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Abstract
Background  Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limi-
tations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is 
involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy.
Methods  In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embed-
ding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, 
respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. 
Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells 
and exhausted CD8+T cells.
Results  Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consist-
ing of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into 
high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed 
higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demon-
strated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong inter-
action between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ 
and CD8+FOXP3+T cells were positively associated with lower survival rates.
Conclusion  This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive 
microenvironment, which may provide a new direction for improving patient outcomes.
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Introduction

Breast cancer is a malignant tumor that occurs in the breast 
tissue, usually originating in the glandular tissue of the 
breast, and can develop in various parts of the breast such 
as the breast lobules, ducts and glandular interstitium [1]. 
According to the latest global cancer statistics published 
by the World Health Organization's International Agency 
for Research on Cancer (WHO) in 2020, breast cancer is 
projected to have over 2.3 million new cases and cause 
685,000 deaths worldwide, which has surpassed lung 
cancer, making breast cancer become the most common 
cancer globally [2]. At present, the main clinical treat-
ments for breast cancer include surgery, radiotherapy, 
chemotherapy, endocrine therapy and targeted therapy 
[3]. Tumor immunotherapy mainly eliminates tumor cells 
by reactivating the host's anti-tumor immune response. 
In recent years, breakthrough research progress has been 
made in tumor immunotherapy, which has been widely 
used in melanoma, non-small cell lung cancer, gastric can-
cer and other malignant tumors, attracting great attention 
due to its unprecedented clinical benefits [4]. The tradi-
tional concept has always been that breast cancer belongs 
to "low immunogenicity" tumor, but the latest research 
shows that breast cancer is also expected to be a benefit 
object of immunotherapy, especially for those patients 
who are resistant to chemotherapy or endocrine therapy, 
tumor immunotherapy has shown great therapeutic pros-
pects [5, 6]. Tumor immunotherapy has brought new light 
and vitality to advanced breast cancer patients, but its low 
response status in breast cancer patients is still a challenge 
that restricts the wide application of tumor immunotherapy 
in breast cancer patients [7, 8]. Studies have shown that 
breast cancer tumor immune microenvironment remod-
eling is an important factor in determining the efficacy 
of tumor immunotherapy [9]. Therefore, with the help of 
the latest research technology, objective, multidimensional 
and accurate characterization of the breast cancer immune 
microenvironment landscape induced by key immunomod-
ulatory molecules and targeted research and development 
of new clinical strategies will certainly help improve the 
clinical status of low response of breast cancer patients 
in the application of tumor immunotherapy, thus creat-
ing more survival opportunities for breast cancer patients, 
which has important scientific significance and clinical 
practical value.

CD24, a small glycosylated cell adhesion protein, is 
closely related to the occurrence, progression and prog-
nosis of breast cancer [10–12]. Recent studies have shown 
that CD24 has an important remodeling effect on the 
breast cancer immune microenvironment[12]. Neverthe-
less, there exists debate regarding the impact of CD24 on 

the immune microenvironment in breast cancer. While 
CD24− is a well-recognized marker for breast cancer stem 
cells, typically contributing to the creation of an immuno-
suppressive microenvironment [13]. However, recent stud-
ies have reported that overexpressed CD24 in breast cancer 
is linked to its interaction with Siglec-10 on macrophages, 
thereby promoting immune evasion and subsequently 
shaping an immunosuppressive microenvironment [12]. 
Therefore, whether CD24− or over-expression mediates 
the inhibitory remodeling of the immune microenviron-
ment of breast cancer is urgently elucidated by the lat-
est research technology, so as to develop new therapeutic 
strategies targeting CD24, a key molecule in the regulation 
of the remodeling of the tumor immune microenvironment, 
and improve the application of tumor immunotherapy in 
the clinical treatment of breast cancer. Recently, emerging 
multiomics technologies, including single-cell sequenc-
ing, bulk-RNA, and multicolor immunofluorescence labe-
ling, have shown great advantages and application value 
in comprehensively and objectively revealing the tumor 
immune microenvironment [14–16]. However, no studies 
have applied the above multiomics techniques to com-
prehensively characterize the CD24-mediated immune 
microenvironment.

In this study, we used single-cell RNA sequencing 
(scRNA-seq) to create transcriptomic maps of breast can-
cer samples, revealing a variety of cell types. Subsequent 
analyses focused on epithelial cells, using methods includ-
ing CellChat and locus analysis. Further, we used large 
amounts of RNA-seq data from the Cancer Genome Atlas 
(TCGA) to construct a CD24-associated breast cancer 
prognosis model and confirmed the predictive value of this 
feature by using the GSE20685 dataset. Finally, we used 
multi-color immunofluorescence technology to reveal that 
CD24+PANCK+breast cancer cells in the tumor microenvi-
ronment can induce the CD8+T cells exhausted, leading to 
the emergence of inhibitory immune microenvironment in 
breast cancer and poor prognosis. This suggests that targeted 
inhibition of CD24 may improve tumor immunotherapy by 
alleviating CD8+T cell exhausting for clinical breast cancer 
treatment. The workflow diagram is shown in Fig. 1.

Methods and materials

Data collection and preprocessing

The expression data of scRNA-seq of GSE148673 which 
included six breast cancer was obtained from TISCH with 
h5 format (http://​tisch.​comp-​genom​ics.​org/). The Seurat 
package in R software (version 4.1.3) was used to process 
the raw data of each sample. After the cells with less than 
300 genes and the samples with less than 3 cells were 

http://tisch.comp-genomics.org/
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Fig. 1   Workflow diagram of the study
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excluded, a total of 10,114 cells were obtained after the 
samples underwent quality control including the removal 
of low-quality cells, data standardization and normalization 
for subsequent analysis. Bulk-RNA sequencing data with 
FPKM format and corresponding clinical information of 
breast cancer were obtained from the publicly available 
GDC-TCGA project in the UCSC Genome Browser datasets 
(https://​xenab​rowser.​net/​datap​ages/). After excluding 
normal tissue, tissue from the same patient, and tissue with 
incomplete survival information, 1075 breast cancer samples 
were obtained for subsequent analysis. The GSE20685 
cohort included 327 breast cancer patients was obtained 
from the Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) as an external validation 
cohort. Detailed clinical information for all cohorts were 
included in Table 1.

Identification of cellular types and differentially 
expressed genes

Cell clusters within the single-cell RNA-seq dataset were 
initially identified using dimensionality reduction clustering 
with t-SNE [17]. Subsequently, cell type annotation was 
performed with the SingleR package to accurately determine 
cell identities [18]. Marker genes for all annotated cell 
subpopulations were identified using the FindAllMarkers 
function, and the reliability of cell subpopulation annotations 
was verified in the CellMarkers database (http://​117.​50.​
127.​228/​CellM​arker/). Following the annotation of cell 
subpopulations, the cells were divided into immune and non-
immune subsets based on the expression level of specific 
immune markers, such as CD45 (PTPRC). The differential 
gene expression analysis was then performed to identify 
CD24-related differential genes within these specific subsets.

Pseudo‑temporal trajectory analysis 
at the single‑cell level

Pseudo-time trajectory analysis, generated using the Mon-
ocle2 package, offers insights into cellular dynamics and 
transitions [19]. To reduce the data dimensionality of dif-
ferentially expressed genes, we employed the reduceDi-
mension function with parameters reduction_method set 
to "DDRTree" and max_components set at 2 to reduce the 
dimensionality of differentially expressed genes. Moreover, 
the plot_genes_jitter and plot_genes_violin functions were 
applied to acquire understanding of cellular sequencing and 
alterations in gene expression.

