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Abstract
Background  Parkinson’s disease (PD) is the second most common neurodegenerative disease, and is characterized by 
accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation 
of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation 
of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to 
degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phago-
cytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related 
genes such as LRRK2, GBA and DJ-1 also contribute to this stability process.
Objectives  Further studies are needed to determine how α-syn works in microglia.
Methods  A keyword-based search was performed using the PubMed database for published articles.
Conclusion  In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible 
mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may 
provide a novel insight into treatment of PD.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease after Alzheimer’s disease (AD) [1]. 
Age is the foremost risk factor for PD. With aging of the 
world population, the prevalence of PD is also on the rise. 

It is reported that, by 2040, the number of PD patients will 
double to 14.2 million from 6.9 million in 2015 [2]. How-
ever, there is no effective early diagnosis and treatment of 
PD, and the study of its specific pathogenesis is still in the 
early stage [3]. Therefore, correctly understand the patho-
genesis of PD, develop early diagnostic methods, explore 
the key markers of disease diagnosis, and develop effective 
therapeutic drugs are the current research priorities. Micro-
glia are continuously activated throughout the disease, and 
the neuroinflammation induced by microglia activation plays 
an important role in the progression of PD, so microglia 
have the potential to become a marker for the diagnosis and 
treatment of PD [4]. Pathologically, PD is characterized by 
the formation of Lewy bodies and the progressive loss of 
dopaminergic (DA) neurons in the substantia nigra of the 
midbrain. Specifically, the molecular mechanism shows 
persistent neuroinflammation, autophagy disorder, oxidative 
stress, and calcium disorder [5]. Among these, autophagy 
has become a research hotspot in recent years, but previ-
ous reports on autophagy in PD are mostly focused on neu-
rons. The autophagy in microglia has been more attractive 
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to scientists in the recent years, because it is associated with 
its function of phagocytosis and degradation of α-syn. α-Syn 
aggregates into oligomers or fibrils. These pathological 
forms of α-syn are the driving factor of PD pathology, which 
aggravates DA neuron damage by inducing microglia to acti-
vate NLRP3 inflammasomes and promoting neuroinflamma-
tion. Pathological α-syn can also damage the autophagy and 
phagocytosis of microglia, which impairs the degradation 
of pathological α-syn and NLRP3 inflammasomes, and fur-
ther exacerbates neuroinflammation in PD. In recent years, 
some studies have found that the activation of microglial 
autophagy can inhibit its inflammatory activation by pro-
moting microglial phagocytosis and degradation of α-syn 
or activated NLRP3 inflammasomes. Autophagy activation 
degrades proinflammatory cytokines secreted by microglia 
to avoid their activation, and improves immune function and 
protects against PD in many clinical trials and preclinical 
studies. This suggests that autophagy can slow down the 
progression of PD by inhibiting neuroinflammation induced 
by microglia. Exploring the relationship between autophagy 
and inflammation in microglia will provide a promising ther-
apeutic strategy for PD. Here, we review the current research 
progress on autophagy, phagocytosis and inflammation of 
microglia in PD pathology, emphasizing the role of α-syn, 
and further discuss the possible treatment of PD.

PD and α‑syn

PD is regarded as a synucleinopathy because its pathologi-
cal marker is the formation of Lewy bodies (LBs), which 
are composed of aggregated α-syn. Synucleinopathy also 
includes multiple system atrophy, pure autonomic failure, 
and dementia with LBs [6]. In a recent report, researchers 
extracted α-syn filaments from the brains of six patients with 
PD, PD with dementia, and dementia with LBs, and reported 
cryoelectron microscopic structures of these α-syn filaments. 
They called the ordered core structure Lewy fold, which is 
formed by residues 31–100 of α-syn [7]. α-Syn is a small 
protein with three domains composed of 140 amino acids 
(14 kDa), which is encoded by SNCA gene [8]. SNCA is 
the first identified gene associated with familial PD and is 
known to be affected by seven mutations associated with 
the disease: A30P, E46K, H50Q, G51D, A53V, A53T and 
A53E [9]. The sequence variation of SNCA regulatory 
region is related to the increased expression of α-syn and the 
increased risk of idiopathic PD, which accounts for > 90% 
of cases [10]. Therefore, SNCA mutation is often regarded 
as a marker of idiopathic PD.

