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Algebra Universalis

Definability in substructure orderings, IV: Finite lattices

J. Ježek and R. McKenzie

Abstract. Let L be the ordered set of isomorphism types of finite lattices, where
the ordering is by embeddability. We study first-order definability in this ordered set.
Our main result is that for every finite lattice L, the set {�, �opp} is definable, where
� and �opp are the isomorphism types of L and its opposite (L turned upside down).
We shall show that the only non-identity automorphism of L is the map � �→ �opp.

1. Introduction and first concepts

This paper is the last in a series of four exploring definability in substructure

orderings. The paper [2] dealt with finite semilattices, [3] deals with finite

ordered sets, [4] treats finite distributive lattices, and here we deal with finite

lattices. The set L of isomorphism types of finite lattices is denumerable. This

set becomes a poset under the order induced by the substructure relation: we

put l0 ≤ l1, where li is the type of the finite lattice Li, iff L0 is isomorphic

to a sublattice of L1. In this way we obtain a poset 〈L,≤ 〉. We explore the

scope of first-order definitions in the structure 〈L,≤ 〉.

Every lattice has its opposite. For a lattice A = 〈A,∧,∨〉 we denote by

Aopp the lattice 〈A,∨,∧〉. The map A �→ Aopp induces an automorphism,

� �→ �opp, of the ordered set 〈L,≤ 〉. Our goal here is to show that this is

the only non-identity automorphism of 〈L,≤ 〉, and that {�, �opp} is first-order

definable in this structure, for every � ∈ L. For this purpose, it proves to be

convenient to fix a constant p1 ∈ L. With the proper choice of p1 	= popp
1 , we

shall be able to prove that {�} is first-order definable in the pointed ordered

set 〈L,≤, p1〉 for every � ∈ L.

Our principal object of investigation will actually be the quasi-ordered set

Latt, whose members are all the lattices A whose members constitute a finite

set of non-negative integers. The quasi-ordering is the substructure ordering,

so that A ≤ B means that A is isomorphic to a sublattice of B. Denote

by P1 a lattice belonging to Latt with elements a0, a1, a2, a3, a4 and covers

a0 < a1 < a2 < a4 and a1 < a3 < a4, and by p1 the isomorphism type of P1.
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We define Latt
′ to be the pointed quasi-ordered set 〈Latt,≤,P1〉, and L′ to

be the pointed ordered set 〈L,≤, p1〉.

When we say that a subset of Latt or a relation over Latt is definable

in Latt
′, we shall mean definable by a formula in the first-order language

with two non-logical symbols, ≤ and P1, and without the equality symbol.

To denote that two lattices are isomorphic, we write A ∼= B. The relation

{(A,B) : A ∼= B} is definable in Latt
′ (since A ∼= B iff A ≤ B and B ≤ A

for finite A and B) and it is easily proved (say by induction on the com-

plexity of formulas) that for every formula ϕ(x0, . . . , xn−1) in this language

and for A0,B0, . . . ,An−1,Bn−1 ∈ Latt with Ai
∼= Bi for i < n we have

Latt
′ |= ϕ(A0, . . . ,An−1) if and only if Latt

′ |= ϕ(B0, . . . ,Bn−1). Thus

with our convention about the language (omitting equality) first-order de-

finability in Latt
′ is only “up to isomorphism”. In particular, {P1} is not

definable, although {A : A ∼= P1} is definable. However, we write that “P1 is

a definable member of Latt
′”, meaning that it is definable up to isomorphism;

and we shall generally use this language with respect to all definable elements,

definable subsets and definable relations over Latt
′.

The relation of isomorphism, definable in Latt
′, is an equivalence relation

over Latt that gives rise to the pointed ordered set L′ of isomorphism types.

Via the map sending A ∈ Latt to A/∼= ∈ L, definable relations over Latt
′

become definable relations over L′, and conversely. Thus working over Latt
′

is simply a convenient means to give a more concrete feel to the study of

definability over L′.

