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Quotients of partial abelian monoids and the Riesz
decomposition property

Gejza Jenča and Sylvia Pulmannová

Abstract. Partial abelian monoids (PAMs) are structures (P ;⊥,⊕, 0), where ⊕ is a par-
tially defined binary operation with domain ⊥, which is commutative and associative in a
restricted sense, and 0 is the neutral element. PAMs with the Riesz decomposition prop-
erties and binary relations with special properties on PAMs are studied. Relations with
abelian groups, dimension equivalence and K0 for AF C*-algebras are discussed.

1. Introduction

The basic algebraic structure that is studied in this paper is a partial abelian
monoid (PAM). A PAM (or a partial abelian semigroup, PAS, cf. [54]) is a struc-
ture (P ;⊥,⊕, 0) where ⊕ is a partial binary operation with the definition domain
⊥, which is commutative and associative in a restricted sense, and has a neutral
element 0. Similar structures have already appeared in literature and found appli-
cations in several fields.

A general theory of universal (partial) algebras can be found in [8], [22, pp.
80–81], a special case of algebras with partially defined binary operation has been
studied in [36].

Beginning with a PAM on the lowest level, there is a hierarchy of partial algebraic
structures. On higher levels we get, successively, a cancellative PAM (c-PAM),
a positive and cancellative PAM (cp-PAM), a unital cp-PAM. We note that cp-
PAMs coincide with generalized effect algebras (GEA), or generalized difference
posets (GDP) [27], and also with abelian RI-sets [34]. As subclasses we obtain here
generalized orthomodular posets [41] and generalized orthomodular lattices [30],
which play an important role as models of the sets of projections in (non-unital)
rings [4], and in quantum mechanical applications.
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The class of unital cp-PAMs coincides with effect algebras (or D-posets). Effect
algebras [18, 19, 23] and D-posets [35] have been introduced as abstract models
for studying quantum effects, that is, self-adjoint operators between 0 and I on
a Hilbert space, and unsharp quantum measurements. These structures are more
general than previous models considered in the quantum logic approach to the
foundations of quantum theory, namely orthomodular lattices and posets and ortho-
algebras [2, 3, 9, 24, 33, 45].

A special branch of PAMs consists of PAMs with the Riesz decomposition proper-
ties, which on higher levels contain some commutative clans [55] and commutative,
positive minimal clans [52], introduced as a common abstraction of boolean rings
and lattice ordered groups. Some commutative BCK-algebras, and on a higher level,
MV-algebras can also be included into this hierarchy. Notice that BCK-algebras
originated from both set theory and propositional calculi, classical and non-classical
[29, 50]. MV-algebras have been introduced by Chang [12] as an algebraic model in
many-valued logic. They have been extensively studied by many authors, and have
found applications in different branches of mathematical logic, functional analysis,
probability theory, group theory and fuzzy-set theory.

Relations among some above mentioned partial algebraic structures can be found
in [10, 47].

Relations between MV-algebras and the K0 theory of certain AF C*-algebras
have been shown in [42], where also the categorical equivalence between MV-
algebras and unit intervals in lattice ordered groups with strong unit has been
shown.

Effect algebras with the Riesz decomposition properties have been studied in
[49], where their equivalence with unit intervals in abelian interpolation groups with
strong unit has been shown, extending the result obtained in [42] for MV-algebras
and lattice ordered groups. Categorical equivalence between a certain class of effect
algebras with Riesz decomposition properties and unital AF C*-algebras has been
shown in [48], extending the results of [42].

In the present paper, we study equivalence relations with some special prop-
erties on PAMs. In particular, we study weak congruences (in the sense of [26])
with additional properties which make the quotient satisfy the Riesz decomposi-
tion properties. We show that these additional properties are related to a dimension
equivalence. We also consider direct limits in a category of cp-PAMs endowed with
weak congruences, and find conditions under which the direct limit can be en-
dowed with a weak congruence with the same properties as the members of the
corresponding directed system.

We also study relations between cp-PAMs with the Riesz decomposition prop-
erties and interpolation groups as their universal groups. We show that an upper
directed cp-PAM with the Riesz decomposition property is lattice ordered if and
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only if its universal group is lattice ordered, which extends the result of [44]. We
also show that there is a one-to-one correspondence between cp-PAMs with the
Riesz decomposition property which are lower semilattices and commutative BCK-
algebras with a relative cancellation property [10].

We introduce some elements of a dimension theory for effect algebras, based on
the results of [37, 38, 39, 51] and [32].

In the last section, some applications to K0 theory of AF C*-algebras are men-
tioned.

2. Basic properties of PAMs

Definition 2.1. A partial abelian monoid (PAM, for short) is a nonempty set P
endowed with a partially defined binary relation ⊕ with a domain ⊥ ⊆ P × P

satisfying the following conditions.

(PM1) (Commutativity). If a ⊥ b then b ⊥ a and a⊕ b = b⊕ a.
(PM2) (Associativity). If a ⊥ b and (a⊕ b) ⊥ c then b ⊥ c and a ⊥ (b ⊕ c), and

(a⊕ b) ⊕ c = a⊕ (b⊕ c).
(PM3) (Neutral element). There is an element 0 ∈ P such that 0 ⊥ a for any

a ∈ P and a⊕ 0 = a.

Observe that the neutral element 0 is uniquely defined. For, if 01 is another
neutral element, then 0 = 0 ⊕ 01 = 01 ⊕ 0 = 01.

We say that a and b are orthogonal if a ⊥ b. In what follows, when we write
a⊕ b we mean that a⊕ b is defined (i.e., a ⊥ b). Owing to associativity (PM2), we
may omit parentheses in a1 ⊕ a2 ⊕ a3 and a1 ⊕ a2 ⊕ · · · ⊕ an, the latter term being
defined by induction. We will say that the elements a1, . . . , an are summable if the
element a1 ⊕ · · · ⊕ an exists in L. More generally, we say that {aα}α is a summable
family if every finite subfamily is summable.

For a ∈ P and n ∈ N, define na = a⊕ a⊕ · · · ⊕ a (n-times) if the right-hand side
exists, and define ι(a) = max{n : ∃na}, the isotropic index of a. We say that a has
an infinite isotropic index if na exists for every n ∈ N.

Definition 2.2. Let (P ;⊥,⊕, 0) be a PAM. We say that P is:

(1) Cancellative if a⊕ b = a⊕ c implies b = c.
(2) Positive if a⊕ b = 0 implies a = b = 0.
(3) Unital if it contains a unit, i.e., an element u ∈ P such that for any a ∈ P

there is b ∈ P such that a⊕ b = u.

The element b such that a ⊕ b = u for a distinguished unit u in a cancellative
PAM is unique and is called the u-supplement of a, denoted by a′.
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For every cancellative PAM, a partial binary operation � can be defined by the
following rule :

(d) a⊕ b = c iff c� b is defined and then c� b = a.

By cancellativity, � is well-defined.
Observe that if P is cancellative and positive, it contains at most one unit.

Indeed, if u and v are units, then there are u1, v1 such that u⊕ u1 = v, v⊕ v1 = u,
so that u ⊕ u1 ⊕ v1 = u = u ⊕ 0, and by cancellativity and positivity, u1 ⊕ v1 = 0
and u1 = v1 = 0, whence u = v. In this case we denote the unit by 1, and call a
1-supplement an orthosupplement.

In what follows, we write c-PAM for a cancellative PAM and cp-PAM for a
positive, cancellative PAM.

Notice that the class of unital cp-PAMs coincides with the class of effect algebras
[54]. Recall that an effect algebra P becomes an orthoalgebra if and only if a ⊥ a

implies a = 0, and P becomes and orthomodular poset if and only if ⊕ coincides
with the supremum for orthogonal elements, equivalently, if and only if any three
pairwise orthogonal elements are summable.

On every PAM (P ;⊥,⊕, 0) we can introduce a binary relation ≤ in the following
way

a ≤ b if there is c ∈ P with a⊕ c = b.

Owing to a⊕0 = 0⊕a = a and associativity, 0 ≤ a, and ≤ is reflexive and transitive,
hence a preorder. If ≤ is a partial order then P is positive. Indeed, if a ⊕ b = 0,
then 0 = 0 ⊕ (a⊕ b) = (0 ⊕ a) ⊕ b, hence 0 ≤ 0 ⊕ a ≤ 0 and hence a = 0.

Lemma 2.3. If P is a positive PAM and for any a and x in P , a⊕ x = a implies
x = 0, then ≤ is a partial order.

In particular, if P is a PAM on which for any a �= 0 the isotropic index ι(a) is
finite, then ≤ is a partial order.

Proof. If a ≤ b and b ≤ a, then there are x and y such that a⊕x = b and b⊕y = a,
hence a ⊕ (x ⊕ y) = a. By hypothesis, x ⊕ y = 0 and by positivity, x = y = 0,
therefore a = b.

If every nonzero element in P has a finite isotropic index, then x⊕ y = 0 implies
that n(x⊕ y) = nx⊕ ny (by associativity) is defined, hence nx exists for all n. By
assumptions, x = 0. So P is positive. If a ⊕ x = a then a = a ⊕ x = (a ⊕ x) ⊕ x

and by induction, a = a⊕ nx, so nx is defined for all n, hence x = 0. �

The following theorem gives a necessary and sufficient condition under which ≤
is a partial order.

Lemma 2.4. Let P be a PAM. The relation ≤ is a partial order if and only if, for
any a, x, y ∈ P , a⊕ x⊕ y = a implies a⊕ x = a.
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Proof. Assume a ≤ b, b ≤ a. For some x, y we have a ⊕ x = b, b ⊕ y = a. Then
a⊕ x⊕ y = a, hence by assumptions, a⊕ x = a = b.

Conversely, assume that ≤ is a partial order. Then a ≤ a⊕ x ≤ a ⊕ x ⊕ y = a

implies a = a⊕ x = a⊕ x⊕ y. �

Let P be a partially ordered PAM, and {aα}α be a summable family. We define⊕
α aα :=

∨
F

⊕
α∈F aα, where the supremum goes over all finite subfamilies F of

α’s, if the supremum on the right hand side exists.
We will say that a partially ordered PAM P is m-orthocomplete for an infinite

cardinal m if every summable family of at most m elements has an ⊕-sum in L.
Thus P is orthocomplete (σ-orthocomplete) if the ⊕-sum exists for any summable
family (any countable summable family).

Definition 2.5. Let P and Q be PAMs. A mapping h : P → Q is a morphism if

(M1) h(0) = 0.
(M2) h(a ⊕ b) = h(a) ⊕ h(b) (in the sense that if a ⊕ b exists, then h(a) ⊕ h(b)

exists, and the above equality holds).

If P and Q are unital with distinguished units uP and uQ we also require

(M3) h(uP ) = uQ.

A morphism h is called a monomorphism if h(a) ⊥ h(b) implies a ⊥ b (a, b ∈ P ).
A bijective morphism is an isomorphism if h−1 is also a morphism.

Observe that an isomorphism is the same thing as a bijective monomorphism.
Note that a monomorphism of cp-PAMs need not be injective : Let P = {0, a, b}

with 0⊕ 0 = 0, 0⊕ a = a⊕ 0 = a, b⊕ 0 = 0⊕ b = b and no other sums defined. Let
f : P → P be given by f(a) = f(b) = b. Then f is a monomorphism. However, in
the class of unital cp-PAMs (i.e., effect algebras) monomorphisms are injective.

If h : P → Q is a morphism, then h(a) ≤ h(b) whenever a ≤ b. Indeed, the latter
relation holds if and only if there is x ∈ P with a ⊕ x = b, and then h(a ⊕ x) =
h(a) ⊕ h(x) = h(b).

Definition 2.6. A morphism h : P → Q is full if h(a) ⊕ h(b) ∈ h(P ) := {h(a) :
a ∈ P} implies that there are a1, b1 ∈ P such that a1 ⊥ b1 and h(a) = h(a1),
h(b) = h(b1). Then h(a) ⊕ h(b) = h(a1 ⊕ b1).

A morphism h : P → Q is strong (cf. [26]), if whenever h(a) ⊥ h(b), there exists
a1 ∈ P with a1 ⊥ b and h(a) = h(a1).

Observe that if h : P → Q is a strong morphism then h(P ) with the operation
⊕ inherited from Q is a PAM, which is cancellative (positive) if Q is cancellative
(positive).
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3. Congruences and quotients of cp-PAMs

Throughout this section, we assume that (P ;⊥,⊕, 0) is a positive, cancellative
PAM.