Formation and aggregation of α‑syn

The toxicity of α-syn depends on its forms at different 
stages. The α-syn monomer is nontoxic and soluble. The 
aggregation of α-syn is a process of gain of toxic function 
and probably caused by mutation of its coding gene (SNCA), 
which plays a core role in PD [9, 11]. Phosphorylated α-syn, 
supposed to be the pathogenic isoform of α-syn, is more 
likely to aggregate [12]. In addition, duplications and tripli-
cations of SNCA can also increase the aggregation of α-syn 
[13, 14]. α-Syn fibrils are the main form of α-syn in LBs. 
The transformation of α-syn monomer aggregation to α-syn 
fibrils is a complex process, involving multiple cellular and 
biochemical events, and regulated by a variety of genetic and 
environmental factors [15, 16]. This process can be simply 
explained by the imbalance between the synthesis and elimi-
nation of α-syn. It is generally believed that the aggregated 
α-syn first form α-syn oligomers, which contains 30–35 
monomers of α-syn with a molecular weight of ~ 440 kDa 
[6]. They interact abnormally with neuronal membranes, 
resulting in their disruption [17, 18]. 8300 a-syn monomers 
form α-syn fibrils with a molecular weight of ~ 120 000 kDa 
[6]. The toxicity of α-syn fibrils is similar to α-syn oligom-
ers [19]; both of which can spread in the brain and trig-
ger neurodegeneration [20]. Aggregated α-syn can induce 
a variety of pathological processes, such as mitochondrial 
dysfunction, calcium homeostasis disorders, neuroinflamma-
tion, endoplasmic reticulum stress and lysosomal disorders 
[21] (Fig. 1).

Although the importance of α-syn has been studied in 
depth, there is still an important question as to whether 
the α-syn pathology is a driving factor or an epiphenom-
enon that is the best observed in the neurodegenerative 
processes in PD [22]. α-Syn aggregation may represent a 
pathophysiological hallmark and be an epiphenomenon of 
neurodegeneration.

PD and microglia

Microglia are the immune cells in the brain and play a key 
role in providing host defense against pathogens and cen-
tral nervous system (CNS) diseases. In addition, microglia 
maintain CNS homeostasis at different stages of growth 
and development [23]. In the neonatal brain, microglia 
regulate neurogenesis and neuronal survival by phagocy-
tosis of excess neonatal cells, removal of redundant syn-
aptic connections, and secretion of essential neurotrophic 
factors during development, such as insulin-like growth 
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factor, transforming growth factor-β and brain-derived neu-
rotrophic factor [24]. In the adult brain, in addition to secre-
tion of the above-mentioned nutritional factors to support 
neural growth and phagocytosis of excessive metabolites or 
damaged tissue, microglia also show functions in learning 
by regulating synaptic pruning and neuronal circuit remod-
eling [25]. As age is the main risk factor for PD [26], the 
microglia in the brain of older people present changes in 
morphology, phenotype, inflammation and overall functional 
response. Microglia at this stage easily over-react to external 
stimuli and neurotoxic damage, producing a large number 
of proinflammatory cytokines to induce neuroinflammation 
[27]. As early as the 1980s, researchers reported that there 
was a large number of activated microglia in the substan-
tia nigra of PD patients [28]. Lymphocyte infiltration was 
also observed in the substantia nigra of PD patients, which 
could promote the activation of microglia [29]. Persistent 
overactivation of microglia is considered to be one of the 
main pathological manifestations of PD. Activated micro-
glia mediate inflammation by releasing a plethora of proin-
flammatory cytokines, including interleukin (IL)-1β, IL-6, 
tumor necrosis factor (TNF)-α and NO [30]. These cytokines 
eventually lead to apoptosis of DA neurons and accelerate 
progression of PD. Microglia release most of the inflamma-
tory cytokines, which is the most important feature in the 
pathogenesis of neuroinflammation in PD [31, 32]. In the 
following part, we discuss the pathological factors that drive 
microglial inflammation in PD.

Microglial inflammation in PD

Microglia express diverse immune pattern recognition 
receptors (PRRs), including Toll-like receptors (TLRs), 
nucleotide-binding oligomerization domain (NOD)-like 
receptors (NLRs) and scavenger receptors (SRs) [33]. PRRs 
recognize exogenous pathogenic molecules called pathogen-
associated molecular patterns (PAMPs) or endogenous host-
derived molecules called damage-associated molecular pat-
terns (DAMPs). Microglia are the earliest cells in the CNS 
in response to PAMPs/DAMPs [34]. Microglia are activated 
through recognition of PAMPs/DAMPs stimuli via PRRs, 
causing intracellular cascade reactions, kinases and down-
stream transcription factor activation, to produce and release 
proinflammatory cytokines [35]. In the resting state under 
normal conditions, the microglia exhibit ramified morphol-
ogy. Once activated, the shape changes to an ameboid-like 
form. Some studies have described this change in microglia 
(known as microgliosis) in patients or animal models with 
PD [36].

