group-like algebra A a Dedekind

algebra if every subalgebra of A is a kernel, i.e., of the form eθ for some

θ ∈ Con(A). By the inclusion {e} ⊆ X for X ∈ Sub(A), this is equivalent

to saying that A is Hamiltonian, i.e., every subalgebra is a congruence class.

Now we are in a position to derive from Theorems 3.5 and 4.2 the following

generalization of Corollary 5.1:

Theorem 5.4. Let A be a group-like algebra that is a join of Dedekind subal-

gebras. Then the following statements are equivalent.

(1) A is a Dedekind algebra.

(2) Conw(A) admits an isomorphism onto Sub(A)≥ sending Δ to (A, {e}).

(3) Conw(A) admits a lattice embedding in Sub(A)2 sending Δ to (A, {e}).

(4) Δ is a standard (equivalently, a neutral) element of Conw(A).

(5) A has the CIP and the CEP.

Moreover, the weak congruence lattice Conw(A) is modular (distributive) if and

only if A is a Dedekind algebra with modular (distributive) subalgebra lattice

Sub(A).

Proof. By Proposition 5.3, Conw(A) is isomorphic to LC
≥ for L = Sub(A) and

the closure operator C with CX(Y ) =
⋂
{eθ | θ ∈ Con(X), Y ⊆ eθ}. Under

the isomorphism θ �→ (Aθ, eθ), the diagonal Δ ∈ Conw(A) is mapped onto the

pair (A, {e}) ∈ LC
≥. Furthermore, for any subalgebra X, the closure system

LC
X of all kernel subalgebras of X is isomorphic to Con(X). By definition, X

is a C-discrete element of L if and only if it is a Dedekind subalgebra of A.

Hence, Theorem 4.2 immediately yields the equivalence of (1)–(4). Corollary

4.3 establishes the last claim in Theorem 5.4. �
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Note that by Propositions 3.3 and 5.3, the hypothesis that A is a join

of Dedekind subalgebras may be substituted by disjunctivity of the subal-

gebra lattice in order to derive the equivalence (1)⇔ (4). Since the impli-

cations (1)⇒ (2)⇒ (3)⇒ (4) are obvious, and the equivalence (4)⇔ (5) has

been shown in [27], Theorem 5.4 remains valid for group-like algebras with

disjunctive subalgebra lattice.

Now, let us have a look at rings. A warning in advance: if a ring has a unit

element 1, this should not be regarded as a constant in the present context. In

any ring A, the zero element 0 constitutes the least subuniverse {0}. Clearly,

A is a group-like algebra, taking q(a, b) = a − b. The kernels are just the

(two-sided) ideals. The ideal closure defines a grounded closure operator C on

the algebraic lattice L of all subrings, and C is hereditary, hence continuous, if

A has the CEP. Let us call a ring Hamiltonian if each subring is an ideal (the

name Dedekind ring is reserved for another class of rings). Then Theorem 5.4

amounts to:

Corollary 5.5. A ring is Hamiltonian if and only if it is generated by Hamil-

tonian subrings and has a modular weak congruence lattice or Δ is a neutral

element of it.

Example 5.6. In the ring Z of all integers, the subrings coincide with the

additive subgroups nZ and with the ideals. Thus Z is Hamiltonian. The weak

congruence lattice Conw(Z) is distributive, being isomorphic to D≥, where D

is the lattice of all natural numbers (including 0), ordered by the dual of the

divisibility relation.

Example 5.7. For any ring A with 1 �= 0, the ring A2 has the diagonal subring

Δ whose ideal closure c(Δ) is the whole A2. Since for the ideal A0 = A×{0},

one obtains c(Δ) ∩ c(A0) = A0 �= {(0, 0)} = c(Δ ∩ A0), the CIP fails, and in

particular, Conw(A2) cannot be modular.
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Example 5.8. For any Boolean ring (in which all elements are idempotent),

the subrings generated by single elements a �= 0 have two elements only, so

their subrings are ideals. Thus, Corollary 5.5 tells us that for Boolean rings A,

the weak congruence lattice Conw(A) is never modular unless A has at most

two elements.
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Example 5.9. An analogous phenomenon occurs with lattices, although they

need not be group-like: the weak congruence lattice of a lattice A is modular

only if A has at most two elements (see [27]). Moreover, if a lattice A contains

three elements a < b < c, then Δ is not distributive in Conw(A), since B =

{a, b} and C = {a, c} are sublattices with Δ ∨ (B2 ∧ C2) = Δ �= Δ ∨ B2 =

(Δ ∨ B2) ∧ (Δ ∨ C2).

