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Abstract. A topological quasi-variety Q+
T

(M∼ ) := IScP+ M∼ generated by a finite algebra
M∼ with the discrete topology is said to be standard if it admits a canonical axiomatic
description. Drawing on the formal language notion of syntactic congruences, we prove that
Q+

T
(M∼ ) is standard provided that the algebraic quasi-variety generated by M∼ is a variety,

and that syntactic congruences in that variety are determined by a finite set of terms. We
give equivalent semantic and syntactic conditions for a variety to have Finitely Determined
Syntactic Congruences (FDSC), show that FDSC is equivalent to a natural generalisation of
Definable Principle Congruences (DPC) which we call Term Finite Principle Congruences
(TFPC), and exhibit many familiar algebras M∼ that our method reveals to be standard. As
an application of our results we show, for example, that every Boolean topological lattice
belonging to a finitely generated variety of lattices is profinite and that every Boolean
topological group, semigroup, and ring is profinite. While the latter results are well known,
the result on lattices was previously known only in the distributive case.

1. Background, motivation and overview of results

An algebra M = 〈M ;F 〉 with finite underlying set M and operations F generates
an (algebraic) quasi-variety Q(M) := ISP M consisting of all isomorphic copies of
subalgebras of direct powers of M. Similarly a structure M∼ = 〈M ;G,H,R,T 〉 with
finite underlying setM , operationsG, partial operationsH , relationsR and discrete
topology T generates a topological quasi-variety Q+

T (M∼ ) := IScP+ M∼ consisting
of all isomorphic copies of topologically closed substructures of non-zero direct
powers, with the product topology, of M∼ . Interest in topological quasi-varieties
stems from the fact that they arise as the duals to algebraic quasi-varieties under
natural dualities. The general theory of natural dualities provides methods to
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produce, from the algebra M, a structure M∼ that will yield a natural duality
on Q(M). (See Clark and Davey [10].)

To maximise the usefulness of a natural duality, it is necessary to find a simple
description of the members of the topological quasi-variety Q+

T (M∼ ). Attempts to
do this have drawn on Mal’cev’s description of the members of a finitely generated
algebraic quasi-variety Q(M). Mal’cev [30] discovered that Q(M) consists exactly
of the models of the quasi-equations (equations and implications) that hold in M;
in symbols,

Q(M) = Mod(Thqe(M)).

Often a small set Σ ⊆ Thqe(M) of axioms for Thqe(M) provides a simple description
of the members of Q(M) as Q(M) = Mod(Σ).

The presence of partial operations, relations and topology in Q+
T (M∼ ) makes an

analogous description considerably more elusive. By a Boolean topological structure
(of type 〈G,H,R〉) we mean a structure X∼ = 〈X ;GX∼, HX∼, RX∼,TX∼ 〉 such that

(i) 〈X ; TX∼ 〉 is a Boolean (i.e., compact, totally disconnected) space,
(ii) if h ∈ G∪H is n–ary, then the domain dom(hX∼) is a closed subset of Xn and

hX∼ : dom(hX∼)→ X is continuous, and
(iii) if r ∈ R is n–ary, then rX∼ is a closed subset of Xn.

A universal Horn formula in the first-order language of M∼ is an expression of one
of the forms

χ or
∨
i∈I

¬ψi or
∧
i∈I

ψi ⇒ χ (∗)

where χ and each ψi are atomic formulæ and I is a finite set. We denote by
ThuH(M∼ ) the set of all universal Horn formulæ that hold in M∼ . If Σ is a set
of universal Horn formulæ, ModT(Σ) denotes the class of all Boolean topological
structures that satisfy each universal Horn formula in Σ. Necessary conditions for
a structure X∼ to be in Q+

T (M∼ ) := IScP+ M∼ are given by the Preservation Theorem
(Clark and Davey [10, 1.4.3]), which states that

Q+
T (M∼ ) ⊆ModT(ThuH(M∼ )).

In [11], Clark, Davey, Haviar, Pitkethly and Talukder define Q+
T (M∼ ) := IScP+ M∼

to be a standard topological quasi-variety, or M∼ to be standard, if Q+
T (M∼ ) is exactly

the class of all Boolean topological models of the universal Horn theory of M∼ ; in
symbols,

Q+
T (M∼ ) = ModT(ThuH(M∼ )).

This is not the case for every choice of M∼ . A classic example of Stralka [40] shows
that the ordered space M∼ = 〈{0, 1};≤,T〉, which generates the category of Priestley
spaces, is not standard.
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A subset Σ ⊆ ThuH(M∼ ) is said to axiomatise Q+
T (M∼ ) if Q+

T (M∼ ) = ModT(Σ).
In [11] we find many examples in which Q+

T (M∼ ) has a simple finite axiomatisation,
and is therefore standard. We also find that knowing in advance that Q+

T (M∼ ) is
standard greatly simplifies the process of finding an axiomatisation by making it
an essentially finitary process:

Proposition 1.1. ([11, 1.4]) Assume that Q+
T (M∼ ) := IScP+ M∼ is standard. Then

Σ ⊆ ThuH(M∼ ) axiomatises Q+
T (M∼ ) provided every model of Σ is locally finite and

each finite model of Σ is in Q+
T (M∼ ).

In this paper we restrict our attention to the case in which M∼ has neither partial
operations nor relations. Thus we assume that M∼ = 〈M ;G,T〉 is a Boolean topologi-
cal algebra with the discrete topology T. Algebras M whose generated quasi-variety
admits a strong duality via a total algebra are described by the Two-for-One Strong
Duality Theorem ([10, 3.3.2]). However, we note here that the theory of natural
dualities will play no further role in this study. We mention it only to provide moti-
vation for the investigation of the question as to when the topological quasi-variety
Q+

T (M∼ ) is standard.
Serendipitously, it turns out that the notion of syntactic congruence from the

theory of formal languages leads to a congruence condition that provides a simple
criterion for a topological algebra M∼ = 〈M ;G,T 〉 to be standard. This condition,
called finitely determined syntactic congruences (FDSC), is introduced in the next
section. We show (Lemma 2.3) that FDSC is equivalent to term finite principal
congruences (TFPC), a congruence condition which is a natural generalization of
definable principal congruences (Proposition 2.8). In Section 2 we also define se-
mantic shadowing, which can be used to describe FDSC (Theorem 2.5), and use it
to show that both the variety of monoids and any variety generated by a finite unary
algebra have FDSC. In Section 3 we introduce the notion of syntactic shadowing
and prove (Completeness Theorem 3.2) that, in an ISP-closed class, it is equivalent
to the semantic notion introduced earlier. In general, shadowing can be a complex
process. Nevertheless, it turns out that in many cases a variant, known as simple
shadowing, will suffice (Simple Shadowing Theorem 3.4).

Section 4 contains our main result on standardness. Let M∼ be a finite topolog-
ical algebra and let M be its underlying algebra. The FDSC-HSP Theorem 4.3
says that if HSPM has FDSC and HSPM = ISP M, then M∼ generates a stan-
dard topological quasi-variety. Thus two natural, purely algebraic conditions on M
lead to a topological conclusion on M∼ . The proof of this theorem depends upon
a fundamental lemma (the Clopen Equivalence Lemma 4.2) that has been been
rediscovered several times, in varying levels of generality, since 1957.

Sections 5 and 6 present examples which can be shown to have FDSC via sim-
ple shadowing (for example, distributive lattices, vector spaces, Boolean algebras,
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groups, semigroups, rings) and via general shadowing (the primary example being
any finitely generated variety of lattices). By applying the FDSC-HSP Theorem 4.3,
these results yield a host of examples of finite topological algebras that generate
standard topological quasi-varieties. Section 6 also gives an example of a four-
element algebra that generates a variety with FDSC, proved via general shadowing,
but for which simple shadowing will not suffice (Example 6.2).

Examples of varieties of algebras which do not have FDSC are given in Sec-
tion 7. Our main proofs are based on the observation that, if a variety V contains
an algebra which admits a compatible Boolean topology with respect to which it is
not topologically residually finite, and in particular if V contains a non-residually
finite algebra or infinite subdirectly irreducible algebra which admits a compatible
Boolean topology, then V does not have FDSC (Lemma 7.1 and Theorem 7.3). For
example, this is used to show that the varieties of Ockham algebras and modular
lattices do not have FDSC. The section concludes with a discussion of the algebra
A(T ), built from a Turing machine T , that played the fundamental role in the
undecidability results in McKenzie [34]. We prove that, if the Turing machine T
does not halt, then the variety generated by A(T ) does not have FDSC (Exam-
ple 7.7). Because of the importance of this example, we give—in addition to a
topological proof—a purely algebraic proof of this fact. The theme of topological
residual finiteness is continued in Section 8. One of the consequences of the main
theorem of the section (Theorem 8.1) is that if V is a variety with FDSC and X∼
is a Boolean topological algebra whose underlying algebra X is in V, then X∼ is
profinite (that is, X∼ is an inverse limit of finite topological algebras from V). This
yields a number of known results as special cases: groups, semigroups and rings,
for example. Since we proved in Section 6 that every finitely generated variety of
lattices had FDSC, it now follows that the Boolean topological lattices in every
finitely generated variety of lattices are profinite. This was previously known only
in the case of distributive lattices.

The paper concludes in Section 9 with a number of open problems.

2. Two congruence conditions: FDSC and TFPC

Given a finite alphabet A, let A∗ denote the free monoid of words over A. Then
a subset L ⊆ A∗ is called a language over A. An important class of languages, the
regular languages, have a number of equivalent characterisations. Primarily, they
are the languages accepted by finite state acceptors, the languages generated by
regular grammars, and the languages denoted by regular expressions. One char-
acterisation is purely algebraic. A language L over A determines an equivalence
relation θL on A∗ with the two classes, L and A∗\L. Let Syn(L) denote the set of
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all (a, b) ∈ A∗×A∗ such that (cad, cbd) ∈ θL for all c, d ∈ A∗. Then Syn(L) is a con-
gruence on A∗ called the syntactic congruence of L, and the language L is regular
if and only if Syn(L) has finite index in A∗. (See, for example, Eilenberg [19].)

