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Sortable elements and Cambrian lattices

Nathan Reading

Abstract. We show that the Coxeter-sortable elements in a finite Coxeter group W are the
minimal congruence-class representatives of a lattice congruence of the weak order on W.
We identify this congruence as the Cambrian congruence on W, so that the Cambrian
lattice is the weak order on Coxeter-sortable elements. These results exhibit W -Catalan
combinatorics arising in the context of the lattice theory of the weak order on W.

1. Introduction

The weak order on a finite Coxeter group is a lattice [3] which encodes much of

the combinatorics and geometry of the Coxeter group. The weak order has been

studied in the special case of the permutation lattice and in the broader generality

of the poset of regions of a simplicial hyperplane arrangement. With varying levels

of generality, many lattice and order properties of this lattice have been determined.

(See, for example, references in [7], [9], [14], [16] and [17].)

This paper continues a program, begun in [18], of applying lattice theory to gain

new insights into the combinatorics and geometry of Coxeter groups. Specifically,

we solidify the connection, first explored in [20], between the lattice theory of the

weak order and the combinatorics of the W -Catalan numbers. These numbers

count, among other things, the vertices of the (simple) generalized associahedron

(a polytope which encodes the underlying structure of cluster algebras of finite

type [10, 11]), the W -noncrossing partitions (which provide an approach [2, 6] to

the geometric group theory of the Artin group associated to W ) and the sortable

elements [21] of W (which we discuss below).

In [20], the Cambrian lattices were defined as lattice quotients of the weak order

on W modulo certain congruences, identified as the join (in the lattice of congru-

ences of the weak order) of a small list of join-irreducible congruences. Any lattice

quotient of the weak order defines [19] a complete fan which coarsens the fan defined

by the reflecting hyperplanes of W, and in [20] it was conjectured that the fan asso-

ciated to a Cambrian lattice is combinatorially isomorphic to the normal fan of the

Presented by P. Dehornoy.
Received December 22, 2005; accepted in final form March 19, 2006.
2000 Mathematics Subject Classification: 20F55, 06B10.
The author was partially supported by NSF grants DMS-0202430 and DMS-0502170.

411



412 N. Reading Algebra univers.

corresponding generalized associahedron. In particular, each Cambrian lattice was

conjectured to have cardinality equal to the W -Catalan number. These conjectures

were proved for two infinite families of finite Coxeter groups (An and Bn).

The definition of Coxeter-sortable elements (or simply sortable elements) of W

was inspired by the effort to better understand Cambrian lattices. Sortable elements

were introduced in [21] and used to give a bijective proof that W -noncrossing par-

titions are equinumerous with vertices of the generalized associahedron. In this

paper, we make explicit the essential connection between sortable elements and

Cambrian lattices, proving in particular that the elements of the Cambrian lattice

are counted by the W -Catalan number. The conjecture from [20] on the combina-

torial isomorphism between Cambrian fans and cluster fans is proven in [22].

The construction (see Section 2) of sortable elements involves the choice of a

Coxeter element c of W. For each c, the corresponding sortable elements are called

c-sortable. The first main result of this paper is the following theorem.

Theorem 1.1. Let c be a Coxeter element of a finite Coxeter group W. There exists

a lattice congruence Θc of the weak order on W such that the bottom elements of

the congruence classes of Θc are exactly the c-sortable elements. In particular, the

weak order on c-sortable elements is a lattice quotient of the weak order on all of W.

The phrase “bottom elements” in Theorem 1.1 refers to the fact that for any

congruence on a finite lattice, each congruence class has a unique minimal element.

(See Section 3). The corresponding quotient lattice is isomorphic to the subposet

induced by the set of elements which are minimal in their congruence class. In the

course of proving Theorem 1.1, we also establish the following results. (The map

w 7→ ww0 in Proposition 1.3 is explained in Section 2.)

Theorem 1.2. Let c be a Coxeter element of a finite Coxeter group W. The

c-sortable elements constitute a sublattice of the weak order on W.

Proposition 1.3. The map w 7→ ww0 maps the congruence Θc to the congruence

Θc−1. In particular, the weak order on c-sortable elements is anti-isomorphic to the

weak order on c−1-sortable elements.

The second main result of the paper concerns the connection between sortable

elements and the Cambrian lattices of [20]. These lattices were originally proposed

as a simple construction valid for arbitrary Coxeter groups which, in the cases

of types A and B, was known to reproduce the combinatorics and geometry of

the generalized associahedra. However, the lattice-theoretic definition does not

immediately shed light on the combinatorics of the lattice, so that in particular

the definition was not proven, outside of types A and B and small examples, to

relate to the combinatorics of W -Catalan numbers. The content of the following
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theorem is that sortable elements provide a concrete combinatorial realization of

the Cambrian lattices for any W.

Theorem 1.4. The congruence Θc is the Cambrian congruence associated to c.

In particular, the Cambrian lattice associated to c is the weak order on c-sortable

elements.

The proof of Theorem 1.4 is accomplished using the geometric model for lattice

congruences of the weak order laid out in [18]. The results of this paper prove some

of the conjectures of [20]. Many of the remaining conjectures are proved in [22]. In

light of Theorem 1.4, Proposition 1.3 is equivalent to [20, Theorem 3.5].

We conclude the introduction with two examples which illustrate the results of

the paper. The definitions underlying these examples appear in later sections.

Example 1.5. Consider the case W = B2 with S =
{

s0, s1

}

, m(s0, s1) = 4 and

c = s0s1. Figure 1.a shows the congruence Θc on the weak order on W. The shaded

3-element chain is a congruence class and each other congruence class is a singleton.

Figure 1.b shows the subposet of the weak order induced by the sortable elements,

or equivalently the bottom elements of congruence classes. The map w 7→ ww0 acts

on the Hasse diagram in Figure 1.a by rotating through a half-turn. One easily

verifies Theorem 1.2 and Proposition 1.3 in this example.

1

s1

s1s0

s1s0s1

s0

s0s1

s0s1s0

s0s1s0s1

1

s1
s0

s0s1

s0s1s0

s0s1s0s1

(a) (b)

Figure 1. An example of Θc and the associated Cambrian lattice.

Example 1.6. A more substantive example is provided by W = A3 with S =
{

s1, s2, s3

}

, m(s1, s2) = m(s2, s3) = 3, m(s1, s3) = 2 and c = s2s1s3. This Cox-

eter group is isomorphic to the symmetric group S4 as generated by the simple

transpositions si = (i i+1). Figure 2 shows the congruence Θc on the weak order

on A3. Each element is represented by its c-sorting word (see Section 2) including

the inert dividers “|”, with the symbols si replaced by i throughout. (The identity
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element is represented by the empty word.) Non-trivial Θc-classes are indicated

by shading, and each unshaded element is the unique element in its congruence

class. The antiautomorphism w 7→ ww0 corresponds to rotating the Hasse diagram

through a half-turn.

1 2 3

2321 131|2 3|2

213 23|21|23 3|2113|221|2

13|23 213|221|23 23|2113|21

13|213 213|21213|23

213|213

∅

Figure 2. Another example of Θc.

The content of Theorem 1.4 in this example is that Θc is the smallest congru-

ence of the weak order on A3 which sets s1 ≡ s1s2 and s3 ≡ s3s2. Combining

Theorem 1.4 with Proposition 1.3, we obtain the assertion that Θc is the smallest

congruence which sets s1s3s2s3 ≡ s1s3s2s1s3 ≡ s1s3s2s1.