We now introduce some very basic concepts for our study. We use A < B

to denote that A ≤ B and the two lattices are not isomorphic. The least and

greatest elements of A will be denoted 0A and 1A. For every n ≥ 0, we denote

by Cn the chain of height n (so that |Cn| = n + 1). The height ht(A) of a

finite lattice A is the greatest n for which Cn ≤ A. For every n ≥ 1 we denote

by Mn the only lattice of height 2 with n atoms. Thus we have C2 ∼= M1.

By a cut-point in a lattice A we mean an element c ∈ A that is comparable

to all elements of A.

For two finite lattices A,B we denote by A ⊕ B the lattice C that has a

cut-point c such that the interval I[0C, c] is isomorphic to A and the interval

I[c, 1C] is isomorphic to B. For two non-trivial finite lattices A,B we denote

by A+B the lattice with the underlying set the disjoint union of the universes

A and B of the lattices, but with 0A identified with 0B and 1A identified with

1B, such that A and B are sublattices and there are no order relations between

elements of A − {0A, 1A} and B − {0B, 1B}. (Observe that A + C1 ∼= A and

|A + C2| = |A| + 1.)

2. Definability of chains, flat lattices and some small lattices

An element A of Latt is said to be covered by an element B of Latt if

A < B and there is no C ∈ Latt with A < C < B. We write A ≺ B and also
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say that B is a cover of A, or that A is a subcover of B. Clearly, if A < B

and |B| = |A| + 1 then A ≺ B.

Lemma 2.1. Let n ≥ 0. The only covers of Cn in Latt are Cn+1 and the

lattices Ck ⊕ (Cl + C2) ⊕ Cm for k + l + m = n with l ≥ 2.

Proof. Clearly, all these lattices are covers of Cn. Let L be a cover of Cn.

Clearly, L is of height either n or n + 1, and if it is of height n + 1 then

L ∼= Cn+1. Let L be of height n and let a0 < a1 < · · · < an be a chain

in L (necessarily, this is a maximal chain). There is an index i ≤ n − 2 such

that ai has a cover b different from ai+1. The sublattice {a0, . . . , ai}∪↑ai+1 is

above Cn and does not contain the element b; consequently, it coincides with

{a0, a1, . . . , an}. Thus ai+1 ∨ b = aj for some j ≥ i + 2. Now {a0, . . . , an, b} is

a sublattice of L isomorphic to Ci ⊕ (Cj−i + C2) ⊕ Cn−j . �

Lemma 2.2. The lattice M2 has four covers: M3, N5 = C3 + C2, P =

M2 ⊕ C1 and Popp = C1 ⊕ M2. The lattice M3 has infinitely many covers.

Proof. The first statement is easy. A slight modification of a construction

from [1] gives a lattice Ln with 12 + 2n elements, for any n ≥ 2, such that Ln

contains a single copy of M3 as a sublattice, and this sublattice is maximal

in Ln. For n = 6 the lattice Ln is pictured in Figure 1. �

Figure 1

Theorem 2.3. The set of finite chains is definable. The set {Mn : n ≥ 1}

is definable. Every finite chain and every lattice Mn is a definable element of

Latt
′.

Proof. It is easy to see that an element L of Latt
′ has the property that

the principal ideal generated by L is a chain, i.e., for all A ≤ L and B ≤

L either A ≤ B or B ≤ A, if and only if L is either a chain or Mn for

some n. Thus the set U = {Cn : n ≥ 0} ∪ {Mn : n ≥ 1} is definable.
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(According to our convention, this language just means to assert that {A ∈

Latt : A ∼= U for some U ∈ U} is definable.) Also, it follows that the set

{C4,M3} is definable: C4 and M3 are the only two lattices Q ∈ U such that
∣
∣{R ∈ Latt

′ : R < Q}/∼=
∣
∣ = 4. By 2.1 and 2.2, C4 has only seven covers,

while M3 has more than seven covers in Latt
′. Thus both C4 and M3 are

definable elements. A finite lattice is a chain if and only if it belongs to

{Cn : n ≥ 0} ∪ {Mn : n ≥ 1} and is comparable with C4. �

It also follows that the mapping L �→ C, where L ∈ Latt
′ and C is the

chain of height ht(L), is definable.