According to the difference in secreted cytokines, trigger 
stimuli and cell surface markers, the classes of microglia are 
usually divided into M1 and M2 activation. M1 microglia 
are closely related to PD, and release harmful proinflamma-
tory cytokines and lead to neuronal degeneration and loss 
[37]. M1 microglia produce proinflammatory cytokines [IL-
1β, IL-6, IL-12, interferon (IFN)-γ and TNF-α], chemokines 

Fig. 1   α-Syn aggregates into two forms of oligomers or fibrils in the brain of PD patients, and finally forms LBs, which eventually lead to neu-
ronal degeneration and loss. Created with BioRender.com
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(CCL2, CCL20 and CXCL-100, cytotoxic substances [reac-
tive-oxygen species (ROS), reactive-nitrogen species (RNS), 
nitric oxide (NO) and excitatory amino acids (EAA)], and 
prostaglandin E2 [38], and are stimulated by IFN-γ or 
lipopolysaccharide (LPS) in vivo or in vitro [39–41]. M2 
microglia can phagocytose and remove fragmented neurons, 
and release anti-inflammatory factors and neuroprotective 
cytokines to recover damaged neurons after injury [42, 43]. 
Similar to macrophages, the M2 microglia can be further 
divided into three subtypes: M2a, M2b and M2c. [44]. IL-4 
or IL-13 can induce M2a activation, and IL-4 can directly 
stimulate cell surface markers (SRs and CD206) to per-
form phagocytosis and inhibit inflammation [45–47]. The 
function of M2b is similar to that of M2a. TLRs, activated 
by fusing with Fcγ receptors, binds to the IgG complex, 
causing microglia polarization to M2b phenotype, which in 
turn causes secretion of IL-10 and production of specific 
cell surface markers (MHC-II and CD86) [48]. M2c can be 
induced by IL-10 and exhibit an anti-inflammatory effect 
[38]. Therefore, microglia act as a “double-edged sword” 
under physiological conditions.

Cyclo-oxygenase 2 and inducible NO synthase are mark-
ers of M1 microglia. High expression of cyclo-oxygenase 2 
and inducible NO synthase has been observed in the micro-
glia of PD patients [49], indicating that inflammatory injury 
from microglia is magnified in PD. The DA neurons loss 
caused by microglia-mediated neuroinflammation in PD has 
been proved in many studies [50–53]. LPS, as the ligand 
of TLR4, can activate nuclear factor (NF)-κB pathway and 
release proinflammatory cytokines [54]. LPS-induced PD 
inflammation is demonstrated to compromise DA neurons 
[55, 56]. In the model of PD inflammation induced by LPS, 
a significant increase in the level of inflammatory cytokines 
was observed on day 3, and damage of DA neurons appeared 
on day 21, indicating that activation of microglia often 
occurs before the loss of DA neurons [57]. The PD trans-
genic mouse model (A53T) and neurotoxin (1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine 
(6-OHDA) or rotenone) model showed the same results as 
LPS did [58–60]. With the progression of PD, the chronic 
inflammatory environment can promote the continuous acti-
vation of microglia, leading to neuroinflammation, oxidative 
stress and neurotoxicity. Alleviation of neuroinflammation to 
delay the progression of PD has been regarded as a possible 
treatment [61].

α‑Syn in microglial inflammation

α-Syn is misfolded and accumulated in LBs, and is detected 
in postmortem brain sections of PD patients. α-Syn pro-
motes progression of PD, but the mechanism is still not 

fully understood [62]. Most studies have focused on the role 
of α-syn in neurons, because of its aggregation and high 
expression in neurons [63]. However, α-syn in microglia 
is also implicated as the initiating factor of neuroinflam-
mation in PD [64]. Extracellular α-syn activates microglia 
through PRRs to release inflammatory cytokines. Incom-
pletely removed α-syn leads to chronic neuroinflammation 
and neuronal damage, which initiates the process of PD neu-
roinflammation [65, 66]. The neuroinflammation induced by 
α-syn also occurs ahead of the DA neuronal loss [67].

