Algebra univers. **48** (2002) 117–127 0002-5240/02/010117 – 11 c Birkh¨auser Verlag, Basel, 2002 **Algebra Universalis**

-prime elements in multiplicative lattices

C. Jayaram

ABSTRACT. In this paper we study ℓ -prime elements in C-lattices and characterize Prüfer lattices, almost principal element lattices and principal element lattices in terms of ℓ -prime elements. Using these results, some new characterizations are given for general ZPI-rings and almost multiplication rings. Finally some new equivalent conditions are given for Dedekind lattices.

1. Introduction

Throughout this paper R denotes a commutative ring with identity and $L(R)$ denotes the lattice of all ideals of R. R is called a general ZPI-ring, if every ideal is a finite product of prime ideals. For various characterizations of general ZPI-rings, the reader is referred to [17], [18], [21] and [22]. It is well known that if R is a Noetherian integral domain, then R is a Dedekind domain if and only if for any maximal ideal P of R , the set of P -primary ideals of R is totally ordered by set inclusion [16, Theorem 6.20, page 137]. This result is true even for non-domains. In fact R is a general ZPI-ring if and only if R is a Noetherian ring and for any maximal ideal P of R , the set of P -primary ideals of R is totally ordered by set inclusion (see [22, Theorem 4] and [15, Theorem 3]). It is well known that R a general ZPI-ring if and only if $L(R)$ is a principal element lattice [14, Theorem 2.2] and R is a Noetherian ring if and only if $L(R)$ is a Noether lattice [7]. Therefore $L(R)$ is a principal element lattice if and only if $L(R)$ is a Noether lattice and for any maximal ideal P of R , the set of P -primary ideals of R is totally ordered by set inclusion. Our aim is to extend this result to non-modular multiplicative lattices. For various examples of non-modular multiplicative lattices, the reader is referred to [1]. It should be mentioned that there is a significant difference between our proofs and the already existing ones presented in ring-theory books. In Section 2, we give some definitions and known results that we use in this paper. In Section 3, we study ℓ -prime elements in C-lattices. In Section 4, we prove that if L is a principally generated reduced C-lattice satisfying the a.c.c. (ascending chain

Presented by F. Wehrung.

Received August 18, 2000; accepted in final form April 22, 2002.

²⁰⁰⁰ *Mathematics Subject Classification*: 06F10, 06F05, 06F99, 13A15.

Key words and phrases: Principal element, Prüfer lattice, Dedekind lattice, general ZPI-ring, multiplication ring.

condition) for prime elements, then L is a Prüfer lattice if and only if every prime is an ℓ -prime (see Theorem 1). Next we show that if L is a principally generated reduced lattice, then every branched prime element is contained in a rank one ℓ prime if and only if L is a Prüfer lattice and dim $L \leq 1$ (see Theorem 2). Also a new characterization is given for an arithmetical ring (see Corollary 3). In Section 5, we show that if L is principally generated, then L is a principal element lattice if and only if L satisfies the a.c.c. for prime elements and every maximal prime element is a strong compact ℓ -prime element (see Theorem 3). As a consequence, it is shown that if L is principally generated, then L is a principal element lattice if and only if L is Noetherian and every maximal prime is an ℓ -prime (see Corollary 5). Further it is proved that if L is a principally generated reduced lattice, then L is an almost principal element lattice if and only if every branched prime element is contained in a non idempotent rank one ℓ -prime (see Theorem 4). Also it is shown that if L is principally generated, then L is a principal element lattice if and only if every prime element is contained in a strong compact, strong ℓ -prime element (see Theorem 5). Using these results, some new characterizations are given for general ZPI-rings and almost multiplication rings (see Theorem 6, Theorem 7 and Theorem 8). Finally in Section 6, we characterize Dedekind lattices in terms of non-minimal prime elements (see Theorem 9).