Consider a binary relation ∼ on P and the following properties.

(C1) ∼ is an equivalence relation.
(C2) a ∼ a1, b ∼ b1 and a ⊥ b, a1 ⊥ b1 implies a⊕ b ∼ a1 ⊕ b1.
(C3) a ∼ b and b ⊥ c implies that there is a d ∈ P with c ∼ d and a ⊥ d.
(C4) a ∼ b and a⊕ c ∼ b⊕ d implies c ∼ d.
(C5) a ∼ b⊕ c implies that there are a1, a2 with a = a1 ⊕ a2 and a1 ∼ b, a2 ∼ c.
(C6) (in an effect algebra=unital cp-PAM): a ∼ b implies a′ ∼ b′ (where a′ and

b′ are orthosupplements of a and b, respectively).

In accordance with [26], the relation ∼ is called a weak congruence if it satisfies
(C1) and (C2). We denote by [a] the equivalence class containing a (a ∈ P ), and
we denote by P/∼ the set of all equivalence classes. Owing to (C1) and (C2), P/∼
can be endowed with a relation ⊥ and a partially defined binary operation ⊕ as
follows. We say the [a] ⊥ [b] if there are a1 ∼ a, b1 ∼ b such that a1 ⊥ b1, and then
define [a] ⊕ [b] := [a1 ⊕ b1]. The operation ⊕ is well defined and commutative, but
not necessarily associative [26].

Again in accordance with [26] and [46], we say that ∼ is a congruence if (C1),
(C2) and (C3) are satisfied.

In the next theorem, we collect some basic known properties of weak congruences.

Theorem 3.1. Let ∼ be a weak congruence on a cp-PAM P .

(i) If ∼ is a congruence, then P/∼ is a PAM. Moreover, P/∼ is cancellative if
and only if (C4) holds.

(ii) If ∼ satisfies (C5), then P/∼ is a PAM. Moreover, P/∼ is positive and it is
cancellative if and only if (C4) holds.

(iii) If P is an effect algebra and ∼ is a congruence, then P/∼ is an effect algebra.
In particular, every congruence on an effect algebra satisfies (C4).

(iv) Let ∼ be a weak congruence on an effect algebra P . Then (C4) and (C6) are
equivalent. Moreover, (C3) is equivalent to (C5) & (C6) or equivalently, to
(C5) & (C4).

Proof. (i) has been proved in [26]. (ii) To prove positivity, assume 0 ∼ y ⊕ z. By
(C5), 0 = x1 ⊕ x2 for some x1 ∼ y and x2 ∼ z. By positivity of P , x1 = 0 = x2,
hence y ∼ 0, z ∼ 0. For the rest see [26]. (iii) See [26]. (iv) (C4) implies (C6):
a ∼ b, a ⊕ a′ = b ⊕ b′ = 1 implies a′ ∼ b′. (C6) implies (C4): Assume a ∼ b and
a ⊕ a1 ∼ b ⊕ b1. There are v, w such that a ⊕ a1 ⊕ v = b ⊕ b1 ⊕ w = 1. By (C6),
v ∼ w. By (C2), a⊕ v ∼ b⊕ w, and by (C6), a1 ∼ b1. For the rest, see [13]. �
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4. The Riesz decomposition properties

Recall that for a partially ordered abelian group (G,G+) the following conditions
are equivalent:

(RDP1) If 0 ≤ a ≤ b+ c then there are a1 ≤ b, a2 ≤ c such that a = a1 + a2.
(RDP2) For a1, a2, b1, b2 ∈ G+ with a1+a2 = b1+b2, there are wij ∈ G+, i, j = 1, 2

such that ai = wi1 + wi2, i = 1, 2, bj = w1j + w2j , j = 1, 2.
Properties (RDP1) and (RDP2) are called the Riesz decomposition properties. On
any partially ordered set Q, the Riesz interpolation property is defined as follows.

(RIP) If a1, a2 ≤ b1, b2, then there is c ∈ Q such that a1, a2 ≤ c ≤ b1, b2.

We recall that property (RIP) on G, where (G,G+) is a partially ordered abelian
group, is equivalent to either of (RDP1) and (RDP2). If (G,G+) satisfies the
interpolation property, or equivalently any of the Riesz decomposition properties,
it is called an interpolation group [20]. In analogy, we introduce the following
definition.

Definition 4.1. Let P be a PAM. We say that P satisfies properties (WRDP1) or
(WRDP2) if

(WRDP1) Whenever a ≤ b⊕ c, there are a1, a2 ∈ P such that a1 ≤ b, a2 ≤ c and
a = a1 ⊕ a2.

(WRDP2) Whenever a1 ⊕ a2 = b1 ⊕ b2, there are wij , i, j = 1, 2 such that ai =
wi1 ⊕ wi2 (i = 1, 2) and bj = w1j ⊕ w2j (j = 1, 2).

We will call properties (WRDP1) and (WRDP2) the weak Riesz decomposition
properties.

Lemma 4.2. Let P be a PAM. (i) (WRDP2) implies (WRDP1). (ii) If P is
cancellative, then (WRDP1) and (WRDP2) are equivalent.

Proof. (i) Assume (WRDP2) and let a ≤ b ⊕ c. Then there is d ∈ P such that
a⊕d = b⊕c. By (WRDP2), there are wij such that a = w11⊕w12 and b = w11⊕w21,
c = w12 ⊕ w22. Hence w11 ≤ b, w12 ≤ c.

(ii) It remains to prove that (WRDP1) implies (WRDP2). Let a1 ⊕ a2 =
b1 ⊕ b2. From a1 ≤ b1 ⊕ b2 it follows by (WRDP1) that there are w11, w12 such
that w11 ≤ b1, w12 ≤ b2 and a1 = w11 ⊕ w12. From the above inequalities it fol-
lows that there are w21 and w22 such that b1 = w11 ⊕ w21, b2 = w12 ⊕ w22. Now
w11 ⊕ w12 ⊕ a2 = w11 ⊕ w21 ⊕ w12 ⊕ w22. By cancellativity, a2 = w21 ⊕ w22. �

If a cp-PAM P satisfies (WRDP1) or, equivalently, (WRDP2), we will say that
P satisfies the Riesz decomposition property ((RDP) for short).

Example. It is straightforward to show that the set E(H) of the Hilbert space
effects (that is self-adjoint operators on a Hilbert spaceH between 0 and I) does not
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satisfy the interpolation property. Indeed, take arbitrary a, b ∈ E(H) and let L(a, b)
denote the set of all lower bounds of a, b. Assume that the interpolation property
is satisfied. Then L(a, b) is upper directed, so that by the monotone convergence of
self-adjoint operators (see e.g. [53, Lemma 1]), L(a, b) has a supremum, which is the
infimum of a, b. But the non-lattice structure of E(H) is well known (see e.g. [25])
(see also [11] for a more explicit proof). Since by [49], the Riesz decomposition
property in effect algebras implies the interpolation property, it follows that the
Riesz decomposition property is not satisfied either.

Proposition 4.3. Let P be a PAM satisfying (WRDP1) [ (WRDP2)]. If ∼ is a
weak congruence satisfying (C5), then P/∼ also satisfies (WRDP1) [ (WRDP2)].

Proof. Let (WRDP1) hold. Assume that [a] ≤ [b]⊕ [c]. Without loss of generality,
we may assume that b ⊥ c. Let d ∈ P be such that [a]⊕[d] = [b]⊕[c] = [b⊕c]. There
are a1 ∼ a, d1 ∼ d with a1 ⊥ d1, and a1 ⊕ d1 ∼ b ⊕ c. By (C5), a1 ⊕ d1 = b1 ⊕ c1,
b1 ∼ b, c1 ∼ c. By (WRDP1) in P , a1 = b2 ⊕ c2, where b2 ≤ b1, c2 ≤ c1. This
entails that [a] = [b2] ⊕ [c2], [b2] ≤ [b], [c2] ≤ [c].

Let (WRDP2) hold. Assume that [a]⊕ [b] = [c]⊕ [d]. Without loss of generality
we may assume that a ⊥ b and c ⊥ d, that is, a ⊕ b ∼ c ⊕ d. By (C5), there are
c1, d1 such that c1 ∼ c, d1 ∼ d, and a⊕ b = c1 ⊕ d1. The desired result is now easily
obtained by application of (WRDP2) in P . �

Let P be a PAM and let ∼ be a binary relation. We will consider the following
properties:

(S1) a ≤ b ⊕ c implies that there are a1, a2 such that a = a1 ⊕ a2, and a1 ∼ b1,
a2 ∼ c1 for some b1 ≤ b, c1 ≤ c.

(S2) If a⊕ b = c⊕ d, then there are elements e, f, E, F in P such that a = e⊕E,
b = f ⊕ F and c ∼ e⊕ f , d ∼ E ⊕ F .

Theorem 4.4. Let P be a cp-PAM and let ∼ be a weak congruence satisfying (C5).
(i) [a] ≤ [b] if and only if there is b1 ≤ b, b1 ∼ a. (ii) P/∼ satisfies (WRDP1) if
and only if ∼ satisfies (S1). (iii) P/∼ satisfies (WRDP2) if and only if ∼ satisfies
(S2). (iv) If ∼ satisfies (C4), then (S1) and (S2) are equivalent.

Proof. (i) If a ∼ b1 and b1 ≤ b, then there is c with b1 ⊕ c = b. Therefore,
[a] ⊕ [c] = [b1 ⊕ c] = [b], so that [a] ≤ [b].

Conversely, assume that [a] ≤ [b]. Then there is a c with [a]⊕ [c] = [b]. It follows
that there are a1 ∼ a, c1 ∼ c, a1 ⊥ c1 such that b ∼ a1 ⊕ c1. By (C5), there are
b1, b2 such that b = b1 ⊕ b2 and b1 ∼ a1, b2 ∼ c1. It follows that b1 ≤ b, and b1 ∼ a.

(ii) Let ∼ be a weak congruence satisfying (C5) and (S1). Assume that [a] ≤
[b] ⊕ [c]. Then there are b1 ∼ b, c1 ∼ c, b1 ⊥ c1 such that [b] ⊕ [c] = [b1 ⊕ c1].
Moreover, there is d ≤ b1 ⊕ c1 such that a ∼ d. By (S1)), d ∼ b2 ⊕ c2, b2 ≤ b1,
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c2 ≤ c1. Therefore [a] = [d] = [b2 ⊕ c2] = [b2] ⊕ [c2], [b2] ≤ [b], [c2] ≤ [c], which
proves (WRDP1).

Conversely, if P/∼ satisfies (WRDP1), and a ≤ b ⊕ c, then [a] ≤ [b] ⊕ [c]. By
(WRDP1) and (C5), [a] = [a1 ⊕ a2], [a1] ≤ [b], [a2] ≤ [c]. By (i) there are b1 ≤ b,
c1 ≤ c with a1 ∼ b1, a2 ∼ c1, and a ∼ a1 ⊕ a2 ∼ b1 ⊕ c1. This proves (S1).

(iii) Let (S2) be satisfied. Assume [a]⊕ [b] = [c]⊕ [d]. Without loss of generality,
we may assume that a ⊕ b ∼ c ⊕ d. By (C5), a ⊕ b = c1 ⊕ d1, c1 ∼ c, d1 ∼ d.
By (S2), there are e, f, E, F such that a = e ⊕ E, b = f ⊕ F and c ∼ c1 ∼ e ⊕ f ,
d ∼ d1 ∼ E ⊕ F . It follows that [a] = [e] ⊕ [E], [b] = [f ] ⊕ [F ], [c] = [e] ⊕ [f ],
[d] = [E] ⊕ [F ], so (WRDP2) is satisfied.

Conversely, assume that P/∼ satisfies (WRDP2) and assume a ⊕ b = c ⊕ d.
Then [a] ⊕ [b] = [c] ⊕ [d], and there are [e], [E], [f ], [F ] such that [a] = [e] ⊕ [E],
[b] = [f ] ⊕ [F ], [c] = [e] ⊕ [f ] and [d] = [E] ⊕ [F ]. Using (C5) and properties of
∼, we get that a = e1 ⊕ E1, e1 ∼ e, E1 ∼ E, b = f1 ⊕ F1, f1 ∼ f , F1 ∼ F , and
c = e2 ⊕ f2, e2 ∼ e, f2 ∼ f , d = E2 ⊕ F2, E2 ∼ E, F2 ∼ F . From this we can
deduce that c ∼ e1 ⊕ f1, d ∼ E1 ⊕ F1, where the existence of the sums follows by
a ⊥ b. This proves (S2).