Lemma 2.4. The lattices N5, P1, P0 = P
opp
1 and N6 = C3+C3 are definable.

Proof. It follows from 2.2 that the set consisting of the first three lattices is

definable. Of these three lattices, N5 is the only one that has a cover of height 3

that is not above any of the remaining two lattices and also is not above M3;

it has only one such cover and this cover is isomorphic to N6. Thus N5, and

also N6, are definable elements. Consequently, the set {P0,P1} is definable.

But P1 is definable in Latt
′ by definition, so that P0 is definable as well. �

Since the opposite of P1 is definable, it follows that whenever a relation is

definable in Latt
′ then also its opposite is definable in Latt

′.

Since N5 and M3 are definable, the set of finite modular lattices and the

set of finite distributive lattices are definable.

3. Definability of the relation C ∼= A ⊕ B

Lemma 3.1. Let n ≥ 2 and k ≥ 0. Then Ck ⊕Mn is the least lattice L with

the following properties:

(1) L is modular;

(2) Mn ≤ L;

(3) ht(L) = k + 2;

(4) M2 ⊕ C1 � L.

Proof. Let L have these properties. There exists a sublattice M of L isomor-

phic to Mn. By (4), 1M = 1L. Put o = 0M and denote by a1, . . . , an the

atoms of M. For every i = 1, . . . , n there is a cover bi of o in L with bi ≤ ai.

For i 	= j we have bi ∨ bj = 1L by (4). Since L is modular, it follows that

bi = ai. Thus o ≺ ai in L for all i. But then, again since L is modular, also

ai ≺ 1L in L for all i. Thus o is of height k in L. But then Ck ⊕Mn ≤ L. �

Lemma 3.2. Let n ≥ 2 and k, l ≥ 0. Then Ck ⊕ Mn ⊕ Cl is the least lattice

L with the following properties:

(1) L is modular;

(2) Mn ≤ L;

(3) ht(L) = k + 2 + l;
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(4) Ck ⊕ Mn ≤ L;

(5) Mn ⊕ Cl ≤ L;

(6) Ck+1 ⊕ M2 � L;

(7) M2 ⊕ Cl+1 � L.

Consequently, the mapping 〈Ck,Mn,Cl〉 �→ Ck ⊕ Mn ⊕ Cl is definable and

every Ck ⊕ Mn ⊕ Cl is a definable element of Latt
′.

Proof. Let L have these properties. There exists a sublattice M of L isomor-

phic to Mn. Denote by o the least element, by I the greatest element, and by

a1, . . . , an the remaining elements of M . By (4) we can assume that ht(o) ≥ k.

By (6), ht(o) = k. For every i = 1, . . . , n there is a sub-cover, bi of I in L with

bi ≥ ai. If i 	= j and bi ∧ bj > o then we obtain a contradiction by (3) and (6),

since L is modular. Thus it follows (by modularity) that the interval I[o, I]

has height two, and consequently, by (3) and modularity, the interval I[I, 1L]

has height l. But this means that Ck ⊕ Mn ⊕ Cl ≤ L. That concludes our

proof.

For the definability of the mapping we need to apply Lemma 3.1 and its

opposite. �

Lemma 3.3. The following ternary relation R on Latt
′ is definable:

(A,B,C) ∈ R if and only if A,B,C are chains and ht(C) = ht(A) + ht(B).

Proof. It follows from 3.2. �

M1
3 M2

3 M3
3 M4

3 M5
3 M6

3 M7
3

Figure 2

For n ≥ 3 denote by M1
n the lattice C1 ⊕Mn with one element added, this

element being an atom of L below one of the atoms of Mn. Denote by M2
n

the opposite of M1
n. Put M3

n = (C1 ⊕ Mn) + C2, M4
n = (Mn ⊕ C1) + C2,

M5
n = (C1 ⊕ Mn ⊕ C1) + C2, M6

n = Mn ⊕ M2 and M7
n = Mn ⊕ C1 ⊕ M2.

