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Abstract
Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. 
The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains 
inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation 
plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed 
database (on July 20, 2023). The search terms used were “delirium”, “post operative cognitive dysfunction”, “perioperative 
neurocognitive disorder”, “inflammation” and “systemic”, alone and in combination. All articles identified were English-
language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about 
systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of 
how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated 
and how we can translate these findings into prevention and/or treatment for PND.
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Abbreviations
PND	� Perioperative neurocognitive disorders
POCD	� Postoperative neurocognitive disorder
LPS	� Lipopolysaccharide
TNF-α	� Tumor necrosis factor α
IL	� Interleukin
IFN	� Interferon
DAMP	� Damage-associated molecular pattern
HMGB1	� High mobility group box 1
BMDMs	� Bone marrow-derived monocytes
TLR	� Toll-like receptor
NF-κB	� Nuclear factor-kappa B
MCP-1	� Monocyte chemotactic protein-1
MIP	� Macrophage inflammatory protein

NVU	� Neurovascular unit
CNS	� Central nervous system
BBB	� Blood–brain barrier
CSF	� Cerebrospinal fluid
BCB	� Blood-cerebrospinal fluid barrier
CP	� Choroid plexus
CVO	� Circumventricular organ
ECs	� Endothelial cells
CCL2	� C–C motif chemokine ligand 2
NSAIDs	� Non-steroidal anti-inflammatory drugs
DEX	� Dexmedetomidine

Introduction

Cognitive alteration affecting patients following anesthe-
sia and surgery is a heterogenous set of conditions, which 
includes any form of acute event (postoperative delirium) 
and cognitive decline diagnosed up to 30 days after the 
procedure (delayed neurocognitive recovery) and up to 
12 months (postoperative neurocognitive disorder, POCD) 
[1]. Previously, all forms of the impairment were called 
POCD, but more recently, perioperative neurocogni-
tive disorders (PNDs) are recommended to be used as an 
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overarching term for cognitive impairment identified in the 
perioperative period [1]. PND has been recognized as a con-
sequence of anesthesia as early as 1887 [2], and a common 
complication of cardiac surgery in the elderly described by 
Bedford in 1955 [3]. Following its modern description, the 
agreements of definitions and diagnostic criteria of PND 
have been made in 2018 [1].

Since the 1950’s, advanced age has been identified to be 
one of the strongest associations for PND after major non-
cardiac surgery [4]. The incidence of PND is reported to be 
anywhere between 9 and 54% after surgery in adults over age 
65 [5–7]. In fact, cognitive dysfunction is common in adult 
patients of all ages at hospital discharge after major non-car-
diac surgery [4]. PND is associated with adverse outcomes, 
including significant complications including dementia, and 
increased mortality, thereby producing a significant burden 
on the healthcare system [8–10]. The pathogenesis of PND 
is multifaceted, which might be associated with anesthesia, 
tissue damage, neuroinflammation, surgical stress, psycho-
logical stress and so on. Growing evidence indicates that 
systemic inflammation following surgery and anesthesia 
is involved in PND, in which inflammatory signaling mol-
ecules have been identified. The purpose of this review is 
to summarize the literature to date concerning PND and 
the cellular mechanisms involved in systemic inflamma-
tion underlying the pathogenesis of PND in pre-clinical and 
human studies.