2. Sortable elements

In this section we quickly review the definition and first properties of Coxeter

groups. (More detail, including proofs of assertions not proven here, can be found

in the standard references [4, 5, 13].) We then review the definition of sortable

elements and quote and prove results which are used in later sections.
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A Coxeter group W is a group with a presentation as the group generated by a

set S subject to the relations (st)m(s,t) = 1 for s, t ∈ S. Here m(s, s) = 1 and

m(s, t) ≥ 2 for s 6= t, with m(s, t) = ∞ meaning that no relation of the form (st)m

holds. It can be shown that m(s, t) is the order of st in W . (A priori, we only

know that the order of st divides m(s, t).) The rank of W is |S|. A group can

have more than one non-equivalent presentation of this form but, as usual, we take

the term “Coxeter group” to imply a distinguished choice of S, called the simple

generators of W . The presentation of W is encoded in the Coxeter diagram of W .

This is a graph whose vertices are the simple generators, with edges s — t whenever

m(s, t) > 2. Edges are labeled by the number m(s, t) except that, by convention,

if m(s, t) = 3 then the edge is left unlabeled.

Each w ∈ W can be written, in many different ways, as a word in the alphabet S.

The smallest length of a word for w is called the length of w, denoted l(w). A word

of length l(w) representing w is called reduced. For any s ∈ S, l(sw) = l(w) ± 1

and l(sw) < l(w) if and only if there is some reduced word for w starting with the

letter s. The analogous statement holds for l(ws) and l(w).

Every Coxeter group has a reflection representation: a representation as a group

generated by orthogonal reflections of a real vector space. A Coxeter group is fi-

nite if and only if it has such a representation in a vector space with a Euclidean

inner product. An element t ∈ W acts as an orthogonal reflection in such a

representation if and only if it is conjugate to a simple generator. Thus the set

T =
{

wsw−1 : w ∈ W, s ∈ S
}

is called the set of reflections in W . The (left) in-

version set of w ∈ W is
{

t ∈ T : l(tw) < l(w)
}

. The length l(w) is equal to |I(w)|.

An element of W is uniquely determined by its inversion set.

The (right) weak order is the partial order on W whose cover relations are

w <· ws whenever l(w) < l(ws). Equivalently, v ≤ w if and only if I(v) ⊆ I(w).

Throughout this paper, “≤” denotes the weak order and “W” denotes both the

group W and the partially ordered set W . This partial order is a meet-semilattice

in general, and a lattice exactly when W is finite [3]. For a simple generator s and

an interval [u, v] in the weak order, if l(su) < l(u) then the involution w 7→ sw is an

isomorphism between the intervals [su, sv] and [u, v]. The minimal element of W is

the identity 1 and when W is finite, the longest element w0 is the unique maximal

element of W . In this case, the map w 7→ ww0 is an antiautomorphism of weak

order, because I(ww0) = T − I(w).

A Coxeter element c of W is an element represented by a (necessarily reduced)

word a1a2 · · · an where S =
{

a1, . . . , an

}

and n = |S|. Fix c and a particular word

a1a2 · · ·an for c and write a half-infinite word

c∞ = a1a2 · · · an|a1a2 · · ·an|a1a2 · · ·an| · · ·
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The symbols “|” are inert “dividers” which facilitate the definition of sortable ele-

ments. When subwords of c∞ are interpreted as expressions for elements of W, the

dividers are ignored. The c-sorting word for w ∈ W is the lexicographically first

(as a sequence of positions in c∞) subword of c∞ which is a reduced word for w.

The c-sorting word can be interpreted as a sequence of subsets of S: Each subset

in the sequence is the set of letters of the c-sorting word which occur between two

adjacent dividers.

An element w ∈ W is c-sortable if its c-sorting word defines a sequence of subsets

which is weakly decreasing under inclusion. Since any two reduced words for c are

related by commutation of letters, the c-sorting words for w arising from different

reduced words for c are related by commutations of letters, with no commutations

across dividers. In particular, the set of c-sortable elements does not depend on

the choice of reduced word for c. Examples 1.5 and 1.6 in Section 1 illustrate the

definition of sortable elements. (In Example 1.6, the c-sortable elements are the

elements at the bottom of their congruence class, including elements which are

unique in their class.)

For any J ⊆ S, let WJ be the subgroup of W generated by J . Such subgroups are

called standard parabolic subgroups. For any w ∈ W, there is a unique factorization

w = wJ · Jw such that wJ ∈ WJ and Jw has l(s · Jw) > l(Jw) for all s ∈ J .

The element wJ has inversion set I(wJ ) = I(w) ∩ WJ . The element wJ · J(w0) has

inversion set I(w)∪
{

t ∈ T : t 6∈ WJ

}

. The map w 7→ wJ is a lattice homomorphism

[18, Section 6] for any J ⊆ S. (That is, (x ∨ y)J = (xJ ) ∨ (yJ) and similarly for

meets.) This map is also compatible with the antiautomorphism w 7→ ww0 in the

sense that (ww0)J = wJ (w0)J . The set WJ is a lower interval in the poset W

with maximal element (w0)J . Most often, the subset J is 〈s〉 := S − {s} for some

element s of S.

An initial letter of a Coxeter element c is a simple generator which is the first

letter of some reduced word for c. Similarly a final letter of c is a simple generator

which occurs as the last letter of some reduced word for c. If s is initial in c then scs

is a Coxeter element and s is final in scs. The next two lemmas [21, Lemmas 2.4

and 2.5] constitute an inductive characterization of sortable elements. As a base

for the induction, 1 is c-sortable for any c.

Lemma 2.1. Let s be an initial letter of c and let w ∈ W have l(sw) > l(w).

Then w is c-sortable if and only if it is an sc-sortable element of W〈s〉.

Lemma 2.2. Let s be an initial letter of c and let w ∈ W have l(sw) < l(w).

Then w is c-sortable if and only if sw is scs-sortable.

For the rest of the paper we confine our attention to the case where W is a finite

Coxeter group. In particular, all proofs should be assumed to apply only to the

finite case.
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The remainder of the section is devoted to quoting or proving preliminary results.

For any J ⊆ S, the restriction of a Coxeter element c to WJ is the Coxeter element

for WJ obtained by deleting the letters S−J from any reduced word for c. The next

lemma is immediate from the definition of sortable elements and the proposition

following it is [21, Corollary 4.5].

Lemma 2.3. Let c be a Coxeter element of W, let J ⊆ S and let c′ be the Coxeter

element of WJ obtained by restriction. If w ∈ WJ is c′-sortable then w is c-sortable

as an element of W.

Proposition 2.4. Let c be a Coxeter element of W, let J ⊆ S and let c′ be the

Coxeter element of WJ obtained by restriction. If w is c-sortable then wJ is c′-

sortable.

A cover reflection of w ∈ W is a reflection t ∈ T such that tw = ws with

l(ws) < l(w). The term “cover reflection” refers to the fact that w ·> ws is a cover

relation in the weak order. Equivalently, t ∈ T is a cover reflection of w if and only

if I(w) − {t} is the inversion set of some w′ ∈ W . In this case w′ = tw <· w. Let

cov(w) denote the set of cover reflections of w. The following proposition is one

direction of the rephrasing of [21, Theorem 6.1] described in [21, Remark 6.9].

Proposition 2.5. If x and y are c-sortable and cov(x) = cov(y) then x = y.

The next lemma follows from [21, Lemma 5.2] and [21, Theorem 6.1] as described

in [21, Remark 6.9].

Lemma 2.6. If s is initial in c and x ∈ W〈s〉 is sc-sortable then there exists a

c-sortable element w with cov(w) = {s} ∪ cov(x).

We conclude with four lemmas on the join operation as it relates to cover reflec-

tions and sortable elements. The first two lemmas are used only in the proof of the

last two, which are applied in Section 3.

Lemma 2.7. For w ∈ W, if s is a cover reflection of w and every other cover

reflection of w is in W〈s〉 then w = s ∨ w〈s〉.