These lattices are pictured in Figure 2 for n = 3.

Lemma 3.4. Let n ≥ 3. Then M1
n and M3

n are the only covers of C1 ⊕

Mn of height 3 that are not above Mn+1; the first is modular, the second is

not. Consequently, the mappings Mn �→ M1
n and Mn �→ M3

n are definable.

Similarly, the mappings Mn �→ M2
n and Mn �→ M4

n are definable.
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Proof. Let L be a cover of C1⊕Mn such that ht(L) = 3 and Mn+1 � L. Then

L has a proper sublattice K = {0L, o, a1, . . . , an, 1L} isomorphic to C1 ⊕Mn.

Suppose that there is an element b ∈ L − K comparable with o. Clearly,

b > o. But then b is of height 2 and L has a sublattice (K−{0L})∪{b} ∼= Mn+1,

a contradiction.

Thus all elements of L−K are incomparable with o. Consider first the case

when there is an element c ∈ L − K that is below at least one of the coatoms

ai of L. Clearly, the index i is unique. Without loss of generality, c < a1 and

c||ai for all i > 1. Clearly, c is an atom of L. Thus c∧ ai = 0L and c∨ ai = 1L

for i > 1. It follows that K ∪ {c} is a sublattice of L isomorphic to M1
n.

It remains to consider the case when c‖ai for all i and all c ∈ L − K. Take

one element c ∈ L−K. Since ai are coatoms, we have c∨ai = 1L. If c∧ai > 0L

for some i then c ∧ ai is an element of L − K below ai, a contradiction. Thus

c ∧ ai = 0L for all i and K ∪ {c} is a sublattice of L isomorphic to M3
n. �

Lemma 3.5. Let n ≥ 3. Then M5
n is the only cover of C1 ⊕ Mn ⊕ C1 of

height 4 that is not above any of the lattices M1
n, M2

n, M3
n, M4

n and Mn+1.

Consequently, the mapping Mn �→ M5
n is definable.

Proof. Let L be such a cover. Denote by K a copy of C1⊕Mn⊕C1 in L; denote

by o the only atom and by I the only coatom in this copy. Clearly, ↓I ∪ {1L}

is a sublattice of L; if it contains an element not in K then ↓I is a sublattice

properly extending C1 ⊕Mn, so that (according to 3.4) it contains either M1
n

or M3
n, a contradiction. Thus ↓I = Mn ∪{0L} and similarly ↑o = Mn ∪{1L}.

Thus for any element c ∈ L − K, K ∪ {c} is a sublattice of L isomorphic to

M5
n. �

Lemma 3.6. Let n ≥ 3. M6
n is the only cover of Mn ⊕ C2 of height 4 that

is modular and is not above any of the lattices Mn+1 and M2
n. Also, M7

n is

the only cover of Mn ⊕C3 of height 5 that is modular and is not above any of

the lattices Mn+1, M2
n and M6

n. Consequently, the mappings Mn �→ M6
n and

Mn �→ M7
n are definable.

The proof is easy.

Lemma 3.7. Let B be a finite lattice of height n+m where n ≥ 0 and m > 0.

Then B ∼= A⊕Cm for a lattice A of height n if and only if for every positive

integer l there exist a positive integer k > l and a finite lattice C such that the

following conditions are satisfied:

(1) B < C;

(2) ht(C) = n + m + 1;

(3) Cn ⊕ Mk ⊕ Cm−1 ≤ C;

(4) C is not above any of the lattices Mk+1, M1
k, M2

k, M3
k, M4

k, M5
k, M6

k,

M7
k;

(5) If n = 0 then B is a chain. If n > 0 then Cn−1 ⊕ M2 � B.
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Proof. If B ∼= A ⊕ Cm then the lattice C = A ⊕ Mk ⊕ Cm−1 has all these

properties for every sufficiently large k. Conversely, let k and C exist for

every l. By (2) and (3) there exists a sublattice M of C isomorphic to Mk

with the least element o, the largest element I, and the remaining elements

a1, . . . , ak such that o is of height n, I is of height n + 2 in C, and ↑I is of

height m − 1; all covers in M are covers in C. Since M6
k � C and M7

k � C,

↑I is a chain; denote it by D; it must be a chain of height m − 1.