Systemic inflammation and cognitive 
dysfunction

Systemic factors (such as plasma proteins, immune cells), 
mediated by blood, have been shown to be as mediators of 
brain homeostasis and modulate brain function [11, 12]. A 
large number of studies have shown that systemic inflamma-
tion can induce or exacerbate neurological symptoms includ-
ing anxiety, depression, and cognitive dysfunction [13, 14]. 
For example, systemic inflammation induced by psoriasis 
has been shown to be associated with an increased risk of 
developing dementia [15]. Another epidemiological study 
suggests that chronic periodontitis is closely associated 
with the incidence and progression of cognitive impairment 
[16], which is confirmed in animals [17]. Yamanaka’s study 
showed that systemic inflammation treated by lipopolysac-
charide (LPS)-induced cognitive dysfunction in aged rats 
[18]. In a randomized, placebo-controlled study in healthy 
men, systemic inflammation induced by an intravenous 
injection of LPS altered functional connectivity of resting 
state networks in brain [19]. A single intraperitoneal injec-
tion of tumor necrosis factor-α (TNF-α) in mice increased 
serum level of the proinflammatory mediators in a dose- 
and time-dependent manner and affects the central nervous 

system at a neuroimmune and behavioral level [20]. In pre-
operational glioma patients, increased interleukin-2 (IL-2) 
levels were positively correlated with cognitive impair-
ment [21]. Certain cytokines such as interferon (IFN)-α 
and IL-2 are often used in the treatment certain cancers 
and chronic diseases. Cognitive impairment was reported 
in those patients who received those medications [22]. In 
critically ill patients, the proinflammatory cytokine IL-8 was 
associated with delirium [23]. Clinical studies showed that 
higher circulating levels of IL-6 or IL-1β were associated 
with worse cognitive function and steeper cognitive decline 
[24, 25]. These results suggest that systemic inflammation 
may play an important role in modulating cerebral function. 
The periphery-to-brain communication pathways mediate 
inflammation-associated brain function.

Systemic inflammation following surgery/
anesthesia and PND

The innate immune system is a generic component of the 
organism’s response to infection or tissue damage, which 
includes surface barriers, the complement system, and 
inflammatory mediators produced by immune cells [26]. 
Surgery triggers the innate immune system to launch 
a systemic inflammatory response (see Fig. 1). It is well 
known that tissue damage due to surgery triggers local 
inflammation at the surgical site, where cellular injury can 
release endogenous damage-associated molecular patterns 
(DAMPs) that activate innate immunity and promote and 
exacerbate the inflammatory response [27, 28]. Among the 
DAMPs, high mobility group box 1 (HMGB1) is the most 
studied. HMGB1, as a major DAMP, is a nuclear protein 
that is present in almost all eukaryotic cells and can be 
released by necrotic cells during tissue injury [29]. It can 
interact with multiple receptors of circulating bone marrow 
derived monocytes (BMDMs), including the receptor for 
advanced glycation end products (RAGE), toll-like receptor 
(TLR) 2, and TLR4 [29], and induce activation of nuclear 
factor-kappa B (NF-κB), and production of proinflamma-
tory cytokines. The systemic inflammatory response is 
observed in rodent models during the perioperative period 
[30–36]. Similar inflammatory changes have been described 
in clinical samples. For example, after orthopedic surgery, 
statistically significant changes were present in IL-5, IL-6, 
IL-8, IL-10, monocyte chemotactic protein-1 (MCP-1), 
macrophage inflammatory protein (MIP)-1α and recep-
tor for advanced glycation end products in plasma [37]. In 
adult patients, the cytokine response to open cholecystec-
tomy stimulated both the pro-inflammatory (IL-1β, IL-6 and 
TNF-α) and the anti-inflammatory (IL-4) components, while 
this response was absent in laparoscopic cholecystectomy 
[38]. The complement system is another key component in 
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the inflammatory response, which can be activated by the 
DAMPs after surgery [39]. Clinical studies demonstrated 
that there is early complement component 3 (C3) activa-
tion, represented by plasma C3 depletion and upregulation of 
cleaved forms of C3 in patients undergoing surgery [40, 41].

