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c©Birkhäuser Verlag, Basel, 2008 Algebra Universalis

Existence theorems for weakly symmetric operations
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1. Introduction

A k-ary near-unanimity operation (or k-NU) on a set A is an operation that

satisfies the equations

f(y, x, . . . , x) ≈ f(x, y, . . . , x) ≈ · · · ≈ f(x, x, . . . , x, y) ≈ x .

A k-ary weak near-unanimity operation (or k-WNU) on A is an operation that

satisfies the equations

w(x, . . . , x) ≈ x

and

w(y, x, . . . , x) ≈ w(x, y, . . . , x) ≈ · · · ≈ w(x, x, . . . , x, y) .

If an algebra A has a k-NU (or a k-WNU) term operation, we say that A satisfies

NU(k) (or WNU(k), respectively). Likewise, a variety is said to satisfy NU(k) (or

WNU(k), respectively), it it has a k-variable term satisfying these equations.

It has been conjectured that a finite idempotent algebra A has finite relational

width if and only if V(A) (the variety generated by A) has meet semi-distributive

congruence lattices. The concept of “finite relational width” arises in the theory of

complexity of algorithms, in the algebraic study of constraint-satisfaction problems.

Actually, there are several different definitions of this concept and it is not known

if they are equivalent. One version of the concept and the conjecture mentioned

above are due to B. Larose and L. Zádori [10].

The important family of varieties with meet semi-distributive congruence lat-

tices has various known characterizations. There is a characterization by a certain

Maltsev condition; also, it is known that a locally finite variety has this property iff

it omits congruence covers of types 1 and 2 (defined in the tame congruence theory

of D. Hobby, R. McKenzie [6]).
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464 M. Maróti and R. McKenzie Algebra univers.

E. Kiss showed that a finite idempotent algebra of relational width k must have

an m-WNU term operation for every m ≥ k. E. Kiss and M. Valeriote then observed

that a finite algebra with a k-WNU term operation, k > 1, must omit congruence

covers of type 1. These observations led M. Valeriote to make two conjectures: any

locally finite variety omits congruence covers of type 1 iff it satisfies WNU(k) for

some k > 1; any locally finite variety has meet semi-distributive congruence lattices

if and only if for some k, it satisfies WNU(m) for all m ≥ k. In this paper, we

prove both of these conjectures of M. Valeriote.

The family of locally finite varieties omitting type 1 is the largest family of lo-

cally finite varieties defined by a nontrivial idempotent Maltsev condition. For this

result, see D. Hobby, R. McKenzie [6, Theorem 9.6]. Several equivalent charac-

terizations for this largest Maltsev family are given in this theorem of D. Hobby

and R. McKenzie. One that we will use states that a locally finite variety V omits

type 1 if and only if V has a term p(x, y, z) with the property that whenever A

is an algebra in V and θ is a locally solvable congruence of A and (a, b) ∈ θ, then

p(a, b, b) = a = p(b, b, a). An important corollary of this characterization, which we

need, is that in such a variety, every Abelian algebra is polynomially equivalent to

a module over a ring.

The result we prove in this paper, that a locally finite variety V omits type 1 iff

V |= WNU(k) for some k > 1, is the simplest known Maltsev characterization of

this family of varieties.

In addition to proving the two conjectures of M. Valeriote, we shall demonstrate

here that every congruence distributive variety satisfies WNU(k) for all k ≥ 3.

(This result requires no assumption of local finiteness.) Thus, in particular, it

follows that NU(n) implies WNU(k) whenever k ≥ 3 and n ≥ 3. A consequence of

our characterization of locally finite varieties omitting type 1 is that every locally

finite, congruence modular variety must satisfy WNU(k) for some k > 1. Our final

contribution will be a second proof of this fact about congruence modular varieties.

The chief results of this paper are listed below. The remainder of the paper is

devoted to presenting proofs of these results.

Theorem 1.1. Let V be a locally finite variety. The following are equivalent:

(1) V omits type 1.

(2) There is an integer k > 1 such that V |= WNU(k).

(3) There is an integer n > 1 such that V |= WNU(k) for all k > 1 with k ≡ 1

(mod n).

Theorem 1.2. Let V be a locally finite variety. The following are equivalent:

(1) V omits types 1 and 2.

(2) The congruence lattices of all algebras in V are meet semi-distributive.

(3) There is an integer m > 1 such that V |= WNU(k) for all k ≥ m.
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(4) For every positive integer n there is a positive integer m such that V |= WNU(k)

for all k with m + 1 ≤ k ≤ m + n.

Theorem 1.3. Every congruence distributive variety satisfies WNU(k) for all in-

tegers k ≥ 3.

Corollary 1.4. Let V be a locally finite, congruence modular variety. There is an

integer n > 1 such that V |= WNU(k) for all k > 1 with k ≡ 1 (mod n).

These results will be proved in the order listed. Our proof of Theorem 1.3 has

a different character from our proofs of the first two theorems. Corollary 1.4 is a

corollary to Theorem 1.1. However, as we mentioned, we shall present, in the final

section of the paper, a different proof of Corollary 1.4 along the lines of our proof

of Theorem 1.3.

2. Easy observations and examples

It is well known that if a locally finite variety V admits type 1 then V cannot can-

not satisfy any non-trivial idempotent Maltsev condition. In particular, it cannot

have a weak near-unanimity term. This supplies one of two implications needed to

prove Theorem 1.1. We shall now review the argument that proves this well-known

fact, and review a closely related argument that reveals some limitations on the

existence of weak near-unanimity terms that occur when V admits type 2. For the

concepts and results used in these arguments, see D. Hobby, R. McKenzie [6].

Suppose that V has a type 1 congruence quotient. Then there is a finite algebra

F in V and a minimal congruence µ in F such that (0F , µ) has type 1. Let U

be a (0F , µ)-minimal set and N be a (0F , µ)-trace contained in U and e(x) be a

polynomial operation of F satisfying e(e(x)) = e(x) (for all x ∈ F ) and e(F ) = U .

Suppose that F has a k-WNU-term τ(x̄). Then the operation e(τ(x̄)) restricted to

N is an operation on the set N that satisfies the WNU(k)-equations. This operation

is a polynomial of the algebra F|N . But since the type is 1, every polynomial

operation of F|N depends on at most one of its variables. Hence F|N does not

satisfy WNU(k) for any k > 1, implying that F, likewise does not satisfy WNU(k)

for any k > 1.

Next, we show that if V admits type 2 then there is a prime integer p such

that whenever p divides k then V admits no k-WNU term. This and the observa-

tion above about type 1 quotients, give one of two implications needed to prove

Theorem 1.2. Suppose that V has a type 2 congruence quotient. Choose a finite

algebra F in V with a minimal congruence µ in F such that (0F , µ) has type 2.

Let U be a (0F , µ)-minimal set and N be a (0F , µ)-trace contained in U . In this

situation, F|N is polynomially equivalent to a one-dimensional vector space over a
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finite field k. Let p be the characteristic of k. It is easily verified that if F|N has a

k-WNU operation among its polynomial operations, then this operation is unique,

and defined as

τ(x1, . . . , xk) = r(x1 + · · · + xk) ,

where r ∈ k and kr = 1 in k. Such r exists in k iff p does not divide k. Now the

same argument as above shows that F cannot satisfy WNU(k) if p divides k.

Example 2.1. Let An = 〈Zn, x− y + z〉 where 〈Zn, x + y〉 is the group of integers

modulo n. The term operations of this algebra are simply those operations which

can be expressed in the form

f(x0, . . . , xk−1) =
∑

i

kixi

where ki are integers and their sum is 1 modulo n. If this operation is a k-WNU,

then all the ki are congruent modulo n. Thus An |= WNU(k) iff (k, n) = 1. For

example, A6 satisfies WNU(5) but not WNU(2), WNU(3), or WNU(4).

Let A = 〈Z, x − y + z〉 where 〈Z, x + y〉 is the group of integers. This algebra

does not satisfy WNU(k) for any k ≥ 3.

Finally, we remark that if A is an Abelian algebra in a locally finite variety V that

omits type 1, then A does have a k-WNU for some k > 1. In fact, by D. Hobby, R.

McKenzie [6, Theorem 9.6], A has a term operation p(x, y, z) satisfying Maltsev’s

equations p(x, y, y) = x and p(x, x, y) = y. It is well known (see [4]) that every

Abelian algebra A with such an operation is polynomially equivalent to a unitary

module; and that all term operations of the module of the form f(x0, . . . , xk−1) =
∑

i kixi, where ki are integers and their sum is 1, are term operations of A. Hence

A does have k-WNU term operations in this case (in fact, for every k > 1 that is

relatively prime to the cardinality of A).

3. Reduction to idempotent algebras

An operation f(x1, . . . , xn) on a set A is said to be idempotent if f(a, . . . , a) = a

for all a ∈ A. An algebra A = 〈A, · · ·〉 is called idempotent iff all the operations of A

are idempotent, equivalently, every one-element subset of A is a subalgebra of A.

By an idempotent term of a variety V we mean a term for which t(x, x, . . . , x) ≈ x

is a law of V. A variety is called idempotent if all of its algebras are idempotent;

equivalently, if all terms of V are idempotent.