2. Basic notions

An element e of a multiplicative lattice L is said to be principal if it satisfies the dual identities (i) $a \wedge be = ((a : e) \wedge b)e$ and (ii) $(a \vee be) : e = (a : e) \vee b$. Elements satisfying (i) are called meet principal and elements satisfying (ii) are called join principal. Elements satisfying the weaker identity (iii) $a \wedge e = (a : e)e$ obtained from (i) by setting $b = 1$ are called weak meet principal. An element $a \in L$ is called invertible if a is principal and $(0 : a) = 0$. By a C-lattice we mean a (not necessarily modular) complete multiplicative lattice, with least element 0 and compact greatest element 1 (a multiplicative identity), which is generated under joins by a multiplicatively closed subset C of compact elements. A C -lattice is said to be a domain if the zero element is a prime element. In a principally generated C-lattice, principal elements are compact [2, Theorem 1.3] and a finite product of principal elements is again a principal element [7].

Throughout this paper we assume that L is a C -lattice generated by compact join principal elements. L_* denotes the set of all compact elements of L. For any $a \in L$, we denote $\theta(a) = \forall \{(x : a) \mid x \in L_* \text{ and } x \leq a\}$. C-lattices can be localized. For any prime element p of L, L_p denotes the localization at $F = \{x \in C \mid x \nleq p\}.$ For basic properties of localization, the reader is referred to [10]. A prime element

p of L is said to be an ℓ -prime if the set of all p-primary elements of L is linearly ordered. For any prime p of L, p^{Δ} denotes the meet of all p-primary elements of L. A prime element p of L is said to be branched (unbranched) if $p > p^{\Delta}$ ($p = p^{\Delta}$). Let p, m be two prime elements of L. We say m covers p if $m>p$ and there is no prime element p_1 of L such that $m>p_1 > p$. A prime element p of L is said to be an S-element if p is an ℓ -prime, p^{Δ} is prime and p^{Δ} contains every prime element properly contained in $p. L$ is said to be an S-lattice if every prime element is an S-element. S-lattices have been studied in $[13]$. Following $[11]$, a prime element p of L is said to be a d-prime, if L_p is a discrete valuation lattice (i.e., consists just of the elements $0, 1$, and the powers of p all of which are distinct). L is said to be an almost discrete valuation lattice if L_m is a discrete valuation lattice (i.e., m is a d-prime) for every maximal prime m of L [11].

L is said to be *reduced* if 0 is the only nilpotent element of L. Principal elements were introduced into multiplicative lattices by R.P. Dilworth [7]. A multiplicative lattice L in which every element is principal is called a *principal element lattice*. Similarly, L is said to be an *almost principal element lattice*, if L_m is a principal element lattice, for every maximal element m of L . It is well known that if L is principally generated, then L is a principal element lattice if and only if every prime element is principal. For various characterizations of almost principal element lattices and principal element lattices, the reader is referred to [5], [8], [9] and [12]. L is said to be a Prüfer lattice if every compact element is principal. It is well known that a principally generated C-lattice L is a Prüfer lattice if and only if L_p is totally ordered for every prime p of L . For more information on Prüfer lattices, the reader is referred to [2, Theorem 3.4] and [19]. A reduced lattice L is said to be a Dedekind lattice if every element not contained in any minimal prime is weak meet principal. L is said to be a Baer lattice if, for any $x \in L_*$, $(0:(0:x)) \vee (0:x) = 1$. For more information on Dedekind lattices and Baer lattices, the reader may consult [11]. L is a Noetherian lattice, if L satisfies the ascending chain condition. L is a locally Noetherian lattice, if L_m is a Noetherian lattice for every maximal prime element m of L . It should be mentioned that if L is a principally generated Noetherian lattice, then L is a Noether lattice (in the sense of [7]) if and only if L is a modular lattice.

