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�-prime elements in multiplicative lattices

C. Jayaram

Abstract. In this paper we study �-prime elements in C-lattices and characterize Prüfer
lattices, almost principal element lattices and principal element lattices in terms of �-prime
elements. Using these results, some new characterizations are given for general ZPI-rings
and almost multiplication rings. Finally some new equivalent conditions are given for
Dedekind lattices.

1. Introduction

Throughout this paper R denotes a commutative ring with identity and L(R)
denotes the lattice of all ideals of R. R is called a general ZPI-ring, if every ideal is
a finite product of prime ideals. For various characterizations of general ZPI-rings,
the reader is referred to [17], [18], [21] and [22]. It is well known that if R is a
Noetherian integral domain, then R is a Dedekind domain if and only if for any
maximal ideal P of R, the set of P -primary ideals of R is totally ordered by set
inclusion [16, Theorem 6.20, page 137]. This result is true even for non-domains.
In fact R is a general ZPI-ring if and only if R is a Noetherian ring and for any
maximal ideal P of R, the set of P -primary ideals of R is totally ordered by set
inclusion (see [22, Theorem 4] and [15, Theorem 3]). It is well known that R a
general ZPI-ring if and only if L(R) is a principal element lattice [14, Theorem 2.2]
and R is a Noetherian ring if and only if L(R) is a Noether lattice [7]. Therefore
L(R) is a principal element lattice if and only if L(R) is a Noether lattice and for
any maximal ideal P of R, the set of P -primary ideals of R is totally ordered by set
inclusion. Our aim is to extend this result to non-modular multiplicative lattices.
For various examples of non-modular multiplicative lattices, the reader is referred
to [1]. It should be mentioned that there is a significant difference between our
proofs and the already existing ones presented in ring-theory books. In Section 2,
we give some definitions and known results that we use in this paper. In Section
3, we study �-prime elements in C-lattices. In Section 4, we prove that if L is
a principally generated reduced C-lattice satisfying the a.c.c. (ascending chain
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condition) for prime elements, then L is a Prüfer lattice if and only if every prime
is an �-prime (see Theorem 1). Next we show that if L is a principally generated
reduced lattice, then every branched prime element is contained in a rank one �-
prime if and only if L is a Prüfer lattice and dim L ≤ 1 (see Theorem 2). Also a
new characterization is given for an arithmetical ring (see Corollary 3). In Section
5, we show that if L is principally generated, then L is a principal element lattice
if and only if L satisfies the a.c.c. for prime elements and every maximal prime
element is a strong compact �-prime element (see Theorem 3). As a consequence,
it is shown that if L is principally generated, then L is a principal element lattice if
and only if L is Noetherian and every maximal prime is an �-prime (see Corollary
5). Further it is proved that if L is a principally generated reduced lattice, then L

is an almost principal element lattice if and only if every branched prime element is
contained in a non idempotent rank one �-prime (see Theorem 4). Also it is shown
that if L is principally generated, then L is a principal element lattice if and only if
every prime element is contained in a strong compact, strong �-prime element (see
Theorem 5). Using these results, some new characterizations are given for general
ZPI-rings and almost multiplication rings (see Theorem 6, Theorem 7 and Theorem
8 ). Finally in Section 6, we characterize Dedekind lattices in terms of non-minimal
prime elements (see Theorem 9).

2. Basic notions

An element e of a multiplicative lattice L is said to be principal if it satisfies
the dual identities (i) a ∧ be = ((a : e) ∧ b)e and (ii) (a ∨ be) : e = (a : e) ∨ b.
Elements satisfying (i) are called meet principal and elements satisfying (ii) are
called join principal. Elements satisfying the weaker identity (iii) a ∧ e = (a : e)e
obtained from (i) by setting b = 1 are called weak meet principal. An element
a ∈ L is called invertible if a is principal and (0 : a) = 0. By a C-lattice we mean a
(not necessarily modular) complete multiplicative lattice, with least element 0 and
compact greatest element 1 ( a multiplicative identity), which is generated under
joins by a multiplicatively closed subset C of compact elements. A C-lattice is said
to be a domain if the zero element is a prime element. In a principally generated
C-lattice, principal elements are compact [2, Theorem 1.3] and a finite product of
principal elements is again a principal element [7].