Analysis of interactions between cells

Interactions between ligands and cell surface receptors 
play a pivotal role in a multitude of biological processes 
by facilitating cell-to-cell communication. To elucidate 
potential intercellular communication among different 
cell types, the CellChat package was utilized to scrutinize 
ligand-receptor interactions within specific cellular 
populations [20]. The createCellChat function was employed 
to instantiate a cell communication object, laying the 
groundwork for an extensive analysis. The expression data 
of signaling genes were carefully extracted and processed, 
leading to the subsequent identification of overexpressed 
genes and ligand-receptor pairs. These discoveries 
were subsequently mapped onto the Protein–Protein 
Interaction network, thereby facilitating a more profound 
comprehension of potential signaling interactions. Cell-
to-cell communication probabilities were computed, thus 
revealing a network of cellular interactions. In order to 

Table 1   The clinical features of breast cancer in TCGA cohort and 
GSE20685

Variables TCGA train 
cohort (N = 755)

TCGA test 
cohort (N = 320)

GSE 
cohort 
(N = 327)

Incomplete N = 125 N = 53 0
Age
  >  = 65 years 216 107 22
  < 65 years 539 213 305
Sex
 Female 750 313 327
 Male 5 7 0

M classification
 M0 630 264 244
 M1 13 9 83

N classification
 N0 356 150 122
 N1 255 104 102
 N2 81 39 63
 N3 50 23 40

T classification
 T1 194 86 101
 T2 443 178 188
 T3 90 43 30
 T4 26 12 8

Stage classification
 Stage I 125 57 NA
 Stage II 440 170 NA
 Stage III 161 80 NA
 Stage IV 12 8 NA

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://117.50.127.228/CellMarker/
http://117.50.127.228/CellMarker/
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enhance data reliability, communication relationships 
involving fewer than three cells were systematically 
excluded. Furthermore, we extended our analysis to decode 
cell–cell communication at the signal pathway level, 
enabling computation and visualization of communication 
networks at an aggregated cell level.

Construction and evaluation of prognostic signature

CD24-related differentially expressed genes (DEGs) in the 
scRNA-seq analysis were extracted in the TCGA cohort for 
the construction of subsequent prognostic models. Univariate 
cox regression analysis was performed to screen differential 
genes associated with breast cancer prognosis in the TCGA 
cohort by survival package. Then, least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis was 
conducted to further capture the Characteristic gene associated 
with prognostic via glmnet package [21]. In the TCGA train 
cohort (N = 755), multivariate cox regression analysis was uti-
lized to construct a prognostic model and obtained the regres-
sion coefficients of relevant prognostic genes. The TCGA test 
cohort (N = 320) and GSE20685 cohort (N = 327) were used 
as verification queues to verify the accuracy of the model. The 
formula of the prognosis model was shown below:

The risk score for each sample was then calculated using 
the prediction function in the survival package, and all breast 
cancer patients were divided into high- and low-risk groups 
based on the median risk score. Kaplan–Meier survival curves 
were constructed using the "survminer" and "survival" pack-
ages to compare the overall survival between the high and 
low risk groups. Furthermore, risk curves for all cohorts and 
survival status maps for all patients were visualized using the 
pheatmap package. The accuracy of above prognostic model 
was rigorously appraised through the generation of receiver 
operating characteristic (ROC) curves and computation of area 
under the curve (AUC) values [22].

Construction of a nomogram integrating clinical 
variables

To enhance the precision of prognostic model, a comprehensive 
nomogram was developed by rms packages, which integrated 
risk score and clinical variables such as age and TNM stage 
[23]. The process initiated with univariate and multivariate 
Cox regression analyses to evaluate the independence of 
risk scores and clinical variables as prognostic factors. The 
predictive performance of this nomogram was rigorously 
compared to other prognostic factors through Receiver 
Operating Characteristic (ROC) analysis and Decision Curve 

Risk score =
∑n

i=1
(Expression ∗ coef )i

Analysis (DCA), utilizing the timeROC and ggDCA packages, 
respectively.

Evaluation of immune landscape in high‑ 
and low‑risk group

In order to explore the biological functions of different risk 
group, Gene set enrichment analysis (GSEA) was employed 
by org.Hs.eg.db and clusterProfiler package, where gene set 
of "c2.cp.kegg.v7.4.symbols.gmt" was obtained from the 
MSigDB database (https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/​index.​jsp) [24]. Given the critical role of the tumor 
microenvironment (TME) in tumor immunotherapy [9], we 
utilized the ESTIMATE package to assess TME composi-
tion [25]. This entailed calculating immune scores, stromal 
scores, and ESTIMATE scores, which were used to estimate 
the levels of stromal and immune cells within malignant 
tumor tissues based on gene expression characteristics. In 
addition, the CIBERSORT algorithm was applied to evalu-
ate the transcriptome data and quantify the infiltration levels 
of 22 immune cells in each sample [26]. Therefore, after 
evaluating the differences of the above tumor microenvi-
ronment and immune infiltration related indicators in the 
high and low risk groups, Pearson correlation analysis was 
used to further analyze the correlation between immune cell 
infiltration level and risk score.

Estimation of immunotherapy response

Following a comprehensive analysis of the immune land-
scape across various risk groups, we proceeded to investigate 
their respective immunotherapy responsiveness by assessing 
parameters such as immune checkpoint expression, and IPS 
score. The Immunophenotype Score (IPS), a well-estab-
lished predictor of CTLA-4 and PD-1 responsiveness, was 
acquired from the TCIA database (https://​tcia.​at/) and lever-
aged to forecast the responses of high- and low-risk groups 
during immune checkpoint inhibitor therapy [27].

Analysis of multiplexed quantitative 
immunofluorescence and spatial proximity

A total of 62 breast cancer samples who have given Informed 
consent without drug treatment underwent TissueFAXS 
panoramic tissue quantitative analysis. Multiplex immuno-
fluorescence staining of tissues used the Alpha TSA Mul-
tiplex IHC Kit (Beijing, China) with the following labels: 
XTSA 570 (CD3), XTSA 480 (CD8), XTSA 620 (CD24), 
XTSA 690 (FOXP3), and XTSA 780 (PANCK). The sam-
ples were deparaffinized using xylene and anhydrous etha-
nol, followed by rehydration with ethanol gradients. After 
two 5-min rinses with distilled water, antigen repair was per-
formed using the provided solution. Post-cooling, samples 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://tcia.at/
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underwent three PBST rinses and a 15-min immersion in 
sealing solution. Primary antibody incubation took place at 
37 ℃ for 1 h, followed by three PBST washes. Subsequently, 
samples were incubated with secondary antibodies at 37 ℃ 
for 10 min, rinsed three times with PBST, and subjected 
to a 5-min fluorescent dye treatment at room temperature. 
This dyeing process was repeated for comprehensive marker 
labeling. Finally, DAPI nuclear staining occurred for 8 min 
at room temperature, followed by PBST rinsing and slide 
sealing for subsequent scanning. The ZEISS Axioscan7 full-
slice imaging system in conjunction with ZEN 3.3 software 
was utilized for image acquisition and analysis. Quantita-
tive assessments, including measurements of nuclear area, 
fluorescence intensity, and cell density within individual 
cell areas to identify positive cells, were performed using 
Strata Quest software (Tissue Gnostics). Furthermore, 
the software was also employed to quantify the number 
of CD3+CD8+FOXP3+T and CD3+CD8+FOXP3−T cells 
within 10 μm distance from CD24+PANCK+cells [28].

Statistical analysis

The statistical analysis in this study was carried out using 
R software (version 4.1.3) along with relevant R pack-
ages obtained from Bioconductor and CRAN. Differences 
between groups were assessed using the Wilcoxon test for 
two-group comparisons and the Kruskal–Wallis test for anal-
yses involving more than two groups. Correlation analyses 
were performed using the Pearson test. Statistical signifi-
cance was established at a threshold of P < 0.05.

Results

Cellular constitution of breast cancer

In this study, six single-cell samples from breast tumors 
within the GSE148673 dataset were analyzed. The cluster-
ing analysis divided the 10,114 cells into 24 distinct clus-
ters, with the major marker genes identified (Fig. 2A, B). 
These clusters were then categorized into immune and non-
immune subgroups, guided by variations in PTPRC expres-
sion (Fig. 2C, D). Subsequent subcluster annotation revealed 
9 distinct cell types based on marker gene expression using 
SingleR (Fig. 2E, F), including B cells (elevated IGHG1), 
chondrocytes (heightened TEKT3), endothelial cells 
(increased VWF), epithelial cells (raised TFF3), fibroblasts 
(enhanced COL3A1), macrophages (elevated TYROBP), 
monocytes (elevated ASPM), T cells (heightened CD2), and 
tissue stem cells (increased RGS5 expression). Moreover, 
the expression patterns of CD24 and EPCAM within these 
9 cell types were assessed, our further analysis found that 

both CD24 and EPCAM were highly expressed in epithelial 
cells and there may be a co-expression relationship (Fig. 3).

