2. Histamine and the central nervous system

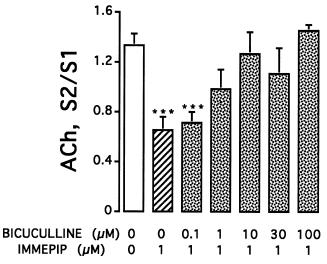
GABAergic mechanism in histamine H₃ receptor inhibition of K⁺-evoked release of acetylcholine from rat cortex in vivo

M. Giorgetti, L. Bacciottini, L. Bianchi, M. G. Giovannini, M. Cecchi and P. Blandina

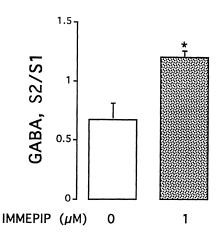
Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Viale G.B. Morgagni 65, I-50134 Firenze, Italy

Introduction

Autoradiographic studies have suggested that the presence of $\rm H_3$ receptors, initially detected as autoreceptors inhibiting histamine release [1], is not restricted to histaminergic neurons [2–4]. Accordingly, functional studies have shown that $\rm H_3$ receptors modulate the release of several neurotransmitters, including acetylcholine (ACh) in vitro [5], and in vivo [6]. The present study assessed the location of $\rm H_3$ receptors modulating ACh release.


Materials and methods

A transversal microdialysis membrane was implanted in both parietal cortices of male Wistar rats (200-250 g), anesthetized with chloral hydrate (400 mg/kg, i.p.). Twenty-four hours after surgery the membrane was perfused with Ringer solution containing $7\,\mu\text{M}$ physostigmine (flow rate: 3 µl/min). Ten minute fractions were collected. ACh and GABA contents were measured by HPLC with electrochemical and fluorometric detection, respectively. Rats were stimulated twice by a 10-min exposure to a 100 mM K⁺-medium, given through the dialysis fiber at $50 (S_1)$ and $140 \min (S_2)$ after equilibration. Spontaneous release values were obtained by averaging ACh and GABA contents in the four samples immediately before S_1 . Drugs were added to the medium $10 \, \text{min}$ before S_2 and maintained during S_2 , and their effects evaluated by calculating the ratio of the evoked releases (S_2/S_1) . All values are expressed as means \pm SEM, with number of experiments (h). All experiments were done in compliance with the recommendations of the EEC (86/609/CEE) for the care and use of laboratory animals and were approved by the Animal Care Committee of the Universitá di Firenze.


Results and discussion

This study demonstrates that H_3 receptors inhibiting cortical ACh release are not presynaptically located, and facilitate the release of GABA from cortical interneurons. Rat cerebral cortex spontaneously released ACh at stable rates, 4.1 ± 0.6 pmol/10 min (n = 33). Two identical 100 mM K⁺ stimulations (S_1 and S_2), each more than doubled ACh release

 $(S_2/S_1: 1.33 \pm 0.10, n = 6)$. Tetrodotoxin $(0.5 \mu M)$, a voltage-dependent Na⁺-channel blocker, was infused into the prefrontal cortex 20 min before S₂ and maintained during S₂. K⁺-evoked release of ACh failed to show any tetrodotoxin-sensitive component $(S_2/S_1: 1.1 \pm 0.1, n = 6)$, thus excluding involvement of neuronal loops. Imetit $(10 \,\mu\text{M})$, an H₃ receptor agonist, reduced $100 \,\text{mM}$ K⁺evoked ACh release in the absence $(S_2/S_1: 0.69 \pm 0.01,$ n=4), but not in the presence of tetrodotoxin (S_2/S_1) : 1.1 ± 0.12 , n = 4). Hence the suggestion that H₃ receptors modulating ACh release are not located presynaptically on cholinergic nerve terminals, or on non-cholinergic nerve endings impinging on the former. Consistently, H₃ receptor agonists failed to alter [3H]-ACh release from rat cortical synaptosomes [7]. Bicuculline, a GABAA receptor antagonist, reversed the inhibition of ACh release induced by

Fig. 1. The influence of bicuculline on immepip-induced inhibition of 100 mM K⁺-evoked release of ACh from cortex of freely moving rats. Bicuculline was infused into the prefrontal cortex through the dialysis fiber 20 min before S_2 and maintained during S_2 stimulation. Immepip was infused, alone or along with bicuculline, 10 min before S_2 and maintained during S_2 . Shown are the means \pm SEM of 3–6 experiments. ***p < 0.001 vs control by ANOVA and Scheffe's test.

Fig. 2. The influence of immepip on 100 mM K⁺-evoked release of GABA from cortex of freely moving rats. Immepip $(1 \,\mu\text{M})$ was infused into the prefrontal cortex through the dialysis fiber 10 min before S₂ and maintained during S₂. Rat cerebral cortex spontaneously released GABA at stable rates, $7.9 \pm 1.3 \,\text{pmol/10}$ min (n=6). Shown are means \pm SEM of 3 experiments. *p < 0.05 by unpaired Student's t-test.

immepip, an H_3 receptor agonist (Fig. 1). The addition of $1 \mu M$ immepip to the perfusing medium increased $100 \, mM$ K⁺-evoked release of GABA from the cortex of freely moving rats up to more than 50% (Fig. 2). These findings

suggest that H_3 receptors, located postsynaptically on intrinsic perikarya, facilitate the release of GABA, which, in turn, inhibits ACh release.

References

- [1] Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H₃) of histamine receptor. Nature 1983;302:832–7.
- [2] Martinez-Mir MI, Pollard H, Arrang JM, et al. Three histamine receptors (H₁, H₂ and H₃) visualized in the brain of human and non human primates. Brain Res 1990;526:322–7.
- [3] Cumming P, Shaw C, Vincent SR. High affinity histamine binding site is the H₃ receptor: characterization and autoradiographic localization in rat brain. Synapse 1991;8:144-51.
- [4] Pollard H, Moreau J, Arrang JM, Schwartz J-C. A detailed autoradiographic mapping of histamine H₃ receptors in rat brain areas. Neuroscience 1993;52:169–89.
- [5] Clapham J, Kilpatrick GJ. Histamine H₃ receptors modulate the release of [³H]-acetylcholine from slices of rat enthorinal cortex: evidence for the possible existence of H₃ receptor subtypes. Br J Pharmacol 1992:107:919–23.
- [6] Blandina P, Giorgetti M, Cecchi M, Leurs R, Timmerman H, Giovannini MG. Histamine H₃ receptor inhibitor of K⁺-evoked release of acetylcholine from rat cortex in vivo. Inflamm Res 1996;45:S54-5.
- [7] Arrang JM, Drutel G, Schwartz JC. Characterization of histamine H₃ receptors regulating acetylcholine release in rat enthorinal cortex. Br J Pharmacol 1995;114:1518–22.