The notion of syntactic congruence has a natural extension to arbitrary algebras.
To see this, let X = 〈X ;GX〉 be an algebra and let θ be an equivalence relation
on X . Let Tx be the set of all terms with operation symbols G in the countable
sequence of variables x, z1, z2, z3, . . . , and let F be a subset of Tx. We define an
equivalence θF on X by (a, b) ∈ θF if and only if, for all f(x, z1, z2, . . .) ∈ F ,

(f(a, c1, c2, . . . ), f(b, c1, c2, . . . )) ∈ θ for all c1, c2, . . . ∈ X. (∗)

Finally, we define Syn(θ) = θTx . The following facts are easy to check.

Lemma 2.1. For every algebra X and every equivalence relation θ on X,

(i) Syn(θ) is a congruence on X,
(ii) Syn(θ) ⊆ θ (since x ∈ Tx), and
(iii) ψ ⊆ Syn(θ) if ψ is a congruence on X and ψ ⊆ θ.

Thus Syn(θ) is the largest congruence on X that is contained in θ.

We shall refer to Syn(θ) as the syntactic congruence of θ. This formulation of syn-
tactic congruences appears to have been observed by a number of authors, amongst
the first being S�lomiński [39] (in the context of formal language theory), Choe [9]
and Day [17] (in the context of topological algebras). For a detailed discussion of
the role of syntactic congruences in the study of pseudo-varieties, see Chapter 3 of
Almeida [1].

Our present study begins with the observation that it is never necessary to test
all terms t ∈ Tx in order to establish membership in Syn(θ). For example, if X is a
ring and (∗) is true for f = z1x+ z2, then (∗) is certainly also true for f = z3x+ z4
and for f = (z2 − z3z5)x. Thus Syn(θ) may be more efficiently defined as being
θF for some proper subset F ⊆ Tx. We will say that a subset F ⊆ Tx of terms
determines syntactic congruences in a class M of algebras if Syn(θ) = θF for every
X ∈M and every equivalence relation θ on X . In Section 4 we will see that Syn(θ)
will be useful to us provided that it is determined by some finite set of terms.
Accordingly we say that a class M of algebras has finitely determined syntactic
congruences, abbreviated FDSC, if there is a finite set F ⊆ Tx that determines
syntactic congruences in M.

It turns out that the notion of FDSC can be formulated in a different way which
is a natural generalisation of a familiar notion. Both formulations will prove useful
in our subsequent work. Recall that, for an algebra X and a, b, c, d ∈ X , the pair
(c, d) is in the principal congruence CgX(a, b) generated by (a, b) if and only if there
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are terms f1, f2, . . . , fk ∈ Tx and elements ei,j ∈ X such that

c = f1(d1, e1,1, . . . , e1,m),

f1(d′1, e1,1, . . . , e1,m) = f2(d2, e2,1, . . . , e2,m),

f2(d′2, e2,1, . . . , e2,m) = f3(d3, e3,1, . . . , e3,m), (1)

...

fk(d′k, ek,1, . . . , ek,m) = d,

where {di, d
′
i} = {a, b} for i = 1, 2, . . . , k. Let CX

F (a, b) denote the equivalence on
X consisting of the set of pairs (c, d) ∈ X2 such that (1) holds for some choice of
f1, f2, . . . , fk ∈ F and ei,j ∈ X . Then CX

F (a, b) ⊆ CgX(a, b) for every F ⊆ Tx. We
say that a subset F ⊆ Tx of terms determines principal congruences in a class M

of algebras if CX
F (a, b) = CgX(a, b) for all X ∈M and a, b ∈ X . We say that a class

M has term finite principal congruences, abbreviated TFPC, if there is a finite set
F ⊆ Tx that determines principal congruences in M.

Lemma 2.2. For an algebra X, an equivalence θ on X, and elements a, b ∈ X, we
have (a, b) ∈ Syn(θ) if and only if CgX(a, b) ⊆ θ.

Proof. If (a, b) ∈ Syn(θ), then CgX(a, b) ⊆ Syn(θ) ⊆ θ. Conversely, assume
CgX(a, b) ⊆ θ. Then we have (f(a, c1, c2, . . . ), f(b, c1, c2, . . . )) ∈ CgX(a, b) ⊆ θ,
for all f ∈ Tx and all c1, c2, . . . ∈ X , and therefore (a, b) ∈ Syn(θ). �

Lemma 2.3. Let X be an algebra and let F ⊆ Tx. Then F determines syntactic
congruences on X if and only if F determines principal congruences on X.

Proof. Assume that F determines syntactic congruences on X and consider the
equivalence θ := CX

F (a, b). We have (f(a, c1, c2, . . . ), f(b, c1, c2, . . . )) ∈ CX
F (a, b), for

all f ∈ F and c1, c2, . . . ∈ X , and therefore (a, b) ∈ (CX
F (a, b))F = Syn(CX

F (a, b)).
By Lemma 2.2 we conclude that CgX(a, b) ⊆ CX

F (a, b) and therefore CgX(a, b) =
CX

F (a, b).
Now assume that F determines principal congruences on X and let θ be an

equivalence on X . We must prove that θF ⊆ Syn(θ) as the reverse inclusion always
holds. Let (a, b) ∈ θF . Then (f(a, c1, c2, . . . ), f(b, c1, c2, . . . )) ∈ θ for all f ∈ F

and c1, c2, . . . ∈ X . It follows that CX
F (a, b) ⊆ θ. Hence CgX

F (a, b) = CX
F (a, b) ⊆ θ,

whence (a, b) ∈ Syn(θ) by Lemma 2.2. �

Corollary 2.4. A class M of algebras has FDSC if and only if it has TFPC.

In the remainder of this section we will develop a practical method to verify
that a set of terms determines syntactic congruences in a class of algebras. For this
purpose we fix a type G and a class M of algebras of type G. For a set F ⊆ Tx of
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terms and a single term t ∈ Tx, we write

F |= t in M (F semantically shadows t in M)

if, for each X ∈ M and each equivalence θ on X , we have θF ⊆ θt. Thus F |= t

in M if t is redundant in the presence of F for the determination of syntactic
congruences on members of M. We say that F |= F ′ in M if F |= t in M for
each t ∈ F ′. Equivalently, F |= F ′ in M if θF ⊆ θF ′ for every X ∈ M and every
equivalence θ on X. If t(x, z1, z2, . . . ) does not depend upon x in M, that is, if M

satisfies the identity
t(x, z1, z2, . . . ) ≈ t(y, z1, z2, . . . )

(in particular, if t is a nullary term), then θt = X ×X , for each X ∈M, and hence
F |= t, for every subset F of Tx. Notice that |= is a transitive relation on the
subsets of Tx.

The following theorem gives five criteria for a set F to determine syntactic con-
gruences. Let T1x denote the set of all terms in Tx that have exactly one occurrence
of the variable x. For example, x occurs three times in the group term z−1x3y but
exactly once in x−1z3y. Criterion (ii) shows that (i) is equivalent to semantic
shadowing. Criterion (iii), which implies that T1x always determines syntactic con-
gruences, will be needed later in our applications of the Shadowing Theorems 3.3
and 3.4. Criterion (iv) implies that shadowing can be established by checking
finitely many instances in case F and G are both finite. The two examples that fol-
low will illustrate criteria (iv) and (v). Note that F |= x in M if and only if θF ⊆ θ
for every X ∈M and every equivalence θ on X , since we always have θx = θ.

Theorem 2.5. For a set F ⊆ Tx of terms and a class M of algebras, the following
are equivalent:

(i) F determines syntactic congruences in M,
(ii) F |= Tx in M,
(iii) F |= T1x in M,
(iv) F |= x and, for each f(x, zm+1, . . . , zm+n) ∈ F , each m–ary fundamental

operation g ∈ G and each i with 1 ≤ i ≤ m, we have

F |= f(g(z1, . . . , zi−1, x, zi+1, . . . , zm), zm+1, . . . , zm+n) in M,

(v) F |= x and θF is a congruence for each X ∈M and each equivalence θ on X.

Proof. (i)⇒(ii) Let t ∈ Tx and let θ be an equivalence on X where X ∈M. Then
θF = Syn(θ) = θTx ⊆ θt so F |= t.

(ii)⇒(iv), trivially.
(iv)⇒(v) Let θ be an equivalence on X with X ∈M. Let (a, b) ∈ θF , let g ∈ G

be m–ary, let 1 ≤ i ≤ m and let c1, . . . , cm ∈ X . To see that θF is a congruence it



350 D. M. Clark, B. A. Davey, R. S. Freese, and M. Jackson Algebra univers.

suffices to show that

(g(c1, . . . , ci−1, a, ci+1, . . . , cm), g(c1, . . . , ci−1, b, ci+1, . . . , cm)) ∈ θF .

Assume that f(x, zm+1, . . . , zm+n) ∈ F and cm+1, . . . , cm+n ∈ X . We define

t(x, z1, . . . , zm+n) = f(g(z1, . . . , zi−1, x, zi+1, . . . , zm), zm+1, . . . , zm+n).

By (iv) we have F |= t, so (a, b) ∈ θt. Thus,

(t(a, c1, . . . , cn+m), t(b, c1, . . . , cn+m)) ∈ θ,

and hence (g(c1, . . . , ci−1, a, . . . , cm), g(c1, . . . , ci−1, b, . . . , cm)) ∈ θF , as required.
(v)⇒(i) Take X ∈M and let θ be an equivalence on X . Then θF ⊆ θx = θ so

θF ⊆ Syn(θ), the largest congruence contained in θ, and Syn(θ) = θTx ⊆ θF since
F ⊆ Tx. Thus θF = Syn(θ).

(ii)⇒(iii)⇒(i) The implication (ii)⇒(iii) is trivial, so assume (iii) to prove (i).
Let X ∈M and let θ be an equivalence onX . By (iii) we have Syn(θ) ⊆ θF ⊆ θT1x ⊆
θ. Now it is straightforward to check that θT1x is a congruence. By Lemma 2.1(iii)
we have θT1x ⊆ Syn(θ). Thus θF = Syn(θ), showing that F determines syntactic
congruences in M. �

Our first example shows that our notion of syntactic congruence is consistent
with the formal language theoretic notion.

Example 2.6. The single term F = {z1xz2} determines syntactic congruences in
the variety of monoids, which therefore has FDSC.