A prime ideal P of R is said to be branched (unbranched, ℓ -prime) if P is the branched (unbranched, ℓ -prime) element of $L(R)$. Recall that an ideal I of R is called a *multiplication ideal* if for every ideal $J \subseteq I$, there exists an ideal K with $J = KI$. R is a *multiplication ring* if every ideal is a multiplication ideal. R is an *almost multiplication ring* if R_M is a multiplication ring, for every maximal ideal M of R. Multiplication rings and almost multiplication rings have been extensively studied — for example, see [6] and [21]. An ideal M of R is called a *quasi-principal*

ideal [16, Exercise 10, Page 147] (or a principal element of $L(R)$ [20]) if it satisfies the following identities (i) $(A \cap (B:M))M = AM \cap B$ and (ii) $(A+BM):M = (A:M)+B$, for all $A, B \in L(R)$. Obviously every quasi-principal ideal is a multiplication ideal. It should be mentioned that every quasi-principal ideal is finitely generated and also a finite product of quasi-principal ideals of R is again a quasi-principal ideal [16, Exercise 10, Page 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated and locally principal [4, Theorem 3]. It should be mentioned that every principal ideal of R is quasi-principal and hence $L(R)$, the lattice of all ideals of R, is a principally generated modular C-lattice.

For general background and terminology, the reader may consult [2], [4], [10] and [16].

3. -prime elements in C**-lattices**

In this section we study ℓ -prime elements in C-lattices. We shall begin with the following lemma.

Lemma 1. *Let* m *be a prime element and suppose* m *covers* p *for some prime element* p *of* L*. Then* p *is the meet of all* m*-primary elements containing* p*.*

Proof. Let $a = \land \{q \in L \mid p \leq q \text{ and } q \text{ is } m\text{-primary}\}.$ Clearly $p \leq a$. Suppose $p < a$. Choose any compact join principal element $x \le a$ such that $x \nle p$. Then m is minimal over $p \vee x^2$ and hence by [10, Property 0.5], $(p \vee x^2)_m$ is m-primary. Again $x \le a \le (p \vee x^2)_m$, so $xz \le p \vee x^2$ for some $z \nleq m$. But then $z \le (p \vee x^2 : x) =$ $x \vee (p : x) \leq x \vee p \leq m$, a contradiction and therefore $p = a$.

Lemma 2. Let L be a domain. If m is a rank one prime element, then $m^{\Delta} = 0$.

Proof. The proof of the lemma follows from Lemma 1.

Lemma 3. *If* m *is an -prime element of* L *and if* m *covers* p *for some prime element* p *of* L, then $p = m^{\Delta}$.

Proof. By Lemma 1, $m^{\Delta} \leq p$. If $m^{\Delta} < p$, then there exists an m-primary element q such that $p \nleq q$. As m is an ℓ -prime, it follows that $q \leq p$, so $m = \sqrt{q} \leq p$, a contradiction and therefore $p = m^{\Delta}$.

Definition 1. A prime element p of L is said to be a strong ℓ -prime if the primary elements contained in p are linearly ordered.

Note that every strong ℓ -prime element is an ℓ -prime.

Lemma 4. Let m be a non-minimal strong ℓ -prime element of L. Then m is an S*-element.*

Proof. If $m = m^{\Delta}$, then we are through. Suppose $m^{\Delta} < m$. Let $p = \sqrt{p_{\alpha}} \mid p_{\alpha} < m$ is a prime element of L . As the primary elements contained in m are linearly ordered, it follows that $p \leq m^{\Delta}$ and p is prime. Again since m covers p, by Lemma 3, $p = m^{\Delta}$. Therefore m^{Δ} is prime and contains every prime element properly contained in m . Therefore m is an S-element. \Box

Lemma 5. *Let* L *satisfy the a.c.c. for prime elements. If* p *is a non-minimal -prime element, then* p *is a branched* S*-element.*

Proof. Let p be a non-minimal ℓ -prime element of L. Let $\Psi = \{q \in L \mid q < p\}$ is a prime element}. By the a.c.c. for prime elements, Ψ contains a maximal element, say $N(p)$. By Lemma 3, $N(p) = p^{\Delta}$, so $N(p)$ is unique and hence $N(p)$ contains every prime element properly contained in p . Therefore p is a branched S-element. \Box

Lemma 6. *Let* L *be a principally generated zero dimensional quasi-local lattice with maximal element* m*. If* m *is a non-idempotent -prime, then* m *is principal.*

Proof. Note that every element is primary. As m is an ℓ -prime, it follows that L is totally ordered. By Lemma 7 of [8], m is principal.