(iv) This follows by cancellativity of P/∼. �

Sherstnev [51] introduced a dimension OMP as an OMP P with an equivalence
relation ∼ satisfying the following axioms.

(D1) a ∼ 0 implies a = 0.
(D2) If {ai : i ∈ I}, {bi : i ∈ I} are summable families and ai ∼ bi for all i ∈ I,

then a =
⊕
ai, b =

⊕
bi exist in P and a ∼ b.

(D3) If a⊕ b ∼ c⊕d, then there are e, f, E, F ∈ P such that a = e⊕E, b = f⊕F ,
c ∼ e⊕ f , d ∼ E ⊕ F .

(D4) If a, b ∈ P and a �⊥ b then there are nonzero c, d ∈ P such that a ≥ c ∼ d ≤ b.

We may conclude from (D2) and (D3) that ∼ is a weak congruence satisfying
(C5). In fact, (D2) is much stronger than (C2), and expresses complete additivity
of ∼. It also implies orthocompleteness of P . It can be easily seen that for a weak
congruence, (D3) implies (C5).

A dimension lattice in the sense of Loomis [37] is an OML satisfying axioms
(D1), (D2) and

(B) If x ∼ y ⊕ Y , then there are z, Z ∈ P with x = z ⊕ Z, z ∼ y, Z ∼ Y .
(D′) If x, y have a common complement in P then x ∼ y.

Notice that in [37], also the weaker condition (C2) has been considered.
It has been shown that a dimension lattice in the sense of Loomis is always a

dimension poset in the sense of Sherstnev (cg. [37, Lemma 43]), but there are OMLs
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which are dimension posets in the sense of Sherstnev, but which are not dimension
lattices in the sense of Loomis [32], [3, Chap. VIII].

We will extend Sherstnev’s definition as follows.

Definition 4.5. We will say that a cp-PAM P is a dimension cp-PAM if it is
endowed with an equivalence relation ∼ that satisfies (D1), (C2), (D3) and (D4).
The relation ∼ is called dimension equivalence.

We will sometimes make use of the stronger form (D2) of (C2).

Theorem 4.6. (a) Let P be a dimension cp-PAM with dimension equivalence ∼.
Then P/∼ is a positive PAM satisfying (WRDP 2). (b) If, in addition, (P,∼)
satisfies (the countable version of) (D2), then P/∼ is partially ordered.

Proof. (a) This follows by Theorem 4.4. (b) The proof is in essential similar to that
in [39, p. 77]. See [31, Proposition 3] for more details. �
Lemma 4.7. Let P be a cp-PAM endowed with an equivalence relation ∼ satisfying
(D1), (C2) and (D4). If L/∼ happens to be a lattice ordered cp-PAM, then also
(D3) is satisfied.

Proof. By [47], in a lattice ordered cp-PAM, condition (a ∧ b = 0 implies a ⊥ b) is
equivalent to RDP. Now condition (D4) implies that whenever c ≤ a, d ≤ b and
c ∼ d, then c = d = 0. It follows that [a]∧[b] = [0] implies a ⊥ b, hence [a] ⊥ [b]. �

It is worth noticing that the equality relation on any cp-PAM E with the Riesz
decomposition properties satisfies (D1), (C2) and (D3). To prove (D4), we need to
suppose that E is upper directed. If it is the case, then observe that (D4) means
that a∧b = 0 implies a ⊥ b. Indeed, assume that a, b ≤ d and a∧b = 0. Then from
a ≤ b⊕ (d� b) (where d� b is defined by (d)) it follows by (RDP) that a = a1 ⊕ a2,
where a1 ≤ b, a2 ≤ d � b. It follows that a1 = 0, and so a = a2 ≤ d � b, hence
a ⊥ b. We will also observe that if (D2) holds then E is closed under infima. We
will show it under a more general condition.

In the proofs of the next theorem, we follow the pattern of [28]. First we prove
a lemma.

Lemma 4.8. Let L be an m-orthocomplete cp-PAM, σ an ordinal number satisfying
card(σ) ≤ m, and (yα : α < σ) a family of elements from L satisfying

(i) y0 = 0,
(ii) α ≤ β < σ ⇒ yα ≤ yβ (increasing),
(iii) β a limit ordinal < σ ⇒ ∨

(yα : α < β) exists and = yβ (continuous from
the left).

Then for every ordinal β satisfying 2 ≤ β < σ we have∨
(yα : α < β) =

⊕
(yρ+1 � yρ : ρ+ 1 < β).
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Proof. The join at the left-hand side of the assertion exists by assumption (iii).
Indeed, assumption (iii) covers the case when β is a limit ordinal; if β is not a
limit ordinal, then clearly

∨
(yα : α < β) = yβ−1. To prove that the ⊕-sum on the

right-hand side exists, we need to prove that the family (yρ+1 � yρ : ρ + 1 < β) is
a summable family, and then use the m-orthocompleteness of L.

Define zρ := yρ+1 � yρ. Choose any finite subfamily yρ1 , yρ2 , . . . , yρn , ρi + 1 <
β, i = 1, 2, . . . , n. We may assume that ρ1 < ρ2 < · · · < ρn. Then we have

yρ1 ≤ yρ1+1 ≤ yρ2 ≤ yρ2+1 ≤ · · · ≤ yρn ≤ yρn+1

and therefore

yρn+1 � yρ1 = (yρ1+1 � yρ1) ⊕ (yρ2 � yρ1+1)

⊕ (yρ2+1 � yρ2) ⊕ · · · ⊕ (yρn+1 � yρn)

≥ zρ1 ⊕ zρ2 ⊕ · · · ⊕ zρn .

This proves that the family (zρ : ρ+ 1 < β) is a summable family. Moreover, from
the above inequality we see that for any finite family ρ1, . . . , ρn, zρ1 ⊕ · · · ⊕ zρn ≤
yρn+1, and therefore

⊕
(yρ+1 � yρ : ρ+ 1 < β) ≤

∨
(yα : α < β).

We need therefore only to prove the statement P (β):
∨

(yα : α < β) ≤ ⊕
(yρ+1�yρ :

ρ+1 < β). P(2) is the assertion y1 ≤ y1�y0, which is true because y0 = 0. Assume
that P (γ) is true for all γ < β. If β is a limit ordinal, then for any α < β, α+1 < β,
and using the induction hypothesis,

yα =
∨

(yσ : σ < α) =
∨

(yσ : σ < α+ 1)

≤
⊕

(yρ+1 � yρ : ρ+ 1 < α+ 1)

≤
⊕

(yρ+1 � yρ : ρ+ 1 < β).

Hence
∨

(yα : α < β) ≤ ⊕
(yρ+1 � yρ : ρ+ 1 < β). If β is not a limit ordinal, then∨

(yα : α < β) =
∨

(yα : α ≤ β − 1). Now there are two possibilities: either β− 1 is
a limit ordinal or it is not. If β−1 is a limit ordinal, then by (iii) and the induction
hypothesis,

yβ−1 =
∨

(yα : α < β − 1) ≤
⊕

(yρ+1 � yρ : ρ+ 1 < β − 1)

≤
⊕

(yρ+1 � yρ : ρ+ 1 < β)
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and we are done. If β − 1 is not a limit ordinal, then⊕
(yρ+1 � yρ : ρ+ 1 < β) =

⊕
(yρ+1 � yρ : ρ+ 1 ≤ β − 1)

= (yβ−1 � yβ−2)
⊕

(yρ+1 � yρ : ρ+ 1 < β − 1)

≥ (yβ−1 � yβ−2) ⊕
∨

(yα : α < β − 1)

= (yβ−1 � yβ−2) ⊕ yβ−2 = yβ−1,

which proves P (β). �

Theorem 4.9. Every chain of at most m elements in an m-orthocomplete cp-PAM
L has a supremum.

Proof. Let (xα : α ∈ Σ) be an increasing chain in L with cardΣ ≤ m, and assume
that the supremum of any chain with index set Σ′ exists when cardΣ′ ≤ cardΣ. Let
σ be the least ordinal corresponding to cardΣ. We may assume that σ is infinite
and replace Σ by the set {α : α < σ}. So we are dealing with an ordinal-indexed
chain (xα : α < σ). By the induction hypothesis,

yγ :=
∨

(xρ : ρ < γ)

exists for all γ < σ. This family (yα : α < σ) obviously satisfies conditions (i) and
(ii) of Lemma 4.8 and (iii) follows by the fact that for β a limit ordinal < σ,

∨
(yα : α < β) =

∨
α<β

∨
(xρ : ρ < α)

=
∨

(xρ : ρ < β) = yβ.

The element z =
⊕

(yα+1 � yα : α + 1 < σ) exists by m-orthocompleteness, and
we show that z is the desired supremum

∨
(xρ : ρ < σ). If σ is not a limit ordinal,

then
∨

(xρ : ρ < σ) = yσ−1, and we are done. Assume that σ is a limit ordinal. If
β < σ, then σ being a limit ordinal, β + 2 < σ, hence

xβ ≤
∨

(xρ : ρ < β + 1) = yβ+1

=
∨

(yα : α ≤ β + 1) =
∨

(yα : α < β + 2)

=
⊕

(yρ+1 � yρ : ρ+ 1 < β + 2) ≤ z,

where in the second-to-the last step we used Lemma 4.8. This proves that z is an
upper bound of (xρ : ρ < σ). If w ≥ xρ, ∀ρ < σ, then w ≥ ∨

(xρ : ρ < α + 1) =
yα+1 ≥ yα+1 � yα for all α + 1 < σ. For every finite set ρ1 < ρ2 < · · · < ρn with
ρn + 1 < σ, we may complete the set to ρ1 ≤ ρ1 + 1 ≤ ρ2 ≤ · · · ≤ ρn−1 + 1 ≤
ρn ≤ ρn + 1, and show that (yρ1+1 � yρ1) ⊕ (yρ2+1 � yρ2) ⊕ · · · ⊕ (yρn+1 � yρn) ≤
yρn+1 � yρ1 ≤ yρn+1 ≤ w, and since z is defined as the supremum over all such
finite ⊕-sums, it follows that z ≤ w. This proves the desired result. �
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We will say that a cp-PAM is Dedekind complete if every upper bounded chain
has a supremum. In particular, the preceding theorem implies that an orthocom-
plete cp-PAM is Dedekind complete.

Theorem 4.10. Let L be a Dedekind complete cp-PAM with the (RDP). Then for
any a, b ∈ L, the infimum a ∧ b exists in L.

Proof. If L has (RDP), it has the interpolation property. The proof is the same as
the proof of [11, Proposition 3]. For the convenience of readers we include it here.

Assume that a, b ≤ c, d, i.e., each of a, b is smaller then each of c, d. Then there
is an a1 ∈ L such that a⊕ a1 = c and from b ≤ a ⊕ a1 it follows by (RDP1) that
there are e ≤ a and b̄ ≤ a1 such that b = e⊕ b̄. Moreover, for some ā ∈ L we have
a = e⊕ ā, and since e ≤ a, b, for some c̄, d̄ also c = e⊕ c̄, d = e⊕ d̄. By cancellation,
we get ā, b̄ ≤ c̄, d̄, and from e⊕ ā⊕ b̄ ≤ a⊕ a1 = c = e⊕ c̄ it follows that ā⊕ b̄ ≤ c̄.
Now choose b1 ∈ L such that b1 ⊕ b̄ = d̄, and since ā ≤ b1 ⊕ b̄, there are ¯̄a ≤ b1 and
f ≤ b̄ such that ā = ¯̄a⊕ f . Choose ¯̄b ∈ L such that b̄ = ¯̄b ⊕ f . Let x̄ = ¯̄a⊕ ¯̄b ⊕ f .
Then ā, b̄ ≤ x̄ ≤ ā ⊕ b̄ ≤ c̄ as well as x̄ ≤ b1 ⊕ b̄ = d̄. So x = e⊕ x̄ is the required
interpolant to show that (RIP) holds.

Now assume that L is Dedekind complete, and let L(a, b) be the set of all lower
bounds of a, b. Let {ci} be a maximal chain in L(a, b). By the Dedekind property,
the supremum c =

∨
ci exists in L, and c ≤ a, b. If d is any lower bound of a, b such

that d �≤ c, then by the interpolation property there is x such that c, d ≤ x ≤ a, b.
But this contradicts the maximality of {ci}. Hence c is the infimum of a, b in L. �

5. Direct limits of cp-PAMs with binary relations

Let P denote the category with cp-PAMs as objects and monomorphisms as
morphisms.