If V is any variety, there is the idempotent reduct of V, or V id. The variety V id

is idempotent. It is formed in this way: for every idempotent term t = t(x̄) of

V, there is a corresponding basic operation ft(x̄) of V id with the same number of

variables as t. The signature of V id consists just of the operation symbols ft with t
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ranging over the idempotent term operations of V. For every algebra A ∈ V there

is the algebra Aid of the same signature as V id,

Aid = 〈A, {tA : t an idempotent term of V}〉

whose basic operations are the term operations over A induced by the terms that are

idempotent over V. Then V id is defined as the variety generated by all the algebras

Aid, with A ranging over V. It can be shown that for any positive integer n, the

free algebra of rank n in V id, or FVid(n), is isomorphic over the free generators, to

the subalgebra of FV(n)id generated by the free generators of FV(n).

We mention this construction because it is an (easily verified) fact that each

of the properties of algebras and of varieties that we are concerned with in this

paper is invariant under the constructions A 7→ Aid, V 7→ V id. An algebra A

satisfies WNU(k) iff Aid satisfies WNU(k). The same is true of a variety V. We

have that V is congruence distributive, or congruence modular, iff V id has the

respective property. Moreover, if V is locally finite then V id is locally finite; and

in case V is locally finite, then V omits type 1 (respectively type 2) iff V id omits

type 1 (respectively type 2). (This is not obvious, but is a consequence of the

Maltsev characterizations of these properties given in D. Hobby, R. McKenzie [6],

Chapter 9.)

Thus both the hypotheses, and the conclusions, in each of our chief results, is

invariant under passing to the idempotent reduct. Consequently, it will suffice to

prove our results for idempotent varieties. Henceforth, we work only with idempo-

tent algebras, and idempotent varieties. Idempotent algebras have several special

properties that will be useful in our proofs. We mention that if θ is a congruence

on an idempotent algebra A, then every block of θ is a subalgebra of A. Other

useful properties will be explained as the need for them arises.

4. Totally symmetric relations

From here to the end of this paper, all algebras are assumed to be idempotent,

unless explicitly stated otherwise.

Definition 4.1. Let A be any algebra. A subuniverse B of An is totally sym-

metric iff B is invariant under all permutations of the coordinates. If B is totally

symmetric, then B is a subdirect power of a certain subuniverse of A, which we

term D(B) and call the domain of B. The projection of B at each coordinate is

equal to D(B).

To simplify notation, we shall write elements of An as though they were semi-

group words. Thus, for example, ban−1 will denote the vector (b, a, . . . , a) in An

where {a, b} ⊆ A.
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Definition 4.2. An algebra B ≤ An will be called a ⋆-subalgebra of An iff for

some {a, b} ⊆ A, B is generated by the n vectors ban−1, aban−2, . . . , an−1b. Note

that in this case B (the universe of B) is totally symmetric, and D(B) is generated

by {a, b}.

Definition 4.3. Let A be an algebra and k > 1 be an integer. We say that

A satisfies WNU(k) iff A has a k-ary term operation w(x̄) satisfying the weak

near-unanimity equations

w(y, x, . . . , x) ≈ w(x, y, x, . . . , x) ≈ · · · ≈ w(x, x, . . . , x, y)

(and w(x, . . . , x) ≈ x, but the idempotent equation is already assumed).

We say that A satisfies ST(k) iff every ⋆-subalgebra of Ak contains a diagonal

vector ak. We say that A satisfies TS(k) iff every non-empty totally symmetric

subuniverse of Ak contains a diagonal vector.

We begin a sequence of lemmas detailing useful properties of these concepts.

Lemma 4.4. For a fixed signature and a fixed integer k > 1, the class of algebras

of the given signature satisfying TS(k) is closed under subalgebras, homomorphic

images, and finite products.

Proof. It is straightforward to show that this class is closed under subalgebras and

homomorphic images, and we leave this task to the reader. Now suppose that

C = A × B and that A |= TS(k) and B |= TS(k). Let S be any non-empty

totally symmetric subuniverse of Ck. Let π0 : C → A be the first projection

homomorphism. Then πk
0 (S) = S0 is a non-empty totally symmetric subuniverse

of Ak. We can choose a diagonal element ak in S0. Then

S1 = {(b0, . . . , bk−1) ∈ Bk : ((a, b0), . . . , (a, bk−1)) ∈ S}

is a non-empty totally symmetric subuniverse of Bk. (Here, the idempotency of A

ensures that S1 is a subuniverse.) So there is b ∈ B with bk ∈ S1. This means that

ck ∈ S, where c = (a, b). �

Lemma 4.5. Let k > 1 be a positive integer.

(i) For any algebra A, the implications WNU(k) ⇒ ST(k) and TS(k) ⇒ ST(k)

are valid.

(ii) For any algebra A, A |= WNU(k) iff A belongs to some variety V such that

the free algebra on two generators in V satisfies ST(k).

(iii) For any finite algebra A, the implications TS(k) ⇒ WNU(k) ⇒ ST(k) are

valid.

Proof. We regard (i) as obvious. Just note that if w(x̄) is a k-variable weak-nu term

for A, and if B ⊆ Ak is the subalgebra generated by the sequence of vectors (for
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some {a, b} ⊆ A) q̄i = aibak−i−1, 0 ≤ i < k, then w(q̄0, . . . , q̄k−1) (with w applied

in B) is the vector ck where c = w(b, a, . . . , a).

We remark that the truth of (ii) requires the assumed idempotency of algebras.

To prove (ii), assume first that A satisfies WNU(k) and that w(x̄) is a k-variable

weak-nu term for A. Let V be the variety generated by A. Then w(x̄) is a weak-nu

term for every algebra in V (since the weak-nu property is determined by satisfaction

of certain equations). Let, then, F be the free algebra on two generators in V.

By (i), F |= ST(k), since F |= WNU(k). Now conversely, suppose that F is the

free algebra freely generated by a two-element set {x, y} in a (idempotent) variety

V, and that F |= ST (k). Let ∆k be the subalgebra of Fk generated by the sequence

of vectors f̄i = xiyxk−i−1, 0 ≤ i < k. Since F |= ST (k), there is a diagonal element

(c, . . . , c) in ∆k. For some term w(x0, . . . , xk−1), we can write

(c, . . . , c) = w(f̄0, f̄1, . . . , f̄k−1) .

This means that for each 0 ≤ i < k,

c = w(f̄0(i), f̄1(i), . . . , f̄k−1(i)) = w(x, x, . . . , x, y, x, . . . , x)

in which the final application of w is to a sequence of i x’s followed by y and then

k− i− 1 x’s. Since also w(x, x, . . . , x) = x, then all the equations required for w(x̄)

to be a weak-nu term for V are satisfied. Thus w(x̄) is a weak-nu term for every

algebra that belongs to V.

We now prove (iii). Let A be a finite algebra. All that remains is to show

that A |= TS(k) implies A |= WNU(k). So let us assume that A satisfies TS(k).

Let F be the free algebra on two generators in the variety generated by A. Now

F is finite, and is isomorphic to a subalgebra of a finite direct power of A. By

Lemma 4.4, F |= TS(k); a fortiori, F |= ST(k). Finally, by (ii) of this lemma,

A |= WNU(k). �

The next three lemmas establish that if a finite algebra satisfies WNU(k) then

it will satisfy TS(k′) for some k′ ≥ k.

Definition 4.6. By a special weak near-unanimity operation on a set A we shall

mean a weak-nu operation w(x̄) on A that satisfies the equation

w(w(y, x, . . . , x), x, . . . , x) ≈ w(y, x, . . . , x) .

Lemma 4.7. If a finite algebra of size n has a weak near-unanimity term of arity

k, then it has a special weak near-unanimity term of arity kn!.

Proof. Let A be a finite algebra of size n and t be a weak near-unanimity term for A

of arity k. We define by induction a sequence t1, t2, . . . , tn! of weak near-unanimity
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terms of arities k, k2, . . . , kn!, respectively. Put t1 = t, and for all integers i < n!

define

ti+1(x1, . . . , xki+1)

= ti(t(x1, . . . , xk), t(xk+1, . . . , x2k), . . . , t(xk(ki−1)+1, . . . , xki+1)).

Since t is idempotent, it is easy to see that ti is a weak near-unanimity term for

all i. Moreover, ti(y, x, . . . , x) = τ i
x(y) (the ith iterate of τx applied to y) where τx

is the unary operation on A defined by τx(y) = t(y, x, . . . , x). The n!-fold iteration

of a unary operation on an n-element set yields an idempotent operation; that is,

τ2n!
x (y) = τn!

x (y) for all x, y ∈ A. This means that tn! is a special weak near-

unanimity term for A. �

Lemma 4.8. If an algebra has a k +1-ary special weak near-unanimity term, then

it has an mk + 1-ary special weak near-unanimity term for every integer m ≥ 1.

Proof. Let T be a special weak k-nu for A. We define by induction a sequence

t1, t2, . . . of terms of arities k + 1, 2k + 1, . . . , respectively. Put t1 = t. If tm is

defined, then define

tm+1(x0, . . . , x(m+1)k) = tm(t(x0, . . . , xk), xk+1, . . . , x(m+1)k).

Clearly, by an inductive argument, ti is a special weak-nu term for each i ≥ 1. �

Lemma 4.9. Let A be a finite algebra of size n, with a special weak near-unanimity

term t of arity k + 1, and let m ≥ nk. Then A satisfies TS(mk + 1).

Proof. Let B ≤ Amk+1 be a totally symmetric subalgebra.