Proof. We verify Theorem 2.5(v). Let X be a monoid, let θ be an equivalence on X
and assume (a, b) ∈ θF . Then (a, b) = (1a1, 1b1) ∈ θ = θx, so F |= x. Now choose
c, d, e ∈ X . Then

(d · ac · e, d · bc · e) = (d · a · ce, d · b · ce) ∈ θ,

so (ac, bc) ∈ θF . Similarly, (ca, cb) ∈ θF , showing that θF is a congruence. �

The algebra M is unary if each of its operations is unary. Natural dualities
given by unary topological algebras M∼ are of particular interest since they tend
to give accessible dual categories. Algebras M strongly dualised by a unary topo-
logical algebra are characterised in [10, 6.4.5]. In [11] it is shown that every finite
unary topological algebra with a single unary operation is standard. Our second
example will be used in Example 5.8 to exhibit many more unary algebras that
generate a standard topological quasi-variety. This example should be contrasted
with Example 7.2.

Example 2.7. Every variety generated by a finite unary algebra M = 〈M ;G〉 has
FDSC.
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Proof. Since M is finite, there is a finite set F of unary terms in the variable x
such that x ∈ F and { fM | f(x) ∈ F } is the submonoid of MM generated by G.
We verify condition (iv) of Theorem 2.5. Let f(x) ∈ F and g ∈ G. Then there
is a term t(x) ∈ F such that fMgM = tM, so f(g(x)) ≈ t(x) holds in M. Thus
F |= f(g(x)). �

Looking at TFPC instead of FDSC immediately yields many additional exam-
ples. Recall that a variety V is said to have definable principal congruences (DPC )
if there is a fixed finite collection Π of finite sequences (f1, f2, . . . , fk) from Tx such
that, for X ∈ V and a, b, c, d ∈ X , we have that (c, d) ∈ CgX(a, b) if and only if
equations (1) hold for some sequence in Π. If V has DPC, then principal congru-
ences are definable in the sense that there is a first-order formula π(x, y, u, v) such
that, for a, b, c, d ∈ X ∈ V, the statement π(a, b, c, d) is true in X if and only if
(c, d) ∈ CgX(a, b). A variety with DPC clearly has TFPC, as we see by taking as
F all the terms in the sequences witnessing DPC. But TFPC imposes no limit on
the length of the chains of those terms connecting c and d in equations (1).

Proposition 2.8. If a variety has definable principal congruences (DPC), then it
also has term finite principal congruences (TFPC) and therefore finitely determined
syntactic congruences (FDSC).

The notion of DPC has played an important role in the study of many varieties.
(See Blok and Pigozzi [5], Burris and Lawrence [7] and Fried, Grätzer and Quack-
enbush [21]). The converse of Proposition 2.8 is not true; for example, in [7], Burris
and Lawrence found finite groups and rings that generate varieties without DPC,
whereas we shall see in Section 5 that all varieties of groups and rings have FDSC.
We will present specific applications of Proposition 2.8 to standardness at the end
of Section 4.

3. Syntactic shadowing and the Completeness Theorem

Condition (ii) of Theorem 2.5 suggests a quite different method for establishing
that F determines syntactic congruences. We would like a purely syntactic proce-
dure, that refers only to terms and not to models and congruences, to produce t
from F when F |= t. A simple example suggests how this might be done. According
to Example 2.6, the term z1xz2 determines syntactic congruences in the variety of
monoids. By Theorem 2.5(ii) it must be true that z1xz2 semantically shadows, for
example, the term x3. To verify this fact directly, let θ be an equivalence on a
monoid X, let a, b ∈ X with (a, b) ∈ θz1xz2 . To see that (a, b) ∈ θx3 , we have
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a3 = 1 · a · aa
θ 1 · b · aa = b · a · a

θ b · b · a = bb · a · 1
θ bb · b · 1 = b3,

showing that (a3, b3) ∈ θ. Notice that, starting from a3, we move right using monoid
identities and we move down using the fact that (a, b) ∈ θz1xz2 . Based on this and
many other examples, we propose the following definition relative to the fixed type
G and class M of algebras of type G. First, define Txy be the set of all terms with
operation symbols G in the countable sequence of variables x, y, z1, z2, z3, . . . . For
a set F ⊆ Tx of terms and a single term t ∈ Tx, we write

F � t in M (F syntactically shadows t in M)

provided that there exists k ≥ 0, terms f1(x, z1, . . . , zm), . . . , fk(x, z1, . . . , zm) in F
and mk terms wi,j(x, y, z1, . . . , zn) ∈ Txy, for 1 ≤ i ≤ k and 1 ≤ j ≤ m, such that
each of the following identities is satisfied by each member of M:

t(x, z1, . . . , zn) ≈ f1(v1, w1,1, . . . , w1,m),

fi(v′i, wi,1, . . . , wi,m) ≈ fi+1(vi+1, wi+1,1, . . . , wi+1,m),

fk(v′k, wk,1, . . . , wk,m) ≈ t(y, z1, . . . , zn),

where {vi, v
′
i} = {x, y}. (When k = 0, this family of identities reduces to the single

identity

t(x, z1, . . . , zn) ≈ t(y, z1, . . . , zn),

that is, to the statement that, in M, the term t(x, z1, . . . , zn) does not depend
upon the variable x.) For example, z1xz2 syntactically shadows x3 in the variety
of monoids as we have

x3 ≈ 1 · x · xx,
1 · y · xx ≈ y · x · x,

y · y · x ≈ yy · x · 1,
yy · y · 1 ≈ y3.

In order to justify our definition of syntactic shadowing, we need to know that
F syntactically shadows only what it should and everything that it should.

Soundness Theorem 3.1. If F � t in M, then F |= t in M for every class M of
algebras.

Proof. Assume that F � t as described above. Let θ be an equivalence on an
algebra X ∈ M and let a, b ∈ X with (a, b) ∈ θF . To see that (a, b) ∈ θt, choose
c1, . . . , cn ∈ X . For 1 ≤ i ≤ k and 1 ≤ j ≤ m, let ei,j := wi,j(a, b, c1, . . . , cn). Then
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we have

t(a, c1, . . . , cn) = f1(d1, e1,1, . . . , e1,m)

θ f1(d′1, e1,1, . . . , e1,m) = f2(d2, e2,1, . . . , e2,m)

θ f2(d′2, e2,2, . . . , e2,m) = f3(d3, e3,1, . . . , e3,m)

...

θ fk(d′k, ek,1, . . . , ek,m) = t(b, c1, . . . , cn),

where (di, d
′
i) = (a, b) if (vi, v

′
i) = (x, y) and (di, d

′
i) = (b, a) if (vi, v

′
i) = (y, x) for

i = 1, 2, . . . , k. Thus (t(a, c1, . . . , cn), t(b, c1, . . . , cn)) ∈ θ and hence (a, b) ∈ θt. �

Completeness Theorem 3.2. Assume that M contains a free countably infinitely
generated algebra. If F |= t in M, then F � t in M.

Proof. Assume F |= t in M. Let Fxy be the free countably infinitely generated
algebra in M with its generators labelled x,y, z1, z2, . . . . Let S be the set of all

(f(x,u1,u2, . . . ), f(y,u1,u2, . . . )) and

(f(y,u1,u2, . . . ), f(x,u1,u2, . . . )),

where f(x, z1, z2, . . . ) ∈ F and u1,u2, . . . ∈ Fxy, together with the identity relation
on Fxy. Then the transitive closure of S is an equivalence relation θ on Fxy for
which we have (x,y) ∈ θF . Consequently (x,y) ∈ θt. In particular,

(t(x, z1, z2, . . . ), t(y, z1, z2, . . . )) ∈ θ.

This says that t(x, z1, z2, . . . ) and t(y, z1, z2, . . . ) are connected via the transitive
closure of S. Hence there exists k ≥ 0, terms fi(y, z1, z2, . . . ) in F , for i = 1, . . . , k,
choices of vi, v

′
i so that {vi, v

′
i} = {x, y} and terms wi,j ∈ Txy, for 1 ≤ i ≤ k and

1 ≤ j ≤ m, such that

t(x, z1, z2, . . . ) = f1(v1, w1,1(x,y, z1, . . . ), w1,2(x,y, z1, . . . ), . . . ),

fi(v′
i, wi,1(x,y, z1, . . . ), wi,2(x,y, z1, . . . ), . . . ) =

fi+1(vi+1, wi+1,1(x,y, z1, . . . ), wi+1,2(x,y, z1, . . . ), . . . ),

fk(v′
k, wk,1(x,y, z1, . . . ), wk,2(x,y, z1, . . . ), . . . ) = t(y, z1, z2, . . . ).

Since Fxy is M-freely generated by {x,y, z1, z2, . . . }, we see that the equations

t(x, z1, z2, . . . ) ≈ f1(v1, w1,1, w1,2, . . . ),

fi(v′i, wi,1, wi,2, . . . ) ≈ fi+1(vi+1, wi+1,1, wi+1,2, . . . ),

fk(v′k, wk,1, wk,2, . . . ) ≈ t(y, z1, z2, . . . )

all hold in M. Thus F � t in M. �
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Together these two theorems tell us that in an ISP-closed class, and in particular
in a variety M, the two notions of shadowing are identical. Thus we say that F
shadows t in an ISP-closed class M if F |= t and/or F � t in M, and F shadows F ′

in M provided that F shadows t in M for each t ∈ F ′. It will be useful to reiterate
the equivalence of (i) and (iii) of Theorem 2.5 in this context.

General Shadowing Theorem 3.3. A subset F ⊆ Tx determines syntactic con-
gruences in an ISP-closed class M of algebras if and only if F shadows T1x in M.

It turns out that a very simple version of shadowing is sufficient for a large
number of applications. Relative to a class M of algebras, we say that F simply
shadows a term t ∈ Tx if there are terms w1, w2, w3, . . . in variables {z1, z2, z3, . . . },
and a term f(x, z1, z2, . . . ) ∈ F and such that the identity

t(x, z1, z2, . . . ) ≈ f(x,w1, w2, . . . ) (∗)
holds in M. We say that F simply shadows F ′ in M if F simply shadows each
term of F ′ in M.

Simple Shadowing Theorem 3.4. A subset F ⊆ Tx determines syntactic con-
gruences in a class M of algebras provided that F simply shadows T1x in M.