For any $a \in L$, we denote $a^{\omega} = \bigwedge_{n=1}^{\infty} a^n$. Following [12], an element $a \in L$ is said to be strong compact if both a and a^{ω} are compact elements. Strong compact elements have been studied in [12] to characterize almost principal element lattices and principal element lattices.

Lemma 7. *Let* L *be a principally generated quasi-local lattice satisfying the a.c.c. for prime elements. Suppose* m *is a strong compact, non-minimal maximal element. If m is an -prime, then* L *is a discrete valuation lattice.*

Proof. The proof of the lemma follows from Lemma 5 and [13, Lemma 5]. \Box

4. Pr¨ufer lattices

In this section we characterize Prüfer lattices, in terms of ℓ -prime elements. Further a new characterization is given for an arithmetical ring.

Theorem 1. *Let* L *be a principally generated reduced lattice satisfying the a.c.c. for prime elements. Then* L *is a Prüfer lattice if and only if every prime is an -prime.*

122 C. Jayaram Algebra univers.

Proof. Obviously, if L is a Prüfer lattice, then every prime is an ℓ -prime. Conversely, assume that every prime is an ℓ -prime. Note that in a reduced lattice, the minimal prime elements are unbranched. Therefore by Lemma 5 and [13, Theorem 4], L is a Prüfer lattice. \Box

Corollary 1. *Let* L *be a principally generated reduced lattice satisfying the a.c.c. for prime elements. If there exists a strong -prime element* p *such that every prime is contained in* p*, then* L *is totally ordered.*

Proof. The proof of the corollary follows from Theorem 1.

Theorem 2. *Suppose* L *is a principally generated reduced lattice. Then every branched prime element is contained in a rank one -prime if and only if* L *is a Prüfer lattice and dim* $L \leq 1$ *.*

Proof. Suppose every branched prime element is contained in a rank one ℓ -prime element. We show that dim $L \leq 1$. Suppose $p < m$ be any two prime elements. Choose any principal element $x \leq m$ such that $x \nleq p$. Let $p_0 \leq m$ be a prime minimal over $p \vee x$. Then $(p \vee x^2)_{p_0}$ is p_0 -primary [10, Property 0.5] and $(p \vee x^2)_{p_0}$ < p_0 [9, Lemma 12] and hence p_0 is a branched prime element. Let q be a rank one ℓ -prime element such that $p_0 \leq q$. Since $p < p_0 \leq q$ and rank $q = 1$, it follows that $p_0 = q$ and hence p is minimal. This shows that dim $L \leq 1$. Again note that $p_0 = m$ and hence every non-minimal maximal prime element is a branched ℓ -prime. As L is reduced, it follows that every minimal prime is unbranched [11, Lemma 3] and so every minimal prime is an ℓ -prime. Again by Theorem 1, L is a Prüfer lattice.

Conversely, assume that dim $L \leq 1$ and L is a Prüfer lattice. As L is reduced, branched prime elements are non-minimal primes. Again by hypothesis, branched prime elements are rank one ℓ -primes. Also by Lemma 3, rank one ℓ -primes are branched ℓ -primes. This completes the proof of the theorem.

Corollary 2. *Suppose* L *is a principally generated domain. Then every prime element of L is contained in a rank one -prime element if and only if L is a one dimensional Prüfer domain in which every non zero prime element is branched.*

Proof. The proof of the corollary follows from Lemma 2 and Theorem 2. \Box

 R is called a reduced ring if the zero element is the only nilpotent element. R is an arithmetical ring if every finitely generated ideal is locally principal. Again note that R is an arithmetical ring if and only if $L(R)$ is a Prüfer lattice.

As a consequence of Theorem 1 and the fact that $L(R)$ is a principally generated C-lattice, we have the following result.