Claim 1. Suppose that abkx̄ ∈ B for some a, b ∈ A and x̄ ∈ A(m−1)k. Then

ck+1x̄ ∈ B where c = t(a, b, . . . , b).

For 0 ≤ i ≤ k let fi = biabk−ix̄. Since B is totally symmetric, fi ∈ B for all i.

Then ck+1x̄ = t(f0, . . . , fk) ∈ B.

Claim 2. Suppose that aibjkx̄ ∈ B for some integers 1 ≤ i ≤ j where a, b ∈ A.

Then ci+jkx̄ ∈ B where c = t(a, b, . . . , b).

By applying the previous claim to the coordinates that contain abk we get that

ck+1ai−1b(j−1)kx̄ ∈ B. By repeated applications we obtain that ci+ikb(j−i)kx̄ ∈ B.

Note, that t(c, b . . . , b) = c because t is special. Therefore, by applying the previous

claim to the coordinates that contain cbk, we get that ci+(i+1)kb(j−i−1)kx̄ ∈ B. By

repeated applications we finally obtain that ci+jkx̄ ∈ B.

Claim 3. Suppose that ak2

b0 · · · bkx̄ ∈ B for some elements a, b0, . . . , bk in A and

tuple x̄. Then ck
0 · · · c

k
kdx̄ ∈ B for some elements c0, . . . , ck, d in A.
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For 1 ≤ i ≤ k and 0 ≤ j ≤ k put ȳi,j = ai−1bja
k−i ∈ Ak. For 0 ≤ i ≤ k define

fi = ȳi,0 · · · ȳi,i−1a
kȳi+1,i+1 · · · ȳi+1,kbix̄, which is best described by the following

matrix:




















f0

f1

f2

...

fk−1

fk





















=





















a a · · · a b1 a · · · a · · · bk a · · · a b0 x̄

b0 a · · · a a a · · · a · · · a bk · · · a b1 x̄

a b0 · · · a a b1 · · · a · · · a a · · · a b2 x̄
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

a a · · · a a a · · · a · · · a a · · · a bk−1 x̄

a a · · · b0 a a · · · b1 · · · a a · · · a bk x̄





















Clearly, f0, . . . , fk ∈ B, because each is obtained from ak2

b0 · · · bkx̄ by permuting

its coordinates. By calculating f = t(f0, . . . , fk) ∈ B we see that f = ck
0 · · · c

k
kdx̄,

where ci = t(bi, a, . . . , a) and d = t(b0, . . . , bk).

Claim 4. There exist elements a1, a2 . . . , am, b ∈ A so that ak
1ak

2 · · · a
k
mb ∈ B.

Let j ≤ m be the largest integer for which there exist elements a1, . . . , aj ,

b0, . . . , b(m−j)k ∈ A so that ak
1 · · · a

k
j b0 · · · b(m−j)k ∈ B. To get a contradiction, as-

sume that j < m. Clearly m− j < n, otherwise some element of A appears at least

k-many times in b0, . . . , bnk by the pigeon-hole principle, which contradicts the max-

imality of j. Consequently, n(k−1) ≤ m−n < j. Applying the pigeon-hole principle

again to the elements a1, . . . , aj we may assume that a1 = a2 = · · · = ak. Therefore,

ak2

1 b0 · · · bkak
k+1 · · · a

k
j bk+1 · · · b(m−j)k ∈ B. Applying the previous claim to this tu-

ple yields elements c0, . . . , ck, d ∈ A so that ck
0 · · · c

k
kdak

k+1 · · · a
k
j bk+1 · · · b(m−j)k ∈ B.

But this contradicts the maximality of j.

Claim 5. There exist elements b, c ∈ A so that cmkb ∈ B.

Let j ≤ m be the largest integer for which there exist elements b, c ∈ A and

aj+1, . . . , am ∈ A so that cjkak
j+1 · · · a

k
mb ∈ B. Clearly, k ≤ j by applying the

pigeon-hole principle to the tuple ak
1 · · · a

k
mb whose existence is guaranteed by the

previous claim. To get a contradiction, assume that j < m. Using Claim 2 for

the tuple ak
j+1c

jkak
j+2 · · · a

k
mb we get that d(j+1)kak

j+2 · · · a
k
mb ∈ B for some d ∈ A,

which is a contradiction.

Claim 6 (f). There exists an element a ∈ A so that amk+1 ∈ B.

This follows immediately from the previous claim and Claim 2. �

Theorem 4.10. Let A1, . . . ,An be finite algebras of the same signature such that

for 1 ≤ i ≤ n, Ai |= WNU(ki) for some ki > 1. There is an integer k > 0 and

a term t(x̄) of k + 1 variables in the signature of these algebras so that for all

1 ≤ i ≤ n, t is a special weak near-unanimity operation for Ai and for all m ≥ 1,

Ai |= TS(mk + 1).



472 M. Maróti and R. McKenzie Algebra univers.

Proof. It follows easily from Lemmas 4.7, 4.8 and 4.9 that there is an integer N > 1

such that every algebra Ai satisfies TS(N). Let F be the free algebra on two

generators x, y in the variety generated by A1, . . . ,An. By Lemma 4.4, F |= TS(N),

and by Lemma 4.5(iii), F |= WNU(N). Then by Lemma 4.7, F has a special weak-

nu term of K +1 variables for a certain K > 0. This term is also a special weak-nu

term for each Ai. Let M be the cardinality of the largest algebra among the Ai.

Then by Lemma 4.9, when m ≥ MK then every algebra Ai satisfies TS(mK + 1).

We take k = MK2. Thus for m ≥ 1, each Ai satisfies TS(mk + 1). Moreover,

our proof of Lemma 4.8, starting with the special weak-nu term of K + 1 variables

for F, yields a term t(x̄) of k + 1 variables that is a special weak-nu for each of the

algebras Ai. �

There is another set of hypotheses that forces satisfaction of TS(k).

Theorem 4.11. Suppose that A is a finite algebra. Let m ≥ 3 and k ≥ (m−1)|A|.

If A satisfies ST(n) for all m ≤ n ≤ k then A satisfies TS(k).

Proof. Let T be a non-empty totally symmetric subuniverse of Ak. Choose x̄ ∈ T .

Since k ≥ (m − 1)|A|, and by total symmetry, we can assume that

x̄ = cm−1xm · · ·xk = cm−1x̄ .

Now let n be maximal, m − 1 ≤ n ≤ k, so that T contains an element of the form

unz̄, u ∈ A. Let anq̄ ∈ T , a ∈ D(T ). We can assume that n < k, else the proof is

finished. Write q̄ = bp̄, b ∈ D(T ). Put S = {x̄ ∈ An+1 : x̄p̄ ∈ T}. Obviously, S is

a totally symmetric subuniverse of An+1 (since the operations are idempotent and

T is totally symmetric). Moreover S contains the vector anb. Thus S contains a

⋆-subalgebra of An+1. Since n ≥ m−1, then m ≤ n+1 ≤ k. Then since ST(n+1)

is satisfied by A, we conclude that there is e ∈ A with en+1 ∈ S. This means that

en+1p̄ ∈ T . But this contradicts the assumed maximality of n. �

5. Minimal star subalgebras

If we are trying to prove that a given finite algebra satisfies ST(k), then we will

be looking at a ⋆-subalgebra B ≤ Ak, and attempting to show that B contains

a diagonal element. Among all the ⋆-subalgebras included in B, there will be at

least one that properly includes no other ⋆-subalgebra of Ak. Every ⋆-subalgebra

of Ak contains a diagonal vector iff every one of these minimal ⋆-subalgebras of

Ak is a singleton, consisting of a diagonal vector. Thus it is natural to focus our

attention on minimal ⋆-subalgebras of Ak. These algebras, in general, have some

very interesting properties.
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Definition 5.1. Let T be a minimal ⋆-subalgebra of Fk where F is a finite algebra

and k ≥ 3. Thus D(T ) (defined in Definition 4.1 as the projection of T onto the

first coordinate, where T is the universe of T), is a two-generated subuniverse of F.

For a, b ∈ D(T ) we write b ≺ a iff bak−1 ∈ T . We say that 〈a, b〉 is a primitive pair

for T when b ≺ a. Notice that b ≺ a entails that {a, b} generates D(T ).

We call an element a ∈ D(T ) generic with respect to T iff b ≺ a for some

b ∈ D(T ). We call an element b ∈ D(T ) co-generic with respect to T iff b ≺ a

for some a ∈ D(T ). A two-generator of D(T ) is an element u such that for some

v ∈ D(T ), {u, v} generates D(T ). Thus every element of D(T ) that is generic or

co-generic with respect to T is a two-generator of D(T ).

Lemma 5.2. Let T be a minimal ⋆-subalgebra of Fk where F is a finite algebra

and k ≥ 3. For a ∈ D(T ) the following are equivalent.

(i) a is a generic element with respect to T.

(ii) There is some x̄ = x1x2 · · ·xk ∈ T such that x1 is co-generic with respect to T

and x2 = a.

(iii) For all w̄ ∈ T there is ȳ ∈ T with wi = yi for 3 ≤ i ≤ k and w1 = a.

Also, the following are equivalent.

(a) There are u, v, w ∈ D(T ) with u ≺ v ≺ w.

(b) For all v ∈ D(T ) there are u,w ∈ D(T ) with u ≺ v ≺ w; i.e., every element of

D(T ) is both generic and co-generic with respect to T.