The effects of anesthetic agents on the immune system 
have been investigated at both mechanistic and clinical levels 
in animals and human [42, 43]. A brief exposure to iso-
flurane general anesthesia, without induced surgical stress, 
significantly increased serum IL-1β in children undergoing 
MRI examination [44]. In single-drug propofol anesthesia 
without any surgical intervention in healthy subjects, propo-
fol significantly decreased the levels of hepatocyte growth 
factor, IFN-γ-induced protein 10, and increased the levels 
of IL-17, IL-5, IL-7 and platelet-derived growth factor, 
suggesting propofol seemed to induce mixed pro- and anti-
inflammatory effects on the immune system [45]. The latest 
literature shows that sevoflurane general anesthesia without 
surgery, even in older adults, did not provoke an inflamma-
tory state in the early hours after exposure [46]. The data 
suggest that anesthetic agents appear to have effects on the 
immune system but the inflammatory responses they induce 
may be far outweighed by the contribution of patient and 
surgical factors.

The systemic inflammation following surgery contribute 
to persistent cognitive decline in rodent models [30–36, 
47]. Increased levels of HMGB1 after surgery and anesthe-
sia have been described in preclinical models of cognitive 
impairment [48–51]. The elevations of HMGB1 were also 
observed in patients with PND after major gastrointestinal 
surgery [52]. Another clinical study showed that surgery-
induced acute systemic inflammation is followed by a rapid 
and transient activation of the brain immune system [53]. 
After coronary artery surgery, elevated postoperative con-
centrations of IL-6 and C-reactive protein are associated 

with short- and medium-term impairment of cognitive func-
tions in patients [54]. POCD patients were associated with 
higher postoperative plasma levels of malondialdehyde, and 
higher IL-1β [55], TNF-α and IL-6 [56]. In a prospective 
biomarker cohort study, IL-8 exhibited a strong correlation 
with delirium severity in surgical patients [57]. Hyperbaric 
oxygen and remote ischemic preconditioning could mitigate 
surgery-induced cognitive impairment in animals and elderly 
patients, respectively, and this may be associated with the 
attenuation of systemic inflammation [58, 59]. Blockade of 
either TNF-α or IL-6 using antibodies effectively reduced 
POCD in rodents [60, 61]. Moreover, in a murine model 
of orthopedic surgery, C3a receptor blockade improved 
hippocampal-dependent memory function, suggesting that 
complement activation may play a role in the mechanisms 
underlying PND development [62].

These results suggest that surgery and anesthesia can 
induce systemic inflammation, which may play important 
roles in the pathophysiological process of PND, although 
it has been demonstrated that in young patients, there is 
no effect of anesthesia on postoperative cognitive func-
tions. There is no association of inflammatory markers with 
respect to the patient’s cognitive status [63].

How inflammatory signals access the brain: 
barriers and conduits

Blood–brain barrier

The brain vasculature serves two roles: as a conduit to 
supply nutrients and as a barrier to block inflammatory 
insults [11]. The neurovascular unit (NVU), defined by 
the structural cellular composition of neurons, glia (e.g., 
astrocytes, microglia) and vascular cells (endothelium and 

Fig. 1   The innate immune system is activated following surgical 
injury and releases peripheral inflammatory mediators. High mobil-
ity group box 1 protein (HMGB1) is rapidly released in response to 
injury, which activates nuclear factor-kappa B (NF-κB) signaling 
pathways in bone marrow derived monocytes (BMDMs), increasing 

transcription of inflammatory genes such as interleukin (IL), tumor 
necrosis factor alpha (TNF-α), monocyte chemotactic protein-1 
(MCP-1), macrophage inflammatory protein (MIP)-1α. Thus, a sys-
temic inflammatory response is induced
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mural cells including pericytes and smooth muscle cells), 
is critical to normal central nervous system (CNS) func-
tioning [64]. The blood–brain barrier (BBB) is centrally 
positioned within the NVU and accomplishes these two 
roles [11]. BBB is formed by brain endothelial cells of the 
capillary wall, astrocyte end-feet and pericytes embedded 
in the capillary basement membrane [64], and it maintains 
a tightly controlled chemical composition of the neuronal 
milieu that is required for proper neuronal functioning 
[64]. Cerebral endothelial cells interact with the surround-
ing basal lamina, as well as astrocytic end-feet processes, 
pericytes and neurons [65, 66]. Astrocytes and pericytes 
are both involved in modulating brain endothelial perme-
ability and in BBB maintenance [65, 66].