Proof. Since s is a cover reflection of w, it is in particular an inversion of w, and

since I(s) = {s}, we have s ≤ w. Any element w has w〈s〉 ≤ w, so w is an upper

bound for s and w〈s〉. Since s is a cover reflection of w and every other cover

reflection is in W〈s〉, any element x covered by w has either s 6≤ x or w〈s〉 6≤ x (the

latter because I(w〈s〉) = I(w) ∩ W〈s〉). Thus w = s ∨ w〈s〉. �

Lemma 2.8. For x ∈ W〈s〉, cov(s ∨ x) = cov(x) ∪ {s}.

Proof. Let w = s∨x. First, we show that the reflection s is a cover reflection of w.

If not, then let w′ be any element covered by w and weakly above x. Since s is not
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a cover reflection of w we have s ∈ I(w′), so w′ is above both s and x, contradicting

the fact that w = s ∨ x.

Now let t 6= s be a cover reflection of w, so that I(w) − I(tw) = {t}. If t 6∈ W〈s〉

then since I(x) ⊂ I(w) and I(x) ⊆ W〈s〉 we also have I(x) ⊆ I(tw). Since s 6= t

we have s ≤ tw, and this contradicts the fact that w = s ∨ x. This contradiction

proves that t ∈ W〈s〉. Now, I(w〈s〉) = I(w) ∩ W〈s〉 and I((tw)〈s〉) = I(w) ∩ W〈s〉

and since t ∈ W〈s〉, I(w〈s〉) − I((tw)〈s〉) = {t}. Thus t is a cover reflection of w〈s〉.

Applying the lattice homomorphism y 7→ y〈s〉 to the equality w = s ∨ x, we have

w〈s〉 = x.

Conversely suppose x covers tx. Let y be any element covered by w and weakly

above s ∨ tx. Then y = t′w for some reflection t′. Since I(x) ⊂ I(w), I(x) 6⊂ I(y)

and I(w) − I(y) =
{

t′
}

, we must have t′ ∈ I(x). Since I(tx) ⊂ I(s ∨ tx) ⊂ I(y) we

must have t′ 6∈ I(tx). But I(x) − I(tx) = {t} so t = t′. Thus t is a cover reflection

of w. �

Lemma 2.9. If s is initial in c and x ∈ W〈s〉 is sc-sortable then s∨x is c-sortable.

Proof. Let s be initial in c, let x ∈ W〈s〉 be sc-sortable and let w be the c-sortable

element, as in Lemma 2.6, such that cov(w) = {s} ∪ cov(x). By Lemma 2.7,

w = s∨w〈s〉. By Proposition 2.4, w〈s〉 is sc-sortable and by Lemma 2.8, cov(w〈s〉) =

cov(w)−{s} = cov(x). But Proposition 2.5 says that w〈s〉 = x and thus in particular

s ∨ x = w is c-sortable. �

Lemma 2.10. If s is final in c and w ∈ W is c-sortable with l(sw) < l(w) then

w = w〈s〉 ∨ s.

Proof. By [21, Lemmas 6.6 and 6.7], s is a cover reflection of w and every other

cover reflection is in W〈s〉. Thus Lemma 2.7 says that w = w〈s〉 ∨ s. �

3. Sortable elements and lattice congruences

In this section we review the definition and an order-theoretic characterization

of lattice congruences and prove Theorem 1.1, Theorem 1.2 and Proposition 1.3.

We remind the reader that all proofs given here are valid only in the finite case.

A congruence on a lattice L is an equivalence relation Θ on L such that whenever

a1 ≡ b1 and a2 ≡ b2 then a1 ∧ a2 ≡ b1 ∧ b2 and a1 ∨ a2 ≡ b1 ∨ b2. The quotient of L

mod Θ is a lattice defined on the Θ-congruence classes. Denote the Θ-congruence

class of a by [a]Θ and set [a1]Θ ∧ [a2]Θ = [a1 ∧ a2]Θ and [a1]Θ ∨ [a2]Θ = [a1 ∨ a2]Θ.

The following order-theoretic characterization of congruences of a finite lattice

was introduced in [15]. It is a straightforward exercise to prove the characterization,

which also follows from a characterization of congruences of general lattices due to

Chajda and Snášel [8].
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Proposition 3.1. When L is finite, an equivalence relation on L is a lattice con-

gruence if and only if it has the following three properties.

(i) Every equivalence class is an interval.

(ii) The downward projection π↓ : L → L, mapping each element to the minimal

element in its equivalence class, is order-preserving.

(iii) The upward projection π↑ : L → L, mapping each element to the maximal

element in its equivalence class, is order-preserving.

Furthermore the quotient of L mod Θ is isomorphic to the subposet of L induced by

the set π↓L of bottom elements of congruence classes and π↓ is a homomorphism

from L to π↓L.

The proof of Theorem 1.1 uses the characterization of congruences in Proposi-

tion 3.1. Specifically, we construct order-preserving maps πc
↓ and π↑

c such that first,

πc
↓(x) = x if and only if x is c-sortable and second, the equivalence setting x ≡ y if

and only if πc
↓(x) = πc

↓(y) has equivalence classes of the form [πc
↓(x), π↑

c (x)].

Some lemmas which contribute to the proof make use of induction on length and

rank in a way that is similar to the proofs presented in [21]. In the course of these

inductive proofs, we repeatedly apply the following fact: For s ∈ S and x, y ∈ W,

if l(sx) < l(x) and l(sy) < l(y) then x ≤ y if and only if sx ≤ sy.

We also make use of the following notational convention: The explicit reference

to c in πc
↓ and π↑

c is used as a way of specifying a standard parabolic subgroup. For

example, if s is initial in c then sc is a Coxeter element in the standard parabolic

subgroup W〈s〉. Thus the notation πsc
↓ refers to a map on W〈s〉.

We now construct a projection πc
↓. This is done by induction on the rank of W

and on the length of the element to which πc
↓ is applied. Define πc

↓(1) = 1 and for

any initial letter s of c, define

πc
↓(w) =

{

s · πscs
↓ (sw) if l(sw) < l(w),

πsc
↓ (w〈s〉) if l(sw) > l(w).

(3.1)

As written, each step of this inductive definition depends on a choice of an initial

letter of a Coxeter element. The following proposition implies that πc
↓ is well-defined

and that πc
↓ ◦ πc

↓ = πc
↓.

Proposition 3.2. For any w ∈ W, πc
↓(w) is the unique maximal c-sortable element

weakly below w.

Proof. Let w ∈ W and let s be initial in c. If l(sw) < l(w) then by induc-

tion πscs
↓ (sw) is the unique maximal scs-sortable element weakly below sw. Then

s · πscs
↓ (sw) is weakly below w, and by Lemma 2.2, s·πscs

↓ (sw) is c-sortable. Let x be

any c-sortable element below w. If l(sx) < l(x) then sx is an scs-sortable element

below sw, and therefore sx is below πscs
↓ (sw), so that x is below s·πscs

↓ (sw) = πc
↓(w).
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If l(sx) > l(x) then by Lemmas 2.1 and 2.9, x ∨ s is c-sortable. Now s ≤ w, so

x ∨ s ≤ w, and since x ∨ s is shortened on the left by s, by the previous case x ∨ s

is below πc
↓(w), and therefore x is below πc

↓(w).

If l(sw) > l(w) then by Lemma 2.1, any c-sortable element x below w is an

sc-sortable element of W〈s〉. In particular, x ≤ w〈s〉. By induction on the rank

of W, πc
↓(w) = πsc

↓ (w〈s〉) is the unique maximal such. �

Corollary 3.3. The map πc
↓ is order-preserving on the weak order.

Proof. Suppose x ≤ y. By Proposition 3.2, πc
↓(x) is a c-sortable element below x

and therefore below y. Thus Proposition 3.2 says that πc
↓(x) ≤ πc

↓(y). �

We now prove Theorem 1.2, which asserts that c-sortable elements constitute a

sublattice of the weak order.