Throughout this paper we assume that L is a C-lattice generated by compact
join principal elements. L∗ denotes the set of all compact elements of L. For any
a ∈ L, we denote θ(a) = ∨{(x : a) | x ∈ L∗ and x ≤ a}. C-lattices can be localized.
For any prime element p of L, Lp denotes the localization at F = {x ∈ C | x � p}.
For basic properties of localization, the reader is referred to [10]. A prime element
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p of L is said to be an �-prime if the set of all p-primary elements of L is linearly
ordered. For any prime p of L, p∆ denotes the meet of all p-primary elements of L.
A prime element p of L is said to be branched (unbranched) if p > p∆ (p = p∆).
Let p, m be two prime elements of L. We say m covers p if m > p and there is no
prime element p1 of L such that m > p1 > p. A prime element p of L is said to be
an S-element if p is an �-prime, p∆ is prime and p∆ contains every prime element
properly contained in p. L is said to be an S-lattice if every prime element is an
S-element. S-lattices have been studied in [13]. Following [11], a prime element p

of L is said to be a d-prime, if Lp is a discrete valuation lattice (i.e., consists just
of the elements 0, 1, and the powers of p all of which are distinct). L is said to be
an almost discrete valuation lattice if Lm is a discrete valuation lattice (i.e., m is a
d-prime) for every maximal prime m of L [11].

L is said to be reduced if 0 is the only nilpotent element of L. Principal elements
were introduced into multiplicative lattices by R.P. Dilworth [7]. A multiplicative
lattice L in which every element is principal is called a principal element lattice.
Similarly, L is said to be an almost principal element lattice, if Lm is a principal
element lattice, for every maximal element m of L. It is well known that if L

is principally generated, then L is a principal element lattice if and only if every
prime element is principal. For various characterizations of almost principal element
lattices and principal element lattices, the reader is referred to [5], [8], [9] and [12].
L is said to be a Prüfer lattice if every compact element is principal. It is well known
that a principally generated C-lattice L is a Prüfer lattice if and only if Lp is totally
ordered for every prime p of L. For more information on Prüfer lattices, the reader
is referred to [2, Theorem 3.4] and [19]. A reduced lattice L is said to be a Dedekind
lattice if every element not contained in any minimal prime is weak meet principal.
L is said to be a Baer lattice if, for any x ∈ L∗, (0 : (0 : x)) ∨ (0 : x) = 1. For more
information on Dedekind lattices and Baer lattices, the reader may consult [11]. L

is a Noetherian lattice, if L satisfies the ascending chain condition. L is a locally
Noetherian lattice, if Lm is a Noetherian lattice for every maximal prime element
m of L. It should be mentioned that if L is a principally generated Noetherian
lattice, then L is a Noether lattice (in the sense of [7]) if and only if L is a modular
lattice.

A prime ideal P of R is said to be branched (unbranched, �-prime) if P is the
branched (unbranched, �-prime) element of L(R). Recall that an ideal I of R is
called a multiplication ideal if for every ideal J ⊆ I, there exists an ideal K with
J = KI. R is a multiplication ring if every ideal is a multiplication ideal. R is an
almost multiplication ring if RM is a multiplication ring, for every maximal ideal
M of R. Multiplication rings and almost multiplication rings have been extensively
studied — for example, see [6] and [21]. An ideal M of R is called a quasi-principal
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ideal [16, Exercise 10, Page 147] (or a principal element of L(R) [20]) if it satisfies the
following identities (i) (A∩(B:M))M = AM∩B and (ii) (A+BM):M = (A:M)+B,

for all A, B ∈ L(R). Obviously every quasi-principal ideal is a multiplication ideal.
It should be mentioned that every quasi-principal ideal is finitely generated and
also a finite product of quasi-principal ideals of R is again a quasi-principal ideal
[16, Exercise 10, Page 147]. In fact, an ideal I of R is quasi-principal if and only if
it is finitely generated and locally principal [4, Theorem 3]. It should be mentioned
that every principal ideal of R is quasi-principal and hence L(R), the lattice of all
ideals of R, is a principally generated modular C-lattice.

For general background and terminology, the reader may consult [2], [4], [10] and
[16].

3. �-prime elements in C-lattices

In this section we study �-prime elements in C-lattices.
We shall begin with the following lemma.

Lemma 1. Let m be a prime element and suppose m covers p for some prime
element p of L. Then p is the meet of all m-primary elements containing p.

Proof. Let a = ∧{q ∈ L | p ≤ q and q is m-primary}. Clearly p ≤ a. Suppose
p < a. Choose any compact join principal element x ≤ a such that x � p. Then
m is minimal over p ∨ x2 and hence by [10, Property 0.5], (p ∨ x2)m is m-primary.
Again x ≤ a ≤ (p∨x2)m, so xz ≤ p∨x2 for some z � m. But then z ≤ (p∨x2 :x) =
x ∨ (p : x) ≤ x ∨ p ≤ m, a contradiction and therefore p = a. �

Lemma 2. Let L be a domain. If m is a rank one prime element, then m∆ = 0.