Corollary 3. *Let* R *be a reduced ring satisfying the a.c.c. for prime ideals. Then* R *is an arithmetical ring if and only if every prime ideal is an -prime ideal.*

5. Principal element lattices

In this section we characterize principal element lattices and almost principal element lattices in terms of ℓ -prime elements. Using these results, some new characterizations are given for general ZPI-rings and almost multiplication rings.

Theorem 3. *Suppose* L *is principally generated. Then* L *is a principal element lattice if and only if* L *satisfies the following conditions:*

- (i) *Every maximal prime element is a strong compact* ℓ -prime element.
- (ii) L *satisfies the a.c.c. for prime elements.*

Proof. Obviously, every principal element lattice satisfies the conditions (i) and (ii). Now assume that L satisfies the conditions (i) and (ii). Let m be a maximal prime element of L. If m is idempotent, then by [2, Theorem 1.4], L_m is a two element chain. If m is non-idempotent and non-minimal, then by Lemma 7, L_m is a discrete valuation lattice. If m is non-idempotent and minimal, then by Lemma 6, L_m is a principal element lattice. Therefore L is an almost principal element lattice. Again since L is an almost principal element lattice, it follows that dim $L \leq 1$, and also if $p < m$ are prime elements, then $p = m^{\omega}$ (see the proof of [9, Theorem 7]). So by (i), every prime element is compact. As every prime element is compact and locally principal, it follows that every prime element is principal [4, Theorem 1] and hence L is a principal element lattice. This completes the proof of the theorem. \Box

As a consequence, we have the following results.

Corollary 4. *Suppose* L *is principally generated. Then* L *is an almost principal element lattice if and only if* L *is locally Noetherian and every maximal prime is an -prime.*

Corollary 5. *Suppose* L *is principally generated. Then* L *is a principal element lattice if and only if* L *is Noetherian and every maximal prime is an l-prime.*

Theorem 4. *Let* L *be a principally generated reduced lattice. Then* L *is an almost principal element lattice if and only if every branched prime element is contained in a non-idempotent rank one -prime.*

Proof. Suppose every branched prime element of L is contained in a non-idempotent rank one ℓ -prime. By Theorem 2, L is a Prüfer lattice and dim $L \leq 1$. Suppose m is a maximal prime element of L . If m is minimal, then m is unbranched and hence L_m is a two element chain. If m is non-minimal, then by Lemma 3, m is branched and hence by hypothesis, m is a non-idempotent rank one ℓ -prime. Therefore by Lemma 2, Theorem 1 and Theorem 2 of [11], L_m is a discrete valuation lattice. Hence L is an almost principal element lattice.

Conversely, assume that L is an almost principal element lattice. Then by Lemma 2, Theorem 1 and Theorem 5 of [9], L is a Prüfer lattice and dim $L \leq 1$. Again by [10, Lemma 5] and [9, Corollary 1], rank one ℓ -primes are non-idempotent. Now the result follows from Theorem 2. This completes the proof of the theorem. \Box

Theorem 5. *Let* L *be a principally generated lattice. Then* L *is a principal element lattice if and only if every prime is contained in a strong compact, strong -prime element.*

Proof. If L is a principal element lattice, then we are through. So assume that every prime is contained in a strong compact, strong ℓ -prime element. Then every maximal prime is a strong compact, strong ℓ -prime element. Let m be a maximal prime element of L. Then by Lemma 4 and [13, Lemma 5], it follows that rank $m \leq 1$. This shows that dim $L \leq 1$. As L satisfies the a.c.c. for prime elements, by Theorem 3, L is a principal element lattice and the proof is complete. \Box

An ideal I of R is said to be a strong finitely generated ideal (strong ℓ -prime ideal), if I is a strong compact (strong ℓ -prime) element of $L(R)$.

Observe that by [14, Theorem 2.2], R is a general ZPI-ring if and only if $L(R)$ is a principal element lattice. Also it should be mentioned that if $L = L(R)$ is the lattice of all ideals of R and if P is a prime ideal of R, then the lattice $L(R_P)$ of all ideals of R_P is naturally isomorphic to the localization L_P of the lattice $L = L(R)$. Therefore by $[6,$ Theorem 2.0, R is an almost multiplication ring if and only if $L(R)$ is an almost principal element lattice.