In the pathological process of PD, α-syn is secreted from 
neurons into the extracellular space and is detected in the 
blood and cerebrospinal fluid of PD patients [68, 69]. The 
released α-syn is aggregated into oligomers or fibrils and 
then transferred between cells as free floating proteins or 
via extracellular vesicles [70]. This aggregated α-syn acts 
as a chemoattractant to direct microglial migration toward 
damaged neurons [71]. The binding of α-syn to TLRs is an 
important trigger for the activation of microglia [72]. α-Syn 
oligomers induce microglia to M1-like phenotype polariza-
tion through TLR1/2 signaling, resulting in nuclear translo-
cation of NF-κB and increased production of proinflamma-
tory cytokines through a MyD88-dependent pathway [73]. 
Some studies have reported that α-syn released from neurons 
to the extracellular environment is an endogenous agonist 
of TLR2, which activates inflammation in microglia [74]. 
In addition to TLR2, TLR4 also mediates α-syn-dependent 
activation of microglia, including production of ROS and 
proinflammatory cytokines [75]. Scavenger P2X7 receptor 
and complement receptor are also involved in α-syn-induced 
microglial activation [76–78].

Evidence of a chronic neuroinflammatory response can 
be found in PD and other diseases involving α-syn, where 
microglia are activated in all brain regions with accumulated 
α-syn [28, 79]. T cells from patients with PD can recognize 
α-syn, which probably aggravate microglial inflammation 
[80]. Selective overexpression of α-syn in murine micro-
glia induces apoptosis of DA neurons through oxidative 
stress [81]. In vitro, exogenous α-syn can directly activate 
microglia and lead to the release of inflammatory cytokines 
[18, 82]. In vivo, sustained activation of microglia can be 
induced by adeno-associated virus overexpression of α-syn 
or by injection of α-syn preformed fibrils (PFF) into the 
murine brain (striatum or substantia nigra) [83, 84]. The 
NF-κB and JAK–STAT pathway are implicated in the acti-
vated microglia induced by α-syn [85–87]. Therefore, as the 
main pathogenic factor of PD, α-syn induces microglia to 
activate and release NO, ROS, proinflammatory cytokines 
and chemokines, which aggravate CNS inflammation in 
patients with PD and eventually lead to neuronal death 
(Fig. 2).
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Microglial NLRP3 inflammasomes and PD

Inflammasomes are macromolecular protein complexes 
that are an important part of the innate immune system. 
Many inflammasomes, including NLR family pyrin domain 
(NLRP)1, NLRP2, NLRP3, NLRC4 and AIM2, have been 
reported in CNS diseases [88]. Among these inflamma-
some proteins, NLRP3 is a widely studied oligopolyprotein 
inflammasome complex in activated microglia and is the 
main molecule that activates caspase-1 and cleaves IL-1β 
and IL-18 [89]. It was the first inflammasome found and 
most studied in PD [90]. High expression of NLRP3 has 
been detected in the brain of PD patients [91]. NLRP3 
inflammasomes are found in microglia, astrocytes, neurons 
and endothelial cells in PD patients [92–94].

New evidence suggests that overactivated NLRP3 inflam-
masomes in microglia are driving factors that aggravate 
pathology and ultimately accelerate the progression of neu-
rodegenerative diseases [95]. The expression of NLRP3 
inflammasomes is increased in activated microglia in the 
substantia nigra [64], and colocalization of microglia and 
NLRP3 is found in LPS-induced PD inflammation and 

MPTP-induced PD models [96]. NLRP3 inflammatory 
bodies in PD are mainly activated by α-syn in peripheral 
and CNS-resident immune cells [94]. α-Syn released from 
neurons is recognized and taken up by surrounding micro-
glia [97], which promotes NLRP3 activation and drives the 
inflammatory process in microglia through TLR2 and TLR5 
[98]. α-Syn promotes the activation of NLRP3 in murine and 
human microglia, accompanied with the production of IL-1β 
[82, 99]. The expression of NLRP3, caspase-1 and IL-1β in 
midbrain was robustly increased in A53T transgenic mice 
[100]. Inhibition of neuroinflammation in microglia through 
blocking NLRP3 can alleviate progression of PD. MCC950, 
a highly selective NLRP3 inhibitor, is a latent therapeutic 
drug for PD [101]. In murine microglia, α-syn induced the 
activation of NLRP3 inflammasome and promoted release 
of IL-1β and apoptosis-associated speck-like protein con-
taining a CARD (ASC). MCC950 blocked this process and 
significantly ameliorated α-syn PFF-induced motor deficit, 
DA neuronal damage, and accumulation of α-syn in the sub-
stantia nigra and striatum [102]. Several anti-inflammatory 
drugs inhibited the activation of NLRP3 inflammasomes in 