Definition 5.1. A directed system (DS) in the category P is a pair

(Pi; {φi
j}i≤j)j∈D

satisfying the following conditions:

(DS1) (D,≤) is a directed set;
(DS2) Pi is a cp-PAM for every i ∈ D;
(DS3) If i, j ∈ D, i ≤ j, then φi

j : Pi → Pj is an injective monomorphism (of
PAMs);

(DS4) φj
kφ

i
j = φi

k whenever i ≤ j ≤ k;
(DS5) φi

i = idPi for all i ∈ D.

Definition 5.2. A direct limit (DL) for a directed system is a pair

(P ; {φi}i) ∈ P ,
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where P is a cp-PAM and each φi : Pi → P is an injective monomorphism such
that

(DL1) φjφi
j = φi for i ≤ j;

(DL2) If ψi : Pi → Q, where Q is a cp-PAM and ψi is an injective monomor-
phism such that ψjφ

i
j = ψi for i ≤ j, then there exists a unique injective

monomorphism ψ : P → Q such that ψi = ψφi for all i ∈ D.

Recall that in the category of cp-PAMs, the Riesz decomposition properties
(WRDP1) and (WRDP2) are equivalent (Lemma 4.2). If a cp-PAM P satisfies
(WRDP1), or equivalently (WRDP2), we say that P satisfies the Riesz decompo-
sition property.

Theorem 5.3. A direct limit in the category P exists. Moreover, if every Pi, i ∈ D

satisfies the Riesz decomposition property, then the direct limit satisfies the Riesz
decomposition property.

Proof. Let (Pi; {φi
j}i≤j)i∈D be a DS in the category P . Assume Pi ∩ Pj = ∅

if i �= j, and put X :=
⋃

i∈D Pi. Define a binary relation ≡ on X by x ≡ y,
x ∈ Pi, y ∈ Pj if there is k ∈ D, k ≥ i, j with φi

k(x) = φj
k(y). We shall prove

that ≡ is an equivalence. It is clear that ≡ is reflexive and symmetric. It can be
verified that if x ≡ y, x ∈ Pi, y ∈ Pj , then for any r ≥ i, j, φi

r(x) = φj
r(y).

Indeed, let s ≥ k, r. Then φi
k(x) = φj

k(y) implies φk
sφ

i
k(x) = φk

sφ
j
k(y), but

φk
sφ

i
k = φi

s = φr
sφ

i
r. Therefore φr

sφ
i
r(x) = φr

sφ
j
r(y), and since φr

s is injective,
it follows φi

r(x) = φj
r(y). In particular, if i = j, then x = y. To prove the

transitivity of ≡, assume x ≡ y, y ≡ z, where x ∈ Pi, y ∈ Pj , z ∈ Pk. Then there
are r, s ∈ D such that r ≥ i, j, φi

r(x) = φj
r(y); and s ≥ j, k, φj

s(y) = φk
s (z). Since

D is directed, there is t ≥ r, s and we have φr
t (φ

j
r(y)) = φj

t (y) = φs
t (φ

j
s(y)), hence

φr
t (φ

i
r(x)) = φs

t (φ
k
s (z)), so that x ≡ z.

Put x̄ := {y ∈ X : y ≡ x}, and P := {x̄ : x ∈ X}. Define φi : Pi → P by
φi(x) = x̄. Clearly, φi(0) = 0̄ and φjφi

j(x) = φi
j(x) = x̄ = φi(x), for any x ∈ Pi.

Observe also that for every x ∈ X and i ∈ D, card(x̄ ∩ Pi) ≤ 1, and for every
x, y ∈ X x̄ = ȳ iff there is i ∈ D with x̄ ∩ ȳ ∩ Pi �= ∅.

Further, define on P a partial binary operation ⊕ as follows. x̄ ⊕ ȳ is defined
if there is i ∈ D such that xi ∈ x̄ ∩ Pi, yi ∈ ȳ ∩ Pi and xi ⊥ yi. In this case put
x̄⊕ ȳ = xi ⊕ yi.

Now it is clear that φi is a monomorphism. If φi(x) = φi(y), x, y ∈ Pi, then
there is j ≥ i such that φi

j(x) = φi
j(y), whence x = y, since φi

j is injective. So φi

is injective.
Next we will prove that (P ;⊥,⊕, 0) is a PAM. Commutativity of ⊕ is clear.

To prove associativity, assume x̄ ⊥ ȳ, and x̄ ⊕ ȳ ⊥ z̄. Then there is i ∈ D

and xi ∈ x̄ ∩ Pi, yi ∈ ȳ ∩ Pi with xi ⊥ yi, and x̄ ⊕ ȳ = xi ⊕ yi. Moreover,
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there is j ∈ D and zj ∈ z̄ ∩ Pj with φi
j(xi ⊕ yi) ⊥ zj . It then follows that

(φi
j(xi ⊕i yi))⊕j zj = (φi

j(xi)⊕j φi
j(yi))⊕j zj = φi

j(xi)⊕j (φi
j(yi)⊕j zj) (where

we denoted by ⊕i,⊕j the operation in Pi, Pj , respectively) and this implies that
(x̄⊕ ȳ) ⊕ z̄ = x̄⊕ (ȳ ⊕ z̄).

It remains to prove cancellativity and positivity.
If x̄ ⊕ ȳ = x̄ ⊕ z̄, then for a suitable i ∈ D, there are xi ∈ x̄ ∩ Pi, yi ∈ ȳ ∩ Pi,

zi ∈ z̄ ∩ Pi, and xi ⊕ yi = xi ⊕ zi, hence yi = zi, and therefore ȳ = z̄.
If x̄ ⊕ ȳ = 0̄, and xi ∈ x̄ ∩ Pi, yj ∈ ȳ ∩ Pj , then for k ≥ i, j we have φi

k(xi) ⊥
φj

k(yj) and φi
k(xi) ⊕k φ

j
k(yj) = 0k, and hence x̄i = ȳi = 0̄k = 0̄.

Now assume that Q is a cp-PAM and ψi : Pi → Q is an injective monomorphism
for any i ∈ D such that ψjφ

i
j = ψi. Define ψ : P → Q by ψ(x̄i) = ψi(xi) for

xi ∈ Pi. Suppose that xi ∈ x̄ ∩ Pi and xj ∈ x̄ ∩ Pj . Pick k ≥ i, j; then we have
xk := φi

k(xi) = φj
k(xj) ∈ x̄ ∩ Pk. Thus

ψi(xi) = ψk(φi
k(xi)) = ψk(xk) = ψk(φj

k(xj)) = ψj(xj).

This shows that ψ is well defined. It is straightforward that ψ is an injective
morphism. If ψ(x̄i) ⊥ ψ(ȳj), then ψi(xi) ⊥ ψj(xj), and for k ≥ i, j, ψi(xi) =
ψkφ

i
k(xi), ψj(xj) = ψkφ

j
k(xj), hence ψkφ

i
k(xi) ⊥ ψkφ

j
k(xj), and since ψk is a

monomorphism, φi
k(xi) ⊥ φj

k(xj). Hence x̄i ⊥ x̄j , and

ψ(x̄i) ⊕ ψ(x̄j) = ψi(xi) ⊕ ψj(xj)

= ψkφ
i
k(xi) ⊕ ψkφ

j
k(xj)

= ψk(φi
k(xi) ⊕ φj

k(xj))

= ψ(x̄i ⊕ x̄j).

Therefore ψ is a monomorphism. It is straightforward to prove that ψ is unique.
Assume that in every Pi, i ∈ D, (WRDP2) is satisfied. Let x̄⊕ ȳ = ū⊕ v̄. Then

for a suitable k ∈ D, there are xk ∈ x̄∩Pk, yk ∈ ȳ∩Pk, uk ∈ ū∩Pk and vk ∈ v̄∩Pk

with xk ⊕ yk = uk ⊕ vk, and using (WRDP2) in Pk, we find appropriate elements
w̄ij , i, j = 1, 2 as required by (WRDP2). �

In the next theorem, we consider a directed system of PAMs in the category P
with a binary relation, and find a sufficient condition under which the direct limit
can also be endowed with a similar binary relation.

Theorem 5.4. Let (Pi; {φi
j}i≤j)i∈D be a directed system in the category P. As-

sume that every Pi is equipped with a binary relation ∼i. Let (P ; {φi}i∈D) be its
direct limit. Further, let the following condition be satisfied.

(CDL) If a, b ∈ Pi and a ∼i b, then for any j ≥ i, φi
j(a) ∼j φ

i
j(b).

Then P can be endowed with a binary relation ∼, extending all ∼i. Moreover, if ∼i

satisfy any of conditions (C1)–(C5), (S1), (S2), then ∼ satisfies the same condition.
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Proof. Define a binary relation ∼ on P by

x̄ ∼ ȳ if there is i ∈ D and xi ∈ x̄ ∩ Pi, yi ∈ ȳ ∩ Pi such that xi ∼i yi.

Then ∼ is well defined. Indeed, if xj ∈ x̄ ∩ Pj , then for any k ≥ i, j,

φj
k(xj) = φi

k(xi) ∼k φ
i
k(yi)

by the definition of x̄ and (CDL), and hence x̄j ∼ ȳi. Observe that if x̄i ∼ ȳj then
for any k ≥ i, j, φj

k(yj) ∼k φ
i
k(xi).

Now assume that ∼i is a weak congruence for any i ∈ D. We will prove that ∼
is also a weak congruence, i.e., conditions (C1) and (C2) are satisfied.

(C1) Let x̄ ∼ ȳ and ȳ ∼ z̄. Then there are i, j ∈ D and xi ∈ x̄ ∩ Pi, yi ∈ ȳ ∩ Pi

with xi ∼i yi, and yj ∈ ȳ ∩ Pj , zj ∈ z̄ ∩ Pj with yj ∼j zj . Then for any k ≥ i, j

we have φi
k(xi) ∼k φi

k(yi) and φj
k(yj) ∼k φj

k(zj). As yi ≡ yj and k ≥ i, j,
φi

k(yi) = φj
k(yj), so that by transitivity of ∼k, we get φi

k(xi) ∼k φj
k(zj), and

hence x̄ ∼ z̄.

(C2) Assume x̄ ⊥ ȳ, x̄1 ⊥ ȳ1 and x̄ ∼ x̄1, ȳ ∼ ȳ1. Then for suitable i, j ∈ D

there exists xi ∈ x̄ ∩ Pi, x1i ∈ x̄1 ∩ Pi with xi ∼i x1i, and there exist yj ∈ ȳ ∩ Pj ,
y1j ∩ Pj with yj ∼j y1j . Since x̄ ⊥ ȳ, x̄1 ⊥ ȳ1 and (CDL) holds, we get for k ≥
i, j, φi

j(xi) ⊥ φj
k(yj), φi

k(x1i) ⊥ φj
k(y1j), and φi

k(xi) ∼k φi
k(x1i), φj

k(yj) ∼k

φj
k(y1j). Therefore, by (C2) for ∼k, we have φi

k(xi)⊕φi
k(yj) ∼k φ

i
k(x1i)⊕φj

k(y1j)
and hence x̄⊕ ȳ ∼ x̄1 ⊕ ȳ1.

The proofs of other properties are analogous and we leave them to the reader. �

In the following theorem, we find a sufficient condition under which, roughly
speaking, the quotient of a direct limit is a direct limit of quotients. Since the
quotient of a cp-PAM with respect to a weak congruence satisfying (C5) is always
positive, but not necessary cancellative, we introduce a category P0, where the
objects are positive PAMs and morphisms are injective morphisms of PAMs.

Theorem 5.5. Let (Pi; {φi
j}i≤j)i∈D) be a directed system satisfying conditions of

Theorem 5.4.
Let P̄i := Pi/∼i, i ∈ D, and define, for i ≤ j, φ̄i

j : P̄i → P̄j by φ̄i
j [x]i =

[φi
j(x)]j , where [x]i is the class in P̄i containing x, x ∈ Pi. Then (P̄i; {φ̄i

j}i≤j) is
a DS in the category P0. Moreover, if (P ; {φi}i∈D) is a DL for (Pi; {φi

j}i≤j) in
the category P, then (P̄ ; {φ̄i}i∈D), where P̄ := P/∼, and φ̄i : P̄ i → P̄ is defined by
φ̄i[x]i = [x̄], is the DL for (P̄i; {φ̄i

j}i≤j) in the category P0.