Cell trajectory analysis of epithelial cells 
in scRNA‑seq

To validate the developmental stages of epithelial cell sub-
sets and assess the expression of CD24 at different stages, 
we employed Monocle2 to conduct pseudo-time series 
analysis. The results revealed that the 12 clusters of epi-
thelial cells could be broadly categorized into 5 distinctive 
differentiated states (Fig. 4A). The results from the timeline 
of cell differentiation showed that the cells in cluster2 and 
cluster16 were at the early stage of development, while the 
cells in cluster0 were at the late stage of development, sug-
gesting that the cells in cluster0 were likely developed from 
cluster2 (Fig. 4A). Furthermore, the analysis showed that the 
expression levels of CD24 and EPCAM exhibited changes in 
alignment with the trajectory of cell development, with both 
following similar trends (Fig. 4B). Specifically, the expres-
sions of CD24 and EPCAM decreased in early stage of 
development (state1), but progressively increased through-
out development and reached their maximum at the end of 
development (state3).

Analysis of interactions between cells

To investigate the communication among cell types, we 
employed CellChat to identify ligand-receptor pairs and 
signal pathways (Fig. 5A, B). The results showed a direct 
and powerful interaction between CD24+epithelial cells and 
T cells (Fig. 5C, D). In particular, the interaction between 
CD24+epithelial cells and CD8+T cells was significantly 
stronger than that between CD24−epithelial cells (Fig. 5E, 
F). The MIF-(CD74 + CXCR4) and MIF-(CD74 + CD44) 
ligand-receptor pairs played a central role in mediating com-
munication between CD24+epithelial cells and CD8+T cells 
(Fig. 5G). Furthermore, when CD24+epithelial cells assume 
the role of the major signal providers, the intercellular com-
munication with immune cells, notably CD8 T cells, seems 
to occur via engagement with the MK signaling pathway 
(Fig. 5H). Further analysis showed that the core compo-
nents of MK signaling pathway including SDC4 and ITGA6 
were specifically highly expressed in CD24+epithelial cells 
(Fig. 5I). In addition, we further investigated the potential 
signaling pathways of these cells as signal receivers and 
signal transmitters respectively. Notably, contributors to 
the output signaling in the CD24+epithelial cell population 
included MIF, MK, VISFATIN, GRN, ncWNT, and WNT. 
Conversely, MK, PARs, IFN-II, VISFATIN, GRN, EGF, 
TWEAK, ncWNT, and WNT were the primary influencers 
of output signaling in the CD24+epithelial cell population 
(Fig. 5J).
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Construction and validation of prognostic signature

In scRNA-seq, we identified 1,488 CD24-associated 
differentially expressed genes (DEGs) in immune and 

non-immune cell subpopulations (Supplementary Fig. 1). 
In order to further explore the clinical significance of these 
genes, we constructed a prognostic model of these genes in 
a cohort of breast cancer patients in TCGA. Specifically, 

Fig. 2   Single-cell atlas of breast cancer. A t-SNE and UMAP plots 
for 24 clusters. B Heatmap illustrating the primary five marker genes 
within 24 clusters. C Bubble chart depicting 9 genes across 24 clus-
ters. D t-SNE plots of Immune and non-immune subgroups. E t-SNE 

annotating 9 distinct cell types in single-cell RNA sequencing. F 
Violin plot depicting the principal marker gene across a range of 9 
diverse cell types
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110 prognostic genes were identified by univariate Cox 
regression analysis in the TCGA cohort, and the gene 
dimensions were further reduced to 27 prognostic trait 
genes by LASSO regression (Fig. 6A, B). Subsequently, 
a prognostic model containing 15 prognostic genes was 

constructed in the TCGA training cohort (N = 755) by 
multivariate Cox regression analysis (Fig.  6C). The 
TCGA test cohort (N = 320) and the GSE20685 test cohort 
(N = 327) were used to verify the accuracy of the model. 
The risk score was calculated according to the following 

Fig. 3   Expression of CD24 and EPCAM. A Feature plots showing the CD24 and EPCAM expressions across 9 cell types. B Single-cell density 
plots of CD24 and EPCAM. C Single-cell heatmap of CD24, EPCAM, and their co-expression
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Fig. 4   Trajectory analysis of epithelial cells in breast cancer. A Trajectory plots showing different clusters in epithelial cells. B Dynamic expres-
sion of CD24 and EPCAM along pseudo time
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formula: CD24-related risk score = CD24*0.163877443
425818 + MAL2*0.235684100040366 + GIMAP7*0.58
5242039122506 + TNN*(−0.209860274669745) + NT5
E*0.379813027325492 + O​FD1​*(−​0.4​613​190​0865562) 
+ DLG3*0.538438513913014 + E​IF4​EBP​1*0​.16​856​097​
7772221 + FABP7*(−0.190743699523104) + LCP1*(−
0.316385097230447) + IFITM1*(−0.149289394352447
) + HSPA2*(−0.157055037715933) + JAK1*(−0.29890
6770713586) + KLRB1*(−0.571931971007859) + ARI
D1B*0.613982854705078.

The patients were stratified into high- and low-risk 
groups using the median risk score as the dividing point. 
Notably, overall survival was significantly lower in the high-
risk group than in the low-risk group, both in the training 
cohort and in the test cohort. In TCGA train cohort, the 
results of time-dependent ROC curve analysis confirmed 
that the above prognostic model had good prediction accu-
racy with AUC values of 0.683 (1 year), 0.797 (3 year) and 
0.792 (5 year), respectively (Fig. 6D). The AUC values of 
time-dependent ROC curve analysis had reached to 0.851 
(1 years), 0.767 (3 years), 0.706 (5 years) in TCGA test 
cohort (Fig. 6E). This performance was robustly validated 
in both the TCGA all cohort and GSE20685 test cohort 
(Fig. 6F, G).

Nomogram establishment and evaluation

To assess the potential independent prognostic value of 
CD24-related risk score and Clinical variables, we con-
ducted univariate and multivariate Cox regression analyses 
(Table 2). The results of univariate Cox regression analy-
sis showed that risk score, age, stage and TNM stage were 
closely related to the prognosis of breast cancer (Fig. 7A). 
Moreover, the multivariate Cox regression analysis indi-
cated that the risk score, along with age and N stage, could 
independently function as prognostic factors for breast 

cancer patients (Fig. 7B). To improve the accuracy of the 
prognostic model, we constructed a nomogram to quantita-
tively predict survival of breast cancer patients by integrat-
ing the above clinical variables and risk scores (Fig. 7C, 
D). Compared to other clinical features and risk scores, the 
nomogram showed higher prediction accuracy, with AUC 
value of 0.814 (1 year), 0.803 (3 year), and 0.791 (5 year), 
respectively, in the TCGA cohort (Fig. 7E). Additionally, 
decision curve analysis (DCA) confirmed the superior pre-
dictive accuracy of the nomogram when compared to other 
prediction indices (Fig. 7F).

Analysis of immune characteristics in breast cancer

Through GSEA enrichment analysis, we found significant 
differences in the biological processes involved between 
the high-risk group and the low-risk group. The biologi-
cal processes were characterized by the DNA replication, 
homologous recombination, mismatch repair, protein export, 
and terpenoid backbone biosynthesis in high-risk group 
(Fig. 8A). However, the low-risk group was significantly 
enriched in signaling pathways such as primary immunode-
ficiency, and T cell receptors (Fig. 8A), which indicated that 
there may be a potential link between the low-risk group and 
immunity. To further explore this relationship, we conducted 
an analysis of immune landscape, specifically focusing on 
the tumor microenvironment (TME) and immune infil-
tration (Fig. 8B). The results indicate notable differences 
between the low-risk and high-risk groups. Specifically, 
the ESTIMATE score, immune score, and stromal score in 
the low-risk group were significantly elevated compared to 
those in the high-risk group (Fig. 8C). These observations 
collectively suggested that the low-risk group exhibited a 
higher proportion of stromal and immune cells within the 
TME. Additionally, we further explored the infiltration of 22 
immune cells in distinct risk groups using the CIBERSORT 
algorithm. The higher infiltration of naive B cells, CD8 T 
cells, CD4 memory activated T cells, gamma delta T cells, 
Monocytes and activated dendritic cells was observed in the 
low-risk group, while M0 and M2 Macrophages exhibited 
higher infiltration in the high-risk group (Fig. 8D). Addi-
tionally, we observed a negative correlation between the 
infiltration levels of naive B cells, activated dendritic cells, 
monocytes, CD4 memory-activated T cells, CD8 T cells, and 
gamma delta T cells and the risk score (Fig. 8E).