Growing evidence shows that BBB breakdown is asso-
ciated with the pathogenesis of different neurological 
disorders and complex multifactorial diseases [67]. A 
Nation’s study showed that individuals with early cog-
nitive dysfunction develop brain capillary damage and 
BBB breakdown in the hippocampus [68]. Studies in 
several animal models suggest changes in BBB perme-
ability in PND [69, 70]. IL-17A in serum increases after 
surgical stress and contributes to PND disorders through 
BBB dysfunction [71]. Preclinical studies have shown 
that peripheral pro-inflammatory cytokines (e.g. TNF-α, 
IL-1,6) following anesthesia/surgery might induce BBB 
dysfunction (see Fig. 2). The changes in BBB permeability 
may be associated with influx of inflammatory mediators 
and contribute to cognitive impairment [51, 69]. In addi-
tion, BBB breakdown facilitates BMDMs to be recruited 
to the CNS [32]. The central recruitment of BMDMs is a 

necessary mechanism in POCD [72]. Therefore, changes 
in the BBB are likely partially responsible for the ways in 
which systemic inflammatory mediators modulate brain 
function following surgery and anesthesia.

Blood–cerebrospinal fluid barrier

The blood–cerebrospinal fluid (CSF) barrier (BCB) is 
another interface between the circulatory system and CNS 
(see Fig. 2), which shapes brain function in health and 
pathology by integrating signals from the brain with signals 
coming from the circulation [73–76]. The BCB is made of 
the choroid plexus (CP) present in all four ventricles of the 
brain. The CP is a vascular convolute, consisting of epi-
thelial cells bound together by tight junctions and stromal 
compartment vascularized by highly permeable fenestrated 
capillaries [77]. It is involved in the production of CSF and 
actively regulates the synthesis, composition, and circulation 
of CSF [78]. There is no major diffusional barrier between 
the brain parenchyma and CSF. Thus, materials coming from 
the circulation present in CSF are free to enter the brain. 
Under physiological conditions, the CP is key to delivering 
micronutrients, growth factors, and neurotrophins to neu-
ronal networks through the CSF from systemic blood deliv-
ered to the leaky microvasculature of the CP [79]. Under-
standably, the CP is crucial for the homeostatic regulation 
of the brain microenvironment along with the BBB [80]. 
In addition, the CP is an important gateway for the entry of 
immune cells into the brain [81]. Its dysfunction induced by 
inflammatory mediators or oxidative stress may cause brain 
damage [82–85]. A preclinical study showed that choroidal 

Fig. 2   The peripheral inflam-
matory mediators pass through 
the barriers and conduits to 
modulate brain function. There 
are several mechanisms existing 
by which peripheral inflamma-
tory signal can be transmitted to 
the brain, including a transport 
across the blood–brain barrier 
(BBB) and b blood–cerebrospi-
nal fluid (CSF) barrier (BCB); 
or entry via c the circumven-
tricular regions (CVOs); e direct 
neural pathways (afferent vagal 
fibers); and d other pathways
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BCB dysfunction occurred 1 day after surgery and anesthe-
sia. The alteration was associated with neuroinflammation 
and PND [62]. A clinical study examined BCB integrity 
of hospitalized patients by CSF to plasma albumin ratio. 
The results showed that BCB dysfunction may be relevant 
for delirium pathophysiology when it occurs [86]. Fur-
ther study is warranted to investigate whether the systemic 
inflammation after surgery induces dysfunction of BCB and 
then mediates PND. It remains unknown whether the close 
contact between the CP and some brain structures makes it 
easier for substances derived from the CP to affect certain 
brain functions.