Proof. Let t ∈ T1x. Since F simply shadows t, there are terms w1, w2, w3, . . . in
variables z1, z2, z3, . . . and a term f(x, z1, z2, . . . ) in F such that the identity (∗)
holds in M. Taking k = 1, f1 = f , v1 = x, v1′ = y, we obtain F � t. Thus F � T1x

and so F |= T1x in M. The conclusion follows from (iii)→(i) of Theorem 2.5. �

The reader can check that Examples 2.6 and 2.7 can both be established as imme-
diate consequences of the Simple Shadowing Theorem. Note that an easy inductive
argument shows that if Theorem 2.5(iv) holds via simple shadowing, for some set
F ⊆ Tx, then F simply shadows all terms in T1x.

A congruence coinciding with the syntactic congruence is presented in John-
stone [28] for much the same purpose as we have it here. A form of shadowing
for a set of words is also given there (‘completeness’ of sets of words [28, Defini-
tion 2.8]). Johnstone’s notion is in fact equivalent to the simple shadowing version
of condition (iv) in Theorem 2.5. There are many instances where simple shadow-
ing is properly weaker than general shadowing (see Examples 6.1 and 6.2) and so
‘complete’ in the sense of [28, Definition 2.8] should not be confused with that in
the Completeness Theorem 3.2.

Since T1x determines syntactic congruences in any class M of algebras, we know
that T1x |= t in M, for all t ∈ Tx. The following lemma is a local version of
the corresponding result for syntactic shadowing. This, along with the Soundness
Theorem 3.1, provides a direct proof of (iii)→(ii) in Theorem 2.5. If we replace
some or all occurrences of variables in a term t by other variables, then we say that
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the resulting term t′ is obtained from t by variable replacement. For example, the
term t′ = ((x ∧ z1) ∨ (z2 ∧ z3)) ∧ z4 may be obtained by variable replacement from
t = ((y ∧ z2)∨ (x∧ z3))∧ x. The significance of variable replacement is that it does
not alter the shape and therefore the complexity of a term.

Lemma 3.5. Let t be a term in which the variable x occurs k > 0 times. Then
there are terms t1, . . . , tk ∈ T1x such that each ti is obtained from t by variable
replacement and {t1, . . . , tk} � t.

Proof. Let t′ be obtained from t be replacing the k occurrences of x with new
variables x1, . . . , xk. Let ti be obtained from t′ by replacing xi with x. It is
straightforward to show that {t1, . . . , tk} � t. �

4. FDSC-HSP Theorem

We will now apply the work of the previous two sections to give an efficient
method to verify that a topological quasi-variety of algebras is standard. Given a
topological algebra X∼ := 〈X ;G,T 〉, we shall denote the underlying algebra of X∼
by X := 〈X ;G〉. Our central result, the FDSC-HSP Theorem, will say that a finite
topological algebra M∼ = 〈M ;G,T 〉 generates a standard topological quasi-variety
provided that the algebraic quasi-variety generated by M is a variety and that this
variety has FDSC. We use the basic characterisation of topological quasi-varieties,
which we restate here for total algebras.

Separation Theorem 4.1. ([10, 1.4.4]) Let M∼ = 〈M ;G,T 〉 be a finite discrete
topological algebra, let Q+

T (M∼ ) := IScP+ M∼ , and let X∼ be a Boolean topological
algebra of the same type as M∼ . Then X∼ ∈ Q+

T (M∼ ) if and only if either X∼ has only
one element and M∼ has a one-element subalgebra, or X∼ has more than one element
and for all a, b ∈ X with a �= b, there is a continuous homomorphism α : X∼ → M∼
such that α(a) �= α(b).

Let X∼ = 〈X ;G,T 〉 be a Boolean topological algebra and let θ be an equivalence
relation on X . We say that θ is a clopen equivalence relation on X∼ if each θ class
is clopen; equivalently, if θ is a clopen subset of X × X . It is the application of
the following fundamental lemma that leads us to require syntactic congruences be
finitely determined. The history of this lemma goes back at least to Numakura [38],
who proved that if θ is a clopen partition on a Boolean topological semigroup,
then the syntactic congruence of θ is also clopen. The first proof in the general
setting appears to be that of Day [17] (see also a more detailed presentation in
Johnstone [28, Lemma VI.2.7]). Because this result is so basic to the concerns of
this paper, we present its proof in full.
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Clopen Equivalence Lemma 4.2. Let X∼ = 〈X ;G,T 〉 be a Boolean topological
algebra and let θ be a clopen equivalence relation on X . If F ⊆ Tx is a finite set of
terms of X, then θF is also a clopen equivalence relation on X .

Proof. Let a ∈ X . Because the equivalence classes of θF form a cover for X∼, it
suffices (by compactness) to show that a/θF is open. We construct a clopen subset
W of a/θF containing a. Fix a term f(x, z1, . . . , zn) ∈ F and c := (c1, . . . , cn) ∈ Xn.
Since f is continuous at (a, c) and f(a, c) is in the clopen set f(a, c)/θ, there are
clopen sets Uc ⊆ X containing a and Vc ⊆ Xn containing c such that f(Uc, Vc) ⊆
f(a, c)/θ. Since X∼

n is compact, there is a finite set {c1, c2, . . . , ck} ⊆ Xn such that
Vc1 , Vc2 , . . . , Vck

cover Xn. Define

Wf := Uc1 ∩ · · · ∩ Uck
.

Then Wf is a clopen subset of X containing a. We now define

W :=
⋂
{Wf | f(x, z1, . . . , zn) ∈ F }.

Then W contains a, and W is clopen since F is finite.
To see that W ⊆ a/θF , choose b ∈ W . Let f(x, z1, . . . , zn) ∈ F and c ∈

Xn. Then c ∈ Vcj for some j ≤ k. Since b ∈ W ⊆ Wf ⊆ Ucj , we have
f(b, c) ∈ f(a, cj)/θ. Since a ∈ Ucj , we also have f(a, c) ∈ f(a, cj)/θ. Conse-
quently (f(a, c), f(b, c)) ∈ θ. Since f(x, z1, . . . , zn) ∈ F and c ∈ Xn were arbitrary,
we conclude that (a, b) ∈ θF . Thus W ⊆ a/θF . �

We can now put the pieces together, giving a general condition which shows how
FDSC leads to standardness.

FDSC-HSP Theorem 4.3. Let M∼ = 〈M ;G,T 〉 be a finite discrete topological
algebra. If HSPM has FDSC, and HSP M = ISPM, then Q+

T (M∼ ) := IScP+ M∼ is
standard.

Proof. Let X∼ ∈ ModT(ThuH(M∼ )). To show that X∼ ∈ Q+
T (M∼ ), we consider two

cases. First assume that X∼ is a one-element algebra. In this case, to show that
X∼ ∈ Q+

T (M∼ ) it suffices to show that M∼ has a one-element subalgebra. Suppose
that M∼ has no one-element subalgebra. Then, for all a ∈ M , there exists ga ∈ G
such that ga(a, . . . , a) �= a. Thus

M∼ |=
∨

a∈M

ga(x, . . . , x) �≈ x

and hence ModT(ThuH(M∼ )) contains no one-element algebras. Since |X | = 1 and
X∼ belongs to ModT(ThuH(M∼ )), it follows that M∼ has a one-element subalgebra, as
required.

Now assume that X∼ has more than one element. We apply the Separation
Theorem 4.1. Let a, b ∈ X with a �= b. Let Y be a clopen subset of X containing a
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but not b, and let θ be the equivalence relation with two classes Y and X\Y .
Choose a finite set F of terms that determine syntactic congruences in HSP M.
By the Clopen Equivalence Lemma, each θF class is clopen. If we give X/θF the
discrete topology, then the quotient homomorphism α : X∼ → X∼/θF is continuous
and separates a and b since θF ⊆ θ. Since X∼ ∈ ModT(ThuH(M∼ )), we have X ∈
Mod(Theq(M)) = HSPM, and hence X/θF ∈ HSPM = ISP M. Since α(a) �= α(b)
in X/θF , there is a homomorphism β : X/θF → M that separates α(a) and α(b).
As X∼/θ and M∼ are both discrete, β is continuous. Thus the map β ◦α : X∼ →M∼ is
a continuous homomorphism that separates a and b. �

Corollary 4.4. Let M∼ = 〈M ;G,T 〉 be a finite discrete topological algebra and
assume that ISP M = HSPM. If HSP M has DPC, then Q+

T (M∼ ) := IScP+ M∼ is
standard.

This corollary yields many examples of finite topological algebras that generate
standard topological quasi-varieties. For example, the variety I of implication al-
gebras I = 〈I;→, 1〉 has DPC (see [5]). Since I = ISP 2 (see [36, 16]), we conclude
that 2∼ = 〈2;→, 1,T 〉 is standard. McKenzie [31] found that every variety that is
directly representable by a finite set of finite algebras has DPC. This fact applies
to the variety generated by any para primal algebra (Clark and Krauss [12]). While
not all para primal algebras generate a quasi-variety that is a variety, a method to
recognise those that do is given in [12]. Among those that do are all quasi-primal
algebras, as we will see directly in Example 6.3.

5. Examples of simple shadowing

We will now exhibit a large assortment of varieties of algebras that can be shown
to have FDSC using the Simple Shadowing Theorem 3.4. Many of our examples
generate a quasi-variety that is also a variety. The FDSC-HSP Theorem tells us
that each of these examples, when endowed with the discrete topology, generates a
standard topological quasi-variety.

The condition of the Simple Shadowing Theorem 3.4 says, loosely speaking, that
F determines syntactic congruences on M if every term with a single x can be
rewritten, modulo the equational theory of M, in the form of a member of F . For
example, let M be the variety of distributive lattices L = 〈L;∨,∧〉 and define

F := {x, x ∨ z2, z1 ∧ x, (z1 ∧ x) ∨ z2}.

If t(x, z1, z2, . . . ) ∈ T1x, then it can be rewritten as (w1 ∧ x) ∨ w2, or as x ∨ w2 or
w1 ∧ x or x (if either w1 or w2 or both are missing) where w1 and w2 are terms in
z1, z2, . . . .
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Example 5.1. Let D be the category of Boolean topological distributive lattices,
that is, Boolean spaces with continuous distributive lattice operations and let M∼ =
〈M ;∨,∧,T 〉 be any non-trivial finite member of D. Let M be the variety of
distributive lattices.