(c) For all x̄ ∈ D(T )k there is ȳ ∈ T with xi = yi for 1 ≤ i ≤ k − 1.

Proof. First, we tackle (iii) ⇒ (i). Take any x̄ in T. Choose ȳ1 ∈ T with y1
1 = a.

Exchanging the first and third coordinates and applying (iii), we find some axa · · ·

in T . If 3 < k, then exchange the first and fourth co-ordinates in this vector

and apply (iii) to get some ayaa · · · in T . This procedure can be continued, and

eventually produces abak−2 ∈ T for some b ∈ D(T ). This is equivalent to b ≺ a.

Thus a is generic with respect to T .

The implication (i) ⇒ (ii) is trivial, since b ≺ a means that ba · · · a ∈ T .

For (ii) ⇒ (iii), suppose that c ≺ d, x̄ ∈ T and x1 = c, x2 = a. Since T is

a minimal ⋆-subalgebra, the vectors ε1, . . . , εk defined by εi(i) = c and εi(j) = d

when i 6= j constitute a generating set for T. Thus we can write x̄ = t(ε1, . . . , εk)

in T for some term t. Then t(ε3, ε1, ε2, . . . , ε2) = ȳ is a vector in T of the form

apcdk−3 for some p ∈ D(T ). Likewise t(ε2, ε1, ε2, . . . , ε2) = z̄ is a vector of the form

aqdk−2 where q ∈ D(T ). We write τ1 = z̄ = aqdk−2, and for 3 ≤ i ≤ k we put

τi = apdi−3cdk−i. All these vectors can be obtained by permuting the coordinates

in ȳ or z̄ and so, they belong to T .

Now suppose that w̄ is any vector in T . Write w̄ = s(ε1, . . . , εk) for a term s,

just as we wrote x̄ above. Consider w̄′ = s(τ1, τ1, τ3, . . . , τk) . It is easily verified



474 M. Maróti and R. McKenzie Algebra univers.

that w(i) = w′(i) for 3 ≤ i ≤ k and that w′(1) = a. This concludes our proof that

(ii) ⇒ (iii).

For proving the equivalence of (a), (b), (c), we first note that (c) ⇒ (a) is easy:

Taking any c ∈ D(T ), and taking x̄ = ck−1, there is bck−1 ∈ T for some b, i.e.,

b ≺ c. By the same token, there is some a ∈ D(T ) with a ≺ b.

For (a) ⇒ (b), choose three elements of D(T ) satisfying a ≺ b ≺ c and let u

be any element of D(T ). Find x̄ ∈ T with x1 = u. Write first x̄ = s(τ1, . . . , τk)

where τi(i) = a and τi(j) = b when i 6= j. Consider ȳ = s(τ1, γ, . . . , γ) where

γ = bc · · · c ∈ T . We have ȳ = uv · · · v where v = s(b, c, . . . , c), i.e., u ≺ v. Now

write x̄ = t(γ1, . . . , γk) where γi(i) = b and γi(j) = c when i 6= j. Consider z̄ =

t(τk, γk, . . . , γk) . We have z̄ = uk−1w where w = t(a, b, . . . , b). Thus also wuk−1 ∈ T

and w ≺ u. We have shown, given u ∈ D(T ), that there exist v, w ∈ D(T ) with

w ≺ u ≺ v. The derivation of (a) ⇒ (b) is finished.

To prove that (b) ⇒ (c), we use the implication (i) ⇒ (iii). Assume that (b)

holds. Then every element a ∈ D(T ) is generic with respect to T . Thus every

element a ∈ D(T ) satisfies (iii). Now, given x̄ ∈ D(T )k, we can choose a vector

x1ȳ ∈ T . Exchanging the first and third coordinates in this vector and applying

(iii) (with a = x2) we get a vector x2px1z̄ ∈ T , and then after a permutation

of coordinates, we have a vector pqx1x2w̄ ∈ T . We apply (iii) to this vector with

a = x3 and obtain a vector x3rx1x2w̄ ∈ T . Clearly we can continue in this fashion to

eventually obtain xk−1sx1x2 · · ·xk−2 ∈ T for some s ∈ D(T ). After a permutation

of coordinates, we get x1x2 · · ·xk−1s ∈ T , as required. �

Definition 5.3. A minimal ⋆-subalgebra of Fk satisfying the equivalent conditions

(a)-(b)-(c) of Lemma 5.2 will be called k − 1-complete.

Lemma 5.4. Let F be a finite algebra and k ≥ 3. If F satisfies WNU(k − 1),

WNU(k) or WNU(k +1), then every minimal ⋆-subalgebra of Fk is k−1-complete.

Proof. Let T be any minimal ⋆-subalgebra of Fk. If F satisfies WNU(k) then

clearly, T has a diagonal vector ak, implying that T = {ak} and D(T ) = {a}.

Clearly T is k − 1-complete in this case.

Assume that F satisfies WNU(k−1). Let m(x1, . . . , xk−1) be a k−1-WNU term

for F. Choose any a ≺ b in D(T ). Consider the vector

x̄ = m(abk−1, babk−2, bbabk−3, . . . , bk−2ab) .

This vector in T has the form ck−1b. So we have a ≺ b ≺ c. Now by Lemma 5.2

and Definition 5.3 it follows that T is k − 1-complete.

Now assume that F satisfies WNU(k + 1). Let w(x1, . . . , xk+1) be a k + 1-WNU

term for F. Choose u, v ∈ D(T ) such that u ≺ v. Put p = w(u, u, v . . . , v),

q = w(v, . . . , v, u, u), v′ = w(u, v, . . . , v). We find that pv′ · · · v′ ∈ T by giving

uvk−1, uvk−1, vuvk−2, . . . , vk−1u
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as arguments to w in T. Thus p ≺ v′. To complete the proof of this theorem, it

will suffice, by Lemma 5.2, to show that p is generic with respect to T.

Analogously to the above, we have that q ≺ v′. Also, we have that pqv′ · · · v′v ∈

T , as can be demonstrated by giving w these arguments in T:

uvk−1, uvk−1, vvuvk−3, vvvuvk−4,

. . . , vk−2uv, vuvk−2, vuvk−2 .

Now since pq · · · ∈ T and p, q are both co-generic then, by Lemma 5.2 (equiv-

alence of (i)-(ii)-(iii)), p, q are also both generic. Thus T is k − 1-complete by

Lemma 5.2. �

Lemma 5.5. Let F be a finite algebra and k ≥ 3. Let T be a minimal ⋆-subalgebra

of Fk. Suppose that there is c1c2 · · · ck ∈ T where every ci is generic with respect

to T. Then T is k − 1-complete.

Proof. We claim that if y ∈ D(T ) then yc2c3 · · · ck−1u ∈ T for some generic element

u. Indeed, let ck−1
1 b ∈ T . Then we can write y = s(c1, b) for some term s. Now

there is bc2c3 · · · ck−1c ∈ T for some c since c2, c3, . . . are generic (using k − 2

applications of the equivalence (i)↔(iii) in Lemma 5.2). Here c is generic by the

equivalence (i)↔(ii) in Lemma 5.2 (since b is co-generic). Now in T we have the

equation

s(c1c2 · · · ck, bc2 · · · ck−1c) = yc2c3 · · · ck−1s(ck, c)

and s(ck, c) is generic, since ck, c are generic (and the set of generic elements of

D(T ) is obviously a subalgebra).

The claim obviously generalizes: if y ∈ D(T ) and d1 · · · dk ∈ T where all di

are generic, then yd2 · · · dk−1u ∈ T for some generic u. Applying this claim to

c2c1c3 · · · ck and to y = c1, we find that c1c1c3 · · · ck−1u ∈ T for some generic

element u. Then applying the claim to c3c1c1c4 · · · ck−1u and with y = c1, we

get that c1c1c1c4 · · · ck−1v ∈ T for some generic v. Obviously, we can continue

to replace c4, c5, . . . by c1 and we eventually will obtain that ck−1
1 q ∈ T for some

generic element q. Now q is both generic and co-generic. Finally, it follows from

the equivalence (a)↔(c) in Lemma 5.2 that T is k − 1-complete. �

6. Characteristic congruence and two-generators for a minimal

star subalgebra

Definition 6.1. Let A be an algebra and k ≥ 2, and let T be a non-empty totally

symmetric subalgebra of Ak. For x̄ ∈ Ak−1, put prx̄(T ) = {u ∈ a : ux̄ ∈ T}.

Define ρT to be the set of all pairs (u, v) ∈ A2 such that for some x̄ ∈ Ak−1,
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{u, v} ⊆ prx̄(T ). For x ∈ A, and n ≥ 1 we put ρn
T (x) = {y ∈ A : (x, y) ∈ ρn

T } where

ρn
t is the n-fold relation composition of ρT with itself, so that

ρ1
T = ρT , ρ2

T = {(u, v) ∈ A2 : (u, a), (a, v) ∈ ρT for some a ∈ D(T )}, etc.

Now, ρn
T is a reflexive and symmetric subuniverse of D(T )2, and ρn

T (x) is a

subuniverse of D(T ) containing x, whenever x ∈ D(T ). Considering the algebra

D(T ) with universe D(T ), let θT denote the congruence on D(T ) generated by ρT .

We call θT the characteristic congruence of T . Note that if A is finite, then there

is a positive integer n such that θT = ρn
T .