Fig. 2   Neuroinflammation induced by aggregated α-syn aggravates 
neuronal degeneration and loss. a Accumulation of α-syn and neu-
roinflammation lead to degeneration and loss of DA neurons in sub-
stantia nigra. b The dead neurons release α-syn, which promotes 

activation of microglia, then the activated microglia release proin-
flammatory cytokines, which in turn aggravate neuronal death. c 
α-Syn promotes activation of microglia in several ways. Created with 
BioRender.com
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PD models, such as melatonin, glibenclamide and andro-
grapholide [103–105].

Microglial inflammation facilitated α‑syn 
transmission

The recent studies have shown that the neuroinflamma-
tion induced by microglia can aggravate the accumula-
tion and transmission of α-syn to aggravate progression of 
PD. Coculture of activated microglia with SH-SY5Y cells 
in vitro demonstrated that activating microglia promoted 
the phosphorylation and aggregation of α-syn, which led to 
the shortening of synapses, upregulated TLR2/4 expression, 
activated p38/JNK, and inhibited autophagic flux [106]. 
Neurons usually discharge excess α-syn to the extracel-
lular space, which can damage physiological processes of 
microglia, such as oxidative stress or dysfunction of mito-
chondria and lysosomes; thus, amplifying the pathological 
effects [107–109]. Microglia activated by α-syn increase 
their phagocytic activity and transmission of α-syn in a 
prion-like manner [110, 111]. IL-4 activated M2 microglia 
effectively reduced extracellular α-syn; thus, reducing α-syn 
transfer among neurons. In contrast, microglia treated with 
LPS-exhibited M1 activation, aggravated neuroinflamma-
tion, and impaired clearance of α-syn in vivo [110]. Activa-
tion of microglia in the olfactory bulb induced by intranasal 
injection of LPS in mice promoted expression of inflamma-
tory cytokines, which increased accumulation of α-syn in 
the olfactory bulb and α-syn transmission to the substantia 
nigra and striatum. Mechanistically, LPS-induced microglia 
promoted PD pathology through IL-1β/IL-1R1-dependent 
signal transduction [112]. In summary, microglial inflam-
mation promotes misfolding, aggregation and prion-like 
transmission of α-syn to induce death of fragile neurons and 
drive progression of PD [110, 111]; the cause which may be 
related to the increase in intracellular α-syn accumulation in 
microglia and acceleration of α-syn secretion into the extra-
cellular space through an exocrine pathway [113].

PD pathogenic genes and microglial 
inflammation

PD is usually classified as familial or sporadic according 
to heredity, and familial PD accounts for ~ 15% of cases 
[114]. To date, rare mutations in > 20 genes have been 
identified to cause familial PD or PD-related diseases 
[115]. The common genetic variants of PD are mainly 
determined by genome-wide association studies, and 
90 independent risk signals have been identified [116]. 
According to the analysis from > 1 million patients and 

controls, the common genes associated with PD cohorts 
are PARK16, GBA1, SNCA, LRRK2, GCH1, VPS13C and 
MAPT [117]. Sporadic PD is a late-onset disease, and its 
risk is affected by a series of common variants with low 
penetrance and environmental damage. Genome-wide 
association studies also identified PD genes including 
SNCA, GBA and LRRK2 in sporadic PD, indicating that 
there is a common pathogenic pathway between familial 
and sporadic PD [116]. Most of the PD pathogenic genes 
identified are expressed in microglia; some of which play 
a role in microglia-induced neuroinflammation [118]. 
Mutations in SNCA can lead to pathological accumula-
tion of α-syn, which directly promotes neuroinflammation 
induced by microglia [9]. Mutations in the E3-ubiquitin 
ligase gene Parkin are the most common cause of recessive 
hereditary PD [119]. Parkin in microglia inhibits NF-κB 
mediated inflammation, and its mutation aggravates micro-
glia-induced inflammation [120]. The loss of DJ-1 func-
tion is associated with 1–2% of autosomal recessive early-
onset PD [121]. DJ-1 knockdown in microglia increases 
the production of inflammatory cytokines induced by LPS 
[122]. LRRK2 mutation is the most common single genetic 
cause of familial and sporadic PD. LRRK2 is highly 
expressed under inflammatory stimulation and enhances 
α-syn-induced neuroinflammation through the binding of 
α-syn to TLR2 [123]. G2019S LRRK2 mutant promotes the 
release of inflammatory cytokines from microglia [124]. 
These studies have shown that PD-related pathogenic 
genes SNCA, PARKIN, DJ-1, LRRK2 and GBA play a role 
in microglial inflammation.