Proof of Theorem 1.2. Let x and y be c-sortable. We first show that x ∧ y is also

c-sortable. Choose an initial letter s of c. If l(sx) > l(x) and l(sy) > l(y) then x

and y are both in W〈s〉. By induction on the rank of W, x ∧ y is an sc-sortable

element of W〈s〉, so it is also c-sortable by Lemma 2.3.

If exactly one of x and y are shortened on the left by s, we may as well take

l(sx) < l(x) and l(sy) > l(y). Then y ∈ W〈s〉. Since W〈s〉 is a lower interval in W

and w 7→ w〈s〉 is a lattice homomorphism,

x ∧ y = (x ∧ y)〈s〉 = x〈s〉 ∧ y〈s〉 = x〈s〉 ∧ y.

By Proposition 2.4, x〈s〉 is sc-sortable, so by the previous case x ∧ y is c-sortable.

If l(sx) < l(x) and l(sy) < l(y) then by Lemma 2.2, sx and sy are both scs-

sortable. By induction on length, sx ∧ sy is scs-sortable. Since left multiplication

by s is an isomorphism from the interval [s, w0] to the interval [1, sw0], sx ∧ sy is

lengthened on the left by s and x ∧ y = s(sx ∧ sy). Now Lemma 2.2 says that

s(sx ∧ sy) is c-sortable.

We now show that x∨ y is c-sortable. Since x∨ y ≥ x we have πc
↓(x∨ y) ≥ πc

↓(x)

by Corollary 3.3. By Proposition 3.2 πc
↓(x) = x. Similarly πc

↓(x ∨ y) ≥ y, so

πc
↓(x ∨ y) is an upper bound for x and y. By definition of join, x ∨ y ≤ πc

↓(x ∨ y),

but Proposition 3.2 says that πc
↓(x ∨ y) ≤ x ∨ y. Thus x ∨ y = πc

↓(x ∨ y), which is

c-sortable. �

We continue towards a proof of Theorem 1.1 by defining the upward projection

corresponding to πc
↓.

Call w ∈ W c-antisortable if ww0 is c−1-sortable. Define an upward projection

map π↑
c by setting π↑

c (w) =
(

π
(c−1)
↓ (ww0)

)

w0. Since w 7→ ww0 is an antiautomor-

phism of the right weak order, it is immediate from Proposition 3.2 and Corol-

lary 3.3 that π↑
c (w) is the unique minimal element among c-antisortable elements

above w, that π↑
c ◦ π↑

c = π↑
c and that π↑

c is order-preserving.
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Lemma 3.4. If s is a final letter of c then

π↑
c (w) =

{

s · π↑
scs(sw) if l(sw) > l(w),

π↑
cs(w〈s〉) ·

〈s〉w0 if l(sw) < l(w).

Proof. If l(sw) > l(w) then l(sww0) < l(ww0), so

π↑
c (w) = s ·

(

π
(sc−1s)
↓ (sww0)

)

w0 = s · π↑
scs(sw).

If l(sw) < l(w) then l(sww0) > l(ww0), so π↑
c (w) = π

(sc−1)
↓

(

(ww0)〈s〉
)

w0. But

(ww0)〈s〉 = w〈s〉(w0)〈s〉, so

π
(sc−1)
↓

(

(ww0)〈s〉
)

w0 = π
(sc−1)
↓

(

w〈s〉(w0)〈s〉
)

(w0)〈s〉 ·
〈s〉w0 = π↑

cs(w〈s〉) ·
〈s〉w0.

�

In order to construct the congruence Θc, it is necessary to relate the fibers of πc
↓

to those of π↑
c . This is done by induction on rank and length as in the proofs of

Proposition 3.2 and Theorem 1.2. However, the recursive definition of πc
↓ requires

an initial letter of c and the corresponding property of π↑
c (Lemma 3.4) requires a

final letter of c. Thus an additional tool is needed, and this tool is provided by the

dual (Lemma 3.6) of the following lemma.

Lemma 3.5. If s is a final letter of c and l(sw) < l(w) then πc
↓(w) = s∨πcs

↓ (w〈s〉).

Proof. Let x = s ∨ πcs
↓ (w〈s〉). By Lemma 2.3 and Proposition 3.2, πcs

↓ (w〈s〉) is a

c-sortable element. Thus both s and πcs
↓ (w〈s〉) are c-sortable elements below w

and therefore x is a c-sortable element below w by Theorem 1.2. (Note that the

weaker result, Lemma 2.9, applies to an initial letter, and thus cannot be used

to show that x is c-sortable.) By Lemma 3.2, x ≤ πc
↓(w). Since l(sx) < l(x),

πc
↓(w) is also shortened on the left by s. Now Lemma 2.10 says that πc

↓(w) =

s ∨
(

πc
↓(w)〈s〉

)

. Because πc
↓(w) ≤ w, we have πc

↓(w)〈s〉 ≤ w〈s〉. Since πc
↓(w)〈s〉 is a

cs-sortable element below w〈s〉, it is below πcs
↓ (w〈s〉) by Proposition 3.2. Therefore

x = s ∨ πcs
↓ (w〈s〉) ≥ s ∨

(

πc
↓(w)〈s〉

)

= πc
↓(w). �

Lemma 3.6. If s is an initial letter of c and l(sw) > l(w) then π↑
c (w) = sw0 ∧

(

π↑
sc(w〈s〉) ·

〈s〉w0

)

.

Proof. Starting with Lemma 3.5, replace w by ww0 and c by c−1, multiply both sides

on the right by w0 and apply the fact that w 7→ ww0 is an antiautomorphism. �

We now relate πc
↓ to π↑

c .

Proposition 3.7. The maps πc
↓ and π↑

c are compatible in the following senses.

(i) For any x, y ∈ W, πc
↓(x) = πc

↓(y) if and only if π↑
c (x) = π↑

c (y).

(ii) π↑
c ◦ πc

↓ = π↑
c and πc

↓ ◦ π↑
c = πc

↓.
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Proof. By the antisymmetry w 7→ ww0, to prove (i) it suffices to prove the “only if”

direction. We treat first the special case of (i) where x ≤ y. Suppose πc
↓(x) = πc

↓(y)

and x ≤ y. Let s be initial in c. If l(sx) < l(x) then since x ≤ y, l(sy) < l(y).

Thus πc
↓(x) = s · πscs

↓ (sx) and πc
↓(y) = s · πscs

↓ (sy), so πscs
↓ (sx) = πscs

↓ (sy). Since

sx ≤ sy, by induction on l(x), π↑
scs(sx) = π↑

scs(sy). By Lemma 3.4 (with c replaced

by scs and w replaced by x or y) π↑
scs(sx) = s · π↑

c (x) and π↑
scs(sy) = s · π↑

c (y) so

π↑
c (x) = π↑

c (y).

If l(sx) > l(x), we claim that l(sy) > l(y). If not then πc
↓(x) = πsc

↓ (x〈s〉) and

πc
↓(y) = s · πscs

↓ (sy). In particular, πc
↓(x) is lengthened on the left by s but πc

↓(y)

is shortened on the left by s, contradicting the supposition that πc
↓(x) = πc

↓(y).

This contradiction proves the claim. Thus πc
↓(x) = πsc

↓ (x〈s〉) and πc
↓(y) = πsc

↓ (y〈s〉),

so that πsc
↓ (x〈s〉) = πsc

↓ (y〈s〉). Since x〈s〉 ≤ y〈s〉, by induction on the rank of W

π↑
sc(x〈s〉) = π↑

sc(y〈s〉). By Lemma 3.6, π↑
c (x) = π↑

c (y).

Having established (i) in the case x ≤ y, we now prove (ii). Any y ∈ W has

πc
↓(y) ≤ y and πc

↓(π
c
↓(y)) = πc

↓(y), so setting x = πc
↓(y) in the special case of

(i) already proved, π↑
c (πc

↓(y)) = π↑
c (y). Thus π↑

c ◦ πc
↓ = π↑

c . The antisymmetry

w 7→ ww0 now implies that πc
↓ ◦ π↑

c = πc
↓ as well.