(i) F = {x, x∨ z2, z1 ∧ x, (z1 ∧ x)∨ z2} determines syntactic congruences in M.
(ii) D = Q+

T (M∼ ) is standard.

Proof. The Simple Shadowing Theorem 3.4 implies (i) by the argument above.
Since HSPM = ISP M = M, the FDSC-HSP Theorem tell us that Q+

T (M∼ ) is
standard. We know that Thqe(M∼ ) is the quasi-equational theory of distributive
lattices. Since Q+

T (M∼ ) is standard, we have D := ModT(Thqe(M∼ )) = Q+
T (M∼ ). �

For bounded distributive lattices L = 〈L;∨,∧, 0, 1〉, a similar assertion is true: the
first three terms of F are now redundant in the presence of the fourth. This
illustrates a recurrent theme. Having distinguished identity elements for binary
operations generally serves to reduce the number of terms needed to define syntactic
congruences. In fact, the term (z1 ∧ x) ∨ z2 determines syntactic congruences even
in the unbounded case by using a slightly longer calculation—see Lemma 6.4.

We give several more examples whose proofs, which we omit, are easy and similar
to the above argument for distributive lattices.

Example 5.2. Let K be a finite field. Let V be the category of Boolean topo-
logical vector spaces over K, that is, Boolean spaces with continuous vector space
operations, and let M∼ = 〈M ; +, α, 0,T 〉α∈K be any non-trivial finite member of V.
Let M be the variety of vector spaces V = 〈V ; +, α, 0〉α∈K over K.

(i) F = { z1 + αx | α ∈ K } determines syntactic congruences in M.
(ii) V = Q+

T (M∼ ) is standard.

Example 5.3. Let B be the category of non-trivial Boolean topological Boolean
algebras, that is, Boolean spaces with continuous Boolean algebra operations, and
let M∼ = 〈M ;∨,∧, ′, 0, 1,T 〉 be any non-trivial finite member of B. Let M be the
variety of Boolean algebras B = 〈B;∨,∧, ′, 0, 1〉.

(i) F = {(z1 ∧ x) ∨ z2, (z1 ∧ x′) ∨ z2} determines syntactic congruences in M.
(ii) B = Q+

T (M∼ ) is standard.

Example 5.4. Let A be the category of Boolean topological abelian groups, that is,
Boolean spaces with continuous abelian group operations. Let M∼ = 〈M ; +,−, 0,T 〉
be any non-trivial finite member of A and let M be the variety of abelian groups
A = 〈A; +,−, 0〉.

(i) F = {z1 + x, z1 − x} determines syntactic congruences in M.
(ii) A = Q+

T (M∼ ) is standard.



Vol. 52, 2004 Standard topological algebras 359

Part (ii) of the previous three examples was established in Davey and Werner [16],
where it is shown that V is dual to the variety of all vector spaces over K, that B

is dual to the variety of non-empty sets, and that A is dual to the variety of all
abelian groups satisfying mx ≈ 0 for some integer m.

We exhibit several other familiar varieties that can be easily shown to have
FDSC using the Simple Shadowing Theorem 3.4. In these examples it is not true
that every finite member generates a quasi-variety that is a variety, but many finite
members do. In those cases we can apply the FDSC-HSP Theorem to show that
they generate a standard topological quasi-variety.

Example 5.5. Syntactic congruences in the variety of groups G = 〈G; · ,−1, 1〉
are determined by the finite set

F = {z1xz2, z1x−1z2}.

Example 5.6. Syntactic congruences in the variety of semigroups S = 〈S; · 〉 are
determined by the finite set

F = {x, z1x, xz2, z1xz2}.

Comparing semigroups and monoids, we again see the need for additional terms
when the identity element is missing.

Example 5.7. Syntactic congruences in the variety of rings R = 〈R; +, · ,−, 0〉
are determined by the finite set

F = {z1 + x, z1 − x, z1 + z2x, z1 + xz3, z1 + z2xz3}.

From Example 2.7 we know that every finite unary algebra generates a variety
with FDSC. The following observation, kindly contributed to this effort by Jane
Pitkethly, exhibits many finite unary algebras that generate a quasi-variety that is
a variety.

Example 5.8. Let M be a finite unary algebra that has at most one constant term
function. Then there is a finite unary algebra M′ such that HSPM = HSP M′ =
ISP M′, and consequently M∼

′ generates a standard topological quasi-variety.

Proof. Higgs [25] gave a short proof that the variety generated by a finite unary
algebra has only finitely many isomorphism types of subdirectly irreducibles, all of
which are finite. Let S be a set of disjoint representatives of these types. We take
M′ to be the coproduct of S, that is, M′ is the union of S if M has no constant
term function and is the union of S with the values of the constant term function
amalgamated otherwise. Because of the restriction on constant term functions, M′

must satisfy every equation satisfied by M. Thus M and M′ generate the same
variety, which is also ISP M′. �
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Recall that an Ockham algebra (see Blyth and Varlet [6]) is an algebra O =
〈O;∨,∧, c, 0, 1〉 where 〈O;∨,∧, 0, 1〉 is a bounded distributive lattice and the iden-
tities

c(0) ≈ 1, c(1) ≈ 0, c(x ∨ y) ≈ c(x) ∧ c(y), c(x ∧ y) ≈ c(x) ∨ c(y)

are satisfied. The variety of Ockham algebras includes Boolean algebras, Kleene
algebras and De Morgan algebras as subvarieties.

Example 5.9. The variety generated by a finite Ockham algebra has FDSC.

Proof. Let O = 〈O;∨,∧, c, 0, 1〉 be a finite Ockham algebra. Since O is finite, there
is a positive integer m such that, for all n > m there is an i ≤ m with cn(x) ≈ ci(x)
true in O. Define

F :=
{
fi(x, z1, z2) := (z1 ∧ ci(x)) ∨ z2

∣∣ i ≤ m}
.

We use the Simple Shadowing Theorem to show that F determines syntactic con-
gruences in HSP O. If t(x, z1, z2, . . . ) ∈ T1x, we can find terms w1(z1, z2, . . . ) and
w2(z1, z2, . . . ) and a non-negative integer n such that t ≈ (w1 ∧ cn(x)) ∨ w2 holds
for all Ockham algebras. Let i ≤ m be such that cn(x) ≈ ci(x) holds in O. Then
O satisfies the identity t(x, z1, z2, . . . ) ≈ fi(x,w1, w2). �

Goldberg [22] gives an elementary way of deciding if the quasi-variety generated by
a finite subdirectly irreducible Ockham algebra is a variety. If it is, we can conclude
that the finite Ockham algebra generates a standard topological quasi-variety.

6. Examples of general shadowing

The reader may well wonder if every instance of shadowing in familiar varieties
can be achieved by simple shadowing. In this section we present examples of va-
rieties that we prove to have FDSC using applications of general shadowing. We
begin with a familiar variety in which it is easy to see that simple shadowing is not
adequate.

Example 6.1. Syntactic congruences in the variety of groups G = 〈G; · ,−1, 1〉
are determined by the finite set

F = {z1xz2},

but this fact can not be established by simple shadowing.

Proof. To apply the General Shadowing Theorem 3.3, let t(x, z1, z2, . . . ) ∈ T1x be
a group term. Let t′(x, z1, z2, . . . ) be obtained from t by successively replacing
inverses of products with reversed products of inverses. Then t ≈ t′ holds in every
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group, and there are terms w1(z1, z2, . . . ) and w2(z1, z2, . . . ) such that t′ is either
w1xw2 or w1x

−1w2. We now show that z1xz2 syntactically shadows t.
If t′ = w1xw2, then z1xz2 simply shadows t′ and therefore also t. Assume

t′ = w1x
−1w2. Then we have

t(x, z1, z2, . . . ) ≈ w1x
−1w2 ≈ w1x

−1yy−1w2

w1x
−1xy−1w2 ≈ w1y

−1w2 ≈ t(y, z1, z2, . . . ).

The fact that z1xz2 shadows the term x−1 cannot be established by simple shad-
owing, as there do not exist terms w1(z1, z2, . . . ) and w2(z1, z2, . . . ) for which
x−1 ≈ w1xw2 holds in every group. �

Hidden in this syntactic shadowing argument is the exploitation of a peculiar prop-
erty of groups: every equivalence on a group that is preserved by the binary op-
eration is also preserved by the inverse operation. The fact that z1xz2 determines
syntactic congruences in groups can be established directly from this property as
well. Consider an equivalence θ on a group G = 〈G; · ,−1, 1〉. According to Exam-
ple 2.6, the relation θz1xz2 is a congruence on the monoid 〈G; · , 1〉 and is therefore
also a congruence on G. Thus F := {z1xz2} determines syntactic congruences in
the variety of groups.

While Example 6.1 demonstrates that simple shadowing is weaker than general
shadowing, we have also shown in Example 5.5 that there is a finite set of terms
that simply shadows all group terms. The distinction between simple and general
shadowing is made clearer in the next example.

Let S := 〈{0, a, b, 1}; · , C〉 denote the usual 4 element Boolean meet semilattice
(where meet is written multiplicatively) with 0 < a, b < 1, and with C the unary
operation that fixes each element of {0, b, 1} and has C(a) = 1.

Example 6.2. The variety generated by S has FDSC, but no finite set of terms
simply shadows T1x.

Proof. The algebra S is investigated in Jackson [27] as a member of the more
general class of closure semilattices (CSLs)—algebras with operations · and C

satisfying the semilattice axioms along with C(C(x)) ≈ C(x), C(xy)C(y) ≈ C(xy)
and xC(x) ≈ x. (A useful consequence is the identity C(x)C(y) ≈ C(C(x)C(y)).)
There a complete description of the equational theory of CSLs can be found. In
particular, it is shown ([27, Proposition 5.2]) that within the variety of closure
semilattices the following set, Σ, is a basis for the identities of S:

C(xy) ≈ C(xC(y))C(yC(x)), C(xC(yz))) ≈ C(xC(y))C(xC(z))C(yz),

C(xC(yC(z))) ≈ C(xC(y))C(xC(z))C(yC(z)), C(xyz) ≈ C(xy)C(yz)C(zx).
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A term not involving the unary operation C, will be called a semilattice term,
while a term of the form C(t(�x)) will be called a closed term. We observe that
the semilattice axioms ensure that every term t is equivalent to one for which
each subterm is the product of a (possibly empty) semilattice term (the semilat-
tice part of t) with a (possibly empty) collection of closed terms. For example,
C(y)xC(C(z)xC(C(w)y))w becomes xwC(xC(z)C(yC(w)))C(y), with semilattice
part xw. We will assume throughout this proof that all terms are written in this
way.