We now establish some new characterizations for general ZPI-rings and almost multiplication rings.

Theorem 6. *The following statements on* R *are equivalent:*

- (i) R *is a general ZPI-ring.*
- (ii) R *satisfies the a.c.c. for prime ideals and every maximal ideal is a strong finitely generated -prime ideal.*
- (iii) *Every maximal ideal is a strong finitely generated, strong* ℓ *-prime ideal.*

Proof. The proof of the theorem follows from Theorem 3, Theorem 5 and the fact that R is a general ZPI-ring if and only if $L(R)$ is a principal element lattice. \square

Theorem 7. R *is an almost multiplication ring if and only if* R *satisfies the following conditions:*

- (i) *Every maximal prime ideal is an -prime ideal.*
- (ii) *Every maximal prime ideal is a locally strong finitely generated ideal.*
- (iii) *R satisfies the a.c.c. for prime ideals.*

Proof. The proof of the theorem follows from Theorem 3 and the fact that R is an almost multiplication ring if and only if $L(R)$ is an almost principal element lattice.

Theorem 8. *Suppose* R *is a reduced ring. Then* R *is an almost multiplication ring if and only if every branched prime ideal is contained in a non-idempotent rank one -prime ideal.*

Proof. The proof of the theorem follows from Theorem 4.

6. Dedekind lattices

In this section, we establish some new characterizations for Dedekind lattices. We shall begin with the following lemma.

Lemma 8. Let $a \in L$ be weak meet principal. Then a is compact if and only if $\theta(a)=1$.

Proof. If a is compact, then $\theta(a) \geq (a : a) = 1$, so $\theta(a) = 1$. Now assume that $\theta(a) = 1$. Since 1 is compact, it follows that $1 = \bigvee_{i=1}^{n} \{(x_i : a) \mid x_i \in L_* \text{ and }$ $x_i \le a$. So $a = (\bigvee_{i=1}^n (x_i : a))a = \bigvee_{i=1}^n (x_i : a)a \le \bigvee_{i=1}^n x_i \le a$. Therefore $a =$ $\bigvee_{i=1}^{n} x_i$ and hence a is compact.

Lemma 9. Let $a \in L$ be a weak meet principal element. If a is not contained in *any minimal prime element, then* a *is compact.*

Proof. By using Lemma 8 and by imitating the proofs of Proposition 3 and Theorem 3 of [3] we can get the result.

Dedekind lattices have been studied in [11]. The following Theorem 9 establishes some new characterizations for Dedekind lattices.

Theorem 9. *Suppose* L *is a reduced lattice. Then the following statements on* L *are equivalent:*

- (i) L *is a Dedekind lattice.*
- (ii) *Every non-minimal prime is invertible.*
- (iii) *Each non-minimal prime is principal.*
- (iv) *Every non-minimal prime is weak meet principal.*
- (v) *Every element not contained in any minimal prime is invertible.*

Proof. (i)⇒(ii). Suppose L is a Dedekind lattice. By [11, Lemma 10], L is principally generated. Let p be a non-minimal prime. By (i), p is weak meet principal. By Lemma 9, p is compact and by [4, Proposition 2(d)], p is locally principal.

Therefore by [4, Theorem 1], p is principal. As L is reduced and p is a non-minimal principal prime, it follows that $(0:p) = 0$. Therefore p is invertible.

 $(ii) \Rightarrow (iii) \Rightarrow (iv)$ is obvious.