Finally, we prove the general case of (i). If x and y are unrelated in the weak

order and πc
↓(x) = πc

↓(y) then π↑
c (x) = π↑

c (πc
↓(x)) = π↑

c (πc
↓(y)) = π↑

c (y). �

We now prove the main theorem of the section.

Proof of Theorem 1.1. For each w ∈ W, let D(w) =
{

y ∈ W : πc
↓(y) = πc

↓(w)
}

and

let U(w) =
{

y ∈ W : π↑
c (y) = π↑

c (w)
}

. Since πc
↓ is order-preserving, πc

↓(w) is the

unique minimal element of D(w), and similarly, π↑
c (w) is the unique maximal el-

ement of U(w). Proposition 3.7 states that D(w) = U(w), and since πc
↓ is order

preserving, D(w) is the entire interval [πc
↓(w), π↑

c (w)] in the right weak order.

Thus the fibers of the map πc
↓ form a decomposition of the weak order on W into

intervals and πc
↓ and π↑

c are the order-preserving maps required in Proposition 3.1.

Therefore these intervals are the congruence classes of some congruence Θc. �

The preceding considerations also prove Proposition 1.3, as we now explain.

The congruence classes of Θc are of the form [πc
↓(w), π↑

c (w)]. Applying the anti-

automorphism w 7→ ww0 we obtain intervals of the form [π
(c−1)
↓ (ww0), π

↑
(c−1)(ww0)].

Thus the anti-automorphism w 7→ ww0 takes Θc to Θc−1 .

Remark 3.8. The c-sortable elements of a finite Coxeter group W are counted

by the W -Catalan number, as is proven bijectively in two different ways in [21,

Theorem 6.1] and [21, Theorem 8.1]. In particular, the number of c-sortable ele-

ments is independent of c. Lemma 2.2 gives a bijection between c-sortable elements

shortened on the left by s and scs-sortable elements lengthened on the left by s.
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Thus there is a bijection between c-sortable elements w with l(sw) > l(w) and

scs-sortable elements x with l(sx) < l(x). Using Theorem 1.2 and Lemma 2.10,

one can show that w 7→ s ∨ w is such a bijection with inverse x 7→ (x)〈s〉.

We conclude the section with an easy technical lemma which is useful in the

proof of Theorem 1.4.

Lemma 3.9. Let s be initial in c and let y ∈ W have l(sy) < l(y). If x <· y but

x 6= sy then πc
↓(x) = πc

↓(y) if and only if πscs
↓ (sx) = πscs

↓ (sy).

Proof. Note that s is an inversion of y and the inversion sets of x and y differ by

one reflection. This reflection is not s because if so, we would have x = sy. Thus

l(sx) < l(x). So πc
↓(x) = s · πscs

↓ (sx) and πc
↓(y) = s · πscs

↓ (sy). �

4. Lattice congruences of the weak order

In preparation for the proof (in Section 6) of Theorem 1.4, we review some well-

known facts about congruences of finite lattices as well as some facts from [18]

about the geometry underlying lattice congruences of the weak order on a finite

Coxeter group. (For more information about lattice congruences in a general set-

ting, see [12].) We also discuss an observation (Observation 4.7) which connects

the geometry of lattice congruences to the action of a simple generator. We remind

the reader that the weak order on a Coxeter group W is a lattice if and only if W

is finite. Thus the results and observations of this section should be applied only

in the context of finite W.

For a finite lattice L, let Con(L) be the set of congruences on L, partially ordered

by refinement. The poset Con(L) is a distributive lattice, and thus is completely

specified by the subposet Irr(Con(L)) induced by the join-irreducible congruences.

(Recall that a join-irreducible element of a finite lattice is an element which covers

exactly one element.) For a cover relation x <· y in L, a congruence is said to

contract the edge x <· y if x ≡ y. For any cover relation x <· y there is a unique

smallest (i.e., finest in refinement order) congruence Cg(x <· y) of L which contracts

that edge, and this congruence is join-irreducible in Con(L). Every join-irreducible

in Con(L) arises in this manner, and in fact, every join-irreducible congruence arises

from a cover of the form j∗ <· j, where j is a join-irreducible element of L and j∗

is the unique element of L covered by j. We say the congruence contracts j if

it contracts the edge j∗ <· j and write Cg(j) for the join-irreducible congruence

Cg(j∗ <· j). A congruence is determined by the set of join-irreducible elements it

contracts.

The weak order on a finite Coxeter group W has a property called congruence

uniformity or boundedness [7], meaning in particular that the map Cg is a bijec-

tion from join-irreducibles of W to join-irreducibles of Con(W ). In what follows,
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we tacitly use the map Cg to blur the distinction between join-irreducible congru-

ences and join-irreducible elements of the weak order on W, so that Irr(Con(W ))

is considered to be a partial order on the join-irreducibles of W. To distinguish

this partial order from the weak order on W, we denote it “≤Con”. This partial

order has the following description: j2 ≤Con j1 if and only if every congruence

contracting j1 must also contract j2. Thus congruences of W are identified with

order ideals of contracted join-irreducibles in Irr(Con(W )). (Order ideals in a poset

are subsets I such that x ∈ I and y ≤ x implies y ∈ I .)

We now review a geometric characterization of the partial order ≤Con from [16].

Continuing under the assumption that W is finite, we fix a reflection representation

of W as a group of orthogonal transformations of a real Euclidean vector space V

of dimension d. Each reflection t ∈ T acts on V as an orthogonal reflection and the

Coxeter arrangement for W is the collection A of reflecting hyperplanes for reflec-

tions t ∈ T . The hyperplanes in A are permuted by the action of W. The regions

of A are the closures of the connected components of the complement V − (
⋃

A)

of A. Choosing any region B to represent the identity element of W, the elements

of W are in one-to-one correspondence w 7→ wB with the regions of A. The inver-

sion set of an element is the separating set of the corresponding region R (the set

of reflections whose hyperplanes separate R from B). The weak order on W is thus

containment order on separating sets.

Say a subset U of V is above a hyperplane H if every point in U is either contained

in H or is separated from B by H. If U is above H and does not intersect H, then U

is strictly above H. Similarly, U is below H if points in U are either contained in H

or on the same side of H as B, and U is strictly below H if it is disjoint from and

below H.

We say A′ is a rank-two subarrangement of A if A′ consists of all the hyperplanes

of A containing some subspace of dimension d − 2 and |A′| ≥ 2. (The rank-two

subarrangements of A are exactly the collections of reflecting hyperplanes of the

rank-two parabolic subgroups considered in [21].) For each rank-two subarrange-

ment A′, there is a unique region B′ of A′ containing B. The two facet hyperplanes

of B′ are called basic hyperplanes in A′. (The basic hyperplanes of A′ are the re-

flecting hyperplanes for the canonical generators of the corresponding rank-two

parabolic subgroups, as defined in [21, Section 1].)

We cut the hyperplanes of A into pieces called shards as follows. For each non-

basic H in a rank-two subarrangement A′, cut H into connected components by

removing the subspace
⋂

A′ from H. Equivalently, H is cut along its intersection

with either of the basic hyperplanes of A′. Do this cutting for each rank-two

subarrangement, and call the closures of the resulting connected components of the

hyperplanes shards. (In some earlier papers [16, 17] where shards were considered,
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closures were not taken.) For illustrations of the shards for W = A3 and W = B3,

see [18, Figures 1 and 3].