Proof. The proof of the lemma follows from Lemma 1. �

Lemma 3. If m is an �-prime element of L and if m covers p for some prime
element p of L, then p = m∆.

Proof. By Lemma 1, m∆ ≤ p. If m∆ < p, then there exists an m-primary element
q such that p � q. As m is an �-prime, it follows that q ≤ p, so m =

√
q ≤ p, a

contradiction and therefore p = m∆. �

Definition 1. A prime element p of L is said to be a strong �-prime if the primary
elements contained in p are linearly ordered.

Note that every strong �-prime element is an �-prime.

Lemma 4. Let m be a non-minimal strong �-prime element of L. Then m is an
S-element.
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Proof. If m = m∆, then we are through. Suppose m∆ < m. Let p = ∨{pα | pα < m

is a prime element of L}. As the primary elements contained in m are linearly
ordered, it follows that p ≤ m∆ and p is prime. Again since m covers p, by Lemma
3, p = m∆. Therefore m∆ is prime and contains every prime element properly
contained in m. Therefore m is an S-element. �

Lemma 5. Let L satisfy the a.c.c. for prime elements. If p is a non-minimal
�-prime element, then p is a branched S-element.

Proof. Let p be a non-minimal �-prime element of L. Let Ψ = {q ∈ L | q < p

is a prime element}. By the a.c.c. for prime elements, Ψ contains a maximal
element, say N(p). By Lemma 3, N(p) = p∆, so N(p) is unique and hence N(p)
contains every prime element properly contained in p. Therefore p is a branched
S-element. �

Lemma 6. Let L be a principally generated zero dimensional quasi-local lattice
with maximal element m. If m is a non-idempotent �-prime, then m is principal.

Proof. Note that every element is primary. As m is an �-prime, it follows that L is
totally ordered. By Lemma 7 of [8], m is principal. �

For any a ∈ L, we denote aω =
∧∞

n=1 an. Following [12], an element a ∈ L is
said to be strong compact if both a and aω are compact elements. Strong compact
elements have been studied in [12] to characterize almost principal element lattices
and principal element lattices.

Lemma 7. Let L be a principally generated quasi-local lattice satisfying the a.c.c.
for prime elements. Suppose m is a strong compact, non-minimal maximal element.
If m is an �-prime, then L is a discrete valuation lattice.

Proof. The proof of the lemma follows from Lemma 5 and [13, Lemma 5]. �

4. Prüfer lattices

In this section we characterize Prüfer lattices, in terms of �-prime elements.
Further a new characterization is given for an arithmetical ring.

Theorem 1. Let L be a principally generated reduced lattice satisfying the a.c.c.
for prime elements. Then L is a Prüfer lattice if and only if every prime is an
�-prime.
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Proof. Obviously, if L is a Prüfer lattice, then every prime is an �-prime. Conversely,
assume that every prime is an �-prime. Note that in a reduced lattice, the minimal
prime elements are unbranched. Therefore by Lemma 5 and [13, Theorem 4], L is
a Prüfer lattice. �
Corollary 1. Let L be a principally generated reduced lattice satisfying the a.c.c.
for prime elements. If there exists a strong �-prime element p such that every prime
is contained in p, then L is totally ordered.

Proof. The proof of the corollary follows from Theorem 1. �
Theorem 2. Suppose L is a principally generated reduced lattice. Then every
branched prime element is contained in a rank one �-prime if and only if L is a
Prüfer lattice and dim L ≤ 1.

Proof. Suppose every branched prime element is contained in a rank one �-prime
element. We show that dim L ≤ 1. Suppose p < m be any two prime elements.
Choose any principal element x ≤ m such that x � p. Let p0 ≤ m be a prime
minimal over p∨x. Then (p∨x2)p0 is p0-primary [10, Property 0.5] and (p∨x2)p0 <

p0 [9, Lemma 12] and hence p0 is a branched prime element. Let q be a rank one
�-prime element such that p0 ≤ q. Since p < p0 ≤ q and rank q = 1, it follows that
p0 = q and hence p is minimal. This shows that dim L ≤ 1. Again note that p0 = m

and hence every non-minimal maximal prime element is a branched �-prime. As L

is reduced, it follows that every minimal prime is unbranched [11, Lemma 3] and
so every minimal prime is an �-prime. Again by Theorem 1, L is a Prüfer lattice.