Proof. Owing to (CDL), φ̄i
j is well defined, and it is an injective morphism.

Clearly, for any i ∈ D,

φ̄i
i[x]i = [φi

i(x)]i = [x]i,
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and for i ≤ j ≤ k,

φ̄j
kφ̄

i
j [x]i = φ̄j

k[φi
j(x)]j

= [φj
kφ

i
j(x)]k = [φi

k(x)]k

= φ̄i
k[x]i.

Define φ̄i : P̄i → P̄ by φ̄i[x]i = [x̄], where [x̄] denotes the class containing x

in P/∼ = P̄ . Since x ∼i y, x, y ∈ Pi implies x̄ ∼ ȳ, φ̄i is well defined. As a
composition of morphisms, φ̄i is a morphism, and it can be easily seen that it is
injective.

The remaining part of the proof is similar to that of Theorem 5.3. �

6. cp-PAMs with RDP and interpolation groups

Let P be a cp-PAM, (G,G+) an abelian partially ordered group. We shall say
that G is a universal group for P if:

(1) There is an injective monomorphism γ : P → G+ such that γ(P ) is a convex
subgroup of G+, and for any partially ordered abelian group (H,H+) and any
morphism α : P → H+ there is a homomorphism α∗ : G → H of partially
ordered groups such that α = α∗ ◦ γ.

(2) Every element g in G+ is of the form g =
∑n

i−1 γ(xi) for some x1, . . . , xn ∈ P .
(3) G = G+ −G+.

Clearly, if such a universal group exists, it is unique up to isomorphism. Using
a technique similar to Baer [1], (Wyler [55] and Ravindran ([49]), we obtain the
following theorem (cf. [10, Theorem 1.7.14], we note that although in the quoted
theorem injectivity of γ is not mentioned, it easily follows from the construction).

Theorem 6.1. Let P be an upper directed cp-PAM with RDP. Then P has a
universal group (G, γ). Moreover, G is an interpolation group.

The following theorem extends the result of [44].

Theorem 6.2. Let X be a cp-PAM such that X ⊆ G+, (G,G+) is a directed
abelian group, and X is a convex generating subset of G+ (in the sense that every
element g ∈ G+ is a finite sum of elements from X). The X is linearly ordered if
and only if (G,G+) is linearly ordered.

Proof. If (G,G+) is linearly ordered then X is linearly ordered.
Assume that X is linearly ordered. Let g ∈ G, then g = g+ − g−. Let x1 ≤ x2 ≤

· · · ≤ xn, y1 ≤ y2 ≤ · · · ≤ ym be such that g+ = x1 + · · ·+ xn, g− = y1 + · · ·+ ym.
Without loss of generality we may assume thatm = n. We will proceed by induction
with respect to n. If n = 1, we get either g ≤ 0 or g ≥ 0. If n = 2 then g+ = x1+x2,
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g− = y1 + y2 and g = g+ − g− = x1 + x2 − (y1 + y2) = x1 − y1 + x2 − y2. Now one
of ±(x1 − y1) and one of ±(x2 − y2) belong to X , and linearity of X implies that
g ≥ 0 or g ≤ 0. Consequently, if g ∈ 2X − 2X then g ≥ 0 or g ≤ 0, in particular,
2X is linearly ordered. Now let g = x1 + x2 + x3 + x4 − (y1 + y2 + y3 + y4) =
x1 + x2 − (y1 + y2) + x3 + x4 − (y3 + y4). According the previous step, one of
±(x1 + x2 − (y1 + y2)) and one of ±(x3 + x4 − (y3 + y4)) belong to 2X , and hence
g ≥ 0 or g ≤ 0. So 4X is linearly ordered. By induction we get 2nX , n = 1, 2, . . . ,
is linearly ordered. Since G+ = ∪∞

n=1nX , we get that G+ is linearly ordered, and
hence G is linearly ordered. �

Theorem 6.3. An upper directed cp-PAM P with RDP is lattice ordered if and
only if its universal group is lattice ordered.

Proof. Let P be an upper directed cp-PAM satisfying the Riesz decomposition
property and let (G, γ) be its universal group.

If G is lattice ordered, then γ(P ), being a convex subset of G+, is also lattice
ordered.

Conversely, assume that P is lattice ordered. The result that G is lattice ordered
can be obtained in the following two ways.

1. By [16], every directed interpolation group G is a subdirect product of anti-
lattice ordered interpolation groups Gi (i.e., a ∧ b in Gi exists iff a ≤ b or b ≤ a).
Clearly, an anti-lattice ordered group is lattice ordered iff it is linearly ordered.
Then G ⊆ ∏

iGi, each Gi being an anti-lattice ordered interpolation group. Put
X := γ(P ) ⊆ G+, Xi := πi ◦ γ(P ) ⊆ G+

i , where πi is the projection to Gi.
If P is lattice ordered, then X is also lattice ordered, since γ : P → X is an

isomorphism. Then also Xi is lattice ordered, and hence linearly ordered for any i.
Indeed, let xi, yi ∈ Xi. Then there are elements x, y ∈ X such that xi = πi(x), yi =
πi(y). Since X is lattice ordered, x ∧ y exists in X , and π(x ∧ y) = xi ∧ yi ∈ Xi.
Since Xi is an antilattice, we have either xi ≤ yi or yi ≤ xi. Since G is generated
by X , each Gi is generated by Xi. Then Xi satisfies the assumptions of Theorem
6.2, and hence each Gi is linearly ordered.

To prove that G is a lattice, it suffices to show that G+ is lattice ordered [17]. Let
g, h ∈ G+. Then g = (gi)i, h = (hi)i with gi, hi ∈ G+

i . Since Gi is linearly ordered,
we have gi ∧ hi ∈ G+

i for all i. Put u := (gi ∧ hi)i. Clearly, u is a lower bound of
g, h in

∏
Gi. We need to prove that u ∈ G+. Since G+ is generated by X , we have

g = a1 + a2 + · · ·+ an for some aj ∈ X, j = 1, . . . , n. Then 0 ≤ u ≤ a1 + · · ·+ an in∏
iGi. Since

∏
i Gi is lattice ordered, it is an interpolation group, and hence there

are 0 ≤ ui ≤ ai, i = 1, . . . , n such that u = u1 + · · · + un. Since X is convex, we
have ui ∈ X ∀i, hence u ∈ G+. If z = (zi)i ∈ G+ is any lower bound of g, h, then
∀i, zi ≤ gi, hi, hence zi ≤ gi ∧ hi, and so z ≤ u. This proves that u = g ∧ h in G+.
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2. Recall that in every abelian group, the following equality holds (in the sense
that if one side is defined, so is the other and they are equal):

(g1 ∧ g2) + h = (g1 + h) ∧ (g2 + h) (1)

[20, Proposition 1.4].
Let g ∈ G+, then g = a1 + · · · + an, ai ∈ X , i = 1, . . . , n. We may assume that

this decomposition is minimal in the sense that ∀i, j, i �= j, ai + aj /∈ X . First we
prove that for every g ∈ G+ and b ∈ X , g∧b exists in G+. We proceed by induction
on n. If n = 1, then g = a1 ∈ X , hence g ∧ b exists in X , and by convexity of X ,
it is also a g.l.b. of g and b in G+. Assume that g ∧ c exists in G+ if n < k and
c ∈ X , and let g1 = a1 + a2 · · ·+ ak. Put g2 = a2 + · · ·+ ak. Then by the induction
hypothesis, g2 ∧ (b� a1 ∧ b) exists in G+. Using (1), we have

a1 ∧ b+ g2 ∧ (b − a1 ∧ b) = (a1 ∧ b+ g2) ∧ (a1 ∧ b + (b− a1 ∧ b))
= (a1 ∧ b+ g2) ∧ b = ((a1 + g2) ∧ (b+ g2)) ∧ b
= g1 ∧ b.

This proves that g1 ∧ b exists in G+.
Now let g, h ∈ G+, and let h = b1 + · · · + bn, where bi ∈ X , i = 1, . . . , n. We

proceed by induction on n. If n = 1, then h ∈ X , and g ∧ h exists by the previous
part of the proof. Assume that g ∧ h exists in G+ if g ∈ G+ and n < k. Let
h1 = b1 + · · ·+bk−1 +bk, and put h2 = b1 + · · ·+bk−1. By the induction hypothesis,
bk ∧ g and (g − bk ∧ g) ∧ h2 exist in G+. We then have

((g − bk ∧ g) ∧ h2) + bk ∧ g = ((g − bk ∧ g) + bk ∧ g) ∧ (h2 + bk ∧ g)
= g ∧ (h2 + bk ∧ g) = g ∧ ((h2 + bk) ∧ (h2 + g))

= g ∧ (h1 ∧ (h2 + g)) = g ∧ h1.

This proves that g ∧ h1 exists in G+; applying [20, Proposition 1.5], concludes the
proof. �

Remark. An example of a not necessarily upper directed cp-PAM which is not a
lattice but has a lattice ordered universal group can be obtained taking the universal
group for a commutative BCK-algebra with the relative cancellation property.

Recall [10] that a commutative BCK-algebra A [56] is a structure (A, ∗, 0) with
a binary operation ∗ and a constant 0 such that the following properties hold for
any x, y, z ∈ A:

(i) x ∗ (x ∗ y) = y ∗ (y ∗ x),
(ii) x ∗ (y ∗ z) = (x ∗ z) ∗ y,
(iii) x ∗ x = 0,
(iv) x ∗ 0 = x
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We note that A is partially ordered by x ≤ y iff x ∗ y = 0, and for any x, y ∈ A,
the infimum exists, namely x ∧ y = x ∗ (x ∗ y). A BCK-algebra A has the relative
cancellation property [10] if

(v) for any a ≤ x, y, x ∗ a = y ∗ a implies x = y.

A commutative BCK-algebra A can be endowed with a partially defined binary
operation + with the domain S := {(a, b) ∈ A × A : there exists a c ∈ Awith c ≥
b anda = c ∗ b}, and for (a, b) ∈ S, we put c = a+ b if c ≥ b, a = c ∗ b. Due to (v),
a+ b is well defined. From [10, Theorem 5.2.6], it can be derived that (A,+) is a
cp-PAM, and from [10, Theorem 5.2.8], that it satisfies the RDP. In the following
proposition we prove a converse statement.

Proposition 6.4. Every cp-PAM with RDP which is a lower semilattice can be en-
dowed with a structure of a commutative BCK-algebra with the relative cancellation
property.

Proof. According to [50, Theorem 2.1 (ii)], it suffices to prove that for any a ∈ A

there is an operation ∗ on the set [0, a] such that ([0, a], ∗, 0) is a commutative
BCK-algebra consistent with ([0, a],∧, 0).

Assume that A is a cp-PAM with RDP which is a lower semilattice. For x, y ∈ A,
define

x ∗ y := x� (x ∧ y).
Owing to cancellativity and positivity, the operation ∗ is well defined. We have
x ∗ y = 0 iff x � x ∧ y = 0 iff x = x ∧ y iff x ≤ y, so that the order induced by ∗
coincides with the operation ∧.

Observe that

x ∗ (x ∗ y) = x ∗ (x� (x ∧ y)) = x� (x ∧ (x� (x ∧ y)))
= x� (x� (x ∧ y))
= x ∧ y.

Similarly we get that also y ∗ (y ∗ x) = y ∧ x = x ∧ y.
Any interval [0, z], z ∈ A, bears a structure of an effect algebra with unit z and

partial binary operation ⊕z defined as follows: x ⊥z y if x ⊥ y and x⊕ y ≤ z, and
then x⊕z y = x⊕y. Now x ≤ y ≤ z iff there is v ∈ A such that x⊕v = y, and since
necessarily v ≤ z, this happens if and only if x⊕z v = y. Hence the order induced
by ⊕z coincides with the operation ∧ in A. Moreover, [0, z] can be endowed with
the relative complement x′ = z � x. Observe that for x, y ≤ z,

(y � x ∧ y) ⊕ (z � y) ⊕ x ∧ y = z,

so that (y ∗ x)′ = y′ ⊕ x ∧ y.
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Now for every x, y, z ∈ A, if x, y ≤ z, then (z � x) ∧ (z � y) ≤ z, and z � ((z �
x) ∧ (z � y)) = x ∨ y. Indeed, z � ((z � x) ∧ (z � y)) ≥ x, y, and if d ≤ z is
such that x, y ≤ d, then z � d ≤ z � x, z � y, hence z � d ≤ ((z � x) ∧ (z � y)).
Consequently, z � ((z � x) ∧ (z � y)) ≤ d. Therefore, the interval [0, z] is a lattice,
and [0, z] inherits the RDP. It follows that [0, z] is an MV-algebra [46], and hence
a bounded commutative BCK-algebra [43]. Applying the result [50, Theorem 2.1],
we get that A is a commutative BCK-algebra. The relative cancellation property
(v) is straightforward. �

The universal group of a commutative BCK-algebra with the relative cancel-
lation property A is a lattice ordered abelian group. Also, to every A there is a
lattice ordered BCK-algebra Ã, called the BCK-hull of A, with the same universal
group [10].