 $(iv) \Rightarrow (v)$. Suppose (iv) holds. We claim that L is an almost principal element lattice. Let m be a maximal prime element of L. If m is minimal, then L_m is a two element chain (as L is reduced). Suppose m is a non-minimal prime element of L . By imitating the proof of [12, Theorem 3], it can be easily shown that rank $m = 1$. Again since rank $m = 1$ and L is reduced, by [10, Property 0.4], L_m is a domain. Therefore by [12, Corollary 1], L_m is a principal element lattice and hence L is an almost principal element lattice. Again by imitating the proof of [11, Lemma 9], we can easily show that L is a Baer lattice and hence by Theorem 4 and Theorem 9 of [11], L is a Dedekind lattice. Let x be any element of L such that x is not contained in any minimal prime element of L . Since L is a Dedekind lattice, it follows that x is weak meet principal, so by Lemma 9, x is compact and hence principal by $[4]$, Theorem 1. Obviously $(0: x) = 0$ and hence x is invertible. Thus (v) holds and $(v) \Rightarrow (i)$ is obvious. This completes the proof of the theorem.

REFERENCES

- [1] F. E. Alarcon and D. D. Anderson, *Commutative semirings and their lattices of ideals*, Houston J. Math. **20** (1994), 571–590.
- [2] D. D. Anderson, *Abstract commutative ideal theory without chain condition*, Algebra Universalis **6** (1976), 131–145.
- [3] D. D. Anderson, *Some remarks on multiplication ideals*, Math. Japon. **25** (1980), 463–469.
- [4] D. D. Anderson and E. W. Johnson, *Dilworth's Principal elements*, Algebra Universalis **36** (1996), 392–404.
- [5] D. D. Anderson and C. Jayaram, *Principal element lattices*, Czechoslovak Math. J. **46** (1996), 99–109.
- [6] H. S. Butts and R. C. Phillips, *Almost multiplication rings*, Canad. J. Math. **17** (1965), 267–277.
- [7] R. P. Dilworth, *Abstract commutative ideal theory*, Pacific J. Math. **12** (1962), 481–498.
- [8] C. Jayaram and E. W. Johnson, *Almost principal element lattices*, Internat. J. Math. and Math. Sci. **18** (1995), 535–538.
- [9] C. Jayaram and E. W. Johnson, *Some results on almost principal element lattices*, Periodica Mathematica Hungarica, **31** (1995), 33–42.
- [10] C. Jayaram and E. W. Johnson, *s-prime elements in multiplicative lattices*, Period. Math. Hungar. **31** (1995), 201–208.
- [11] C. Jayaram and E. W. Johnson, *Dedekind lattices*, Acta. Sci. Math. (Szeged) **63** (1997), 367–378.
- [12] C. Jayaram and E. W. Johnson, *Strong compact elements in multiplicative lattices*, Czechoslovak Math. J. **47** (1997), 105–112.
- [13] C. Jayaram, *S-lattices*, Tamkang J. Math. **31** (2000), 267–272.
- [14] C. Jayaram, 2*-Join decomposition lattices*, Algebra Universalis **45** (2001), 7–13.
- [15] C. Jayaram, *Commutative rings in which every principal ideal is a finite intersection of prime power ideals*, Comm. Algebra **29** (2001), no. 4, 1467–1476.

- [16] M. D. Larsen and P. J. McCarthy, *Multiplicative theory of ideals*, Academic Press, New York, 1971.
- [17] K. B. Levitz, *A characterization of general ZPI-rings*, Proc. Amer. Math. Soc. **32** (1972), 376–380.
- [18] K. B. Levitz, *A characterization of general ZPI-rings II*, Pacific J. Math. **42** (1972), 147–151.
- [19] P. J. McCarthy, *Arithmetical rings and multiplicative lattices*, Ann. Mat. Pura Appl. (4) **82** (1969), 267–274.
- [20] P. J. McCarthy, *Principal elements of lattices of ideals*, Proc. Amer. Math. Soc. **30** (1971), 43–45.
- [21] J. L. Mott, *Multiplication rings containing only finitely many minimal prime ideals*, J. Sci. Hiroshima Univ. Ser. A-I **33** (1969), 73–83.
- [22] C. A. Wood, *On general ZPI-rings*, Pacific. J. Math. **30** (1969), 837–846.

C. Jayaram

Department of Mathematics, University of Botswana, Private Bag 00704, Gaborone, Botswana *e-mail*: chillumu@mopipi.ub.bw

To access this journal online: http://www.birkhauser.ch