Conversely, assume that dim L ≤ 1 and L is a Prüfer lattice. As L is reduced,
branched prime elements are non-minimal primes. Again by hypothesis, branched
prime elements are rank one �-primes. Also by Lemma 3, rank one �-primes are
branched �-primes. This completes the proof of the theorem. �
Corollary 2. Suppose L is a principally generated domain. Then every prime
element of L is contained in a rank one �-prime element if and only if L is a one
dimensional Prüfer domain in which every non zero prime element is branched.

Proof. The proof of the corollary follows from Lemma 2 and Theorem 2. �

R is called a reduced ring if the zero element is the only nilpotent element. R

is an arithmetical ring if every finitely generated ideal is locally principal. Again
note that R is an arithmetical ring if and only if L(R) is a Prüfer lattice.

As a consequence of Theorem 1 and the fact that L(R) is a principally generated
C-lattice, we have the following result.

Corollary 3. Let R be a reduced ring satisfying the a.c.c. for prime ideals. Then
R is an arithmetical ring if and only if every prime ideal is an �-prime ideal.
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5. Principal element lattices

In this section we characterize principal element lattices and almost principal
element lattices in terms of �-prime elements. Using these results, some new char-
acterizations are given for general ZPI-rings and almost multiplication rings.

Theorem 3. Suppose L is principally generated. Then L is a principal element
lattice if and only if L satisfies the following conditions:

(i) Every maximal prime element is a strong compact �-prime element.
(ii) L satisfies the a.c.c. for prime elements.

Proof. Obviously, every principal element lattice satisfies the conditions (i) and (ii).
Now assume that L satisfies the conditions (i) and (ii). Let m be a maximal prime
element of L. If m is idempotent, then by [2, Theorem 1.4], Lm is a two element
chain. If m is non-idempotent and non-minimal, then by Lemma 7, Lm is a discrete
valuation lattice. If m is non-idempotent and minimal, then by Lemma 6, Lm is a
principal element lattice. Therefore L is an almost principal element lattice. Again
since L is an almost principal element lattice, it follows that dim L ≤ 1, and also
if p < m are prime elements, then p = mω (see the proof of [9, Theorem 7]). So by
(i), every prime element is compact. As every prime element is compact and locally
principal, it follows that every prime element is principal [4, Theorem 1] and hence
L is a principal element lattice. This completes the proof of the theorem. �

As a consequence, we have the following results.

Corollary 4. Suppose L is principally generated. Then L is an almost principal
element lattice if and only if L is locally Noetherian and every maximal prime is
an �-prime.

Corollary 5. Suppose L is principally generated. Then L is a principal element
lattice if and only if L is Noetherian and every maximal prime is an �-prime.

Theorem 4. Let L be a principally generated reduced lattice. Then L is an almost
principal element lattice if and only if every branched prime element is contained
in a non-idempotent rank one �-prime.

Proof. Suppose every branched prime element of L is contained in a non-idempotent
rank one �-prime. By Theorem 2, L is a Prüfer lattice and dim L ≤ 1. Suppose m

is a maximal prime element of L. If m is minimal, then m is unbranched and hence
Lm is a two element chain. If m is non-minimal, then by Lemma 3, m is branched
and hence by hypothesis, m is a non-idempotent rank one �-prime. Therefore by
Lemma 2, Theorem 1 and Theorem 2 of [11], Lm is a discrete valuation lattice.
Hence L is an almost principal element lattice.
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Conversely, assume that L is an almost principal element lattice. Then by
Lemma 2, Theorem 1 and Theorem 5 of [9], L is a Prüfer lattice and dim L ≤ 1.
Again by [10, Lemma 5] and [9, Corollary 1], rank one �-primes are non-idempotent.
Now the result follows from Theorem 2. This completes the proof of the theorem.

�

Theorem 5. Let L be a principally generated lattice. Then L is a principal element
lattice if and only if every prime is contained in a strong compact, strong �-prime
element.

Proof. If L is a principal element lattice, then we are through. So assume that
every prime is contained in a strong compact, strong �-prime element. Then every
maximal prime is a strong compact, strong �-prime element. Let m be a maximal
prime element of L. Then by Lemma 4 and [13, Lemma 5], it follows that rank
m ≤ 1. This shows that dim L ≤ 1. As L satisfies the a.c.c. for prime elements,
by Theorem 3, L is a principal element lattice and the proof is complete. �

An ideal I of R is said to be a strong finitely generated ideal (strong �-prime
ideal), if I is a strong compact (strong �-prime) element of L(R).