The shards of A are important because of their connection to the join-irreducible

elements of W. For any shard Σ, let U(Σ) be the set of upper elements for Σ. That

is, U(Σ) is the set of regions of A having a facet contained in Σ such that the

region adjacent through that facet is lower (necessarily by a cover) in the weak

order. We partially order U(Σ) as an induced subposet of the weak order. By

[17, Proposition 2.2], an element of W is join-irreducible in the weak order if and

only if it is minimal in U(Σ) for some shard Σ. Thus, to every join-irreducible j

in W we associate a shard Σj . In fact, the map j 7→ Σj is a bijection [18, Proposition

3.5] between join-irreducibles of the weak order and shards in A. The inverse map

is written Σ 7→ jΣ. We now use this bijection to describe Irr(Con(W )) in terms of

shards.

For each shard Σ, write HΣ for the hyperplane in A containing Σ. Define the

shard digraph Sh(W ) to be the directed graph whose vertices are the shards, and

whose arrows are as follows: Given shards Σ1 and Σ2, let A′ be the rank-two

subarrangement containing HΣ1
and HΣ2

. There is a directed arrow Σ1 → Σ2 if

and only if

(i) HΣ1
is basic in A′ but HΣ2

is not, and

(ii) Σ1 ∩ Σ2 has dimension d − 2.

As explained in [16, Section 8], this directed graph is acyclic. The following is a

special case of one of the assertions of [16, Theorem 25].

Theorem 4.1. The poset Irr(Con(W )) is isomorphic to the transitive closure of

Sh(W ) via the bijection j 7→ Σj .

We interpret the transitive closure of Sh(W ) as a poset by the rule that an arrow

“→” corresponds to an order relation “≥”. In other words two join-irreducibles j1

and j2 in the weak order on W have j2 ≤Con j1 if and only if there is a directed

path in Sh(W ) from Σj1 to Σj2 .

Example 4.2. For W of rank two and S =
{

s, t
}

the partial order ≤Con on join-

irreducibles is illustrated in Figure 3. (See Figure 1.a in Section 1, which shows the

weak order on the rank-two Coxeter group B2.)

The following is a special case of [18, Lemma 3.9].

Lemma 4.3. Let Σ be a shard. The following are equivalent:

(i) Σ is a source in Sh(W ).

(ii) Σ consists of an entire facet hyperplane of B (the region representing the iden-

tity element of W ).

(iii) There is no facet of Σ intersecting the region for jΣ in dimension d − 2.



426 N. Reading Algebra univers.

s

st sts stst tsts tst ts

t

Figure 3. Irr(Con(W )) for W of rank 2.

For J ⊆ S, let AJ be the hyperplane arrangement associated to the standard

parabolic subgroup WJ . We think of the arrangement AJ as a subset of the ar-

rangement A by letting WJ inherit the reflection representation fixed for W. Recall

the notation 〈s〉 = S − {s}. For a join-irreducible j in W, write Hj for the hyper-

plane containing Σj . This is also the hyperplane separating j from j∗, the unique

element covered by j. The next two lemmas are special cases of [18, Lemma 6.6]

and [18, Lemma 6.8] respectively.

Lemma 4.4. For s ∈ S, suppose H1 ∈ (A − A〈s〉) and H2 ∈ A〈s〉. Let A′ be the

rank-two subarrangement containing H1 and H2. Then (A′∩A〈s〉) =
{

H2

}

and H2

is basic in A′.

Lemma 4.5. Let s ∈ S and let j be a join-irreducible. Then Hj ∈ A〈s〉 if and only

if j ∈ W〈s〉.

In what follows, note that each s ∈ S is a join-irreducible element of W and Hs

(the hyperplane separating s from the unique element 1 covered by s) happens to

be the reflecting hyperplane for the reflection s.

Lemma 4.6. Let s ∈ S and suppose H is a hyperplane in A such that H 6∈
{

Hr : r ∈ S
}

. Then the following are equivalent:

(i) H is not basic in the rank-two subarrangement containing H and Hs but is

basic in every other rank-two subarrangement containing H.

(ii) There are exactly two shards in H, and their intersection is H ∩ Hs.

(iii) H ∈ A{

r,s

} for some r ∈ S with r 6= s.

Proof. The equivalence of (i) and (ii) is immediate from the definition of shards.

Suppose H satisfies (i) and (ii), but not (iii). Let Σ be the shard in H below Hs,

let j be the unique minimal element of U(Σ) and let r ∈ S have r 6= s. Since

(iii) fails, Hr, Hs and H are not in the same rank-two subarrangement. Thus Hr

intersects the interior of Σ. Since H is basic in the rank-two subarrangement it

shares with Hr, there is an element x of U(Σ) such that the region for x is not

above Hr. Therefore j is not above r in the weak order, for each r ∈ S with r 6= s.
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But also j is not above s because Σ is below the hyperplane Hs. The only element

of the weak order not above some element of S is the identity 1. But 1 is not

join-irreducible, and this contradiction shows that (i) implies (iii).

Conversely, suppose H satisfies (iii). Then the rank-two subarrangement con-

taining H and Hs is A{

r,s

}. By hypothesis, H is not basic in A{

r,s

}, because the

basic hyperplanes of A{

r,s

} are Hr and Hs. Every other rank-two parabolic A′ con-

taining H also contains at least one hyperplane not in A{

r,s

}, so by Lemma 4.4, H

is basic in A′. Thus H satisfies (i). �

We conclude this section by discussing an observation that is crucial to the proof

of Theorem 1.4.

Observation 4.7. Let H be a hyperplane distinct from Hs, let sH ∈ A be the

hyperplane obtained from H by reflecting by s, and let A′ be the rank-two subar-

rangement containing H, sH and Hs. Then the decomposition of sH into shards

agrees (via the reflection s) with the decomposition of H into shards except that

one of H and sH may be cut by Hs while the other may not. This exception occurs

precisely when one of H and sH is basic in A′ but the other is not. (If both H

and sH are basic in A′ then necessarily H = sH .)

Observation 4.7 is readily justified by the definition of shards. Consider any

rank-two subarrangement A′ containing H. The case where A′ also contains Hs is

depicted in the three illustrations in Figure 4. Each illustration shows some of the

hyperplanes in A and indicates the position, with respect to these hyperplanes, of

the region for B. We insert space between two shards in the same hyperplane to

show where the cut is. The hyperplanes H and sH are in black while the other

hyperplanes are gray. In the first two illustrations, the case |A′| = 5 is depicted.

B

Hs

B

Hs

H = sH

B

Hs

(a) (b) (c)

Figure 4. Illustrations for Observation 4.7.
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If neither H nor sH is basic in A′ then both H and sH are cut by Hs (pos-

sibly with H = sH) as exemplified in Figure 4.a. If exactly one of the two is

basic in A′ then only the one that is non-basic is cut by Hs, as exemplified in

Figure 4.b. If both are basic then since Hs is also basic and A′ has only two basic

hyperplanes, Figure 4.c must apply. These considerations explain how and why the

shard decompositions of H and sH may or may not differ where these hyperplanes

intersect Hs.

BsB

Hs

A

sA

Figure 5. Another illustration for Observation 4.7.

To see why the shard decompositions of H and sH must agree away from Hs,

consider a rank-two subarrangement A′ containing H but not Hs. Let sA′ be

the rank-two subarrangement obtained from A′ by the reflection s. Since Hs is

the only hyperplane separating the region B (representing 1) from the region sB

(representing s) and Hs 6∈ A′, B and sB are contained in the same A′-region B′.

The reflection s maps B to sB, so B is contained in the (sA′)-region sB′. Thus the

reflection s maps the basic hyperplanes of A′ to the basic hyperplanes of sA′. (This

is illustrated in Figure 5, where B′ is shaded gray and sB′ is shaded in stripes.) We

conclude that H is non-basic in A′ (and is therefore cut by the basic hyperplanes

of A′) if and only if sH is non-basic in sA′ (and is therefore cut by the basic

hyperplanes of sA′).
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5. Cambrian lattices

In this section we define Cambrian congruences and Cambrian lattices and prove

two lemmas which are useful in the proof of Theorem 1.4. We continue to restrict

our attention to the case of a finite Coxeter group W.