The association between the risk group 
and immunotherapy response

Having identified substantial disparities in the immune land-
scape between the low-risk and high-risk groups, we pro-
ceeded to investigate their connection with immunotherapy 
response using various indicators. Initially, we investigated 

Fig. 5   Analysis of intercellular communication. A The number of 
interactions in intercellular communication networks between 9 
different cell type. B The interaction weights in intercellular com-
munication networks between 9 different cell types. C The number 
of interactions in intercellular communication networks between 
epithelial cells and different T-cell subtypes. D The interaction 
weights in intercellular communication networks between epithelial 
cells and different T-cell subtypes. E The number of interactions of 
CD24+epithelial cells with CD8+T cells and regulatory T cells in 
intercellular communication networks. F The interaction weights 
of CD24+epithelial cells with CD8+T cells and regulatory T cells 
in intercellular communication networks. G Bubble plot of ligand-
receptor pair-mediated interactions between CD24+epithelial cells 
and different T-cell subtypes. H Heatmap depicting ligand-receptor 
interaction patterns in the MK signaling pathway among diverse cell 
types. I Violin plot illustrating gene expression in the MK signaling 
pathway. J Heatmaps show the correlation of seven cell classes with 
multiple signaling pathways in both outgoing and incoming signaling 
patterns

◂
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the expression of immune checkpoints and observed a sig-
nificant increase in the expression of 36 immune check-
points within the low-risk group (Fig. 9A). Additionally, 
we employed IPS assessments of PD1 and CTLA4 as quan-
titative measures to further gauge the potential efficacy of 
immune checkpoint inhibitors. Our results revealed that the 
IPS-CTLA4, IPS-PD1, and IPS-PD1-CTLA4 scores were 
notably elevated in the low-risk group (Fig. 9B). This sug-
gested that patients in the low-risk group might exhibit a 
higher likelihood of responding positively to immune check-
point inhibitors.

Potential immunosuppressive domestication 
of CD24+PANCK+ cell subsets on exhausted CD8+T 
cells in tumor microenvironment

Based on the findings of previous cell communication 
studies, we further used multicolor immunofluorescence 
techniques to identify the exact spatial interaction between 
CD24+breast cancer cells (CD24+PANCK+cells) and CD8+T 
cells. The presence and exhaustion status of CD8+T cells 
within the tumor immune microenvironment play a pivotal 
role in the response to tumor immunotherapy. Researches 
have shown that the exhaustion of CD8+T cells is a dynamic 

process and only completely exhausted CD8+T cell could 
entirely lose their ability to eliminate tumor cells. Recent 
studies have indicated that FOXP3+ serves as a marker for 
completely exhausted CD8+T cell that exclusively induced 
by the tumor immune microenvironment, thus presenting 
strong evidence for the immunosuppressive domestication 
of CD8+T cells by a specific subpopulation of cancer cells. 
Consequently, we employed TissueFAXS Cytometry Pano-
ramic Tissue Quantification assays to investigate the spatial 
correlation between CD24+PANCK+cells and exhausted 
CD8+T cell with FOXP3+, which aimed to uncover the 
impact of CD24+breast cancer cell subpopulations on 
CD8+T cells in breast cancer microenvironment (Fig. 10A, 
B). The findings disclosed that within a 10 μm radius sur-
rounding CD24+PANCK+cells, the average intensity of CD8 
in the CD3+CD8+FOXP3+group was significantly reduced 
in comparison to the CD3+CD8+FOXP3−group (Fig. 10C, 
D). Within a 10 μm radius of CD24+PANCK+cells, there 
was a notable increase in the proportion of exhausted 
CD8+ T cells with FOXP3+ among the total CD8+T cell 
population (Fig.  10E). These findings indicated that 
CD24+PANCK+cells had immunosuppressive domes-
tication effect on CD8+T cells in breast cancer immune 
microenvironment. We further evaluated the effects of 
CD3+CD8+FOXP3+T cells and CD24+PANCK+cells 
on the survival of breast cancer patients. Both the 
CD24+PANCK+cells-high group and the high percent-
age of CD3+CD8+FOXP3+T cells group (within 10 μm to 
CD24+PANCK+cells subpopulation) had worse survival 
probability (Fig. 10F, G), which further substantiated that 
CD24+breast cancer cells contributed to the establishment of 
an immunosuppressive microenvironment, ultimately lead-
ing to worse prognosis of breast cancer patients. Detailed 
clinical information on the cohort is shown in Table 3.

Fig. 6   Establishing the CD24-related prognostic model. A Performed 
least absolute shrinkage for LASSO regression model construction. 
B LASSO Cox regression coefficient profiles. C Prognostic mod-
els incorporate gene coefficient. D In the TCGA training set, we 
assessed breast cancer patients’ risk score distribution, their overall 
survival time in relation to risk scores, time-dependent ROC curves 
and Kaplan–Meier overall survival (OS) curves for 1, 3, and 5 years. 
E In the TCGA testing set, we assessed breast cancer patients’ risk 
score distribution, their overall survival time in relation to risk scores, 
time-dependent ROC curves and Kaplan–Meier overall survival (OS) 
curves for 1, 3, and 5 years. F In the TCGA set, we assessed breast 
cancer patients’ risk score distribution, their overall survival time 
in relation to risk scores, time-dependent ROC curves and Kaplan–
Meier overall survival (OS) curves for 1, 3, and 5  years. G In the 
GEO testing set, we assessed breast cancer patients’ risk score dis-
tribution, their overall survival time in relation to risk scores, time-
dependent ROC curves and Kaplan–Meier overall survival (OS) 
curves for 1, 3, and 5 years

◂

Table 2   Univariate cox 
regression and multivariate cox 
regression of risk score and 
Clinical characteristics

a Independent prognostic factors

Univariate Cox regression Multivariate Cox regression

HR p value HR p value

Agea 1.034053411 2.90E−06 1.030784912 6.25E−05
M 6.452771412 2.31E−10 1.924490134 0.119095702
N 1.653377616 4.76E−08 1.332542745 0.04423972
T 1.568367269 3.26E−05 1.006192153 0.968019298
gender 0.84071855 0.862956177 0.604148543 0.617896851
Stage 2.130192239 1.68E−10 1.395116991 0.203295766
Risk scorea 1.225194333 8.06E−20 1.217406245 5.30E−15
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Discussion

Breast cancer is a remarkably heterogeneous malignancy 
that originates from breast tissue [29, 30]. Although surgery, 
chemotherapy, radiotherapy and emerging immunotherapy 
approaches have significantly improved the prognosis of 
breast cancer, problems in the course of clinical treatment 
such as recurrence, drug resistance and low response still 

Fig. 7   Creation of Nomogram based on prognostic model and clinical 
information. A Univariate analysis forest plot for riskScore and clini-
cal features. B multivariate analysis forest plot for riskScore and clini-
cal features. C Nomogram included riskScore and clinical param-
eters for predicting breast cancer prognosis probability. D Calibration 
curves based on the nomogram. E ROC curve analysis of the nomo-
gram for 1, 3, and 5-year overall survival. F Decision curve analysis 
for 1, 3, and 5-year overall survival

◂

Fig. 8   Association between prognostic models and infiltration of 
immune cells. A GSEA analysis in the low- and high-risk groups. B 
Heatmap for assessing immune infiltration levels in high- and low- 
groups. C Stromal and immune cell proportions in breast cancer. D 

Assessment of infiltration levels of 22 immune cells in high- and low- 
groups. E Correlation analysis between riskScore and 6 immune infil-
trating cell levels
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reduce the overall survival rate of breast cancer patients 
[31–33]. The latest research shows that immunotherapy 
has great promise in breast cancer patients, especially for 
those who have developed resistance to chemotherapy or 
targeted therapies [6]. However, the low response status in 
breast cancer patients is still a challenge that restricts the 
wide application of tumor immunotherapy in breast cancer 
patients [8]. Addressing this challenge requires extensive 
research to identify new therapeutic targets and develop 
personalized immunotherapy strategies tailored to the spe-
cific characteristics of breast cancer patients. The research 
of Weissman et al. demonstrated that CD24 may be a major 
innate immune checkpoint in breast cancer and a promis-
ing target for immunotherapy [12]. The inhibition of CD24-
Siglec-10 signaling via monoclonal antibodies enhances 
phagocytic clearance of CD24+cancer cells by macrophages, 
highlighting the substantial therapeutic potential of CD24 
blockade in immunotherapy. In addition, CD24 has been 
shown to exert its pro-apoptotic role in B cell precursors and 
differentiated B cells by activating the MAPK pathway [34, 
35] as well as suppressing immune responses by modulat-
ing T cell activity [36]. However, the specific mechanism 
by which CD24+tumor cells regulate the activity of CD8+T 
cells remains unclear. In this study, we integrated single-cell 
sequencing analysis and bulk-RNA sequencing analysis to 
reveal the heterogeneity and clinical practical application of 
CD24 in the immune microenvironment of breast cancer, and 
also found that CD24+tumor cells shaped immunosuppres-
sive microenvironment by mediating exhaustion of CD8+T 
cells through multiple immunofluorescence techniques.