Observe that by [14, Theorem 2.2], R is a general ZPI-ring if and only if L(R)
is a principal element lattice. Also it should be mentioned that if L = L(R) is the
lattice of all ideals of R and if P is a prime ideal of R, then the lattice L(RP ) of all
ideals of RP is naturally isomorphic to the localization LP of the lattice L = L(R).
Therefore by [6, Theorem 2.0], R is an almost multiplication ring if and only if
L(R) is an almost principal element lattice.

We now establish some new characterizations for general ZPI-rings and almost
multiplication rings.

Theorem 6. The following statements on R are equivalent:

(i) R is a general ZPI-ring.
(ii) R satisfies the a.c.c. for prime ideals and every maximal ideal is a strong

finitely generated �-prime ideal.
(iii) Every maximal ideal is a strong finitely generated, strong �-prime ideal.

Proof. The proof of the theorem follows from Theorem 3, Theorem 5 and the fact
that R is a general ZPI-ring if and only if L(R) is a principal element lattice. �

Theorem 7. R is an almost multiplication ring if and only if R satisfies the fol-
lowing conditions:

(i) Every maximal prime ideal is an �-prime ideal.
(ii) Every maximal prime ideal is a locally strong finitely generated ideal.
(iii) R satisfies the a.c.c. for prime ideals.
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Proof. The proof of the theorem follows from Theorem 3 and the fact that R is
an almost multiplication ring if and only if L(R) is an almost principal element
lattice. �

Theorem 8. Suppose R is a reduced ring. Then R is an almost multiplication ring
if and only if every branched prime ideal is contained in a non-idempotent rank one
�-prime ideal.

Proof. The proof of the theorem follows from Theorem 4. �

6. Dedekind lattices

In this section, we establish some new characterizations for Dedekind lattices.
We shall begin with the following lemma.

Lemma 8. Let a ∈ L be weak meet principal. Then a is compact if and only if
θ(a) = 1.

Proof. If a is compact, then θ(a) ≥ (a : a) = 1, so θ(a) = 1. Now assume that
θ(a) = 1. Since 1 is compact, it follows that 1 =

∨n
i=1{(xi : a) | xi ∈ L∗ and

xi ≤ a}. So a = (
∨n

i=1(xi : a))a =
∨n

i=1(xi : a)a ≤ ∨n
i=1 xi ≤ a. Therefore a =

∨n
i=1 xi and hence a is compact. �

Lemma 9. Let a ∈ L be a weak meet principal element. If a is not contained in
any minimal prime element, then a is compact.

Proof. By using Lemma 8 and by imitating the proofs of Proposition 3 and Theorem
3 of [3] we can get the result. �

Dedekind lattices have been studied in [11]. The following Theorem 9 establishes
some new characterizations for Dedekind lattices.

Theorem 9. Suppose L is a reduced lattice. Then the following statements on L

are equivalent:

(i) L is a Dedekind lattice.
(ii) Every non-minimal prime is invertible.
(iii) Each non-minimal prime is principal.
(iv) Every non-minimal prime is weak meet principal.
(v) Every element not contained in any minimal prime is invertible.

Proof. (i)⇒(ii). Suppose L is a Dedekind lattice. By [11, Lemma 10], L is princi-
pally generated. Let p be a non-minimal prime. By (i), p is weak meet principal.
By Lemma 9, p is compact and by [4, Proposition 2(d)], p is locally principal.
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Therefore by [4, Theorem 1], p is principal. As L is reduced and p is a non-minimal
principal prime, it follows that (0 : p) = 0. Therefore p is invertible.

(ii) ⇒(iii)⇒(iv) is obvious.
(iv)⇒(v). Suppose (iv) holds. We claim that L is an almost principal element

lattice. Let m be a maximal prime element of L. If m is minimal, then Lm is a two
element chain (as L is reduced). Suppose m is a non-minimal prime element of L.
By imitating the proof of [12, Theorem 3], it can be easily shown that rank m = 1.
Again since rank m = 1 and L is reduced, by [10, Property 0.4], Lm is a domain.
Therefore by [12, Corollary 1], Lm is a principal element lattice and hence L is an
almost principal element lattice. Again by imitating the proof of [11, Lemma 9], we
can easily show that L is a Baer lattice and hence by Theorem 4 and Theorem 9 of
[11], L is a Dedekind lattice. Let x be any element of L such that x is not contained
in any minimal prime element of L. Since L is a Dedekind lattice, it follows that
x is weak meet principal, so by Lemma 9, x is compact and hence principal by [4,
Theorem 1]. Obviously (0 : x) = 0 and hence x is invertible. Thus (v) holds and
(v)⇒(i) is obvious. This completes the proof of the theorem. �
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