Circumventricular organs

Circumventricular organs (CVOs) are highly vascularized 
structures, which are located around the third and fourth 
ventricles and mainly include the organum vasculosum of 
the laminae terminalis, the subfornical organ, the area pos-
trema and the median eminence, which are specialized brain 
regions characterized by the lack of a BBB [87] (see Fig. 2). 
Moreover, neurons and glial cells of the CVOs express 
cytokine receptors including IL-1 and TNF-α receptor 1 
[88, 89]. Thus, circulating substances could reach the CVOs, 
which communicate with other brain areas and CSF through 
complex neural networks and tanycytes (specialized ependy-
mal cells lining the ventricular spaces), respectively [90, 91]. 
It seems reasonable to suppose that inflammatory mediators 
in the blood following surgery and anesthesia could leak 
into the CVOs and regulate their functions. However, it is 
not clear whether the procedure significantly occurs in PND.

Vagal afferents

The vagus nerve is the tenth cranial nerve. It contains both 
motor (efferent) and sensory (afferent) components [92]. 
Its afferent nerves can carry an extensive range of signals 
from periphery to the brain, specifically to the nucleus trac-
tus solitarius, and spread from there to secondary projec-
tion regions of the vagus such as the parabrachial nucleus 
(see Fig. 2). Vagal afferent nerves can rapidly activate cen-
tral inflammatory pathways, when they are stimulated by 
immune factors in the periphery [93, 94]. For example, some 
studies found that vagal afferents induced central expres-
sion of inflammatory mediators in response to peripheral 
pro-inflammatory stimuli and thereby affect sleep [95–97]. 
Romanovsky’s studies conclude that chemosensitive afferent 
fibers traveling within the abdominal vagus constitute a nec-
essary component of the afferent mechanism of the febrile 
response to low doses of blood-borne prostaglandins of the 
E series [98]. The data indicate that peripheral inflammation 
may alter central function through vagal afferents. Further 
studies will allow a better understanding of whether there 

are other neural routes by which peripheral inflammatory 
signals gain access to the brain except for the vagus nerve, 
and how these neural routes modulate brain function follow-
ing surgery and anesthesia.

Other conduits

Recent studies have shown that the existence of direct vas-
cular channels connects skull bone marrow and the brain 
surface (meninges), capable of supplying monocytes and 
neutrophils to the meninges and CNS parenchyma under 
homeostatic and pathological conditions such as stroke, 
meningitis and leukaemia [99–102] (see Fig. 2). It remains 
unknown whether the skull bone marrow-derived neutro-
phils are more likely to migrate to the meninges and infiltrate 
the CNS parenchyma and, therefore, affect brain function 
through the potential skull-to-brain conduit following sur-
gery and anesthesia.

Cellular targets of systemic inflammatory 
factors

Brain endothelial cells

Cerebral endothelial cells (ECs) are critical components of 
the BBB, which exhibit a specialized continuous rim of tight 
junctions and low rate of transcytosis [103]. ECs possess a 
number of cytokine receptors and adhesion molecules on 
their luminal side, so they can sense the systemic environ-
ment and respond to it [103, 104]. For example, TNF-α 
receptors [105] and IL-1 receptors [106] are expressed in 
ECs of brain venules, whose activation was found to be 
closely associated with local prostaglandin synthesis, micro-
glial activation, monocyte recruitment and BBB breakdown 
[106–109], all of which are associated with cytokine influx 
and cognitive impairment [105, 109]. In addition, C3a recep-
tor is expressed on brain endothelial cells [110]. The C3a/
C3aR signaling through endothelial cells promotes vas-
cular inflammation. The complement-mediated signaling 
impacts vascular health [62, 111]. Perioperative monocytes 
and inflammatory mediators in blood may interact with ECs, 
which cause loss of BBB integrity [104], upregulation of cell 
adhesion and cytokine receptors, and increase of cytokine 
production and other pro-inflammatory mediators [112, 
113]. Activation and/or dysfunction of ECs induced by the 
peripheral mediators might play an important role in the 
pathophysiology of PND. But how the mediators change the 
ECs and impair cognitive function remains to be explored.
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Pericytes