We first show that no finite set of terms can simply shadow all terms in T1x.
With any term t we may associate a directed graph G(t) whose vertices are the
variables appearing in t and such that (x, y) is an edge if x �= y and there is a
subterm s of t such that y appears (anywhere) in s and x appears in the semilattice
part of s. While we omit the details, it follows from the proof that Σ is a basis
for the identities of S that for closed terms u and v, we have S |= u ≈ v if and
only if G(u) = G(v). (While this is not explicitly stated in [27], the proof of
Proposition 5.2 there involves a reduction to normal forms that are distinct if and
only if the corresponding graphs are distinct. Observe also that each identity in Σ
preserves graphs of terms.)

Let tn(x, z0, . . . , zn) denote the term C(z0C(z1C(· · ·C(znC(x)) · · · ))) and let F
be any finite subset of Tx. We show that, for sufficiently large n, the set F does
not simply shadow tn.

Let n be the maximum indegree of x amongst the graphs G(s) for s ∈ F . As-
sume that F simply shadows tn, that is, there is s(x, �z) ∈ F and terms p1(�z),
p2(�z), . . . such that S |= tn(x, z0, . . . , zn) ≈ s(x, p1(�z), . . . ). Then the CSL axiom
C(C(x)) ≈ C(x) shows that S also satisfies tn(x, z0, . . . , zn) ≈ C(s(x, p1(�z), . . . )),
and so we may assume without loss of generality that s is a closed term. Now the
graph G(tn(x, z0, . . . , zn)) is antisymmetric and as the graphs G(s(x, p1(�z), . . . ))
and G(tn(x, z0, . . . , zn)) are identical, the graph G(s(x, p1(�z), . . . )) is also antisym-
metric. Hence the semilattice part of each term pi(�z) is either empty, or a single
variable. But then the indegree of x in G(s(x, p1(�z), . . . )) is at most that of x
in G(s(x, �z)), which was n. This contradicts the fact that x has indegree n + 1
in G(tn(x, z0, . . . , zn)). It follows that F does not simply shadow all terms from
{t1, t2, . . . } ⊆ T1x.

To complete the proof, it remains to show that the variety generated by S has
FDSC. For this we can use the set

F := {x, z1x,C(x), C(z1x), z1C(x), z1C(z2x), C(z1C(x)), z1C(z2C(x))}.

We prove that Theorem 2.5(iv) holds for the term z1C(z2C(x)) and leave the
remaining (easier) cases to the reader. The case where x is replaced by C(x)
holds trivially because S |= C(C(x)) ≈ C(x). By commutativity, it remains to
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shadow (syntactically) the term t(x, z1, z2, z3) := z1C(z2C(z3x)). Using the law
C(xC(yz))) ≈ C(xC(y))C(xC(z))C(yz) in Σ and commutativity we have the fol-
lowing shadowing of t(x, z1, z2, z3) by F :

z1C(z2C(z3x)) ≈ [z1C(z2C(z3))C(z2C(x))]C(z3x)

[z1C(z2C(z3))C(z2C(x))]C(z3y) ≈ [z1C(z2C(z3))C(z3y)]C(z2C(x))

[z1C(z2C(z3))C(z3y)]C(z2C(y)) ≈ z1C(z2C(z3y)).

Thus the variety of S has FDSC. �

We saw in Example 2.7 that the variety generated by a finite unary algebra has
FDSC. In order to complement this result, consider a fixed finite type of algebras
with at least one non-unary operation. Murskĭı [37] showed that, in a reasonable
statistical sense, almost all finite algebras of this type are quasi-primal. Recall that
M is quasi-primal if it has the ternary discriminator operation

t3(x, y, z) :=

{
z if x = y;

x if x �= y.

as a term function, and therefore also has the normal transform

n(x, y, u, v) :=

{
u if x = y;

v if x �= y.

}
= t3(t3(x, y, u), t3(x, y, v), v)

as a term function. It is well known that a variety generated by an algebra with
a discriminator term has definable principal congruences (see Burris and Sankap-
panavar [8, Exercise IV.3.3] for example) and so Proposition 2.8 shows that the
variety generated by a quasi-primal algebra has FDSC. We now use general shad-
owing to show that a single term is always sufficient.

Example 6.3. Syntactic congruences in the variety generated by a quasi-primal
algebra are determined by F = {n(x, z1, z2, z3)}. Consequently,

(i) the topological quasi-variety generated by a quasi-primal algebra with the
discrete topology is standard, and

(ii) almost every finite algebra of finite type generates a variety with FDSC.

Proof. For an arbitrary term t(y, z1, z2, . . . ) we have

t(x, z1, z2, . . . ) ≈ n(x, x, t(x, z1, z2, . . . ), t(y, z1, z2, . . . ))

n(y, x, t(x, z1, z2, . . . ), t(y, z1, z2, . . . )) ≈ t(y, z1, z2, . . . ).

Thus F determines syntactic congruences and we apply the FDSC-HSP Theorem
to obtain (i). Then (ii) follows from (i), Example 2.7 and Murskĭı [37]. �
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We round out this section by showing that finitely generated lattice varieties
have FDSC. We begin by defining lattice terms f0 = x and fm = fm−1 ∧ zm if m
is odd, and fm = fm−1 ∨ zm if m is even. The first few of these are

f0 = x

f1 = x ∧ z1
f2 = (x ∧ z1) ∨ z2
f3 = ((x ∧ z1) ∨ z2) ∧ z3.

The dual of a lattice term t will be denoted by t∂ .

Lemma 6.4. In the variety of all lattices, fm+1 shadows both fm and f∂
m.

Proof. We first show that fm+1 � fm.

fm(x, z1, . . . , zm) ≈ fm+1(x, z1, . . . , zm, fm(x, z1, . . . , zm))

fm+1(y, z1, . . . , zm, fm(x, z1, . . . , zm)) ≈ fm+1(x, z1, . . . , zm, fm(y, z1, . . . , zm))

fm+1(y, z1, . . . , zm, fm(y, z1, . . . , zm)) ≈ fm(y, z1, . . . , zm)

Thus fm+1 syntactically shadows fm. Now consider f∂
m.

f∂
m(x, z1, . . . , zm) ≈ fm+1(x, x, z1, . . . , zm)

fm+1(y, x, z1, . . . , zm) ≈ fm+1(x, y, z1, . . . , zm)

fm+1(y, y, z1, . . . , zm) ≈ f∂
m(y, z1, . . . , zm)

Hence fm+1 syntactically shadows f∂
m. �

We wish to induct on the complexity of bracket-reduced lattice terms in which
all parentheses that are unnecessary by associativity have been omitted. We now
make this precise. Formal joins and formal meets are expressions obtained by a
finite number of applications of the following rules:

(i) each variable is both a formal join and a formal meet,
(ii) if k ≥ 2 and t1, . . . , tk are formal meets, then (t1 ∨ · · · ∨ tk) is a formal join,
(iii) if k ≥ 2 and t1, . . . , tk are formal joins, then (t1 ∧ · · · ∧ tk) is a formal meet.

An expression t is a bracket-reduced lattice term if it is either a formal join or a
formal meet. As usual, we always omit the outer pair of parentheses. The a-height
(short for associative height) of a bracket-reduced lattice term is defined inductively
by declaring that variables have a-height 0, if t = t1 ∨ · · · ∨ tk is a formal join and
the maximum a-height of t1, . . . , tk is n, then the a-height of t is n+1, and similarly
for formal meets. The a-height of a usual lattice term is defined to be the a-height
of the corresponding bracket-reduced lattice term. Thus, for example, the a-height
of the lattice term

z1 ∧ ((z1 ∨ (z2 ∨ z3)) ∧ (z2 ∨ z4))
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is 2 since the corresponding bracket-reduced lattice term is

z1 ∧ (z1 ∨ z2 ∨ z3) ∧ (z2 ∨ z4).

Lemma 6.5. If t ∈ Tx is a lattice term of a-height d then, for all m > d, the term
fm shadows t in the variety of all lattices.

Proof. We may assume that t involves the variable x as otherwise every term shad-
ows t. Since variable replacement does not alter the a-height of a lattice term, by
Lemma 3.5 we may assume that t ∈ T1x. Let t′ be the bracket-reduced lattice term
corresponding to t. If t′ is a formal join, then using commutativity and associativity
we can write t′ = g∨h, where g is a formal meet involving x and h is free of x. Let
t′′ = g ∨ zk, where zk does not occur in t. Clearly t′′ shadows t. A dual reduction
process produces t′′ = g∧ zk in the case that t′ is a formal meet. Now we apply the
same procedure to g. Inducting backwards in this way we obtain, up to variable
substitution, either fk or f∂

k for some k ≤ d. By Lemma 6.4 it follows that fm

shadows t for all m > d. �

Corollary 6.6. For any class L of lattices, the set { fm | m = 0, 1, 2, . . .} deter-
mines syntactic congruences in L. If L has FDSC, then there exists m such that
{fm} determines syntactic congruences in L.

The key to showing that the variety V(L) generated by L has FDSC is to prove
there is a bound d such that for every term t there is a term t′ of a-height at most d
such that V(L) satisfies t ≈ t′. Let FV(X) denote the free algebra in V generated
by X . We would like to thank Ralph McKenzie for a suggestion that simplified the
following proof.

Theorem 6.7. Let L be a finite lattice. Then there is a number d such that for
each lattice term t there is a term t′ of a-height at most d such that t ≈ t′ holds
in L.

Proof. By Jónsson’s Theorem [29] we can choose n so that every subdirectly irre-
ducible lattice in V = V(L) has at most n elements: indeed, n := |L| will suffice.
Let X be a set with n elements. Of course each element of FV(X) can be repre-
sented by some term with variables from X . Since FV(X) is finite we can choose k
such that every one of these representatives has a-height at most k. We shall prove
that we can choose d := k + 2.