An orientation of the Coxeter diagram for W is obtained by replacing each

edge of the diagram by a single directed edge, connecting the same pair of vertices

in either direction. Orientations of the Coxeter diagram correspond to Coxeter

elements (cf. [23]). Specifically, for each pair of noncommuting simple generators s

and t, the edge s — t is oriented s→ t if and only if s precedes t in every reduced

word for c. Each directed edge in the orientation corresponds to a pair of elements

which are required to be congruent in the Cambrian congruence. Specifically, if

s→ t then the requirement is that the element t be congruent to the element with

reduced word tsts · · · of length m(s, t) − 1. (Recall that m(s, t) is the order of

the product st in W .) The Cambrian congruence associated to c is the smallest

(i.e., finest as a partition) lattice congruence satisfying this requirement for each

directed edge. The Cambrian lattice associated to c is the quotient of the weak

order on W modulo the Cambrian congruence. For brevity, we refer to these as the

c-Cambrian congruence and the c-Cambrian lattice. Examples 1.5 and 1.6 illustrate

these definitions.

The definition of the Cambrian congruence can be rephrased as follows: For

each directed edge s→ t, we require that the join irreducibles ts, tst, . . . , tsts, . . .

of lengths 2 to m(s, t) − 1 be contracted. The join-irreducibles thus required to

be contracted are called the defining join-irreducibles of the c-Cambrian congru-

ence. Requiring that these join-irreducibles be contracted specifies an order ideal

of join-irreducibles under the partial order ≤Con, namely the smallest order ideal

containing the defining join-irreducibles. This order ideal, interpreted as an order

ideal in Irr(Con(W )), specifies the congruence.

Example 5.1. For W of rank two and S =
{

s, t
}

the partial order ≤Con on join-

irreducibles is illustrated in Figure 3 in Section 4. The defining join-irreducibles for

the Cambrian congruence for c = st are the join-irreducibles of length greater than

one whose unique reduced word starts with t. This set of join-irreducibles is an

order ideal. Thus the Cambrian congruence has the interval [t, tsts · · · ] as its only

nontrivial congruence class, so that the bottom elements of the congruence classes

are exactly the c-sortable elements (cf. Example 1.5).

We conclude this section with two lemmas which contribute to the proof of

Theorem 1.4.
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Lemma 5.2. Let WJ be the standard parabolic subgroup generated by J ⊆ S and

let c′ be the restriction of c to WJ . Then x ∈ WJ is contracted by the c-Cambrian

congruence if and only if it is contracted by the c′-Cambrian congruence.

Proof. Recall that a lattice congruence is uniquely determined by the set of join-

irreducibles it contracts. As a special case of [18, Lemma 6.12], the identity map

embeds Irr(Con(WJ )) as an induced subposet of Irr(Con(W )), and the complement

of this induced subposet is an order ideal. The defining join-irreducibles of the c′-

Cambrian congruence are exactly those defining join-irreducibles of the c-Cambrian

congruence which happen to be in WJ . Thus a join-irreducible in WJ is below (in

≤Con) some defining join-irreducible of the c-Cambrian congruence if and only if

it is below some defining join-irreducible of the c′-Cambrian congruence. �

The degree of a join-irreducible j is the cardinality of the smallest J ⊆ S such

that j ∈ WJ . By [18, Lemma 6.12], if j2 ≤Con j1 in Irr(Con(W )) then the degree

of j1 is less than or equal to the degree of j2.

Lemma 5.3. Let s be initial in c. If j is join-irreducible with l(sj) > l(j) but

j 6∈ W〈s〉 then j is contracted by the c-Cambrian congruence.

Proof. This is a modification of the proof of [18, Theorem 6.9]. We argue by

induction on the dual of Irr(Con(W )), the base case being where j is of degree one

or two. The case where j is of degree one is vacuous. If j is of degree two then j is

a defining join-irreducible of the c-Cambrian lattice.

Let j be a join-irreducible of degree more than two satisfying the hypothe-

ses of the lemma. To accomplish the inductive proof, we need only find a join-

irreducible j′ above j in Irr(Con(W )) such that l(sj ′) > l(j′) but j′ 6∈ W〈s〉. Let H

stand for Hj and let Σ be Σj . Since j is of degree more than two and each s ∈ S

has degree one, H is not a facet hyperplane of B (the region associated to 1).

First, consider the case where H is basic in the rank-two subarrangement A′

containing H and Hs. By Lemma 4.3 it has a facet, as a polyhedral subset of H,

and moreover, there is a facet of Σ intersecting the region for j in dimension d− 2.

There are two hyperplanes in A which define this facet, and since Hj is basic in A′,

neither of these two hyperplanes is Hs. By Lemma 4.5, at least one of the two

hyperplanes (call it H ′) is not in A〈s〉. Some shard Σ′ contained in H ′ arrows Σ

in Sh(W ) and thus intersects the region for j in dimension d − 2. Since the region

for j is below Hs, there is a region in U(Σ′) which is below Hs. In particular,

l(sjΣ′) > l(jΣ′), and since H ′ 6∈ A〈s〉, Lemma 4.5 says j′ 6∈ W〈s〉. Thus jΣ′ is the

desired j′ in this case.

Next, consider the case where H is not basic in the rank-two subarrangement

containing H and Hs. In particular, Σ is below Hs. By Lemmas 4.3 and 4.6

(since j has degree greater than two), Σ has a facet which is not defined by Hs. As
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in the previous case, this facet is defined by at least one hyperplane H ′ not in A〈s〉.

Some shard Σ′ in H ′ arrows Σ, and since every region in U(Σ) is below Hs, the

join-irreducible j′ associated to Σ′ has l(sj′) > l(j′). Finally, j′ is not in W〈s〉 by

Lemma 4.5. �

6. Sortable elements and Cambrian congruences

In this section, we prove Theorem 1.4, which states that the Cambrian congru-

ence associated to c coincides with the congruence Θc of Theorem 1.1 and that

therefore the associated Cambrian lattice is the restriction of the weak order to

c-sortable elements. Part of the proof is accomplished by Theorem 1.1. The strat-

egy of the remainder of the proof is to relate the Cambrian congruences to the

recursive structure of c-sortable elements as described in Lemmas 2.1 and 2.2.

The definition of the Cambrian congruence can be further restated as follows:

The Cambrian congruence is the unique smallest congruence contracting all non-

c-sortable join-irreducibles of degree 2. (In fact, for any s, t ∈ S, every non-

c-sortable element of W{

s,t

} is join-irreducible.) The congruence Θc contracts all

non-c-sortable join-irreducibles, and thus in particular contracts all non-c-sortable

join-irreducibles of degree 2. Therefore, by the definition of the Cambrian congru-

ence, Θc is a weakly coarser congruence than the c-Cambrian congruence. Since Θc

does not contract any c-sortable join-irreducibles, we have the following corollary

of Theorem 1.1:

Corollary 6.1. For a finite Coxeter group W and any Coxeter element c, the

c-Cambrian congruence does not contract any c-sortable join-irreducibles.

In light of Corollary 6.1 and the fact that a congruence is determined by the

join-irreducibles it contracts, Theorem 1.4 is equivalent to the following assertion.

Proposition 6.2. For a finite Coxeter group W and any Coxeter element c, the

c-Cambrian congruence contracts every non-c-sortable join-irreducible.

Proof. Let j be a non-c-sortable join-irreducible in W and fix an initial letter s of c.

We argue by induction on the length of j, on the rank of W and on the dual of the

poset Irr(Con(W )) that j is contracted by the c-Cambrian congruence.