Example 5.10. Let A be a sectionally complemented lattice (that is, all

principal ideals of A are complemented). If we pass to the augmented algebra

A+ obtained by adding all unary operations ∧a : x �→ a∧x, then the resulting

subalgebras of A+ are just the ideals of A, while the kernels are exactly the

standard ideals. Moreover, the map θ �→ 0θ is an embedding of the congruence

lattice in the ideal lattice of A and induces an isomorphism between Con(A) =

Con(A+) and the lattice of all standard ideals (see [2, II, Theorem 6] and [17,

III. 3, Theorem 10]). Furthermore, A+ is a group-like algebra: for q(a, b) one

may take any relative complement of a∧ b in the interval [ 0, a∨ b ] = ↓(a ∨ b).

Corollary 5.11. A sectionally complemented lattice A with no infinite chains

gives rise to a modular (equivalently, distributive) weak congruence lattice

Conw(A+) if and only if A is distributive, i.e., a finite Boolean lattice, while

Conw(A) is modular only if |A|≤2.

Proof. For generalized Boolean lattices B (and only for these), the assignment

θ �→ 0θ is an isomorphism between the congruence lattice Con(B+) = Con(B)

and the ideal lattice Sub(B+) of B, and both are distributive. Now let A be

a chain-finite sectionally complemented lattice. Since the augmented algebra

A+ is a Dedekind algebra if and only if each ideal is a kernel, we infer from

Theorem 5.4 that Conw(A+) is modular if and only if A is a (generalized)

Boolean lattice; for join-density of the “discrete” members of Sub(A+) (i.e.,

those ideals which are generalized Boolean lattices), use Corollary 4.4 and

the fact that sectionally complemented chain-finite lattices are atomistic and

isomorphic to their own ideal lattices. �

Corollary 5.11 applies, for example, to all finite-dimensional geometric lat-

tices (see [2, IV] and [17, IV. 3]). On the other hand, we have:

Example 5.12. Every vector space is a Dedekind algebra with a modular

geometric (hence complemented and atomistic) subalgebra lattice. Therefore,

the weak congruence lattice of any vector space is modular, too.

6. Prospect: closure operators as diagrams

This final section contains a few thoughts aiming towards a more general

categorical perspective for the previous considerations. In the language of

category theory, a diagram is merely a functor between two categories. In most

cases, the domain (called the scheme of the diagram) is a poset or lattice L,

regarded as a category L. Directed colimits in L are just directed joins in L.
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Consider the category CCL of complete closure lattices (cf. [14]): its objects

are pairs (L, c) where L is a complete lattice and c is a closure map on L;

morphisms are the “continuous” maps f : (L, c) → (L′, c′), preserving directed

joins and satisfying f(c(z)) ≤ c′(f(z)). Now, any closure operator C on a

complete lattice L naturally extends to a diagram, i.e., a functor C̃ from L to

CCL. On the object level, C̃ assigns to each x ∈ L the closure lattice (Lx, Cx) ;

on the morphism level, one takes for C̃xy (x ≤ y) simply the inclusion map

from Lx into Ly (the condition Cx(z) ≤ Cy(z) ensures that each C̃xy is a

morphism). Now the following result justifies our notion of continuous closure

operators from a categorical point of view (a proof and related material is

deferred to [13]):

Theorem 6.1. A closure operator C on an algebraic lattice L is continuous if

and only if it naturally extends to a continuous diagram C̃ of algebraic closure

lattices.

The term “algebraic” may be substituted by “continuous” in that theorem,

working with way-below ideals instead of compact elements.

A variant of Theorem 6.1 is obtained by replacing the hypothesis of alge-

braicity or continuity with a related (but incomparable) property. Let us call

a complete closure lattice (L, c) meet-continuous if each unary meet operation

∧x is a CCL-morphism from (L, c) to (L, c); explicitly, this condition means

that L is meet-continuous in the usual sense and c is a nucleus (see Example

2.6). Call a closure operator C strongly continuous if it is continuous and each

of the closure lattices (Lx, Cx) is meet-continuous. The closure operators men-

tioned in Example 2.6 are not only continuous but even strongly continuous.

Now, one can show [13]:

Theorem 6.2. A closure operator C on a complete lattice L is strongly con-

tinuous if and only if it naturally extends to a continuous diagram C̃ of meet-

continuous closure lattices.
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[6] Czédli, G., Horváth, E.K., Lipparini, P.: Optimal Mal’tsev conditions for congruence

modular varieties. Algebra Universalis 53, 267–279 (2005)
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[22] Lukács, E., Pálfy, P.P.: Modularity of the subgroup lattice of a direct square. Arch.

Math. (Basel) 46 no. 1, 18–19 (1986)
[23] Obraztsov, N.V.: Simple torsion-free groups in which the intersection of any two

subgroups is non-trivial. J. Algebra 199, 337–343 (1998)
[24] Ore, O.: Structures and group theory II. Duke Math. J. 4, 247–269 (1938)
[25] Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics

80. Springer–Verlag, New York – Berlin (1982)
[26] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter, Berlin (1994)
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