Now let Y be an arbitrary finite set. Let u = t(y1, . . . , ym) be a join-irreducible
element in FV(Y ) and let u∗ be its unique lower cover. There is a surjective
homomorphism ϕ : FV(Y ) � K, for some subdirectly irreducible lattice K in V,
with ϕ(u) �= ϕ(u∗). Let Φ := ker(ϕ)�Y . Consider

v := t(
∧

(y1/Φ), . . . ,
∧

(ym/Φ)).
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Clearly v ≤ u, but ϕ(v) = ϕ(u) and hence v � u∗. It follows that v = u. Since
K has at most n elements, we have 	 := |Y/Φ| ≤ n, and hence there is a term
t′(x1, . . . , x�) of a-height at most k, and a partition Y1, . . . , Y� of Y such that

u = t(y1, . . . , ym) = t′(
∧

(Y1), . . . ,
∧

(Y�)).

Consequently, u has a-height at most k + 1. Since every element is a join of join-
irreducibles, every element of FV(Y ) can be represented by a term of a-height at
most d := k + 2. �

Example 6.8. Every finitely generated lattice variety has FDSC.

Proof. Let V = V(L), where L is a finite lattice and let m be one greater than
the number d from Theorem 6.7. We claim fm shadows every t ∈ Tx. By Theo-
rem 6.7 we may assume that t has a-height at most d and so the result follows from
Lemma 6.5. �

Remark 6.9. In retrospect we find that these ideas have arisen in the past in quite
different contexts. It is relatively straightforward to see that a lattice variety V has
TFPC if and only if there is a bound on the lengths of weak projectivities needed
in Dilworth’s description [18] of principal congruences on lattices in V. (See [24]
for a discussion of weak projectivities and principal congruences on lattices.) In [3,
Theorem 4.1] Baker proved that a finitely generated lattice variety has such a bound,
and consequently has TFPC. More generally, in [43] Wang proved that every finitely
generated congruence distributive variety has a “finite principal length property”
which is easily seen to be equivalent to TFPC, and therefore also to FDSC.

7. Varieties without FDSC

Not every variety has FDSC. The core idea of Theorem 4.3 provides an internal
condition on an algebra that guarantees that its syntactic congruences cannot be
finitely determined. We say the Boolean topological algebra X∼ is topologically
residually finite if, for all a, b ∈ X with a �= b, there is a finite discrete Y∼ and a
continuous homomorphism α : X∼ → Y∼ such that α(a) �= α(b).

Lemma 7.1. If X∼ is a Boolean topological algebra which is not topologically resid-
ually finite, then no finite set of terms determines syntactic congruences on X∼.

Proof. Suppose that a finite set F ⊆ Tx determines syntactic congruences on X∼.
Choose distinct a, b ∈ X that cannot be separated by a continuous homomorphism
into any finite discrete algebra. Let U be a clopen subset ofX containing a but not b,
and let θ be the equivalence relation with two classes U and X\U . By the Clopen
Equivalence Lemma 4.2, each θF class is clopen. Since X∼ is compact, θF must have
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finite index in X∼. It follows that the quotient homomorphism α : X→ X/θF is also
continuous, and it separates a and b since θF ⊆ θ, a contradiction. �

The first examples of algebras satisfying the conditions of Lemma 7.1 appear to
be those found by Banaschewski [4] and by Taylor [41]. These examples are based
on unary algebras.

Example 7.2. The variety of all unars (unary algebras with a single operation)
does not have FDSC.

Proof. Let Z∼∞ be the one point compactification of the integers as a loop, with
s(n) := n+1 for n ∈ Z and s(∞) :=∞. Then Z∼∞ is infinite and Boolean. However
no proper congruence on Z∼∞ is clopen. Thus Z∼∞ is not topologically residually
finite whence Lemma 7.1 applies. �

Lemma 7.1 also gives a striking example of a topological condition on a variety
which implies a purely algebraic condition on the variety.

Theorem 7.3. Let V be a variety of algebras. If there is a non-residually finite
algebra in V which admits a compatible Boolean topology, and in particular if V

contains an infinite subdirectly irreducible algebra that has a compatible Boolean
topology, then V does not have FDSC.

We list a few of the many applications of this theorem that easily follow. The
first two provide an interesting contrast with Example 6.8 and Example 5.9.

Example 7.4. The variety of all modular lattices, and therefore the variety of all
lattices, does not have FDSC.

Proof. Let Lω be the lattice depicted in Figure 1. Then Lω is an infinite subdirectly
irreducible modular lattice, and the cofinite sets containing 0 and their complements
form a compatible Boolean topology. This is easily proved using the fact that the
set of elements incomparable with any given element of Lω is finite. (That Lω has
this compatible Boolean topology was observed by Clinkenbeard [14].)

It is also easy to give a direct algebraic proof using Corollary 6.6. �

Example 7.5. The variety O of all Ockham algebras does not have FDSC.

Proof. We give two examples. For the first example, we recall (see [42]) the fact that
O = ISP O1, where O1 is an infinite subdirectly irreducible Ockham algebra. The
underlying bounded distributive lattice of O1 is 2N and c is defined by c(a) := s(a)′,
where ′ is the usual Boolean complement and s : 2N → 2N is the shift map given
by s(a)n := an+1. Clearly, the operations on O1 are compatible with the product
topology on 2N. (This algebra is the basis for a natural duality for the variety of
Ockham algebras; see [22] for details.)
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Figure 1. the modular lattice Lω

The following simpler example was kindly contributed by David Hobby. Let

O2 := 〈{ 1
n | 0 �= n ∈ Z } ∪ {0};∨,∧, c,−1, 1〉

where O2 is given the usual order, c(−1) = 1, c(0) = 0, c(1) = −1, c( 1
n ) = −1

n

and c(−1
n ) = 1

n−1 for n > 1. Then O2 is a subdirectly irreducible Ockham algebra
whose monolith identifies only −1 and − 1

2 . Under the usual topology O2 is Boolean
and its operations are continuous. �

For other examples of this type the reader is directed to Johnstone [28].
The application of FDSC given in the FDSC-HSP Theorem 4.3, which provides

the original motivation for our study of FDSC, concerns only varieties generated
by a single finite algebra. It is therefore important to ask if there is a variety with
a single finite generator that does not have FDSC. The answer is affirmative, as we
now show.

A significant class of finite algebras of current interest was constructed by McKen-
zie [34] for the purpose of resolving a number of different algebraic decidability
questions. McKenzie gave an effective procedure to construct, for each Turing ma-
chine T , a finite algebra A(T ) of finite type for which he established the following
facts.

McKenzie’s Theorem 7.6. [34] Let T be a Turing machine.

(i) If T eventually halts when started on a blank tape, then there is a finite bound
on the sizes of the subdirectly irreducibles in the variety V(A(T )) generated
by A(T ).
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(ii) If T does not halt when started on a blank tape, then the variety V(A(T ))
contains an infinite subdirectly irreducible.

(iii) The algebra A(T ) has a distinguished element 0 which determines a one-
element subalgebra of A(T ).

Thus, for example, it is recursively undecidable as to whether or not the variety
generated by a finite algebra of finite type is residually finite.

Example 7.7. If the Turing machine T does not halt, then V(A(T )) does not
have FDSC.

Proof. Let Qω be the algebra

Qω := 〈{ 0, an, bn | n < ω };∧, · 〉

with distinct elements 0, an and bn, for n < ω, and binary operations defined by

p ∧ q = 0 if p �= q

p ∧ p = p

an · bn+1 = bn for all n < ω

p · q = 0 otherwise.

It is easy to check that Qω is subdirectly irreducible: every non-trivial congru-
ence includes the pair (0, b0). McKenzie showed in [34, Lemma 4.1] that V(A(T ))
contains an algebra that is term equivalent to Qω. Since the topology of cofinite
subsets of Qω containing 0 and their complements is compatible with the operations
and is Boolean, V(A(T )) does not have FDSC. �

So far, all the examples where FDSC fails have been proved using Lemma 7.1.
However Theorem 2.5 and the Completeness Theorem 3.2 provide a second ap-
proach. Indeed, the authors initially established all of the above examples via this
method. To demonstrate the technique, we now give an alternative proof of the
statement in Example 7.7.

We first recall that the height ht(t) of a term t is the height of the term tree
of t (note that this differs from the notion of a-height introduced in Section 6).
More formally, constant symbols and variables have height 0 and if f is an k–ary
fundamental operation symbol and u1, u2, . . . , uk are terms of maximum height n,
then the term f(u1, u2, . . . , uk) has height n+ 1.

Let θ be the equivalence on the set Qω with two classes, {b0} and Qω \ {b0}.
Then Syn(θ) is the identity congruence and consequently, for each n < ω, we have
(0, bn) /∈ Syn(θ). This fact is witnessed by the height-n term

fn(x, z0, z1, . . . , zn−1) := z0 · (z1 · (z2 · (· · · (zn−1 · x) · · · )))
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since

fn(0, a0, a1, . . . , an−1) = a0(a1(a2(· · · (an−10) · · · ))) = 0

�≡θ b0 = a0(a1(a2(· · · (an−1bn) · · · ))) = fn(bn, a0, a1, . . . , an−1).

We prove that no term of lower height witnesses (0, bn) /∈ Syn(θ).

Lemma 7.8. Let f(x, z0, . . . , zj−1) ∈ Tx have height k < n; let c0, . . . , cj−1 ∈ Qω

and assume that f(0, c0, . . . , cj−1) �= f(bn, c0, . . . , cj−1). Then f(0, c0, . . . , cj−1) = 0
and f(bn, c0, . . . , cj−1) = bm for some m with m ≥ n−k. In particular, (0, bn) ∈ θf .

Proof. The statement is clearly true if f is the height 0 term x. Assume that f has
height k + 1 < n. We consider two possibilities.

Assume that f = p∧ q where the maximum of the heights of p and q is k. Since

f(0, c0, . . . , cj−1) �= f(bn, c0, . . . , cj−1)

and ∧ is commutative, we may as well assume that

p(0, c0, . . . , cj−1) �= p(bn, c0, . . . , cj−1).