Since Mk+1 � C, M2
k � C and M4

k � C, it is easy to see that every element

of ↑o belongs to M ∪ D. Since M1
k � C, M3

k � C and M5
k � C, it is easy to

see that o is a cut-point in C. Thus C = ↓o⊕M⊕D. Since B is a sublattice

of C of height ht(C)−1, it follows from (5) that B ∼= A⊕Cm for some C. �

Lemma 3.8. The set of finite lattices with precisely one coatom (or precisely

one atom, respectively) is definable. Consequently, also the set of finite lattices

with at least two coatoms (or atoms, respectively) is definable.

Proof. It follows from 3.7, since a finite lattice B has precisely one coatom if

and only if B ∼= A ⊕ C1 for a finite lattice A. �

Lemma 3.9. The following ternary relation R on Latt is definable in Latt
′:

(A,B,C) ∈ R if and only if B is a chain and C ∼= A ⊕ B.

Proof. Let B be a chain. If A has at least two coatoms (this being definable

by 3.8), then C ∼= A ⊕ B if and only if C ∼= A′ ⊕ B for some A′ of the same

height as A (this being definable by 3.7) and A is up to isomorphism the

largest element of Latt
′ below C with at least two coatoms. If A is arbitrary

(and not a chain) then A = A0⊕B0 for a lattice A0 with at least two coatoms

and a chain B0; we have C ∼= A ⊕ B if and only if C ∼= A0 ⊕ (B0 ⊕ B). (We

need to apply 3.3.) �

Lemma 3.10. Let A be a finite lattice of height m; let 2 ≤ n < m. Then A

has a cut-point at height n if and only if there exist B,C ∈ Latt
′ with the

following properties:

(1) A ≤ B;

(2) ht(B) = m;

(3) ht(C) = n;

(4) C ⊕ Cm−n ≤ B;

(5) if C ≺ C′ ≺ C′′ ≤ B, then C′′ ∼= C ⊕ C2.

Proof. Let A have a cut-point at height n, so that A = A1 ⊕ A2 where

ht(A1) = n and ht(C2) = m− n; the element 1A1
= 0A2

is the cut-point. Let

k > 0 be sufficiently large so that C = Ml + A1 	≤ A2. Put B = C ⊕ A2.

Since n ≥ 2, then with this choice of B and C we have A ≤ B, and in fact

conditions (1) through (4) are obviously true.

To check that (5) is satisfied, suppose that C ≺ C′ ≺ C′′ ≤ B. We claim

that the only sublattice of B isomorphic to C is C, equal to the interval

I[0B, 0A2
] in B. Indeed, let E be a sublattice of B isomorphic to C. Then
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E 	⊆ A2. It easily follows that the 0, 1-sublattice of E isomorphic to Mk is

contained in C, and thus E ⊆ C, yielding that E = C by cardinality. Thus we

have sublattices C ⊂ C′ ⊂ C′′ ⊆ B with C ≺ C′ ≺ C′′, and we are to show

that C′′ ∼= C ⊕ C2.

Now every element of B \C is greater than all elements of C. Thus clearly,

C ′ = C ∪ {p} for an element p ∈ A2 − {0A2
}. The sublattice C ′′ contains an

element q /∈ C ′. If p, q are incomparable then C ∪ {p, p ∨ q} is a sublattice, so

that C ′′ = C∪{p, p∨q} and q /∈ C ′′, a contradiction. Thus p, q are comparable

and C ′′ = C ∪ {p, q} ∼= C ⊕ C2. Condition (5) is therefore satisfied.

To prove the reverse implication, suppose that 2 ≤ n < m, ht(A) = m, and

A,B,C satisfy (1) through (5). By (4) we can assume that C ⊕ Cm−n is a

sublattice of B.