Lemma 6.2. Let A be a finite algebra, k ≥ 2, and T be a minimal ⋆-subalgebra

of Ak. If |T | > 1 then for every x̄ ∈ D(T )k−1, prx̄(T ) 6= D(T ).

Proof. Put W = {x̄ ∈ D(T )k−1 : prx̄(T ) = D(T )}. To work toward a contradiction,

suppose that W 6= ∅. Note that W is a symmetric subuniverse of D(T )k−1.

Choose n maximal, 1 ≤ n ≤ k − 1, such that there is cnx̄ ∈ W for some

x̄ ∈ W k−n−1. Since |T | > 1, then n < k − 1 (else ck−1 ∈ W , implying ck ∈ T ,

giving that {ck} is a ⋆-subalgebra of Ak contained in T , contradicting minimality

of T ). Note that since ck−1 6∈ W , then k ≥ 3. Now choose any b ∈ D(T ) that is

co-generic with respect to T. We have that bcnx̄ ∈ T . By Lemma 5.2, c is generic

with respect to T , so with the right choice of b, we can assume that bck−1 ∈ T , as

well as bcnx̄ ∈ T and ccnx̄ ∈ T (since cnx̄ ∈ W ).

Now we claim that for any s̄ ∈ T we have also s1s2 · · · sn+1x̄ ∈ T . The claim

obviously will imply that for any t̄ ∈ W , we have also t1t2 · · · tnx̄ ∈ W . To prove

the claim, letting s̄ ∈ T , we choose a term λ such that λ(f1, . . . , fk) = s̄ where fi is

the vector with b at the i place and c everywhere else. (Here we use the minimality

of T .) Now in the equation s̄ = λ(f1, . . . , fk) , replace fn+2, . . . , fk by the vector

cn+1x̄, which belongs to T , and for 1 ≤ i ≤ n+1, replace fi by the vector obtained

from cn+1x̄ by replacing c at place i by b. These vectors also belong to T . This

yields a new equation:

s1s2 · · · sn+1x̄ = λ(g1, . . . , gk) ∈ T .

The claim is proved.

Now recall from above that we have n < k − 1. Thus write x̄ = dȳ for some

d ∈ D(T ). So we have cndȳ ∈ W , or equivalently, cn−1dcȳ ∈ W . By the claim, we

get that cn−1ddȳ ∈ W (replacing cȳ by x̄ = dȳ). Then again, cn−2ddcȳ ∈ W ; and

this yields in the same fashion, cn−2dddȳ ∈ W . Obviously, an inductive argument

now gives that dn+1ȳ ∈ W . But this contradicts our choice of n as maximal. The

contradiction finishes our proof that prx̄(T ) = D(T ) is impossible. �

Recall that we defined an element a of an algebra B to be a two-generator of B

just in case for some b ∈ B we have that {a, b} generates B.
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Lemma 6.3. Let A be a finite algebra and k ≥ 2, and let T be a minimal ⋆-

subalgebra of Ak. If |T | > 1 then for every x ∈ D(T ), if ρT (x) = D(T ) then x is

not a two-generator of D(T ).

Proof. Suppose this fails. Then we can choose {a, b} ⊆ D(T ) so that {a, b} gen-

erates D(T ) and ρT (a) = D(T ). Thus (a, b) ∈ ρT . There is x̄ ∈ D(T )k−1 with

{a, b} ⊆ prx̄(T ). Since prx̄(T ) is a subalgebra of D(T ), then prx̄(T ) = D(T ). This

contradicts Lemma 6.2. �

Lemma 6.4. Let A be a finite algebra and k ≥ 2, and let T be a minimal ⋆-

subalgebra of Ak. Suppose that {a, x, y} ⊆ D(T ) and a is generic with respect to T .

If ak−2xy ∈ T then x is a two-generator of D(T ) iff y is a two-generator of D(T ).

Proof. Let ak−2xy ∈ T and suppose that {x, z} generates D(T ). We have to show

that y is a two-generator. Since a is generic, there is ak−2zw ∈ T for some w. Write

S = Sg({y, w}). We show that S = D(T ), demonstrating that y is a two-generator.

Choose a term t so that t(x, z) = a. Applying t in T to ak−2xy, ak−2zw, we obtain

that ak−1t(y, w) ∈ T . Write g = t(y, w). Thus 〈a, g〉 is a primitive pair for T.

Choose a term s so that s(x, z) = g. Then applying s in T to ak−2xy and ak−2zw,

we get that ak−2gs(y, w) ∈ T . Write u = s(y, w), so that u is a generic element,

since g is co-generic and ak−2gu ∈ T (by an application of Lemma 5.2). Now we

have {u, g} ⊆ S, ak−1g ∈ T , ak−2gu ∈ T . Choose h so that uk−1h ∈ T .

We claim that for any x̄ ∈ T there is s ∈ S with x1x2 · · ·xk−1s ∈ T . If this is

true, then there must be s ∈ S with uk−1s ∈ T . Then 〈u, s〉 is a primitive pair

with respect to T , and S contains {u, s}, implying that S = D(T ), which is what

we wished to prove. To prove the claim, let x̄ ∈ T and write x̄ = σ(ρ1, . . . , ρk) ,

where the vector ρi has a at all places but the ith, and g at the ith place. De-

fine τi (1 ≤ i < k) to agree with ρi except at the kth place, where τi(k) = u.

The vectors τi belong to T , since ak−2gu ∈ T . Thus {τ1, τ2, . . . , τk−1, ρk} ⊆ T .

Now σ(τ1, τ2, . . . , τk−1, ρk) = x̄′ , where x̄′(i) = x̄(i) for 1 ≤ i < k, and x̄′(k) =

σ(u, . . . , u, g) = s ∈ S. This proves the claim. �

Definition 6.5. An algebra A satisfies TST(k) iff every non-empty totally sym-

metric subalgebra of Ak contains a ⋆-subalgebra of Ak.

Theorem 6.6. Assume that T is a minimal ⋆-subalgebra of Ak where A is a finite

algebra and k ≥ 3, and assume further that |T| > 1. Assume also that every proper

subalgebra of A satisfies TST(k − 1). Then θT , the characteristic congruence for T,

is distinct from D(T ) × D(T ).

Proof. In search of a contradiction, we assume that θT = D(T )×D(T ). Thus there

is a positive integer n such that ρn
T = D(T )×D(T ). Choose n0 to be the least such

positive integer.
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We claim that n0 = 1. To prove this, suppose that n0 > 1. Choose a primitive

pair 〈a, b〉 for T . We can also choose some u ∈ D(T ) so that (a, u) ∈ ρn0−1
T and

(u, b) ∈ ρT . Our immediate aim is to prove that u must be a two-generator of

D(T ).

By definition, we can choose some x̄ ∈ Ak−1 so that ux̄, bx̄ ∈ T . Since bx̄ ∈ T ,

then by Lemma 5.2, xi is generic for 1 ≤ i ≤ k − 1. Rewriting, we have x̄u ∈ T .

Write G for the set of all elements of D(T ) generic with respect to T . Then G is a

subalgebra of D(T ) and x̄ ∈ Gk−1. Define

S = {ȳ ∈ Gk−1 : ȳu ∈ T} .

Since x̄u ∈ T , then S is a non-empty subalgebra of Gk−1. Clearly, S is totally

symmetric. Now if G = A then u ∈ G, implying that u is a two-generator, as

we hope. If G 6= A, then this algebra satisfies TST(k − 1). We have then that S

contains a vector ak−2c for some {a, c} ⊆ G.

At this point, we have that ak−2cu ∈ T and a, and c are both generic with

respect to T , implying that c is a two-generator of D(T ). Now Lemma 6.4 implies

that u is a two-generator.

Thus, indeed, u must be a two-generator of D(T ). Choose v so that {u, v} ⊆

D(T ) and {u, v} generates D(T ). Recall that (u, a) ∈ ρn0−1
T and (u, b) ∈ ρT ⊆

ρn0−1
T . Thus {a, b} ⊆ ρn0−1

T (u), implying that the algebra ρn0−1
T (u) is identical

with D(T ). Consequently, (u, v) ∈ ρn0−1
T . But since our algebras are idempotent,

and {u, v} generates D(T ), then the set of pairs

{(u, u), (v, v), (u, v), (v, u)}

generates D(T ) × D(T ). Thus it must be that ρn0−1
T = D(T ) × D(T ). This

contradicts the minimality of n0. The contradiction establishes that, in fact, ρT =

D(T ) × D(T ).

Now we have (a, b) ∈ ρT , implying that ρT (a) = D(T ). Since a is a two-generator

of D(T ), this is a contradiction of Lemma 6.3. �

Theorem 6.7. Assume that T is a minimal ⋆-subalgebra of Ak where A is a finite

simple algebra and k ≥ 3. Assume also that D(T ) = A and that every proper

subalgebra of A satisfies TST(k − 1). Then A is an Abelian algebra.

Proof. Under the assumptions in this theorem, Theorem 6.6 implies that θT is

the identity relation on A. Thus ρT is the identity relation on A as well. We

now consider three congruences on the algebra T. They are the kernels of the

projections of T onto A at the first coordinate, and at the second coordinate, and

the kernel of the projection of T into Ak−2 over all remaining coordinates. Label
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these congruences σ1, σ2 and σ′
1,2. Thus for x̄, ȳ ∈ T we have

(x̄, ȳ) ∈ σ1 ↔ x1 = y1

(x̄, ȳ) ∈ σ2 ↔ x2 = y2

(x̄, ȳ) ∈ σ′
1,2 ↔ xi = yi for all 3 ≤ i ≤ k .