From Theorem 4.10 we obtain the following result.

Corollary 6.5. A Dedekind complete cp-PAM with the RDP is a commutative
BCK-algebra with the relative cancellation property.

Recall that an abelian partially ordered group (G,G+) is unperforated (or has
an isolated order) if whenever ng ≥ 0 for some g ∈ G and n ∈ N, then g ≥ 0.
An unperforated interpolation group is called a dimension group. According to [5,
Corollary 4.6.5], an abelian ordered group G is isomorphic, as an ordered group,
with a subgroup of a lattice ordered group if and only if G is unperforated.

Theorem 6.6. Let X be an upward directed cp-PAM with the Riesz decomposition
property. Then its universal group (G,G+) is unperforated if and only if X can be
embedded into the positive cone of an abelian lattice ordered group H.

Proof. By [5], G is unperforated iff it is a subgroup of an abelian lattice ordered
group. Assume first that there is an embedding h : X → H+, where H is an abelian
lattice ordered group. Let γ : X → G+ be the universal embedding. Then there is
a unique order-preserving group homomorphism h∗ : G→ H such that h = h∗ ◦ γ.
Since h is injective and X generates G, h∗ is injective. Hence G, as a subgroup of
a lattice ordered group H , is unperforated.

Conversely, if G is unperforated, then G is isomorphic, as an ordered group with
a subgroup of an lattice ordered group H , hence X can be embedded into H+,
which is lattice ordered. �

Corollary 6.7. The universal group of an interval effect algebra E is unperforated
if and only if E can be embedded into an MV-algebra as a sub-effect algebra. In par-
ticular, an interval effect algebra E with RDP has a dimension group as a universal
group iff E can be embedded into an MV-algebra M as a sub-effect algebra.
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Proof. Assume that E can be embedded into an MV-algebra M . The universal
group G(M) of M is lattice-ordered ([42, 49]) and M is isomorphic with an interval
[0, u] of its positive cone G(M)+. By the properties of universal groups, G(E) is
isomorphic (as an ordered group) with a subgroup of G(M). According to Theorem
6.6, the universal group G(E) of E is unperforated.

Conversely, if G(E) is unperforated, then there is a lattice ordered group H

such that G(E) is isomorphic as an ordered group with a subgroup H1 of H . Let
u be the image of the unit element 1 of E in H1, then E is embedded into the
interval [0, u] ∩H1 of H+

1 ⊆ H+. Now u ∈ H+, and the interval [0, u] in H+ is an
MV-algebra, and E is isomorphic with a sub-effect algebra of it. �

7. Elements of a dimension theory for dimension effect algebras

In what follows, we will consider an effect algebra L endowed with a dimension
relation ∼ satisfying (D1)–D(4). We already know that these conditions imply
(C5).

Recall that a nonzero element a in L is called sharp if it is disjoint with its ortho-
supplement, i.e., a∧a′ = 0. In an orthomodular poset (or even in an orthoalgebra)
every nonzero element is sharp, but it is not the case in a general effect algebra.

Two elements a, b ∈ L will be called related (a ρ b) if there exist nonzero elements
a1 ≤ a and b1 ≤ b such that a1 ∼ b1. If a, b are not related, we say that they are
unrelated and write a ρ̄ b. Observe that by (D4), if the elements a, b are unrelated,
then they are orthogonal and disjoint (i.e., a ∧ b = 0). We will write a � b if
a ∼ b1 ≤ b. Then � is a partial order by Theorem 4.6(b). An element a ∈ L is
called finite if a ∼ a1 ≤ a implies a1 = a. An element a is simple if for any b ≤ a,
b ρ̄ a� b.

We will say that L is a factor if any two nonzero elements in L are related. We
will say that a factor L is of type I if there is an atom in L; if there are no atoms in
L but there is a finite element, we will say that L is of type II, in remaining cases
we say that L is of type III.

The following statements can be proved similarly as in [37], using only (D1),
(D2) and (C5).

Lemma 7.1. (i) If a is finite and b ≤ a, then b is finite.
(ii) If a is finite and b ∼ a, then b is finite.
(iii) If a is simple, then a is finite.
(iv) If a is simple and b ≤ a, then b is simple.
(v) If a is simple and b ∼ a, then b is simple.
(vi) If a =

⊕∞
n=1 an, where the an are summable, equivalent and nonzero, then a

is not finite. (Indeed, a =
⊕∞

n=1 an ∼ ⊕∞
n=2 an = a� a1).
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Lemma 7.2. [37, Lemma 14] Given elements a and b in L, there exist subelements
a0 ≤ a and b0 ≤ b such that a0 ∼ b0 and a� a0 is unrelated to b� b0.

Proof. Let {aα, bα} be a maximal collection of pairs such that {aα} and {bα} are
summable families, and

⊕
aα ≤ a,

⊕
bα ≤ b, aα ∼ bα. Set a0 :=

⊕
aα, b0 :=

⊕
bα.

Then a0 ∼ b0 by (D2). Moreover, a � a0 ρ̄ b � b0, otherwise the maximal family
{aα, bα} could be enlarged by adding a pair of subelements from a� a0 and b� b0,
respectively. �

Directly from Lemma 7.2 we obtain the following.

Corollary 7.3. If L is a factor and a, b ∈ L, then either a � b or b � a.

Lemma 7.4. If L is a factor and a ∼ b, a1 ∼ b1, a1 ≤ a, b1 ≤ b and all four
elements are finite, then a� a1 ∼ b� b1.

Proof. Since L is a factor, we have either a � a1 � b � b1, or b � b1 � a � a1. If
the first inequivalence were proper, then adding the equivalence a1 ∼ b1 and using
(D2), a would be equivalent to a subelement of b, and since a ∼ b, this would
contradict the finiteness of b. The second case is symmetric. �
Lemma 7.5. If a is finite and b �= 0, then there exists a unique integer n such that
any maximal family of summable elements equivalent to b with the sum included in
a contains n elements.

Proof. Since a is finite, Lemma 7.1 (vi) implies that every summable family of
elements bi ∼ b such that

⊕
bi ≤ a must be finite. Let b1, . . . , bn and c1, . . . , cm

be any two such maximal families, and suppose, e.g., that n < m. Then the
complement a � (

⊕n
i=1 bi) includes no images of b (by the maximality of the set

{bj}), whereas a�(
⊕n

j=1 cj) includes the image of cm, and this contradicts the fact
that these two complements are equivalent by Lemma 7.4. Thus all maximal sets
contain the same number of elements. �

Now assume that there exists an atom p, that is, a nonzero element having no
proper subelements except 0. Since p is related to all other elements, it follows that
for every nonzero finite element a there exists a unique integer m such that a is
exactly a sum of m summable images of p. If a and b are finite and orthogonal,
then if a =

⊕n
i=1 ai, b =

⊕m
j=1 bj , with ai ∼ bj ∼ p, then by (C2), a ⊕ b ∼

(
⊕
ai) ⊕ (

⊕
bj). It follows that a⊕ b can be decomposed into m+ n replicas of p.

If we define α(a) to be this unique integer, then two finite elements a and b are
equivalent if and only if α(a) = α(b). If 1 is finite, with α(1) = N , we normalize
α by dividing through by N . Values of the normalized α are the fractions m

N ,
0 ≤ m ≤ N . In this case L is said to be a factor of type IN .

We will call a real-valued function D defined on the set Lk of all finite elements
of L a dimension function if the following properties are satisfied:
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(1) D(0) = 0, if 1 is finite then D(1) = 1.
(2) If

⊕
ai ∈ Lk, then D(

⊕
ai) =

∑
D(ai).

(3) a ∼ b iff D(a) = D(b).

If L is a factor of type IN , put D≡ α/N . It is easy to see that properties (1)–(3)
above are satisfied.

Lemma 7.6. (see [37, Lemma 12]). Let L be a factor. If a ∈ L is infinite,
then a includes a sequence of orthogonal nonzero equivalent elements.

Proof. If a is not finite, then there exists a1 < a such that a1 ∼ a. We set c1 = a�a1,
then c1 is not zero. From a1 ∼ a = a1 ⊕ c we get by (C5) that a1 = a2 ⊕ c2 with
a2 ∼ a1 and c2 ∼ c1. Continuing inductively, we obtain sequences {an} and {cn}
such that for every n, an ⊥ cn, an

⊕
cn = an−1, an ∼ a1 ∼ a and cn ∼ c1. The

sequence {cn} has the desired properties. �

Now we are able to prove the following statement.

Theorem 7.7. Let L be a factor of type I. Then there exists a dimension function
D on Lk such that for any a, b ∈ Lk, a ⊥ b implies D(a⊕ b) = D(a)+D(b). If L is
of type IN , then D admits values in {1/N, 2/N, . . . , N − 1/N, 1}. If 1 is not finite
(i.e., L is of type I∞), then D admits all positive integers.

Proof. If 1 ∈ Lk, define D(a) = α(a)/α(1), a ∈ L. If 1 �∈ Lk, put D(a) = α(a),
a ∈ L. By Lemma 7.6, 1 =

⊕∞
i=1 pi, where pi are equivalent images of an atom p.

Now D(
⊕m

i=1 pi) = m for any positive integer m. �

If there are no atoms, then every element a contains a smaller element 0 < a1 ≤ a,
so that a = a1 ⊕ (a � a1), and since we are in a factor, either a1 � (a � a1), or
a�a1 � a1. Taking the smaller (with respect to �) of the two elements, we see that
every nonzero element includes a pair of nonzero, orthogonal equivalent elements.

In the sequel, we follow the pattern of [37].

Lemma 7.8. If there exist no atoms, then every element can be expressed as the⊕
-sum of n-summable equivalent subelements, for any n.

Proof. Let {(a1
α, . . . , a

n
α)}α be a maximal family such that a1

α ∼ a2
α ∼ · · · ∼ an

α

for any α, and such that the elements an
α are all summable and all finite sums are

under a. If aj =
⊕

α a
j
α, then the elements aj are summable and equivalent, and⊕

j aj ≤ a.
We claim that

⊕
j aj = a; otherwise a � (

⊕
j aj) includes a family of n sum-

mable equivalent nonzero elements by the remark preceding this lemma, and this
contradicts the maximality assumption. �

If 1 is a finite element, we obtain a factor of type II1. If 1 is not finite, but there
is a nonzero finite element, we obtain a factor of type II∞.
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Theorem 7.9. Let L be a factor of type II. Then there exists a dimension function
D, defined on the class Lk of finite elements. If 1 is a finite element, the range of
D is the unit interval [0, 1] of real numbers. If 1 is not finite, the range of D is
the set of all nonnegative real numbers.

Proof. The proof is in essential the same as in [37]. We give only a sketch of it.
In a factor of type II the following function is uniquely defined.

δb(a) := sup
{m
n

:
m

n
b � a

}
, a, b ∈ Lk, b �= 0,

where the symbol m
n b ∼ a means that a =

⊕m
i=1 ai, b =

⊕n
j=1 bj, a1 ∼ · · · ∼ am ∼

b1 · · · ∼ bn. The number δb(a) is called a relative dimension of a with respect to b.
We have

δc(a) = δc(b)δb(a), a, b, c ∈ Lk, b, c �= 0. (2)

In particular, if 1 ∈ Lk, then D(a) = δ1(a) is the desired dimension function. If 1
is infinite then D can be defined as δb by some fixed b. Owing to (2), D is defined
uniquely up to a multiplicative constant. �

It is not difficult to prove that a direct product of factors is a dimension effect
algebra. In fact, a more general statement is true.