Suppose that C is a proper sublattice of the interval I[0B, 1C] in B. Then

there is a lattice C′ � C with C′ ⊆ B and, in fact, C ⊂ C ′ ⊆ I[0B, 1C].

Clearly, ht(C′) = n. Let C ′′ = C ′ ∪ {p} with p ∈ B and p > 1C. This gives a

lattice C′′ with C ≺ C′ ≺ C′′ ≤ B and ht(C′′) = n+1. Clearly, C′′ 	∼= C⊕C2.

This contradicts (5), so it follows that C is identical to the interval I[0B, 1C]

in B.

We claim that 1C is a cut-point of B. Suppose not, so that there exists an

element a ∈ B incomparable with 1C. Choose a maximal among all elements

of B that are incomparable with 1C. Then it is easily checked that C ′′ =

C ∪ {a, a ∨ 1C} is a sublattice of B, as is C ′ = C ∪ {a ∨ 1C}. Clearly, this

gives C ≺ C′ ≺ C′′ ≤ B, and here ht(C′′) = n+1 so that C′′ 	∼= C⊕C2. This

contradicts (5).

It follows that B has a unique element of height n, namely 1C. Now we

have A ∼= A′ ⊆ B, ht(A′) = ht(A) = ht(B) = m. These conditions imply

that an element of height n in A′ must be of height n in B. So A′ contains the

cut-point 1C, which is therefore a cut-point of height n in A′. This concludes

our proof. �

Lemma 3.11. The following binary relation R is definable in Latt
′:

(A,B) ∈ R if and only if B ∼= Cn for an n such that A has a cut-point

at height n.

Proof. The case 2 ≤ n < ht(A) follows from 3.10. The case n = 1 has been

handled in Lemma 3.8. The other cases are trivial. �

Theorem 3.12. The following ternary relation R is definable in Latt
′:

(A,B,C) ∈ R if and only if C ∼= A ⊕ B.

Proof. Put n = ht(A) and m = ht(B). We have C ∼= A ⊕ B if and only if C

has a cut-point at height n, A is, up to isomorphism, the largest element of

Latt
′ with ht(A) = n and A ⊕ Cm ≤ C, and B is, up to isomorphism, the

largest element of Latt
′ with ht(B) = m and Cn ⊕ B ≤ C. �
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4. Definability of principal ideals and intervals

Definition 4.1. Let A be a finite lattice and a ∈ A − {1A}. We define a

lattice K with K = A ∪ {i, b} in such a way that A is a sublattice of K,

i = 1K, x ≤ b for x ∈ A if and only if x ≤ a, and x ≥ b for x ∈ A never

happens. This lattice K will be denoted by Va(A). By a V-extension of A

we mean a lattice isomorphic to Va(A) for some a ∈ A − {1A}. We say that

B is a V-extension of A with bottom C if for some a ∈ A−{1A}, B ∼= Va(A)

and C is isomorphic with the interval I[0A, a] in A.

Lemma 4.2. Let A,B ∈ Latt
′. Then B is a V-extension of A if and only if

B is a cover of A⊕C1 such that B has more than one coatom. Consequently,

the binary relation ‘is a V-extension of’ on Latt
′ is definable.

Proof. The direct implication is clear. Let B be a cover of D = A ⊕ C1 with

more than one coatom. We can assume that D is a proper sublattice of B. If B

contains some elements not in D and below 1A then the sublattice D∪{x ∈ B :

x ≤ 1A} of B equals B and B has only one coatom, a contradiction. Thus all

elements of B below 1A belong to A. If some element e of B−D is larger than

1D then B = D ∪ {e} has only one coatom, a contradiction. Thus 1B = 1D.