We identified 15 prognostic genes associated with CD24, 
which include CD24, MAL2, GIMAP7, TNN, NT5E, OFD1, 
DLG3, EIF4EBP1, FABP7, LCP1, IFITM1, HSPA2, JAK1, 
KLRB1 and ARID1B. In the risk model, CD24, MAL2, 
GIMAP7, NT5E, DLG3, EIF4EBP1, and ARID1B had 
adverse effects on breast cancer patient outcomes, while 
other genes were protective for prognosis. MAL2, also 
known as Myelin and Lymphocyte Protein 2, is a gene that 
codes for a protein involved in various cellular functions, 
including membrane trafficking and signaling. The lipid 
raft-resident protein MAL2 is implicated in the patho-
genesis of various malignancies, including breast cancer 
[37–40]. Increased MAL2 expression is linked to adverse 
breast cancer prognosis and contributes to immune eva-
sion through the suppression of tumor antigen presentation. 
Knockdown MAL2 boosted CD8+T-cells cytotoxicity and 
inhibited breast tumor growth, indicating the potential as 

an immunotherapy target in breast cancer [41]. NT5E, also 
known as CD73, which catalyzes the production of adeno-
sine thereby leading to the development of tumor immune 
escape [42]. In bioinformatics studies, higher NT5E expres-
sion has been associated with poor prognosis in patients 
with a variety of malignancies, including breast cancer [42]. 
These findings underscore the potential of MAL2 and NT5E 
as targets for immunotherapy strategies in breast cancer, 
opening new avenues for therapeutic interventions. In addi-
tion, we further analyzed the immune-related characteristics 
in high- and low-risk groups which were divided by median 
risk score. In the low-risk group, we observed elevated levels 
of infiltrating immune cells, including naive B cells, CD8 
T cells, CD4 memory activated T cells, and gamma delta T 
cells. Naive B cells, also known as mature B cells, are a type 
of white blood cell that plays a central role in the adaptive 
immune system, primarily responsible for recognizing and 
responding to pathogens and foreign substances [43]. CD8 T 
cells equipped with the ability to directly target and destroy 
infected or cancerous cells are essential players in cancer 
immunotherapy. Immune checkpoint inhibitor therapies such 
as PD-1 and CTLA-4 inhibitors, operate by reinvigorating 
the anti-tumor potential of CD8 T cells [44, 45]. Further-
more, CAR-T cell therapy involves the genetic modifica-
tion of CD8 T cells, to express chimeric antigen receptors 
(CARs) capable of recognizing specific tumor antigens. 
These engineered T cells are subsequently reintroduced into 
the patient's body to selectively locate and eradicate cancer 
cells [46]. CD4 memory activated T cells possess the ability 
to stimulate and coordinate immune responses, making them 
pivotal in orchestrating effective anti-tumor immunity [47]. 
In contrast, gamma delta T cells are a unique subset of T 
cells that function as a bridge between the innate and adap-
tive immune systems, and their involvement in tumor immu-
nosurveillance is an area of growing interest [48]. These 
cells play pivotal roles in stimulating immune responses and 
direct targeting of cancerous cells. Therefore, the enhanced 
infiltration of these cells in the low-risk group is an encour-
aging sign for the potential success of immunotherapy in 
these patients, implying that these individuals may have 
a more receptive immune microenvironment which could 
translate into improved responses to immunotherapeutic 
approaches. This observation underscores the significance 
of understanding the immune landscape to tailor immuno-
therapies for the best possible outcomes.

In order to further develop a new targeted therapy for 
CD24 to improve the current poor status of immunother-
apy in breast cancer patients. Therefore, we used emerging 
multi-omics technologies such as single-cell sequencing 
and multicolor immunofluorescence labeling to fully reveal 
the CD24-mediated breast cancer immune microenviron-
ment landscape. The analysis of intercellular communica-
tion indicated that CD24+epithelial cells and CD8+T cells 

Fig. 9   Immune checkpoint inhibitor treatment responsiveness pre-
diction. A Analysis of immune checkpoint expression levels in high-
risk and low-risk groups. B The Immunophenotype Score (IPS) 
determined by CTLA-4 or PD-1 status assessed the effectiveness of 
immune checkpoint inhibitor therapy

◂
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Fig. 10   Spatial distribution of CD24+breast cancer subsets and 
CD8+T-cell subtypes in TME. A Exemplary multi-label staining in 
breast cancer patient samples: DAPI (Bluish violet), CD3 (green), 
CD8 (blue), FOXP3 (pink), PANCK (yellow), CD24 (orange). B 
Simulation depicting spatial proximity analysis in representative 
areas. C Scatterplots of the mean intensity of CD8 within the area 
of CD3+CD8+FOXP3+cells and CD3+CD8+FOXP3−cells. D Violin 

plots of CD8 mean intensity in different cell types within 10 μm from 
CD24+PANCK+cells. E Violin plots of percent of cells in different 
cell types within 10 μm from CD24+PANCK+cells. F Survival curves 
for the groups with high and low number of CD24+PANCK+cells 
within a 10 μm range (cutoff set at 2114). G Survival curves for the 
groups with high and low percentages of CD3+CD8+FOXP3+cells 
within a 10 μm range (cutoff set at 0.7321)
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may transmit signals through MIF signaling pathway. Mac-
rophage migration inhibitory factor (MIF) is an important 
regulatory factor of the innate immune system, which has 
been proven to induce immunosuppressive environment [49]. 
The relationship between MIF and the immunosuppressive 
microenvironment in breast cancer is intricate. MIF can con-
tribute to the formation of an immunosuppressive microen-
vironment through various mechanisms. It may promote the 
recruitment and activation of immunosuppressive cells, such 
as regulatory T cells (Tregs) and myeloid-derived suppressor 
cells (MDSCs), which can dampen the anti-tumor immune 
response [50, 51]. Additionally, MIF can induce the expres-
sion of immune checkpoint molecules on T cells, rendering 
them less effective in targeting cancer cells, while their role 
in suppressing CD8+T cells and shaping immunosuppressive 
microenvironments has not been fully elucidated. Further-
more, we found stronger interactions between CD24+tumor 
subsets (CD24+PANCK+cells) and exhausted CD8+T cells 
with FOXP3+ by using multiple immunofluorescence tech-
niques. Recent studies have shown that CD8+FOXP3+T cells 
are a specific type of exhausted CD8+T cells that are difficult 
to detect in blood and normal tissues and only appear when 
induced by the tumor microenvironment[52, 53]. This sug-
gests that the CD24+tumor subpopulation may secrete some 
chemokines or cytokines or directly interact with receptor 
molecules on the surface of CD8+T cells to induce exhaus-
tion of CD8+T cell, and this particular interaction can also be 
defined as the domestication of the tumor microenvironment 

to immune cells. However, TME is a complex dynamic eco-
system composed of various cell types, extracellular matrix 
(ECM), blood vessels, and signaling molecules that play a 
key role in tumor initiation, progression, and therapeutic 
response [54]. The present study confirmed that immunosup-
pressive factors produced in the tumor microenvironment 
can promote the recruitment of immunosuppressive cells 
such as Tregs to TME [55, 56]. However, it is clear that 
this study found that the CD24+tumor subpopulation did 
not recruit exhausted CD8+T cells with FOXP3+ in this way. 
This similar inhibitory domestication relationship between 
CD24+tumor subpopulations and exhausted CD8+T cells 
allows us to understand the role of CD24+ breast cancer 
cells in forming an immunosuppressive microenvironment, 
but the specific mechanism of action remains to be further 
explored.

However, it is important to acknowledge several limi-
tations inherent to our study. Firstly, the reliance on pub-
licly available datasets may limit the generalizability and 
specificity of our findings, despite the advantages of large 
sample sizes for robust statistical analysis. Additionally, 
the use of computational inference for cell identification 
in single-cell sequencing data introduces potential limita-
tions, as experimental validation through laboratory research 
would enhance the credibility of our results. Furthermore, 
the diversity of data sources utilized in our analysis may 
introduce bias, impacting the level of gene detection. Con-
cerns were also raised regarding the validation of our CD24-
related prognostic risk model in larger patient cohorts and 
the lack of adjustment for clinical variables in survival anal-
yses. Finally, the inability to conduct more in-depth bio-
logical experiments to elucidate the specific mechanisms 
of action of CD24 + tumor cells due to resource constraints 
represents a significant limitation. Therefore, Future studies 
must include broader and diverse data sets, employ rigorous 
experimental designs to validate our findings and provide 
greater insight into targeting CD24+breast cancer cells to 
reverse the exhaustion of CD8+T cells.