By induction we conclude that

0 = p(0, c0, . . . , cj−1) = f(0, c0, . . . , cj−1)

and that

p(bn, c0, . . . , cj−1) = bm = q(bn, c0, . . . , cj−1) = f(bn, c0, . . . , cj−1)

for some m with m ≥ n− k > n− (k + 1).
Now assume that f = p · q where again the maximum of the heights of p and q

is k. Either

p(0, c0, . . . , cj−1) �= p(bn, c0, . . . , cj−1) or q(0, c0, . . . , cj−1) �= q(bn, c0, . . . , cj−1).

By induction f(0, c0, . . . , cj−1) = 0 in either case. Since f(bn, c0, . . . , cj−1) �= 0 we
have, for some m, that p(bn, c0, . . . , cj−1) = am, that q(bn, c0, . . . , cj−1) = bm+1

and that f(bn, c0, . . . , cj−1) = bm. As am is neither a product nor a proper meet,
p(x, z0, . . . , zj−1) must be a variable or meet of variables not involving x. Thus
p(0, c0, . . . , cj−1) = am, so

q(0, c0, . . . , cj−1) �= q(bn, c0, . . . , cj−1).

By induction, m+ 1 ≥ n− ht(q) ≥ n− k giving us m ≥ n− (k + 1). �

Example 7.9. No finite set of terms determines the syntactic congruence of the
equivalence θ on the algebra Qω.

Proof. If F is a finite set of terms, then we can choose an upper bound n for the
heights of the terms in F . By Lemma 7.8 we have (0, bn) ∈

⋂
{ θf | f ∈ F } = θF ,

and therefore θF is not Syn(θ), the identity congruence. �
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From this example it now follows that the variety V(A(T )) does not have FDSC.
Indeed, V(A(T )) contains an algebra term equivalent to Qω.

We will return to A(T ) and several applications of McKenzie’s Theorem 7.6 in
Section 9.

8. FDSC and profiniteness

The next theorem contains several nice characterisations of topological residual
finiteness. The result has an extensive history, despite the fact that there appears
to be no published proof in the form stated below. The semigroup version is in
essence proved by Numakura [38] (see also Hunter [26]). Many of the details for
the more general version can be extracted from the results of Choe [9] and Day [17]
(see Johnstone [28] for the most detailed exposition, where unpublished work of
G. Bergman is also cited). The result as stated is observed in Almeida and Weil [2]
and was suggested to us by J. Almeida.

Theorem 8.1. Let X∼ be a compact topological algebra. The following conditions
are related by

(i)⇔ (ii)⇔ (iii)⇒ (iv),

and all are equivalent provided some finite set of terms determines syntactic con-
gruences on X∼.

(i) X∼ is topologically residually finite.
(ii) X∼ is profinite, that is, X∼ is an inverse limit of finite topological algebras.
(iii) X∼ is a closed subdirect product of finite topological algebras.
(iv) X∼ is a Boolean topological algebra.

Proof. Condition (iii) easily implies (i) by using the projection homomorphisms
onto the finite factors. Condition (ii) implies (iii) since the inverse limit is itself
a special closed subdirect product of its finite factors. Condition (iv) follows from
(iii) by the Tychonoff Product Theorem, and Lemma 7.1 tells us that (iv) implies
(i) in case X∼ has FDSC. It only remains to prove that (i) implies (ii).

Assume that X∼ is topologically residually finite. Then there is a set F of con-
gruences on X∼ such that

⋂
F is the identity congruence on X∼ and, for each ψ ∈ F,

each block of ψ is clopen and ψ has finite index. Let S be the collection of finite
intersections of members of F ordered by reverse inclusion: α ≤ β if α ⊇ β. For
each α ∈ S define X∼α := X∼/α. If β ≥ α in S, we define fβα : X∼β → X∼α to be the
natural map given by fβα(x/β) := x/α. Since β ≥ α, the map fβα is well defined.

Let lim←−{Xα | α ∈ S } be the inverse limit, consisting of all U ∈
∏
{Xα | α ∈ S }

such that fβα(U(β)) = U(α) whenever β ≥ α in S. Then the natural map

f : X∼ → lim←−{Xα | α ∈ S }, given by f(x)(α) := x/α,
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is a continuous, one-to-one homomorphism. It remains to prove that f is surjective.
Let U ∈ lim←−{Xα | α ∈ S }. Assume that x ∈

⋂
{U(α) | α ∈ S }. Then we would

have, for each α ∈ S,
f(x)(α) = x/α = U(α),

showing that U = f(x). Thus, to show that f is surjective, we must establish
that

⋂
{U(α) | α ∈ S } �= ∅. Since X∼ is compact, it is sufficient to show that

U(α1) ∩ U(α2) ∩ · · · ∩ U(αn) �= ∅ for all α1, α2, . . . , αn ∈ S. To this end, define
β := α1 ∩ α2 ∩ · · · ∩ αn ∈ S. Since U(β) is a non-empty block of β, we can choose
x ∈ U(β). For i = 1, 2, . . . , n, we have β ≥ αi and therefore

U(αi) = fβαi(U(β)) = fβαi(x/β) = x/αi.

Thus x ∈ U(αi), for all i, and therefore U(α1) ∩ U(α2) ∩ · · · ∩ U(αn) �= ∅. �

In a 1957 paper, Numakura showed that every Boolean topological distributive
lattice is profinite [38]. As an application of our methods we give the following
extension of this result.

Example 8.2. Let V be a finitely generated variety of lattices and X∼ be a Boolean
topological lattice with X ∈ V. Then X∼ is profinite.

Proof. Example 6.8 shows that X∼ has FDSC and then Theorem 8.1 shows that X∼
is profinite. �

This result cannot be extended indefinitely, because the Boolean topological
lattice in Example 7.4 is modular but not profinite. However other varieties we have
shown to have FDSC, can be used in place of finitely generated lattice varieties.

Example 8.3. Let X∼ be a Boolean topological algebra whose underlying algebra
X lies in one of the following classes:

(1) groups, (2) rings, (3) semigroups, (4) a variety with DPC.

Then X∼ is profinite.

9. Lingering questions

The work presented in this paper suggests the following question.

Problem 9.1. Is there an algorithm to decide if a given finite algebra of finite type
generates a standard topological quasi-variety?

The FDSC-HSP Theorem 4.3 imposes two hypotheses on the finite algebra M,

(i) the quasi-variety generated by M is a variety and
(ii) the variety generated by M has FDSC,
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which together imply that Q+
T (M∼ ) = IScP+ M∼ is standard. We conclude by raising

several questions suggested by this theorem.
Are conditions (i) and (ii) necessary for Q+

T (M∼ ) to be standard? The results of
Davey and Talukder [15] show that they are not: they construct a three element
unary algebra M for which (i) fails but Q+

T (M∼ ) is nevertheless standard. This
example shows that there is more to understand about standardness of algebras
than the FDSC-HSP Theorem reveals. It seems unlikely that Problem 9.1 will be
answered without first gaining an understanding of the extent to which standardness
extends beyond applications of the FDSC-HSP Theorem.

Are conditions (i) and (ii) independent? By Example 5.6 we know that every
variety of semigroups has FDSC. Yet the studies of residually finite semigroups in
Golubov and Sapir [23] and residually small varieties of semigroups in McKenzie [32]
provide many examples of finite semigroups M generating varieties that are not even
residually small, and therefore certainly do not satisfy HSPM = ISP M. Since the
submission of this paper an example has been found of a finite algebra M such
that HSP M = ISP M, but this variety does not have FDSC. This resolution of the
independence question will appear soon.

We can also enquire as to whether or not we can effectively determine if the
FDSC-HSP Theorem is applicable.

Problem 9.2. Is there an algorithm to decide if the quasi-variety generated by a
finite algebra of finite type is a variety?

Note that HSPM = ISP M if and only if each subdirectly irreducible of HSP M
embeds into M. Thus we can decide this equality for the algebras M in a given
class K if, within K, we have

(1) an effective method to determine if HSP M is residually finite

and, in case it is,

(2) an effective method to compute a number f(M) ∈ N such that HSP M is
residually less than f(M).

Indeed, if HSPM is residually less than f(M), then every subdirectly irreducible
of HSPM is isomorphic to a quotient of the free algebra in HSPM on f(M) gen-
erators. We can then effectively (although laboriously) check if each subdirectly
irreducible quotient of this finite free algebra embeds into M.

Freese and McKenzie [20, Theorem 10.15] exhibited (1) and (2) for finite algebras
M generating a congruence modular variety, giving f as f(M) = |M |+ |M ||M||M|+3

.
Higgs [25] gave a short argument that if M = 〈M ;F 〉 is a unary algebra, then
HSPM is residually less than 2n+1, where n is the size of the one-generated free
algebra in HSP M. Algorithms (1) and (2) can be extracted for semigroups from the
papers Golubov and Sapir [23] and McKenzie [32], and for rings from McKenzie [33].
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In spite of these far reaching results, a positive answer to Problem 9.2 can not
be established for all finite algebras by means of (1) and (2) alone, as McKenzie’s
Theorem 7.6 shows that (1) does not hold in the class of all finite algebras.

Problem 9.3. Is there an algorithm to decide if the variety generated by a finite
algebra of finite type has FDSC?

In view of Example 7.7 and McKenzie’s Theorem 7.6, we could conclude that there
was no such algorithm if we could show that the variety generated by A(T ) has
FDSC when T does halt.

In the proof of Example 5.8 we had to construct, from a finite algebra M, a finite
algebra M′ for which HSPM = HSPM′ = ISP M′. This construction suggests a
variant of Problem 9.2 which is also answered by McKenzie’s Theorem.

Proposition 9.4. There is no algorithm to decide, given a finite algebra M of
finite type, if there is a finite algebra M′ such that HSPM = HSP M′ = ISP M′.

Proof. From McKenzie’s Theorem 7.6 we see that, for a Turing machine T , there
is a finite algebra A(T )′ such that HSPA(T ) = HSPA(T )′ = ISP A(T )′ if and
only if T halts; namely, take A(T )′ to be the direct product of the non-isomorphic
subdirectly irreducibles in HSPA(T ). �

Yet another variant of Problem 9.2 is to ask for an algorithm to decide when a
given finite set of quasi-identities determines a variety. McNulty [35, Theorem 18]
shows that this also is undecidable.
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