The remainder of this argument relies on the centralizer theory and theory of

the solvability congruence on the congruence lattice of a finite algebra, as detailed

in D. Hobby, R. McKenzie [6, Chapters 3 and 7].

Notice that ρT = 0A (the identity relation on A) is equivalent to σ2 ∧ σ′
1,2 = 0T

and since T is totally symmetric, also equivalent to σ1 ∧ σ′
1,2 = 0T . Let us put

σ = σ1 ∨ σ2, and α = σ ∧ σ′
1,2. The fact that σi is disjoint from σ′

1,2 (for i ∈ {1, 2})

implies that σi centralizes σ′
1,2. This implies that σ centralizes σ′

1,2, and thus α

centralizes α. The congruence α on T is Abelian. Thus σ1 and σ1 ∨ α are solvably

equivalent.

Choose a primitive pair 〈a, b〉 for T . It is easy to see that bak−1 and abak−2 are

congruent modulo α. Thus a and b are congruent modulo the image of σ1∨α under

the projection map D(T ) → A through the first coordinate. Thus this image is a

non-identity congruence of A; it can only be A×A since it contains the pair (a, b),

and A is simple. But since σ1 and σ1 ∨ α are solvably equivalent, this image is a

solvable congruence of A. This means that A × A is a solvable congruence. Since

A is simple, we are forced to the conclusion that A is Abelian. �

7. Proof of Theorem 1.1

Of the three conditions whose equivalence Theorem 1.1 asserts, (3) trivially

implies (2), and we saw in Section 2 that (2) implies (1). The five Lemmas in

Section 4 together with Theorem 4.10 show that (2) and (3) are equivalent. To

complete a proof of the theorem, what remains is to show that in a locally finite

variety that omits type 1, every finite algebra (or just the free algebra on two

generators) satisfies TS(k) for some integer k > 1.

So let V be a locally finite variety that omits type 1 and assume that V has

a finite algebra A that does not satisfy TS(k) for any integer k > 1. We shall

derive a contradiction. We assume that the cardinality of A is as small as possible.

This means that whenever B ∈ V and |B| < |A| then B satisfies TS(k) for some

k > 1. We choose a finite sequence of algebras A1,A2, . . . ,An so that Ai ∈ V and

|Ai| < |A| for 1 ≤ i ≤ n, and every algebra B ∈ V with |B| < |A| is isomorphic to

some Ai. With an application of Theorem 4.10, we choose an integer k0 > 1 and a

term t0(x̄) of k0 + 1 variables in the signature of V so that for all 1 ≤ i ≤ n, t0 is a

special weak near-unanimity operation for Ai and for all m ≥ 1, Ai |= TS(mk0 + 1).
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Lemma 7.1. A is a simple non-Abelian algebra.

Proof. First we prove that A is simple. Clearly |A| > 1. Suppose that A has

a congruence θ different from A × A and the identity relation. We shall derive a

contradiction by showing that A |= TS(k0 + 1).

Let T be any non-empty totally symmetric subalgebra of Ak0+1. Where π : A →

A/θ is the canonical epimorphism, we have that πk0+1(T ) is a non-empty totally

symmetric subalgebra Tθ of (A/θ)k0+1. Here A/θ |= TS(k0 + 1); thus Tθ has a

diagonal vector. This means that there is a vector x̄ ∈ T with the property that

for some θ-equivalence class E, x̄ ∈ Ek0+1. Now E is a subalgebra of A (since A is

idempotent) and T ∩Ek0+1 is a non-empty totally symmetric subalgebra of Ek0+1.

Since θ 6= A×A, then |E| < |A|. The algebra E thus satisfies TS(k0 +1), implying

that T ∩ Ek0+1 contains a diagonal vector.

We have shown that every non-empty totally symmetric subalgebra of Ak0+1

contains a diagonal vector. This contradicts our assumption that A satisfies TS(k)

for no k > 1. The contradiction concludes our proof that A is simple.

Now suppose that A is Abelian. Then, as we saw in Section 2, since A ∈ V and

V omits type 1, then A |= WNU(k) for some k > 1 and as we have seen, it follows

that A |= TS(k) for some k > 1. This is another contradiction. �

Recall that the property TST(m) was defined in Definition 6.5. We put M =

max(|A|, k0 + 1) · k0.

Lemma 7.2. For m ≥ M and for 1 ≤ i ≤ n, Ai |= TST(m).

Proof. Suppose that R is a non-empty totally symmetric subalgebra of Am
i where

m > |Ai| · k0 and m ≥ k2
0 + k0. We must prove that R contains the vector cm−1b

for some b, c ∈ Ai.

If m ≡ 1 (mod k0) then Ai |= TS(m) implying that Ai |= TST(m). There is

nothing to prove in this case. In the contrary case, we write m = ℓk0 + 1 + r where

ℓ > 0 and 0 < r < k0. Choose any vector x̄ ∈ R. Since m > |Ai| · k0 > |Ai| · r,

some member of Ai occurs r times in x̄. After a permutation of coordinates in x̄,

we get, say, arū ∈ R where a ∈ Ai and ū ∈ Aℓk0+1
i . Thus

S = {ȳ ∈ Aℓk0+1
i : arȳ ∈ R}

is a non-empty totally symmetric subalgebra of Aℓk0+1
i . It follows that there is

b ∈ Ai with arbℓk0+1 ∈ R. Rewrite this as arbℓk0b ∈ R and note that the assumed

inequality for m implies that ℓ ≥ k0 > r. Now the argument proving Claim 2 in the

proof of Lemma 4.9 shows that there is c ∈ Ai with cr+ℓk0b ∈ R, i.e, cm−1b ∈ R. �

Definition 7.3. An algebra C satisfies IST(k) iff for all a, b ∈ C there exists an

element c ∈ C so that the totally symmetric subalgebras of Ck generated by ak−1b

and ak−1c contain the vector ck.
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Lemma 7.4. Let C be a finite algebra. If C satisfies ST(k), then it satisfies

IST(k|C|!).

Proof. Since C satisfies ST(k), we can choose, for each pair (a, b) ∈ C2 a term ta,b

of arity k so that

ta,b(b, a, . . . , a) = ta,b(a, b, a, . . . , a) = · · · = ta,b(a, . . . , a, b).

For each a ∈ C we define a unary operation fa on C as fa(b) = ta,b(b, a, . . . , a).

Consider the term

s(x0, . . . , xk2−1) = ta,fa(b)(ta,b(x0, . . . , xk−1), . . . , ta,b(xk(k−1), . . . , xk2−1).

Since C is idempotent, s(b, a, . . . , a) = · · · = s(a, . . . , a, b) = fa(fa(b)). By iterating

this argument, for each a, b ∈ C we get a term sa,b of arity k|C|! so that

sa,b(b, a, . . . , a) = · · · = sa,b(a, . . . , a, b) = f |C|!
a (b).

Put c = f
|C|!
a (b). We know that the |C|!-th power of the function fa is idempotent;

that is f
|C|!
a (c) = f

|C|!
a (f

|C|!
a (b)) = f

|C|!
a (b) = c. This implies that

sa,c(c, a, . . . , a) = · · · = sa,c(a, . . . , a, c) = f |C|!
a (c) = c,

so we have the required terms for IST(k|C|!). �

Definition 7.5. An algebra C satisfies RST(k) iff for every minimal ⋆-subalgebra

T ⊆ Ck, D(T ) 6= C.

Lemma 7.6. For m > M , we have that A satisfies RST(m). For m > M and

m ≡ 1 (mod k0), we have that A satisfies ST(m).

Proof. Let m > M and let T be a minimal ⋆-subalgebra of Am. Clearly we have

m ≥ 3. By Lemma 7.2, every proper subalgebra of A satisfies TST(m − 1). Thus

it follows from Lemma 7.1 and Theorem 6.7 that D(T ) 6= A. This argument shows

that A |= RST(m).

Next, let m > M , m = ℓk0 + 1, and let T be a minimal ⋆-subalgebra of Am.

Since A |= RST(m), then T is actually a minimal ⋆-subalgebra of Bm for some

proper subalgebra B < A. But B ∼= Ai for some 1 ≤ i ≤ n and B |= ST(m). Thus

T is a singleton, and contains a diagonal vector. This shows that A |= ST(m). �

Now let k1 be the least multiple of k0 that is not less than M and not less than

|A|, and let k be the multiple of k0 such that k+1 = (k1 +1)|A|!. Let t be a term of

k + 1 variables which is a special weak near-unanimity term for all Ai, 1 ≤ i ≤ n.

The proof of Lemma 4.8, starting with t0, will produce such a term.



482 M. Maróti and R. McKenzie Algebra univers.

The next lemma summarizes what we know about A.

Lemma 7.7. Let A be the algebra from the previous lemma.

(1) A is a finite, simple, non-Abelian algebra that satisfies TS(m) for no m > 1.

(2) t is a k + 1-ary term which is a special weak near-unanimity term for every

proper subalgebra of A.

(3) Each proper subalgebra of A satisfies TS(mk + 1) for all m ≥ 1.