Conclusion

In summary, we constructed a single cell transcriptome 
map of breast cancer using scRNA-seq. CD24+breast 
cancer cells were analyzed by various methods, and 
preliminarily elucidated the heterogeneity of CD24+breast 
cancer cells in cell differentiation trajectory and intercellular 
communication. In addition, we combined scRNA-seq with 
bulk RNA-seq data to identify prognosis characteristics 
associated with CD24. The CD24-associated prognostic 
risk model and the nomogram have independent prognostic 
value and can provide accurate prediction of survival and 

Table 3   Detailed clinical 
information of the spatial 
proximity analysis cohort

Variables 62 samples

Age
  >  = 65 years 10
  < 65 years 52
Gender
 Female 62
 Male 0

Survival state
 Alive 50
 Dead 12

M Classification
 M0 62
 M1 0

N classification
 N0 28
 N1 10
 N2 20
 N3 4

T classification
 T1 23
 T2 38
 T3 1
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immunotherapy responsiveness in breast cancer patients. 
Notably, the CD24+PANCK+subgroup associated with 
poor breast cancer prognosis, was closely associated 
with exhaustion of CD8+T cell and the formation of 
immunosuppressive microenvironment in breast cancer. 
During immunotherapy, the tumor microenvironment 
can be reshaped by targeting CD24+PANCK+subsets or 
reversing the exhaustion of CD8+T cells, thereby restoring 
the antitumor role of effector T cells. However, further 
researches are needed to fully understand the underlying 
mechanisms.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00011-​024-​01882-9.

Acknowledgements  We thank the Gene Expression Omnibus (GEO), 
The Cancer Genome Atlas (TCGA) Database and TISCH for sharing 
a large amount of data. Test-tube images used in Fig. 1 was obtained 
from Scidraw.io. Free vector woman figure with breast cancer and labo-
ratory instruments images used in Fig. 1 were obtained from Freepik.
com. We also thank TissueGnostics asia Pacific limited (Beijing, Chia) 
for their technical support in the analysis of multi-immunofluorescence 
staining images.

Author contributions  TLZ, HHH and HXZ conceived and designed 
the study. HHH, HXZ and WDZ drafted the manuscript. HHH, HXZ, 
WDZ, BH, TY, SYW and JDZ conducted data analysis. TLZ, HHH 
and XFX strictly revised the manuscript. All authors read and approved 
the final manuscript.

Funding  This study was funded by the National Natural Science 
Foundation of China (grant number 82003802 to TLZ), the Natural 
Science Foundation of Hunan Province (grant number 2019JJ50542 
and 2023JJ50156  to TLZ, 2024JJ7455 to XFX), the Science and 
Technology Program of Hunan Health Commission (grant number 
20201978 to TLZ), the China Scholarship Council (grant number 
201808430085 to TLZ) and Clinical Research 4310 Program of the 
First Affiliated Hospital of the University of South China (grant num-
ber 20224310NHYCG04 to TLZ), Science and technology innovation 
Program of Hengyang City (grant number 202250045223 to TLZ).

Availability of data and material  The scRNA-seq data of GSE148673 
was obtained from TISCH (http://​tisch.​comp-​genom​ics.​org/). Addi-
tional data and materials of TCGA-GDC- BRCA are available from the 
University of California, Santa Cruz (UCSC) Xena browser (https://​
xenab​rowser.​net/) and the Gene Expression Omnibus (GEO) with 
accession number GSE20685 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/).

Declarations 

Conflict of interests  All authors declare no conflict of interest.

Ethical approval and consent to participate  The relevant content 
of this study has been approved by the Medical Ethics Commit-
tee of the First Affiliated Hospital of the University of South China 
(No.2023ll0103003).

Consent for publication  Not applicable.

References

	 1.	 Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast 
cancer. Lancet. 2005;365:1727–41. https://​doi.​org/​10.​1016/​
S0140-​6736(05)​66546-4.

	 2.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, 
Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers in 
185 Countries. CA Cancer J Clin. 2021;71:209–49. https://​doi.​
org/​10.​3322/​caac.​21660.

	 3.	 Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 
2019;321:288–300. https://​doi.​org/​10.​1001/​jama.​2018.​19323.

	 4.	 Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, 
Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli 
L, et al. Prospects for combining targeted and conventional cancer 
therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301. 
https://​doi.​org/​10.​1038/​nrc.​2017.​17.

	 5.	 Baxevanis CN, Fortis SP, Perez SA. The balance between breast 
cancer and the immune system: challenges for prognosis and 
clinical benefit from immunotherapies. Semin Cancer Biol. 
2021;72:76–89. https://​doi.​org/​10.​1016/j.​semca​ncer.​2019.​12.​018.

	 6.	 Heeke AL, Tan AR. Checkpoint inhibitor therapy for meta-
static triple-negative breast cancer. Cancer Metastasis Rev. 
2021;40:537–47. https://​doi.​org/​10.​1007/​s10555-​021-​09972-4.

	 7.	 Szeto GL, Finley SD. Integrative Approaches to Cancer Immuno-
therapy. Trends Cancer. 2019;5:400–10. https://​doi.​org/​10.​1016/j.​
trecan.​2019.​05.​010.

	 8.	 Mediratta K, El-Sahli S, D’Costa V, Wang L. Current progresses 
and challenges of immunotherapy in triple-negative breast cancer. 
Cancers (Basel). 2020. https://​doi.​org/​10.​3390/​cance​rs121​23529.

	 9.	 Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, 
Zitvogel L. Targeting the tumor microenvironment: removing 
obstruction to anticancer immune responses and immunotherapy. 
Ann Oncol. 2016;27:1482–92. https://​doi.​org/​10.​1093/​annonc/​
mdw168.

	10.	 Fang X, Zheng P, Tang J, Liu Y. CD24: from A to Z. Cell Mol 
Immunol. 2010;7:100–3. https://​doi.​org/​10.​1038/​cmi.​2009.​119.

	11.	 Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights 
into the function of CD24: a driving force in cancer. Int J Can-
cer. 2021;148:546–59. https://​doi.​org/​10.​1002/​ijc.​33249.

	12.	 Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, 
Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, 
et al. CD24 signalling through macrophage Siglec-10 is a target 
for cancer immunotherapy. Nature. 2019;572:392–6. https://​doi.​
org/​10.​1038/​s41586-​019-​1456-0.

	13.	 Zhang R, Tu J, Liu S. Novel molecular regulators of breast can-
cer stem cell plasticity and heterogeneity. Semin Cancer Biol. 
2022;82:11–25. https://​doi.​org/​10.​1016/j.​semca​ncer.​2021.​03.​
008.

	14.	 Sheng W, Zhang C, Mohiuddin TM, Al-Rawe M, Zeppernick F, 
Falcone FH, Meinhold-Heerlein I, Hussain AF. Multiplex immu-
nofluorescence: a powerful tool in cancer immunotherapy. Int J 
Mol Sci. 2023. https://​doi.​org/​10.​3390/​ijms2​40430​86.

	15.	 Zhai Y, Zhang J, Huang Z, Shi R, Guo F, Zhang F, Chen M, Gao 
Y, Tao X, Jin Z, et al. Single-cell RNA sequencing integrated with 
bulk RNA sequencing analysis reveals diagnostic and prognostic 
signatures and immunoinfiltration in gastric cancer. Comput Biol 
Med. 2023;163:107239. https://​doi.​org/​10.​1016/j.​compb​iomed.​
2023.​107239.