Brain pericytes are a critical component of the BBB/NVU 
and are located directly on the capillary wall and share a 
common basement membrane with endothelial cells and 
are in contact with astrocytes, neurons and other glial cells 
[76, 77]. They play important roles in many neurovascular 
functions such as regulation of cerebral blood flow, BBB 
formation and maintenance and angiogenesis [114]. Duan’s 
study showed that systemic inflammation induces C–C 
motif chemokine ligand 2 (CCL2) production by pericytes 
which rapidly relay the inflammatory signals from the cir-
culatory system to neurons via chemokine CCL2 leading to 
neuronal hyperexcitability [115]. Pericytes secrete several 
proinflammatory mediators following immunological acti-
vation, including IL-1β, TNF-α, IFN-γ, IL-6 and IL-4 [104, 
116]. Furthermore, pericyte degeneration has been shown to 
mediate changes of BBB permeability/or function and leads 
to cognitive impairment [68, 104, 117, 118]. The inflamma-
tory signals may target pericytes after surgery resulting in 
CNS damage.

Microglia

Microglia are a type of neuroglia occurring in the CNS. They 
originate from the yolk sac during embryogenesis and can 
be defined as tissue-resident macrophages [119, 120]. It is 
shown that the cellular processes of microglia are extremely 
plastic in the healthy brain and respond rapidly to pathologi-
cal conditions such as inflammation. The peripherally pro-
duced cytokines can trigger neuroinflammation by activating 
microglia [32, 37], resulting in direct neurotoxicity and a 
cognitive decline following surgery. For example, periph-
eral TNF-α signaling was required to stimulate microglia 
to produce MCP-1/CCL2 which facilitates the blood mono-
cytes enter the CNS via transcellular and paracellular routes 
[32, 121, 122], and these migrated monocytes differentiate 
microglia-like cells, play roles complementary to those of 
the resident microglia. Accumulating evidence indicates that 
anesthesia and surgery cause different degrees of microglial 
activation. The activation results in an inflammatory cas-
cade promoting the synthesis and the secretion of inflamma-
tory mediators [123, 124]. The activated microglia are the 
primary source of inflammatory cytokines which regulate 
microglia under feedback control [125]. The amplifying neu-
roinflammation and microglial activation could contribute 
to the development of PND [31, 126–129].

Astrocytes

Astrocytes are the most common glial cell in the CNS and 
perform a variety of important functions, including recy-
cling neurotransmitters, modulating metabolic homeostasis, 

provision of nutrients to the neurons, composing the BBB, 
and participating in immune responses [130]. Systemic 
inflammation following surgery and anesthesia induces the 
development of cognitive dysfunction, in which activation 
of astrocytes is a key component [30, 131–133]. The phe-
notype of A1 astrocytes (a subtype of reactive astrocytes) is 
strongly induced by IL-1α, TNF and complement compo-
nent 1, subcomponent q [134], suggesting these astrocytes 
are hyper-reactive to systemic inflammation. Therefore, it 
is possible that perioperative period systemic inflammation 
mediators can cross the BBB and could contribute to this 
neurotoxic astrocyte phenotype, which release a broad range 
of pro-inflammatory mediators that lead to neuroinflamma-
tion and neuronal injury.