If there is an element e ∈ B with 1A < e < 1B, we get a contradiction in the

same way. Thus 1A is a coatom of B. There exists a coatom b of B other

than 1A. Put a = 1A ∧ b, so that a ∈ A−{1A}. It is easy to see that D ∪ {b}

is a sublattice of B. Thus B = D ∪ {b} and B ∼= Va(A). �

Let A be a finite lattice. Denote by A+ the lattice A ⊕ Mn where n is

the least number such that n ≥ 3 and Mn � A. By results we have already

proved, the mapping A �→ A+ is definable.

Lemma 4.3. The following ternary relation R on Latt is definable in Latt
′:

(A,B,C) ∈ R iff for some a ∈ A, B ∼= Va(A+) and C ∼= I[0A, a].

Proof. We have (A,B,C) ∈ R if and only if B is a V-extension of A+ =

A ⊕ Mn, A ⊕ M2
n 	∼= B and one of the following two cases takes place:

(i) A ⊕ M4
n
∼= B and C ∼= A;

(ii) A⊕M4
n 	∼= B and C is up to isomorphism the largest element of Latt

′

such that C ⊕ M5
n ≤ B. �

Theorem 4.4. The binary relations ‘is isomorphic to a principal ideal of ’,

‘is isomorphic to a principal filter of ’ and ‘is isomorphic to an interval of ’ on

Latt
′ are definable.

The proof follows from 4.3.

5. Individual definability and automorphisms

Let A be a finite lattice and s = 〈a1, . . . , ak〉 be a nonempty simple sequence

of elements of A. (The sequence is called simple if ai 	= aj whenever i 	= j.)
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We define Hs(A) = Vak
· · ·Va1

(A+). The lattices Hs(A) will be called simple

sequential extensions of A.

Observe that Hs(A) has only one sublattice isomorphic to Mn (where n is

such that A+ = A ⊕ Mn).

Clearly, Hs(A) with s = 〈a1, . . . , ak〉 is a maximal simple sequential exten-

sion of A if and only if k = |A|.

For example, a maximal simple sequential extension of the pentagon is

pictured in Figure 3.

Figure 3

Lemma 5.1. Let A be a finite lattice and let 1 ≤ k ≤ |A|; let A+ = A ⊕

Mn. A finite lattice B is isomorphic to a simple sequential extension of A

by a simple sequence of k elements if and only if the following conditions are

satisfied:

(1) B ≥ A+ ⊕ Ck;

(2) ht(B) = ht(A) + 2 + k;

(3) M2
n � B;

(4) M6
n � B and M7

n � B;

(5) every principal ideal of B of any height h > ht(A) + 2 is a V-extension

of a principal ideal of B of height h − 1, with the bottom of height at

most ht(A) (bottom as defined above for V -extensions);

(6) if D is a V-extension of either M4
n or M5

n with bottom isomorphic to C0,

then D � B.

Proof. The direct implication is easy. Let the six conditions be satisfied. We

can suppose that A+ ⊕ Ck = A ⊕ Mn ⊕ Ck is a sublattice of B. It follows

from (2) and (4) that I[1A+ , 1B] is a chain of height k; denote its elements by

1A+ = b0 ≺ b1 ≺ · · · ≺ bk = 1B.
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Let 1 ≤ i ≤ k. Since I[0B, bi] is a principal ideal of B of height at least

ht(A) + 2 + i > ht(A) + 2, by (5) this ideal has precisely two coatoms, only

one of which is at height ≥ ht(A) + 2; this coatom must be the element bi−1.

Denote by ci the other coatom. We have I[0B, bi] = I[0B, bi−1]∪{bi, ci}. Since

(b0]B = A+, we get B = A+ ∪ {b1, . . . , bk} ∪ {c1, . . . , ck}. Clearly, ci 	= bj for

all i, j and c1, . . . , ck are pairwise different.

For 1 ≤ i ≤ k denote by ai the only lower cover of ci. It follows from (3)

and (4) that ai /∈ {b1, . . . , bk} and if ai ∈ A+ then ai ∈ A.

Suppose that ai = cj for some i and j. Let i be the least index such that

ai = cj for some j. Clearly, i < j. By the minimality of i, ai ∈ A. Then

Mn ∪ {ai, bi, bj , ci, cj} is a sublattice of B and this sublattice is a V-extension

of either M4
n or M5

n, a contradiction with (6).