	16.	 Guo S, Liu X, Zhang J, Huang Z, Ye P, Shi J, Stalin A, Wu C, Lu 
S, Zhang F, et al. Integrated analysis of single-cell RNA-seq and 
bulk RNA-seq unravels T cell-related prognostic risk model and 
tumor immune microenvironment modulation in triple-negative 
breast cancer. Comput Biol Med. 2023;161:107066. https://​doi.​
org/​10.​1016/j.​compb​iomed.​2023.​107066.

https://doi.org/10.1007/s00011-024-01882-9
http://tisch.comp-genomics.org/
https://xenabrowser.net/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1016/S0140-6736(05)66546-4
https://doi.org/10.1016/S0140-6736(05)66546-4
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1001/jama.2018.19323
https://doi.org/10.1038/nrc.2017.17
https://doi.org/10.1016/j.semcancer.2019.12.018
https://doi.org/10.1007/s10555-021-09972-4
https://doi.org/10.1016/j.trecan.2019.05.010
https://doi.org/10.1016/j.trecan.2019.05.010
https://doi.org/10.3390/cancers12123529
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1038/cmi.2009.119
https://doi.org/10.1002/ijc.33249
https://doi.org/10.1038/s41586-019-1456-0
https://doi.org/10.1038/s41586-019-1456-0
https://doi.org/10.1016/j.semcancer.2021.03.008
https://doi.org/10.1016/j.semcancer.2021.03.008
https://doi.org/10.3390/ijms24043086
https://doi.org/10.1016/j.compbiomed.2023.107239
https://doi.org/10.1016/j.compbiomed.2023.107239
https://doi.org/10.1016/j.compbiomed.2023.107066
https://doi.org/10.1016/j.compbiomed.2023.107066


1067Integration of multiomics analyses reveals unique insights into CD24‑mediated…

	17.	 Zhou B, Jin W. Visualization of single cell RNA-Seq data using 
t-SNE in R. Methods Mol Biol. 2020;2117:159–67. https://​doi.​
org/​10.​1007/​978-1-​0716-​0301-7_8.

	18.	 Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Nai-
kawadi RP, Wolters PJ, Abate AR, et al. Reference-based analysis 
of lung single-cell sequencing reveals a transitional profibrotic 
macrophage. Nat Immunol. 2019;20:163–72. https://​doi.​org/​10.​
1038/​s41590-​018-​0276-y.

	19.	 Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell 
C. Reversed graph embedding resolves complex single-cell tra-
jectories. Nat Methods. 2017;14:979–82. https://​doi.​org/​10.​1038/​
nmeth.​4402.

	20.	 Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan 
CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-
cell communication using cell chat. Nat Commun. 2021;12:1088. 
https://​doi.​org/​10.​1038/​s41467-​021-​21246-9.

	21.	 Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths 
for Cox’s proportional hazards model via coordinate descent. J 
Stat Softw. 2011;39:1–13. https://​doi.​org/​10.​18637/​jss.​v039.​i05.

	22.	 Obuchowski NA, Bullen JA. Receiver operating characteristic 
(ROC) curves: review of methods with applications in diagnostic 
medicine. Phys Med Biol. 2018. https://​doi.​org/​10.​1088/​1361-​
6560/​aab4b1.

	23.	 Jin C, Cao J, Cai Y, Wang L, Liu K, Shen W, Hu J. A nomogram 
for predicting the risk of invasive pulmonary adenocarcinoma for 
patients with solitary peripheral subsolid nodules. J Thorac Car-
diovasc Surg. 2017;153:462-469 e461. https://​doi.​org/​10.​1016/j.​
jtcvs.​2016.​10.​019.

	24.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, 
Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, 
et al. Gene set enrichment analysis: a knowledge-based approach 
for interpreting genome-wide expression profiles. Proc Natl Acad 
Sci U S A. 2005;102:15545–50. https://​doi.​org/​10.​1073/​pnas.​
05065​80102.

	25.	 Xu Z, Song J, Cao L, Rong Z, Zhang W, He J, Li K, Hou Y. 
Improving ovarian cancer treatment decision using a novel risk 
predictive tool. Aging (Albany NY). 2022;14:3464–83. https://​
doi.​org/​10.​18632/​aging.​204023.

	26.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu 
Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration 
of cell subsets from tissue expression profiles. Nat Methods. 
2015;12:453–7. https://​doi.​org/​10.​1038/​nmeth.​3337.

	27.	 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, 
Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic 
analyses reveal genotype-immunophenotype relationships 
and predictors of response to checkpoint blockade. Cell Rep. 
2017;18:248–62. https://​doi.​org/​10.​1016/j.​celrep.​2016.​12.​019.

	28.	 Li H, Chen J, Li Z, Chen M, Ou Z, Mo M, Wang R, Tong S, 
Liu P, Cai Z, et al. S100A5 attenuates efficiency of anti-PD-L1/
PD-1 immunotherapy by inhibiting CD8(+) T cell-mediated 
anti-cancer immunity in bladder carcinoma. Adv Sci (Weinh). 
2023;10:e2300110. https://​doi.​org/​10.​1002/​advs.​20230​0110.

	29.	 Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. 
Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 
2014;16:210. https://​doi.​org/​10.​1186/​bcr36​58.

	30.	 Joseph C, Papadaki A, Althobiti M, Alsaleem M, Aleskandarany 
MA, Rakha EA. Breast cancer intratumour heterogeneity: current 
status and clinical implications. Histopathology. 2018;73:717–31. 
https://​doi.​org/​10.​1111/​his.​13642.

	31.	 Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic 
M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, et al. Global 
surveillance of trends in cancer survival 2000–14 (CONCORD-3): 
analysis of individual records for 37 513 025 patients diagnosed 
with one of 18 cancers from 322 population-based registries in 
71 countries. Lancet. 2018;391:1023–75. https://​doi.​org/​10.​1016/​
S0140-​6736(17)​33326-3.

	32.	 Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, 
Peto R, Pritchard KI, Bergh J, Dowsett M, et al. 20-Year Risks 
of breast-cancer recurrence after stopping endocrine therapy at 5 
years. N Engl J Med. 2017;377:1836–46. https://​doi.​org/​10.​1056/​
NEJMo​a1701​830.

	33.	 Grinda T, Antoine A, Jacot W, Blaye C, Cottu PH, Dieras V, 
Dalenc F, Goncalves A, Debled M, Patsouris A, et al. Evolution 
of overall survival and receipt of new therapies by subtype among 
20 446 metastatic breast cancer patients in the 2008–2017 ESME 
cohort. ESMO Open. 2021;6: 100114. https://​doi.​org/​10.​1016/j.​
esmoop.​2021.​100114.

	34.	 Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, 
Fujimoto J. CD24 induces apoptosis in human B cells via the 
glycolipid-enriched membrane domains/rafts-mediated signaling 
system. J Immunol. 2001;166:5567–77. https://​doi.​org/​10.​4049/​
jimmu​nol.​166.9.​5567.

	35.	 Chappel MS, Hough MR, Mittel A, Takei F, Kay R, Humphries 
RK. Cross-linking the murine heat-stable antigen induces apop-
tosis in B cell precursors and suppresses the anti-CD40-induced 
proliferation of mature resting B lymphocytes. J Exp Med. 
1996;184:1639–49. https://​doi.​org/​10.​1084/​jem.​184.5.​1639.

	36.	 Wu H, Su Z, Barnie PA. The role of B regulatory (B10) cells in 
inflammatory disorders and their potential as therapeutic targets. 
Int Immunopharmacol. 2020;78:106111. https://​doi.​org/​10.​1016/j.​
intimp.​2019.​106111.

	37.	 Gao X, Chen Z, Li A, Zhang X, Cai X. MiR-129 regulates growth 
and invasion by targeting MAL2 in papillary thyroid carcinoma. 
Biomed Pharmacother. 2018;105:1072–8. https://​doi.​org/​10.​
1016/j.​biopha.​2018.​06.​050.

	38.	 Lopez-Coral A, Del Vecchio GJ, Chahine JJ, Kallakury BV, Tuma 
PL. MAL2-induced actin-based protrusion formation is anti-onco-
genic in hepatocellular carcinoma. Cancers (Basel). 2020. https://​
doi.​org/​10.​3390/​cance​rs120​20422.

	39.	 Zhang B, Xiao J, Cheng X, Liu T. MAL2 interacts with IQGAP1 
to promote pancreatic cancer progression by increasing ERK1/2 
phosphorylation. Biochem Biophys Res Commun. 2021;554:63–
70. https://​doi.​org/​10.​1016/j.​bbrc.​2021.​02.​146.

	40.	 An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Shu L, Liu J, 
Yang L. Downregulation of MAL2 inhibits breast cancer progres-
sion through regulating beta-catenin/c-Myc axis. Cancer Cell Int. 
2023;23:144. https://​doi.​org/​10.​1186/​s12935-​023-​02993-9.