Oligodendrocytes

Oligodendrocytes are the myelinating cells of the CNS. They 
are the end product of a cell lineage which has to undergo 
a complex and precisely timed program of proliferation, 
migration, differentiation, and myelination to finally pro-
duce the insulating sheath of axons [135]. Activation of the 
immune-inflammatory response system and injuries in the 
neuronal cytoskeleton, oligodendrocytes, astrocytes, glial 
cells, and myelin sheath are involved in the pathophysiology 
of delirium following hip fracture surgery [136]. The oligo-
dendrocyte lineage damage varies according to the inflam-
matory stimulus, i.e., systemic inflammation or cytokine 
IL-1β impair the oligodendrocyte lineage in the developing 
brain [137]. There is no information about anesthesia and 
surgery effect on oligodendrocytes involving in PND.

Neurons

Ultimately, all neuro-modulatory systemic inflammatory 
mediators must influence neurons to have an impact on 
cognitive function, which involves not only transduction 
through different types of non-neuronal cells, but also direct 
binding to receptors on neurons. In fact, receptors for pro-
inflammatory cytokines are expressed in neurons, which 
can be directly bound by systemic cytokines to alter elec-
trical properties and circuit integration. For example, IL-1 
receptors were found to be expressed typically in neurons 
of the hippocampus [138, 139]. IL-1β induced prolonged 
hippocampal neurons expression of α5 γ-Aminobutyric acid 
sub-type A (α5GABAA) receptor whose activation appears 
to impair memory via activation of IL-1 receptors and p38 
MAPK-dependent signaling [140]. Activation of TNF recep-
tor expressed in neurons of the brain leads to neuronal death, 
which is involved in neural development and neurological 
diseases [141, 142]. Theoretically, neurons in the brain have 
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ability to directly sense the inflammatory milieu of brain 
following surgery and anesthesia. Whether and how sys-
temic inflammatory mediators cause neuronal and synaptic 
destruction and impair neurocognitive function after surgery 
warrants further research in the future.

Systemic inflammation as a therapeutic 
target

Neuroinflammation has become a key hallmark of neurologi-
cal complications including PND [143–145]. As mentioned 
above, systemic inflammatory mediators mainly activate 
microglia and astrocytes, followed by enhanced neuroin-
flammation, resulting in neuronal and synaptic destruction 
and cognitive dysfunction [123, 146–148]. Huang’s study 
demonstrated that non-steroidal anti-inflammatory drugs 
(NSAIDs) can act rapidly to attenuate systemic inflammation 
and glial activation and negatively modulate neuropatho-
logical changes to improve cognition following surgery in 
an animal model [30]. Clinically, cyclooxygenase-2 inhibi-
tors (a type of NSAIDs) or Dexmedetomidine (DEX, an 
important anesthetic adjuvant) have been associated with 
significantly reduced incidence of POCD and better neuro-
cognitive function [149–151]. This effect may be attributed 
to inhibiting inflammatory mediators including IL-6, IL-8, 
TNF-α, and C-reactive protein [45, 152]. However, there 
is a study showing that DEX confer better postoperative 
neurocognitive function for elderly patients who received 
total knee arthroplasty that is unrelated to the modulation 
of DEX on peripheral inflammation [153]. In addition, more 

conventional anti-inflammatory drugs (dexamethasone) 
given perioperatively have yielded variable results in clini-
cal trials [154–156]. Thus, the anti-inflammatory strategy as 
preventive and therapeutic procedures for PND remains to 
be further determined.

Conclusions

Systemic inflammation induced by surgery and anesthesia 
has been associated with brain injury and PND. The effect 
may be exerted via inflammatory mediators to exaggerate 
neuroinflammation involving in neurons, glia and other brain 
cells, and eventually cause neuronal and synaptic destruction 
(see Fig. 3). This potential mechanism suggests that regulat-
ing the perioperative inflammatory response to surgery may 
prevent and treat PND. However, the details of the associa-
tion between surgery, peripheral and central neuroinflamma-
tion, and PND development remains unclear. Further animal 
and human studies are essential to elucidate the underlying 
cellular mechanisms. Having more insights about systemic 
inflammation-to-brain injury will be helpful to translate 
them into clinical practice.
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