Proposition 7.10. Let L =
∏
Li, where each Li is an effect algebra with dimen-

sion. Then L is an effect algebra with dimension.

Proof. Let a, b ∈ L, a =
∏
ai, b =

∏
bi. Define a ∼ b if and only if ai ∼i bi for

all i. Conditions (D1)–(D4) are clearly satisfied, so that L is an effect algebra with
dimension. �

The general dimension theory for orthomodular lattices and posets is based on
the theorem, that any hereditary class of elements admits a supremum, which is
an invariant element [37, 51]. Then it can be proved that every dimension poset
decomposes into factors of type I, II and the remaining part is of type III. Here a
subclass F of L is called hereditary if a ∈ F, b � a implies b ∈ F , and an element
c ∈ L is invariant if c and c′ = 1� c are unrelated. So far, we have not been able to
find a suitable modification of the above theorem for effect algebras. Nevertheless,
we prove some general properties of invariant elements that may be of interest in
this context.

Let C0 denote the set of all invariant elements of L. We have the following
characterization of invariant elements.

Lemma 7.11. An element c ∈ L is invariant if and only if c is sharp and a ≤ c

whenever a � c.
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Proof. If c is invariant and b ≤ c, b ≤ c′, then c ≥ b ∼ b ≤ c′ implies b = 0, since
c and c′ are unrelated. Hence c is sharp. Assume a � c. Then a ∼ c1 ≤ c. Let
a1 ≤ a. Since a1⊕d = a ∼ c1, (D3) implies that there are c2, t such that t⊕ c2 = c1
and c2 ∼ a1, t ∼ d. If b1 ≤ c′, b1 ∼ a1, then c ≥ c2 ∼ a1 ∼ b1 ≤ c′. Therefore
b1 = 0. (D4) implies that a ⊥ c′, hence a ≤ c.

Conversely, if c is sharp and has the property that a � c implies a ≤ c, then
c ≥ u ∼ v ≤ c′ implies v ≤ c, c′, so that v = 0. Hence c is invariant. �

It is easy to see that if a and b are unrelated and a1 ≤ a, b1 ≤ b then a1 and b1
are unrelated. Conversely, if a and b are related and a ≤ a2, b ≤ b2 then a2 and b2
are related. In particular, if c1, c2 ∈ C0 and c1 ⊥ c2, then any a ≤ c1 and b ≤ c2
are unrelated.

Proposition 7.12. If L is a factor, then C0 = {0, 1}.
Proof. Since c ∈ C0, c, c′ are unrelated; but L is a factor, so any two nonzero
elements are related. Thus, one of c and c′ must be 0, whence, the other is 1. �

Recall that an element z ∈ L is principal if a, b ≤ z and a ⊥ b implies a⊕ b ≤ z,
and z ∈ L is central if z and z′ are principal and every a ∈ L has a unique
decomposition a = a1 ⊕ a2 with a1 ≤ z and a2 ≤ z′. If z is central then L can
be expressed as a direct product of effect algebras [0, z] × [0, z′]. Conversely, if
L = L1 × L2, then the elements (0, 1) and (1, 0) are central in L [23].

Let C denote the set of all central elements in L. Then C is a complete Boolean
algebra. (The σ-complete case has been treated in [31, Proposition 5], the proof
for the complete case is analogous.) In what follows, we will show that C0 is a
complete Boolean subalgebra of C.

Recall that two elements a, b in L are Mackey compatible if a = a1⊕ c, b = b1⊕ c
and a1 ⊕ b1 ⊕ c exists. Alternatively, a and b are Mackey compatible iff a = a1 ⊕ a2

with a1 ≤ b and a2 ≤ b′ [13].

Theorem 7.13. The set of all invariant elements of a dimension effect algebra L
is a complete Boolean subalgebra of the centre C of L.

Proof. Let z ∈ C0. First we prove that for every x ∈ L, z and x are Mackey
compatible, that is, there are elements z1, x1, u such that z1 ⊕ x1 ⊕ u exists and
z = z1 ⊕ u, x = x1 ⊕ u. From z ⊕ z′ = 1 = x ⊕ x′ we obtain by (D3) that
x = a1 ⊕ a2, x′ = b1 ⊕ b2, a1 ⊕ b1 ∼ z, a2 ⊕ b2 ∼ z′. Invariance implies that
a1 ⊕ b1 ≤ z, a2 ⊕ b2 ≤ z′. From 1 = a1 ⊕ b1 ⊕ a2 ⊕ b2 = z ⊕ z′ it follows that
a1 ⊕ b1 = z, and moreover, that a1 ⊕ a2 ⊕ b1 is defined. Putting u = a1, x1 = a2

and z1 = b1, this proves our statement.
Now we prove that z is principal. Let x, y ≤ z, x ⊥ y. By the preceding

paragraph, x ⊕ y is compatible with z, therefore x ⊕ y = a ⊕ b, a ≤ z, b ≤ z′.
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Applying (D3), we obtain that x = x1⊕x2 ≤ z, y = y1⊕y2 ≤ z and x1⊕y1 ∼ a ≤ z,
x2⊕y2 ∼ b ≤ z′. Since z ∈ C0, x2, y2 ≤ z, z′ implies x2⊕y2 = 0. Therefore x = x1,
y = y1 and x⊕ y = x1 ⊕ y1 ∼ a ≤ z, and since z ∈ C0, x⊕ y ≤ z.

By the compatibility property, for any x ∈ L there are x1 ≤ z, x2 ≤ z′ such that
x = x1 ⊕ x2. To prove uniqueness, assume that there are y1 ≤ z, y2 ≤ z′ such that
x = y1⊕y2. Then x1⊕x2 = y1⊕y2 and by (D3), x1 = a⊕b ≤ z, x2 = c⊕d ≤ z′ and
a⊕ c ∼ y1 ≤ z, b⊕ d ∼ y2 ≤ z′. Then we must have b = c = 0, hence x1 = a ∼ y1,
x2 = d ∼ y2. So x1 ∼ y1, x2 ∼ y2 and x1 ⊕ x2 = y1 ⊕ y2 = x. From x1 ≤ z, x2 ≤ z′

it follows that there are u, v such that x1 ⊕ u = z, x2 ⊕ v = z′. Then

1 = x1 ⊕ x2 ⊕ u⊕ v = y1 ⊕ y2 ⊕ u⊕ v = z ⊕ z′

where y1 ⊕ u ∼ x1 ⊕ u = z, y2 ⊕ v ∼ x2 ⊕ v = z′.
By the invariantness of z and the above equality, y1 ⊕ u = z, y2 ⊕ v = z′. This

entails that x1⊕u = y1⊕u, x2⊕v = y2⊕v, hence xi = yi, i = 1, 2. This proves the
uniqueness of the decomposition into two parts under z and z′. Therefore C0 ⊂ C.

It remains to prove that C0 is a Boolean subalgebra of C. Assume that e, f ∈ C0,
e ⊥ f and g = e⊕ f . Let x, y be such that g ≥ x ∼ y ≤ g′. By (D3) applied to

x⊕ (g � x) = e⊕ f

we obtain

x = x1 ⊕ x2, g � x = y1 ⊕ y2

e ∼ x1 ⊕ y1, f ∼ x2 ⊕ y2.

As e, f are invariant, we have

x1 ⊕ y1 ≤ e, x2 ⊕ y2 ≤ f,

while
g ≥ x = x1 ⊕ x2 ∼ y ≤ g′.

By (D3) y = u⊕ v where u ∼ x1, v ∼ x2. So

e ≥ x1 ∼ u ≤ e′, f ≥ x2 ∼ v ≤ f ′

and therefore x1 = x2 = 0. Hence x = 0 and so f ⊕ g ∈ C0.
Let zi ∈ C0, z =

∧
zi. Then x � z implies x � zi, hence x ≤ zi for all i, and so

x ≤ z. Since z ∈ C, z is sharp, and hence z ∈ C0. This concludes the proof. �

For a ∈ L, let e(a) := ∧{z ∈ C0 : z ≥ a}. Then e(a) ∈ C0. Moreover, if a ∼ b

then e(a) = e(b).

Proposition 7.14. (i) Let {ai} be a family of elements in L. If
∨
ai exists then

e(∨ai) =
∨
e(ai). (ii) If a, b ∈ L, a ⊥ b, then e(a)∨ e(b) ≤ e(a⊕ b). (iii) Let a ∈ L.

If z ∈ C0 then e(z ∧ a) = z ∧ e(a).



Algebra Universalis June 18, 2002 16:04 1772u F00092 (1772u), pages 443–477 Page 470 Sheet 28 of 35

470 G. Jenča and S. Pulmannová Algebra univers.

Proof. (i) Let
∨
ai exist. As e(ai) ≤ e(

∨
ai), we have

∨
e(ai) ≤ e(

∨
ai). On the

other hand,
∨
ai ≤

∨
e(ai) ∈ C0, and so e(

∨
ai) =

∨
e(ai). (ii) is obvious. (iii) We

have z ∧ a ≤ z ∧ e(a) ∈ C0, so that e(z ∧ a) ≤ z ∧ e(a). Now e(z ∧ a) ∨ z′ ∈ C0,
and so e(z ∧ a) ∨ z′ ≥ e(a). From this, z ∧ e(a) ≤ z ∧ e(z ∧ a) ≤ e(z ∧ a). Hence
e(z ∧ a) = z ∧ e(a). �

Proposition 7.15. If a ∼ b and z is invariant then a ∧ z ∼ b ∧ z.
Proof. Since a = (z ∧ a)⊕ (z′ ∧ a) ∼ b, it follows by (D3) that there are b1, b2 such
that b = b1 ⊕ b2, b1 ∼ z ∧ a, b2 ∼ z′ ∧ a. Then z ∈ C0 implies b1 ≤ z ∧ b, b2 ≤ z′ ∧ b.
But (z ∧ b)⊕ (z′ ∧ b) = b, hence b1 = z ∧ b, b2 = z′ ∧ b. Therefore z ∧ b ∼ z ∧ a. �

We will say that a dimension effect algebra (L;∼) satisfies the general compara-
bility condition (GC) (cf. [4]) if for every a and b, there exists an invariant element
e such that a∧ e � b∧ e and b∧ e′ � a∧ e′. We note that in a dimension lattice or
even a dimension poset condition (GC) is satisfied [37, 51].

Proposition 7.16. Let (L;∼) be a dimension effect algebra. If for any a, b, e(a)∧
e(b) �= 0 implies a ρ b, then condition (GC) is satisfied.

Proof. Let a1 ≤ a and b1 ≤ b be such that a1 ∼ b1 and a� a1 is unrelated to b� b1
(Lemma 7.2). Let e = e(b� b1), so that (a� a1)∧ e = 0 and (b� b1)∧ e′ = 0. Then
a ∧ e = a1 ∧ e ∼ b1 ∧ e ≤ b ∧ e and b ∧ e′ = b1 ∧ e′ ∼ a1 ∧ e′ ≤ a ∧ e′. �

Proposition 7.17. Let (GC) be satisfied. If a1 ∼ a2, b1 ∼ b2 and a1 ≤ b1, a2 ≤ b2
and all four elements are finite, then b1 � a1 ∼ b2 � a2.

Proof. We choose an invariant element e such that (b1 � a1)∧ e � (b2 � a2)∧ e and
(b2 � a2) ∧ e′ � (a2 � b2) ∧ e′. If the first inequivalence were proper, we would get

b1 ∧ e = a1 ∧ e⊕ (b1 � a1) ∧ e � a2 ∧ e⊕ (b2 � a2) ∧ e = b2 ∧ e,
and, since b1 ∼ b2, this contradicts the finiteness of b2. Similarly, (b1 � a1) ∧ e′ ∼
(b2 � a2) ∧ e′. Adding we get b1 � a1 ∼ b2 � a2. �

Proposition 7.18. Let (GC) be satisfied. If a, b ∈ L are finite and a ⊥ b, then
a⊕ b is finite.

Proof. Assume a ⊕ b ∼ c ≤ a ⊕ b. By (D3), c = c1 ⊕ c2, c1 ∼ a, c2 ∼ b. Applying
(D3) to the equality a ⊕ b = c ⊕ ((a ⊕ b) � c), we obtain a = ā ⊕ d1, b = b̄ ⊕ d2,
ā⊕ b̄ ∼ c, d1 ⊕ d2 ∼ (a⊕ b) � c.