	41.	 Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Dong 
T, So KM, Yu T, Li Y, et al. MAL2 drives immune evasion in 
breast cancer by suppressing tumor antigen presentation. J Clin 
Invest. 2021. https://​doi.​org/​10.​1172/​JCI14​0837.

	42.	 Li H, Xie P, Li P, Du Y, Zhu J, Yuan Y, Wu C, Shi Y, Huang Z, 
Wang X, et al. CD73/NT5E is a potential biomarker for cancer 
prognosis and immunotherapy for multiple types of cancers. Adv 
Biol (Weinh). 2023;7:e2200263. https://​doi.​org/​10.​1002/​adbi.​
20220​0263.

	43.	 Cerutti A, Puga I, Cols M. Innate control of B cell responses. 
Trends Immunol. 2011;32:202–11. https://​doi.​org/​10.​1016/j.​it.​
2011.​02.​004.

	44.	 Dersh D, Holly J, Yewdell JW. Author correction: a few good 
peptides: MHC class I-based cancer immunosurveillance and 
immunoevasion. Nat Rev Immunol. 2020;20:644. https://​doi.​org/​
10.​1038/​s41577-​020-​00445-3.

	45.	 Philip M, Schietinger A. CD8(+) T cell differentiation and dys-
function in cancer. Nat Rev Immunol. 2022;22:209–23. https://​
doi.​org/​10.​1038/​s41577-​021-​00574-3.

	46.	 Golubovskaya V, Wu L. Different subsets of T cells, memory, 
effector functions, and CAR-T immunotherapy. Cancers (Basel). 
2016. https://​doi.​org/​10.​3390/​cance​rs803​0036.

	47.	 Kunzli M, Masopust D. CD4(+) T cell memory. Nat Immunol. 
2023;24:903–14. https://​doi.​org/​10.​1038/​s41590-​023-​01510-4.

https://doi.org/10.1007/978-1-0716-0301-7_8
https://doi.org/10.1007/978-1-0716-0301-7_8
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1088/1361-6560/aab4b1
https://doi.org/10.1088/1361-6560/aab4b1
https://doi.org/10.1016/j.jtcvs.2016.10.019
https://doi.org/10.1016/j.jtcvs.2016.10.019
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.18632/aging.204023
https://doi.org/10.18632/aging.204023
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1002/advs.202300110
https://doi.org/10.1186/bcr3658
https://doi.org/10.1111/his.13642
https://doi.org/10.1016/S0140-6736(17)33326-3
https://doi.org/10.1016/S0140-6736(17)33326-3
https://doi.org/10.1056/NEJMoa1701830
https://doi.org/10.1056/NEJMoa1701830
https://doi.org/10.1016/j.esmoop.2021.100114
https://doi.org/10.1016/j.esmoop.2021.100114
https://doi.org/10.4049/jimmunol.166.9.5567
https://doi.org/10.4049/jimmunol.166.9.5567
https://doi.org/10.1084/jem.184.5.1639
https://doi.org/10.1016/j.intimp.2019.106111
https://doi.org/10.1016/j.intimp.2019.106111
https://doi.org/10.1016/j.biopha.2018.06.050
https://doi.org/10.1016/j.biopha.2018.06.050
https://doi.org/10.3390/cancers12020422
https://doi.org/10.3390/cancers12020422
https://doi.org/10.1016/j.bbrc.2021.02.146
https://doi.org/10.1186/s12935-023-02993-9
https://doi.org/10.1172/JCI140837
https://doi.org/10.1002/adbi.202200263
https://doi.org/10.1002/adbi.202200263
https://doi.org/10.1016/j.it.2011.02.004
https://doi.org/10.1016/j.it.2011.02.004
https://doi.org/10.1038/s41577-020-00445-3
https://doi.org/10.1038/s41577-020-00445-3
https://doi.org/10.1038/s41577-021-00574-3
https://doi.org/10.1038/s41577-021-00574-3
https://doi.org/10.3390/cancers8030036
https://doi.org/10.1038/s41590-023-01510-4


1068	 H. Hu et al.

	48.	 Deng J, Yin H. Gamma delta (gammadelta) T cells in cancer 
immunotherapy; where it comes from, where it will go? Eur J 
Pharmacol. 2022;919:174803. https://​doi.​org/​10.​1016/j.​ejphar.​
2022.​174803.

	49.	 Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, 
Gao J, Wu XL, Sun HX, et al. CD36(+) cancer-associated fibro-
blasts provide immunosuppressive microenvironment for hepa-
tocellular carcinoma via secretion of macrophage migration 
inhibitory factor. Cell Discov. 2023;9:25. https://​doi.​org/​10.​1038/​
s41421-​023-​00529-z.

	50.	 Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, 
Peng JY, Duan TH, Cui J, et al. CXCL2/MIF-CXCR2 signaling 
promotes the recruitment of myeloid-derived suppressor cells 
and is correlated with prognosis in bladder cancer. Oncogene. 
2017;36:2095–104. https://​doi.​org/​10.​1038/​onc.​2016.​367.

	51.	 Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, 
Gemsa D, Donnelly T, Bucala R. An essential regulatory role for 
macrophage migration inhibitory factor in T-cell activation. Proc 
Natl Acad Sci U S A. 1996;93:7849–54. https://​doi.​org/​10.​1073/​
pnas.​93.​15.​7849.

	52.	 Frisullo G, Nociti V, Iorio R, Plantone D, Patanella AK, Tonali 
PA, Batocchi AP. CD8(+)Foxp3(+) T cells in peripheral blood 
of relapsing-remitting multiple sclerosis patients. Hum Immunol. 
2010;71:437–41. https://​doi.​org/​10.​1016/j.​humimm.​2010.​01.​024.

	53.	 Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang 
B, Hu R, Huang JY, Zhang Q, et al. Landscape of infiltrating 

T cells in liver cancer revealed by single-cell sequencing. Cell. 
2017;169:1342–56. https://​doi.​org/​10.​1016/j.​cell.​2017.​05.​035.

	54.	 de Visser KE, Joyce JA. The evolving tumor microenvironment: 
from cancer initiation to metastatic outgrowth. Cancer Cell. 
2023;41:374–403. https://​doi.​org/​10.​1016/j.​ccell.​2023.​02.​016.

	55.	 Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Uman-
sky V. Immunosuppression mediated by myeloid-derived sup-
pressor cells (MDSCs) during tumour progression. Br J Cancer. 
2019;120:16–25. https://​doi.​org/​10.​1038/​s41416-​018-​0333-1.

	56.	 Zhang B, Sun J, Wang Y, Ji D, Yuan Y, Li S, Sun Y, Hou Y, Li P, 
Zhao L, et al. Site-specific PEGylation of interleukin-2 enhances 
immunosuppression via the sustained activation of regulatory T 
cells. Nat Biomed Eng. 2021;5:1288–305. https://​doi.​org/​10.​1038/​
s41551-​021-​00797-8.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.ejphar.2022.174803
https://doi.org/10.1016/j.ejphar.2022.174803
https://doi.org/10.1038/s41421-023-00529-z
https://doi.org/10.1038/s41421-023-00529-z
https://doi.org/10.1038/onc.2016.367
https://doi.org/10.1073/pnas.93.15.7849
https://doi.org/10.1073/pnas.93.15.7849
https://doi.org/10.1016/j.humimm.2010.01.024
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1038/s41416-018-0333-1
https://doi.org/10.1038/s41551-021-00797-8
https://doi.org/10.1038/s41551-021-00797-8

	Integration of multiomics analyses reveals unique insights into CD24-mediated immunosuppressive tumor microenvironment of breast cancer
	Abstract
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods and materials
	Data collection and preprocessing
	Identification of cellular types and differentially expressed genes
	Pseudo-temporal trajectory analysis at the single-cell level
	Analysis of interactions between cells
	Construction and evaluation of prognostic signature
	Construction of a nomogram integrating clinical variables
	Evaluation of immune landscape in high- and low-risk group
	Estimation of immunotherapy response
	Analysis of multiplexed quantitative immunofluorescence and spatial proximity
	Statistical analysis


	Results
	Cellular constitution of breast cancer
	Cell trajectory analysis of epithelial cells in scRNA-seq
	Analysis of interactions between cells
	Construction and validation of prognostic signature
	Nomogram establishment and evaluation
	Analysis of immune characteristics in breast cancer
	The association between the risk group and immunotherapy response
	Potential immunosuppressive domestication of CD24+PANCK+ cell subsets on exhausted CD8+T cells in tumor microenvironment

	Discussion
	Conclusion
	Acknowledgements 
	References