Thus ai /∈ {c1, . . . , ck} and it follows that ai ∈ A for all i.

If ai = aj for some i 	= j, we also get a contradiction by (6). Thus s =

〈a1, . . . , ak〉 is a simple sequence of elements of A and B ∼= Hs(A). �

Lemma 5.2. The following binary relation R on Latt
′ is definable:

(A,B) ∈ R iff A,B ∈ Latt
′ and B is a chain of height |A|.

Proof. It follows from 5.1: for a chain Cm we have (A,Cm) ∈ R if and only if

A⊕C2⊕Cm is of the same height as any maximal simple sequential extension

of A. �

A finite lattice will be called wide if it is not a chain and contains an element

that is both an atom and a coatom.

Lemma 5.3. The set of wide elements of Latt
′ is definable.

Proof. Suppose that A ∈ Latt is not a chain and n0 is the least integer n

such that n ≥ 3 and Mn 	≤ A. Then A is wide iff A+ has a V-extension

B ∼= Va(A+) where a ∈ A and I[0A, a] ∼= C1 with the property: if D ∈ Latt

is such that M5
n0

≤ D ≤ B and D ≥ E ⊕ M5
n0

holds only for a one-element

lattice E, then D ∼= M5
n0

.

To see that this is equivalent to a first-order definition, see Lemma 4.3. To

see that the formulated properties capture the concept of wide lattice, suppose

first that A is wide. Choosing a to be an element of A that is both maximal

and minimal in A, it should be clear that the V-extension Va(A+) fulfills the

conditions.

Next, suppose that B ∼= Va(A+) fulfills the conditions. Then obviously,

the element a is an atom of A. If there exists b ∈ A with a < b < 1A, then

we have a sublattice D of B isomorphic to (C2 ⊕Mn0
⊕C1) + C2, with least

element a. Here D > M5
n0

and D ≥ E ⊕ M5
n0

holds only for the one-element

lattice E. �

Let B = Hs(A) for a finite lattice A and a maximal simple sequence s =

〈a1, . . . , ak〉 of elements of A (so that k = |A|). Denote by b0 ≺ · · · ≺ bk the

elements of the chain I[1A+ , 1B] in B. For every i = 0, . . . , k, bi is the only
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element of A of height ht(A)+2+ i and I[0B, bi] is the only ideal of B of that

height. For i = 1, . . . , k denote by ci the only coatom of I[0B, bi] different from

bi−1, so that ai = bi−1 ∧ ci. It is easy to see that the filter I[ai, 1B] of B is not

isomorphic to any other filter of B. This filter is the only filter D of B with

the property that its only ideal containing Mn and of height ht(D)+i−k (i.e.,

the interval I[ai, bi] of B) is a wide lattice. D will be called the i-th essential

filter of B. We get:

Lemma 5.4. The following quaternary relation R on Latt
′ is definable:

(A,B,C,D) ∈ R iff B ∼= Hs(A) for a maximal simple sequence s =

〈a1, . . . , ak〉 of elements of A, C is a chain of height i with 1 ≤ i ≤ k and

D is isomorphic to the i-th essential filter of B.

Lemma 5.5. The following quaternary relation R on Latt
′ is definable:

(A,B,C,D) ∈ R iff B ∼= Hs(A) for a maximal simple sequence s =

〈a1, . . . , ak〉 of elements of A, C is a chain of height i, D is a chain of

height j, 1 ≤ i, j ≤ k and ai ≤ aj in A.

Proof. We have ai ≤ aj if and only if the j-th essential filter of B is a filter of

the i-th essential filter of B. �

Theorem 5.6. Every element of Latt
′ is definable.

The proof follows from 5.5.

Theorem 5.7. The ordered set of isomorphism types of finite lattices with

respect to embeddability has only two automorphisms: the identity and the

opposite map. The isomorphism type of any finite lattice is definable in this

ordered set up to the two automorphisms.

The proof follows from 5.6.
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