We first discuss the bases of the induction. The proposition is trivial when

rank(W ) is 0 or 1, and is immediate from the definition for rank(W ) = 2. The base

of the induction on length is the case l(j) = 2. The proposition holds in this case

because any non-c-sortable element of length 2 is a defining join-irreducible for the

c-Cambrian congruence. The base of the induction on the dual of Irr(Con(W )) is

the case where j is a defining join-irreducible (possibly of length greater than 2).
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In this case the proposition holds by definition. Suppose now that j fits none of

these base cases.

Consider the case where l(sj) > l(j) and break into two subcases. If j ∈ W〈s〉

then by Lemma 2.3, j is not sc-sortable. By induction on rank, j is contracted by

the sc-Cambrian congruence, and by Lemma 5.2, j is contracted by the c-Cambrian

congruence. If j 6∈ W〈s〉 then by Lemma 5.3, j is contracted by the c-Cambrian

congruence.

For the remaining case, l(sj) < l(j), we apply Observation 4.7 and induction on

length and on the dual of Irr(Con(W )). To avoid repetitions of the phrase “the

region associated to,” we identify each group element w with its corresponding

region wB.

Since s is c-sortable and j is not, s 6= j, so that sj 6= 1. Therefore sj is join-

irreducible in light of the isomorphism between [s, w0] and [1, sw0]. Lemma 2.2

implies that sj is not scs-sortable, and by induction on length, sj is contracted by

the scs-Cambrian congruence. Let Σ and H be the shard and hyperplane for sj and

let A′ be the rank-two subarrangement containing H and Hs. Since sj is below Hs

and sj ∈ U(Σ), the shard for Σ contains points strictly below Hs.

First consider the case where Σ also contains a point strictly above Hs. We

first claim that A′ contains at least one additional hyperplane. To prove the claim,

suppose to the contrary that |A′| = 2, as illustrated in Figure 6. In light of Obser-

vation 4.7 (particularly as illustrated in Figure 4.c) Σ is fixed, as a set, by s. But

then j is also in U(Σ) so that by the uniqueness of join-irreducibles in U(Σ), we

must have j = sj, which is absurd. This proves the claim.

B

Hs

j

sj

Σ

Figure 6. An impossible case in the proof of Proposition 6.2.

Let sΣ be the image of Σ under the reflection s. Since Σ contains both points

above Hs and points below Hs, the hyperplane H is basic in A′. The other basic

hyperplane is Hs, so in light of Observation 4.7 and the claim of the previous

paragraph, sΣ is the union of two shards, one above Hs and one below. Let Σ1 be
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the shard in sΣ below Hs and let Σ2 be the shard in sΣ above Hs, as illustrated

in Figure 7.

B

Hs

j

sj

y

sy

y

s(y )

Σ

Σ1

Σ2

Figure 7. A case in the proof of Proposition 6.2.

Now Σ arrows Σ1, so the join-irreducible y associated to Σ1 is also contracted

by the scs-Cambrian congruence. Thus by Corollary 6.1, y is non-scs-sortable.

Since Σ1 is below Hs, l(sy) > l(y). Let y∗ be the unique element covered by y, so

that Σ1 is the shard associated to the edge y∗ <· y. Since y is a non-scs-sortable

join-irreducible, it is contracted by Θscs, or in other words πscs
↓ (y∗) = πscs

↓ (y). By

Lemma 3.9, we have πc
↓(sy) = πc

↓

(

s(y∗)
)

, or in other words, the edge s(y∗) <· sy is

contracted by Θc. But the shard associated to the edge s(y∗) <· sy is Σ, so sj is

contracted by Θc. By Corollary 6.1, sj not c-sortable. The shard associated to j

is Σ2, which is arrowed to by Σ. By induction on length, sj is contracted by the

c-Cambrian congruence, so j is also contracted by the c-Cambrian congruence.

By virtue of the cases we have already argued, we may now proceed under the

assumptions that l(sj) < l(j) and that the shard Σ associated to sj is below the

hyperplane Hs.

We claim that under these assumptions, sj is not a defining join-irreducible of the

scs-Cambrian congruence. Suppose to the contrary that sj is defining. Then sj ∈

W〈s〉, because all defining join-irreducibles for the scs-Cambrian congruence which

are not in W〈s〉 are shortened on the left by s. By Lemma 4.5, the hyperplane H

containing Σ is in A{

r1,r2

} with s 6∈
{

r1, r2

}

. By Lemma 4.6, H is basic in the

rank-two subarrangement containing H and Hs and Σ contains both points strictly

above Hs and points strictly below Hs. This contradiction to the assumption proves

the claim.
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Thus our list of assumptions becomes: l(sj) < l(j); Σ is below Hs; and sj is

contracted by the scs-Cambrian congruence but is not a defining join-irreducible

for the scs-Cambrian congruence. By the last of these assumptions, there is a

join-irreducible x which is contracted by the scs-Cambrian congruence and which

arrows sj in Sh(W ). By Corollary 6.1, x is non-scs-sortable. Since x arrows sj in

Sh(W ), the corresponding shards Σx and Σ intersect in codimension 2, and the cor-

responding hyperplanes Hx and H are contained in a rank-two subarrangement A′

in which Hx is basic and H is not. By the assumption that Σ is weakly below Hs,

there are two cases: either Σx ∩ Σ is contained in Hs or Σx ∩ Σ contains a point

strictly below Hs. We now complete the proof by considering these two cases.

B

Hs

sH

H

j

sj

x

Σx

Σ

Figure 8. Another case in the proof of Proposition 6.2.

The case where the intersection Σx∩Σ is contained in Hs is illustrated in Figure 8.

In this case, A′ contains Hs, and since Hx is basic in A′, some upper region of Σx

is below Hs. Thus l(sx) > l(x). Since x arrows sj, Σ has a facet defined by Hx,

or equivalently by Hs. We claim that the hyperplane H is not the image of Hx

under s. If it is, then by Observation 4.7, the image sΣ of Σ under s is contained

in a shard with points on both sides of Hs (namely, the shard Σx). However, sΣ

is Σj , which lies above Hs because l(sj) < l(j). This contradiction proves the

claim. Thus the hyperplane containing j is not basic in A′, so that j is arrowed to

by x, which is not c-sortable.

We next claim that x is not c-sortable. If it is, then Lemma 2.1 implies that x

is an sc-sortable element of W〈s〉. But then by Lemma 2.3, x is scs-sortable as an

element of W, contradicting what was established previously. This contradiction

establishes the claim. By induction on the dual of Irr(Con(W )), x is contracted by

the c-Cambrian congruence, and therefore so is j.
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Finally, we deal with the case where Σx∩Σ contains a point strictly below Hs, as

illustrated in Figure 9. In this case some upper region of Σx is below Hs, so that the

minimal upper region x has l(sx) > l(x). The reflection s relates Σx to a shard Σ′

having sx in its upper set. The reflection s carries Σ into the shard Σj . Possibly Σx

and Σ′ differ to the extent allowed by Observation 4.7, and similarly Σ and Σj

may differ. However, those differences occur only at the intersection with Hs, in

particular not affecting the following assertions.

B

Hs

Σ

j

sj

y xx

sx
s(x )

Σ

Σx

Σj

Figure 9. One last case in the proof of Proposition 6.2.

The intersection Σ′ ∩ Σj has dimension d − 2 because Σx ∩ Σ has dimension

d − 2. As explained in connection with Observation 4.7, reflection by s maps the

basic hyperplanes of A′ to the basic hyperplanes of sA′. Thus Σ′ arrows Σj . Let

x∗ be the unique element covered by x. By Lemma 3.9, and the fact that Θscs

contracts x, the congruence Θc contracts the edge sx∗ <· sx. Thus Θc contracts

the join-irreducible y associated to Σ′. By Corollary 6.1, the join-irreducible y

is non-c-sortable and by construction y is above j in Irr(Con(W )). By induction
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on the dual of Irr(Con(W )), y is contracted by the c-Cambrian congruence, and

therefore so is j. �

This concludes the proof of Theorem 1.4.
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