(4) Each proper subalgebra of A satisfies TST(m) for all m ≥ k.

(5) A satisfies RST(m) for all m ≥ k.

(6) A satisfies ST(mk + 1) for all m > 0.

(7) A satisfies IST(k + 1).

Proof. These statements are easily justified with the help of the preceding lemmas

of this section. �

The next lemma contradicts statement (1) of the above lemma. Its proof will

conclude our proof by contradiction, of Theorem 1.1.

Lemma 7.8. Let A be the algebra and k be the integer from the previous lemma.

Then A satisfies TS(N) for some large integer N .

Proof. Let N be large and N ≡ 1 (mod k), and let B ≤ AN be an arbitrary totally

symmetric subalgebra. We argue that B contains a diagonal element.

Claim 1. Suppose that aibjkx̄ ∈ B for some integers 1 ≤ i ≤ j and a, b, x̄. Then

ci+jkx̄ ∈ B for some c ∈ A.

Use an analogous argument to that of the proof of the first two claims in our

proof of Lemma 4.9, using the fact that A satisfies IST(k + 1) as a replacement for

the existence of a special weak near-unanimity term for A.

Claim 2. If ak
1 · · · a

k
px̄ ∈ B and p > k|A|, then bpkx̄ ∈ B for some b ∈ A.

Let i ≤ p be a maximal integer so that bikck
1 · · · c

k
p−ix̄ ∈ B for some elements

b, c1, . . . , cp−i ∈ A. By the pigeon-hole principle i ≥ k. If i < p, then we can use

Claim 1 for bikck
1 to get that dik+kck

2 · · · c
k
p−ix̄ ∈ B. This contradiction shows that

i = p.

Claim 3. aibN−i−1c ∈ B for some a, b, c ∈ A and integer i < k.

Take an arbitrary tuple from B and write it in the form ak
1 · · · a

k
pbqc1 · · · cr.

Choose such a tuple where kp + q is maximal and 0 ≤ q < k. If q = 0, then r = 0

by the maximality of kp + q. If r = 0, then the claim holds by Claim 2. (Here we

require only that N − 1 > k2|A|.) Therefore, we may assume that q > 0 and r > 0.

Clearly, r < k|A|, otherwise kp+q was not maximal by the pigeon-hole principle.

Thus by Claim 2 (assuming that N > (k2 + k)|A| + k), we may assume that a1 =
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· · · = ap. Using Claim 1 for c1 and apk
1 we get a tuple of the form dpkbqdc2 · · · cr. If

{d, c2, . . . , cr} generates A as a subalgebra, then kp + q was not maximal, because

the totally symmetric subalgebra of Ar generated by dc2 · · · cr contains a tuple of

the form bc′2 · · · c
′
r−1. Now we use TST(N − q) for the coordinates where we have

elements from {d, c2, . . . , cr}, which yields a tuple of the form bqeN−q−1f .

Claim 4. aN−2bc ∈ B for some a, b, c ∈ A.

From the previous claim we know that aibN−i−1c ∈ B for some elements a, b, c ∈

A and integer i < k. Since A satisfies RST(k) we can apply this to abk−1 to

get dek−1 such that d, e generate a proper subalgebra of A. We do this i-many

times, once to each a, and get that dieki−ibN−1−kic ∈ B. As d, e generate a proper

subalgebra, we can apply TST(ki) and get that fgki−1bN−1−kic ∈ B for some

elements f, g ∈ A. Since N ≡ 1 (mod k), N − 1 − ki ≡ 0 (mod k). Moreover, by

chosing N large enough, we can make N − 1 − ki arbitrary large. Therefore, we

can apply Claim 1 to the tuple gki−1bN−1−ki, and get that fhN−2c ∈ B.

Claim 5. abicN−i−1 ∈ B for some a, b, c ∈ A and integer i ≤ |A| such that {a, c}

and {b, c} generate proper subalgebras of A.

From Claim 4 we have a tuple abcN−2 ∈ B. By RST(N − 1) we can assume

that {b, c} generates a proper subalgebra of A. We define a sequence a1, a2, · · · ∈ A

of elements such that aib
icN−i−1 ∈ B. Put a1 = a. If ai is defined and {ai, c}

generates A, then there is a binary term t such that t(ai, c) = b. In this case we

put ai+1 = t(c, ai). By the construction we have that ai+1b
i+1cN−i−1 ∈ B. If for

some i ≤ |A| we arrive to an element ai so that {ai, c} does not generate A then we

are done. Otherwise, we have a repetition in a1, . . . , a|A|, a|A|+1, so we can continue

with the repeated sequence to get that aN−1b
N−1 ∈ B. From this by ST(N) we

get a constant tuple.

Claim 6. abk
0 · · · b

k
kcN−1−k−k2

∈ B for some a, b1, . . . , bk+1, c ∈ A.

From the previous claim we have a tuple abicN−i−1 ∈ B. It is easy to see that

we have k > |A| ≥ i. Thus we can permute the coordinates to get

ck2

b0 · · · bkcN−k2−k−1 ∈ B

where b0 · · · bk = abick−i. Now {bi, c} generates a proper subalgebra of A for

0 ≤ i ≤ k; hence t satisfies the weak-NU equations on inputs from {bi, c} for each i.

Now the argument used to prove Claim 3 in the proof of Lemma 4.9 works in this

situation, using the term t; and it yields the desired result.
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Claim 7. B contains a diagonal element.

Observe, that N − 1 − k − k2 ≡ 0 (mod k), so we can apply Claim 2 to the

tuple abk
0 · · · b

k
kcN−1−k−k2

∈ B and get that adN−1 ∈ B for some d ∈ A. Now using

ST(N) we get a diagonal tuple in B. �

8. Proof of Theorem 1.2

D. Hobby, R. McKenzie [6, Theorem 9.10] gives the equivalence of statements

(1) and (2) in Theorem 1.2. We showed in Section 2 that (4) implies (1), and (3)

trivially implies (4). The proof of Theorem 1.2 will therefore be completed with

the proof of the next theorem, which shows that (1) implies (3).

Theorem 8.1. Let V be a locally finite variety that omits types 1 and 2. Let A be

any finite algebra in V with n = |A| > 1. For k > 2(n− 1)!, A satisfies ST(k), and

for k ≥ 2n!, A satisfies TS(k) and WNU(k).

Proof. First, note that since V omits types 1 and 2, it has no Abelian algebra with

more than one element.

We prove this theorem by induction on n. If A ∈ V and n = |A| = 2 then A is

simple and non-Abelian. Let k > 2 (= 2(n − 1)!). Now, proper subalgebras of A

have only one element and thus satisfy TS(k), and TST(k). Thus it is immediate

from Theorem 6.7 that every minimal ⋆-subalgebra T of Ak has D(T ) 6= A, implying

that T is a singleton. This means that A satisfies ST(k). To conclude the proof for

n = 2, notice that since A |= ST(k) for k ≥ 3, then by Theorem 4.11, A |= TS(k)

for k ≥ 4 = 2n!, and then by Lemma 4.5, A |= WNU(k) for k ≥ 4 as well.

Now suppose that n > 2 and the conclusions of this theorem are valid for all

finite algebras A ∈ V with 2 ≤ |A| < n. Let A ∈ V with |A| = n, and let

k > 2(n − 1)!. By our induction assumption, every proper subalgebra and every

proper homomorphic image of A satisfies TS(k) and TS(k − 1), and thus also

satisfies TST(k − 1). Thus the same proof used in the proof of Lemma 7.1 gives

us the conclusion that A satisfies ST(k), unless A is simple. Suppose that A is

simple. Let T be any minimal ⋆-subalgebra of Ak. We have that all the hypotheses

of Theorem 6.7 except possibly the hypothesis that D(T ) = A are true. The

conclusion of Theorem 6.7 is false (as A is non-Abelian). Thus we are forced to

the conclusion that D(T ) 6= A. In this case, T is a minimal ⋆-subalgebra of Bk,

B = D(T ), and B |= ST(k). Thus T is a singleton. So we conclude that A |= ST(k).

This holds for all k ≥ m = 2(n−1)!+1. By Theorem 4.11, we have that A |= TS(k)

for all k ≥ (m − 1)|A| = 2n!. By Lemma 4.5, A |= WNU(k) for the same values

of k. This completes our inductive proof of Theorem 8.1. �
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The proof of Theorem 1.2 follows from the previous theorem and Lemma 4.5

applied to the two-generated free algebra of V.

9. Proof of Theorem 1.3

By a system of Jónsson operations on A we mean a sequence d1(x, y, z), . . . ,

d2n−1(x, y, z) of operations (for some n ≥ 1) satisfying the equations

x ≈ dj(x, y, x) when 1 ≤ j ≤ 2n − 1,

x ≈ d1(x, z, z),

d2i(x, z, z) ≈ d2i+1(x, z, z) for all 1 ≤ i ≤ n − 1,

d2i−1(x, x, z) ≈ d2i(x, x, z) for all 1 ≤ i ≤ n − 1,

d2n−1(x, x, z) ≈ z .

According to a classical result of B. Jónsson [8], a variety V is congruence distribu-

tive iff V has terms d1(x, y, z), . . . , d2n−1(x, y, z) such that the above equations are

valid in V, for some n ≥ 1. Such a sequence of terms is called a sequence of Jónsson

terms for V.