Applying (D3) again to ā ⊕ b̄ ∼ c1 ⊕ c2, we obtain ā = a1 ⊕ a2, b̄ = b1 ⊕ b2,
a1 ⊕ b1 ∼ c1 ∼ a, a2 ⊕ b2 ∼ c2 ∼ b, and so a = a1 ⊕ a2 ⊕ d1, b = b1 ⊕ b2 ⊕ d2.

From this we obtain a1 ⊕ b1 ∼ a = a1 ⊕ a2 ⊕ d1, and by Proposition 7.17,
b1 ∼ a2 ⊕ d1. Analogously a2 ∼ b1 ⊕ d2. From a2 ∼ a2 ⊕ d1 ⊕ d2 and finiteness of
a2 we get d1 ⊕ d2 ∼ 0, so that c = a⊕ b. �
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Recall that a subset I of an effect algebra L is an ideal if for arbitrary orthogonal
elements a and b in L, a⊕ b belongs to I if and only if a and b belong to I (see e.g.
[13]). We will say that a subclass V of L is (1) hereditary if a ∈ V , b � a implies
b ∈ V , and (2) sharply dominating if for every a ∈ V there exists a sharp element
p ∈ V with a ≤ p.

Lemma 7.1 and Proposition 7.18 imply the following statement.

Corollary 7.19. If (GC) is satisfied then the finite elements form a hereditary
ideal in L.

Theorem 7.20. Let F be a sharply dominating hereditary ideal in (L,∼). Then
the supremum w :=

∨
F exists in L and is invariant.

Proof. Let {ai} be any maximal summable family of elements in F . By (D2), the
element w =

⊕
ai =

∨
K

⊕
ai∈K ai, where K is any finite subfamily of {ai}, exists

in L.
Let a ∈ F , and assume that a �≤ w, in other words, a �⊥ w′. By (D4) there

are nonzero a1, w1 such that a ≥ a1 ∼ w1 ≤ w′. Now w1 ∈ F , w1 ⊥ w, hence
w ⊥ ⊕

ai∈K ai for any finite subset K of {ai}. This contradicts the maximality of
{ai}. Hence F ≤ w and w =

∨
F and w =

∨
F .

Assume that a ∈ F , a ≤ w,w′. Then there is a sharp element p ∈ F with a ≤ p.
Therefore a ≤ p ≤ w and a ≤ w′ ≤ p′ implies a = 0.

Let u ≤ w, then w = u⊕ (w�u). For any f ∈ F , the inequality f ≤ u⊕ (w�u)
implies that f ∼ f1 ⊕ f2, f1 ≤ u, f2 ≤ w � u. Clearly, f1, f2 ∈ F .

If for every f ∈ F , f ≤ w � u holds, then also w ≤ w � u, whence u = 0.
Therefore for every u ≤ w there is f ∈ F with f ≤ u. Assume w ≥ x ∼ y ≤ w′.
Then there is f ∈ F such that f ≤ x ∼ y. From this it follows that f ⊕ (x� f) ∼ y,
and by (D3), there are g, h such that y = g ⊕ h and g ∼ f , h ∼ x � f . Hence
g ≤ y ≤ w′. Since g ∼ f and f ∈ F , we have g ∈ F , hence g ≤ w. So g ≤ w,w′.
By the preceding part of the proof, g = 0. It follows that w ∈ C0. �

Example. Let us consider the standard effect algebra E(H), i.e., the set of all
self-adjoint operators A on a Hilbert space H such that 0 ≤ A ≤ I, where 0 and
I are the zero and the identity operators on H . We recall that the ⊕-operation is
defined as follows: A ⊥ B iff A+B ≤ I and in this case A⊕B = A+B, where +
means the usual sum of operators. It turns out that the partial order induced by
this operation coincides with the usual partial order defined by A ≤ B iff B−A ≥ 0,
i.e., 〈Ax, x〉 ≤ 〈Bx, x〉 for all vectors x ∈ H .

Let ω be a state on E(H), i.e., there is a trace-class operator D with unit trace
such that ω(A) = trDA, A ∈ E(H). By [26, Lemma 5.1], ω(λA) = λω(A) for
every λ ∈ [0, 1], A ∈ E(H), and the binary relation ∼ on E(H) defined by A ∼ B if
ω(A) = ω(B) is a congruence. The latter property implies that ∼ is cancellative and
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satisfies (C5), and the quotient is an effect algebra. Recall that a state ω is faithful
if for any nonzero projection P , ω(P ) is a positive number. We will show that, for
a faithful state ω, ∼ satisfies properties (D1)–(D4) of the dimension equivalence.

(D1): Assume that ω(A) = 0 for some A ∈ E(H). By spectral theorem, A =∫ 1

0
λPA(dλ), where PA is the spectral measure of A. From this we obtain, using the

fact that ω is faithful, that PA{0} = 1, hence A = 0.

(D2): Completeness of E(H) follows by [53, Lemma 1], and the rest follows by
complete additivity of ω.

(D3): Assume that A⊕B ∼ C ⊕D, that is, ω(A)+ω(B) = ω(C)+ω(D) =: M .
We may assume that M �= 0. Put

e =
ω(C)
M

A, E =
ω(D)
M

A,

f =
ω(C)
M

B, F =
ω(D)
M

B.

We obtain e⊕ E = A, f ⊕ F = B, and e⊕ f ∼ C, E ⊕ F ∼ D.

(D4): Let A,B be any nonzero elements. Consider the elements

A1 :=
ω(B)

ω(A) + ω(B)
A, B1 :=

ω(A)
ω(A) + ω(B)

B.

Clearly, 0 �= A1 ≤ A, 0 �= B1 ≤ B, and ω(A1) = ω(B1), hence A1 ∼ B1. The
proof implies that any two nonzero elements are related, so we have a factor.

Let C be an invariant element, then C and I�C unrelated. According the proof
of (D4), this only happens if ω(C) = 0 or ω(I � C) = 0, i.e., C = 0 or C = I. So
the set of invariant elements is reduced to {0, I}.

The quotient of E(H) with respect to ∼ is the interval [0, 1] ⊆ R. Our dimension
effect algebra does not contain any atoms and all elements are finite. Indeed, assume
A ≤ B, then B = A ⊕ (B � A). If A ∼ B, then ω(B � A) = 0, hence A = B. So
we have a factor of type II1.

We see that every faithful state induces a dimension equivalence on E(H). For
the projection lattice P(H), this is not the case. Indeed, if ∼ is a dimension
equivalence, condition (D4) implies that for any two atoms P and Q, if P �⊥ Q

then P ∼ Q. If P and Q are orthogonal, by the superposition principle, there is an
atom R ≤ P ⊕ Q, different from both P and Q, which is not orthogonal to either
of them. This entails that all atoms should belong to the same equivalence class.
It follows that in the finite dimensional Hilbert space, the only state which induces
a dimension equivalence is the tracial one, i.e., ω(P ) = trP

trI , and we get a factor of
type IN . In the infinite dimensional case, there is no such state.
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8. Some applications to K0-theory

Recall that two projections e, f of a C*-algebra are defined to be equivalent
(e ∼ f) if there exists a ∈ A such that a∗a = e and aa∗ = f .

Elliott [15] considered the set D(A) of all equivalence classes of idempotents of
a ring A together with a partially defined addition, which he calls an abelian local
semigroup. He has shown that the range D(A) of the dimension equivalence is an
invariant that can be used in the classification of AF C*-algebras (i.e., approxi-
mately finite dimensional). Originally, an AF-C*-algebra A is defined as a direct
limit of a sequence

A1 ⊆ A2 ⊆ A3 ⊆ · · ·
of finite dimensional C*-algebras Ai.

Traditionally, D(A) is not studied directly, but as an upward directed convex
subset of the positive cone of an interpolation group K0(A), called the K0 group
for A. Notice that any such subset is an upper directed cp-PAM with RDP.

The definition of K0(A) usually requires simultaneous consideration of all the
matrix algebras over A. This procedure is called a stabilisation. Denote Mn(A) the
set of all n× n matrices with entries in A. Let M∞(A) denote the algebraic direct
limit of Mn(A) under the embeddings a �→ diag(a, 0). M∞(A) can be thought of as
the algebra of all infinite matrices with only finitely many nonzero entries. The em-
beddings are isometries, soM∞(A) has a natural norm. Let V (A) := Proj(M∞(A)).
If A is separable, then V (A) is countable. There is a binary operation on V (A):
if [e], [f ] ∈ V (A), choose e′ ∈ [e], f ′ ∈ [f ] with e′ ⊥ f ′ (this is always possible by
“moving down the diagonal”), and define [e]+ [f ] = [e′ + f ′]. This operation is well
defined and makes V (A) into an abelian semigroup with the identity [0].

For any abelian semigroupH , there is a universal enveloping abelian groupG(H)
called the Grothendieck group of H . G(H) can be thought of as the group of all
equivalence classes of H ×H under the equivalence relation (x1, y1) ∼ (x2, y2) iff
there is z with x1 + y2 + z = x2 + y1 + z.

If A is a unital C*-algebra, then K0(A) is defined as the Grothendieck group of
V (A). The embedding of V (A) into K0(A) is injective iff V (A) has cancellation,
i.e., whenever e, f, g, h ∈ V (A) and e ⊥ g, f ⊥ h, e ∼ f and e + g ∼ f + h then
g ∼ h.
K0(A) can be preordered by taking the image of V (A) in K0(A) as K0(A)+.

We also define the scale Σ(A) to be the image of Proj(A) in K0(A). The triple
(K0(A),K0(A)+,Σ(A)) is called the scaled group of A. If A is a unital C*-algebra
with cancellation, then Σ(A) = [0, [1A]] is the Elliott invariant. The map A �→
K0(A) preserves direct products and direct limits [6].

Using the “word” technique developed in [1, 49, 55], any upward directed cp-
PAM with RDP can be embedded into the positive cone of an interpolation group,
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which is its universal group (see e.g. [10] for details). This interpolation group is a
dimension group in the sense of [14] if and only if it can be embedded as a subgroup
into a lattice ordered group [5]. Accordingly, a cp-PAM with RDP has a dimension
group as a universal group if and only if it can be embedded into a lattice ordered
cp-PAM with RDP. This suggests that there is a one-to-one correspondence between
K0(A) for (unital) AF C*-algebras A and unital countable cp-PAMs D(A) which
can be embedded into MV-algebras. The corresponding K0(A) can be obtained
directly from D(A) using the word technique without stabilization.

We will concentrate on the case of an AF C*-algebra and show briefly how the
theory of cp-PAMs (orthomodular lattices in this case) with dimension can be used
to obtain the K0 group. It is well known that a simple finite-dimensional complex
C*-algebra is isomorphic with Mn(C), the n × n-matrices over complex numbers
[21]. That is, the elements can be represented by the set of all operators on a finite
dimensional Hilbert space. It then follows by [37] that the set L of projections in A
is a complete orthomodular lattice (which is even modular), and endowed with the
above equivalence relation satisfies axioms (D1)–(D4). Clearly, the quotient with
respect to ∼ is equivalent to the MV-algebra {0, 1

N , . . . ,
N−1

N , 1}, that is, a finite
MV-chain, and the corresponding abelian group is the group of integers Z, where
the Elliott invariant is embedded as the interval [0, N ], and N is a strong unit.
Now every finite dimensional complex C*-algebra A is isomorphic (as a complex
C*-algebra) to Mn(1)(C)× · · ·×Mn(k)(C) for some positive integers n(1), . . . , n(k).
The k-tuple n(A) := (n(1), . . . , n(k)) is an invariant (up to permutation) of A, and
n(A) classifies A up to isomorphism. The corresponding Elliott invariant D(A) for
A is a direct product of MV-chains.

Now an AF-C*-algebra A is a direct limit of a sequence

A1 ⊆ A2 ⊆ A3 ⊆ · · ·
of finite dimensional C*-algebras Ai. Let Ai ⊆ Aj and p, q ∈ Ai, p ∼i q, that is, p =
ww∗,q = w∗w for some w ∈ Ai. Let φi

j : Ai → Aj be a C*-algebra morphism. Then
φi

j(p) = φi
j(w)(φi

j(w))∗, φi
j(q) = (φi

j(w))∗φi
j(w), hence φi

j(p) ∼j φ
i
j(q). Therefore

the condition (CDL) in Theorem 5.4 is satisfied. Applying Theorem 5.4, we obtain
D(A) as a direct limit of D(Ai).
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[10] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer
Academic Publ., Dordrecht and Ister Science Press, Bratislava, 2000.
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