Definition 9.1. Suppose that A is an algebra and m > 2, and B is a subalgebra

of Am. For a, b, c ∈ A we define a condition

CB(a, b, c): for all 0 ≤ i ≤ m − 1, the m-tuple bc(i)a(m−i−1) belongs to B.

Let f(x, y, z) be a term operation of A. We define three conditions on f (actually,

on (B,A, f)):

(C1
f ) There exist a, b ∈ A so that, where c = f(a, a, b), the condition CB(a, b, c)

holds.

(C2
f ) There exist a, b ∈ A so that, where d = f(a, b, b), the condition CB(a, b, d)

holds.

(Cf ) There exist a, b ∈ A so that, where c = f(a, a, b) and d = f(a, b, b), the

conditions CB(a, b, c) and CB(a, b, d) hold.

Lemma 9.2. Let A = 〈A, f〉 be an algebra with one ternary operation such that

A |= f(x, y, x) ≈ x. Let m be an integer greater than 2. Let B be a totally

symmetric subalgebra of Am. The conditions (C1
f ), (C2

f ) and (Cf ) are equivalent.

Proof. We assume that CB(a, b, c) holds, and either c = f(a, a, b) or c = f(a, b, b).

We proceed to construct a′, b′ ∈ A and show that

CB(a′, b′, f(a′, a′, b′)) and CB(a′, b′, f(a′, b′, b′))

hold. We begin by defining b0 = b and for 0 ≤ i < m − 1, bi+1 = f(bi, c, c).

Claim 1. For all 0 ≤ i ≤ j ≤ m − 1 we have bic
(j)a(m−j−1) ∈ B.
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We prove this claim by induction on i. For i = 0, the claim is equivalent to

condition CB(a, b, c), which we are assuming. Now suppose that we have a certain

i, 0 ≤ i < m−1, and bic
(j)a(m−j−1) ∈ B for all i ≤ j ≤ m−1. Let i+1 ≤ j ≤ m−1.

To see that bi+1c
(j)a(m−j−1) ∈ B, we apply fB to some members of B below. In this

calculation, we write members of B (m-tuples) as column vectors. The operation

f is being applied across the rows of an m × 3 matrix:



































bi+1

c

c

c
...

c

a
...

a
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
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

















= f


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








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




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c a c

a a a
...

...
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a a a
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









or
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c
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c
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a
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











.

The first formula applies if c = f(a, a, b); the second applies if c = f(a, b, b). The

third row of the m × 3 matrix in the first formula is cbc if j ≥ 2, and is aba if

j = 1 (= i + 1). The first and third columns of each matrix contain c in positions

3 through j + 2. In both cases, all three columns of the matrix denote elements of

B (due to the induction assumption). Hence bi+1c
(j)a(m−j−1) ∈ B as required.

Claim 2. Where b′ = bm−1, c′ = f(c, c, b′), d′ = f(c, b′, b′) we have for all 0 ≤ j ≤

i ≤ m − 1, that bic
′(j)c(m−j−1) ∈ B, bid

′(j)c(m−j−1) ∈ B.

This claim is proved by induction on j. The first claim justifies this claim for

j = 0. Next, let j = 1 and let i be fixed, 1 ≤ i ≤ m − 1. Note that by Claim

1, b′c(m−1) ∈ b, and symmetrically, cb′c(m−2) ∈ B. Then the formulas below show

that bic
′c(m−2) ∈ B and bid

′c(m−2) ∈ B.
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.

Now suppose that 1 ≤ j < m−1 and the claim is true for this j and all m−1 ≥ i ≥ j.

Choose any m − 1 ≥ i ≥ j + 1. To demonstrate that bic
′(j+1)c(m−j−2) ∈ B and
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bid
′(j+1)c(m−j−2) ∈ B, we use these formulas:
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c
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





.

In the first m×3 matrix, the first and third column have j occurences of c′; likewise

in the second formula, the first and third column have j occurences of d′.

To conclude our proof, we take a′ = c, b′ = bm−1. Claim 2 with i = m − 1 gives

that both conditions CB(a′, b′, f(a′, a′, b′)) and CB(a′, b′, f(a′, b′, b′)) hold. �

To prove Theorem 1.3, we can assume that A is the free algebra over the Jónsson

equations for d1, . . . , d2n−1, freely generated by x, y. The algebra A is idempotent.

Let m ≥ 3. Put B = ∆m, the totally symmetric algebra generated by yxx · · ·x,

xyx · · ·x, . . . , xxx · · ·xy. The condition (C2
d1

) is true, since d1(x, y, y) = x and

yxx · · ·x ∈ B. Notice that for i odd, (C1
di

) is equivalent to (C1
di+1

) since di(x, x, y) ≈

di+1(x, x, y) is an identity of A; and for i even, (C2
di

) is equivalent to (C2
di+1

). Thus

using Lemma 9.2, we deduce that (C1
d2n−1

) must be true. Hence there exists a, b ∈ A

so that, in particular, bvv · · · v ∈ B, where v = d2n−1(a, a, b). But here v = b from

the last Jónsson equation. Thus B = ∆m contains a diagonal element bb · · · b. Since

the operations are idempotent, this gives an m-ary weak near-unanimity operation.

10. Locally finite congruence modular varieties

A sequence d1(x, y, z), . . . , d2n(x, y, z), p(x, y, z) of operations satisfying the equa-

tions

x ≈ d1(x, y, y)

x ≈ dj(x, y, x) for 1 ≤ j ≤ 2n

d2i−1(x, x, y) ≈ d2i(x, x, y) for 1 ≤ i ≤ n

d2i(x, y, y) ≈ d2i+1(x, y, y) for 1 ≤ i < n

d2n(x, y, y) ≈ p(x, y, y)

p(x, x, y) ≈ y
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is called a system of Gumm operations on A. H. P. Gumm [5] proved that a variety

V is congruence modular iff V has terms d1(x, y, z), . . . , d2n(x, y, z), p(x, y, z) such

that the above equations are valid in V, for some n ≥ 1. Such a sequence of terms

is called a sequence of Gumm terms for V.

Theorem 10.1. Let A be a finite algebra and k ≥ 3, and let T be a minimal

⋆-subalgebra of Ak. If A has Gumm terms then T is k − 1-complete.

Proof. Suppose that A has Gumm terms d1, . . . , d2n, p. It follows from Lemma 9.2

that there are a, b ∈ D(T ) with bc(i)a(k−i−1) ∈ T for all 0 ≤ i ≤ k − 1, where

c = d2n(a, b, b) = p(a, b, b). Applying p to the vectors bac(k−2), abc(k−2), abc(k−2),

we get that dc(k−1) ∈ T where d = p(b, a, a). Thus d is a co-generic element with

respect to T. Then applying p to the vectors ba(k−1), aaba(k−3), aba(k−2) we get

that dbea(k−3) ∈ T where e = p(a, b, a). Since b is co-generic, then by Lemma 5.2, d

is both generic and co-generic. Thus by the same lemma, T is k − 1-complete. �

Theorem 10.2. Let V be a locally finite congruence modular variety. Let F be the

free algebra freely generated by x, y in V, and put f = |F |. If k is an integer such

that k ≥ 3 and k ≡ 1 (mod f !), then V satisfies WNU(k).

Proof. We define ∆k as the subalgebra of Fk generated by the vectors yxk−1,

xyxk−2, . . . , xk−1y, and we take T to be a minimal ⋆-subalgebra of ∆k. We must

show that |T | = 1. The Gumm terms are d1, . . . , d2n, p. By Theorem 10.1, T is k−1-

complete. As in the proof of Theorem 10.1, we have a, b ∈ W with ba(i)c(k−i−1) ∈ T

for all 0 ≤ i ≤ k − 1, where c = p(a, b, b).

By k−1-completeness, for all 0 ≤ i ≤ k−1, there is xi ∈ D(T ) with xib
iak−i−1 ∈

T . Clearly, there are i ≥ 0 and j > 0 so that i + j ≤ f < k and xi = xi+j .

Then applying a permutation to the coordinates in the vectors xib
iak−i−1 and

xib
i+jak−i−i−1 yields two vectors a(j)ū, b(j)ū in T for a certain j, 0 < j ≤ f = |F |.

Now if x̄ = b(j)v̄ is any vector in T whose first j components are b, then p applied

to a(j)ū, b(j)ū, b(j)v̄ is the vector c(j)v̄. Thus, by symmetry, any j b’s in a vector

belonging to T may be replaced by c’s, yielding a new vector in T . Since b is a

generic element, and j divides k−1, then there is q ∈ W with qb(k−1) ∈ T and then,

replacing j b’s at a time, we get also, qc(k−1) ∈ T . Recall that we also have bc(k−1)

in T . Finally, the vectors r̄1 = qb(k−1), r̄2 = bqb(k−2), . . . , r̄k = b(k−1)q generate

T . Choose a term t so that t(r̄1, . . . , r̄k) = c(k−1)b . Thus t(q, b, . . . , b) = c. Now

replace r̄1 by qc(k−1) and each of r̄2, . . . , r̄k by bc(k−1) in the displayed equation.

This yields the vector cc(k−1) ∈ T . This ends our proof. �
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Bolyai Institute, University of Szeged, Hungary
e-mail : mmaroti@math.u-szeged.hu

Ralph McKenzie

Department of Mathematics, Vanderbilt University, Nashville, USA

e-mail : mckenzie@math.vanderbilt.edu