Aging and microglia in PD

Age is the main pathogenic factor of PD, and microglia show 
age-dependent changes [25]. With the increase in the age, 
the length, branches and dendritic area of microglia decrease 
[125]. Although the relationship between microglial quantity 
and age is still controversial, microglial senescence is associ-
ated with functional changes that are likely to contribute to 
an age-dependent increase of microglial-mediated neuroin-
flammatory responses [126]. Microglia express a high level 
of IL-1β with aging, which makes them prone to M1 tran-
sition [127]. This inflammatory hypersensitive phenotype 
is commonly referred to as primed microglia [128], which 
secrete more inflammatory cytokines after being stimulated 
by LPS [129]. By collecting the brains of rats of different 
ages, M1 markers (TNF-α and IL-β) increased while M2 
markers (arginase 1 and IL-10) decreased in aged rats, which 
also indicated the effect of age on microglial polarization 
[130]. A recent study directly demonstrated the correlation 
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between age and pathology of PD induced by α-syn. After 
injection of α-syn PFF to induce PD, there were continu-
ously activated microglia in the CNS of old mice, and micro-
glia of young mice showed more abundant branches, which 
led to a higher inflammatory environment in the brain of old 
mice [84]. These phenotypic changes affect the ability of 
microglia to function properly over time, and the accumula-
tion of nonfunctional aging microglia may evoke irreversible 
and progressive neurodegeneration in PD [131]. α-Syn only 
induces an aging phenotype in young microglia rather than 
in aged microglia, which indicates that there is some overlap 
between aging and α-syn in microglia [84]. Therefore, the 
relationship between senescence and microglia function in 
PD seems to be linked through induced pathology.

Autophagy, pathogenesis and PD

Autophagy is an evolutionarily conservative catabolic 
process that regulates cell homeostasis by degrading or 
recovering cytoplasmic components such as proteins, 
aggregates, and damaged organelles. Three types of 
autophagy have been identified: macrophage, chaperone-
mediated autophagy (CMA) and microautophagy [132]. 
Autophagy generally refers to macrophages; the function 
of which is involved in regulation of synaptic plasticity, 
the development of myelin and oligodendrocytes, and 
the anti-inflammation of glial cells, thus playing a key 
role in maintaining neuronal health [133]. The accumula-
tion of α-syn is caused by defects in the two main protein 
catabolism systems, ubiquitin–proteasome system and 
autophagy–lysosome pathway (ALP) [134]. The correla-
tion between autophagy defect and PD has been confirmed 
by many reports. The deficiency of autophagy leads to 
the enhancement of endogenous α-syn and LRRK2 pro-
tein levels in vivo, and the deletion of Atg7 alone can 
induce neurodegeneration [135, 136]. The role of α-syn 
in autophagy is vital in PD. Pathological aggregation of 
α-syn disrupts the operation of synaptic proteins and dete-
riorates autophagic, lysosomal and mitochondrial func-
tion [137]. Autophagic dysfunction can also accelerate the 
intercellular transfer of pathological α-syn [138]. Previ-
ous studies on autophagy in PD have mostly focused on 
neurons, but there have been a few studies on autophagy 
in glial cells, especially in microglia [139]. However, as 
mentioned earlier, microglia may initiate the occurrence 
and development of PD; therefore, the function of micro-
glial autophagy in PD pathogenesis has to be emphasized 
as research has advanced.

Microglial autophagy in α‑syn clearance

ALP plays an important role in the degradation of aggre-
gates [140], abnormal cytoplasmic organelles under physi-
ological conditions [141], and remains to be the critical 
way to remove pathologic α-syn in PD. ALP dysfunc-
tion contributes to the accumulation of α-syn and loss 
of dopaminergic neurons in PD [142, 143]. α-Syn con-
tains a CMA-targeted motif, which enables α-syn to be 
selectively transferred to lysosomes through CMA for 
degradation [144, 145]. Therefore, one of the promising 
developments for PD is improvement of the metabolism of 
α-syn by regulating lysosomes or autophagy, or both [146]. 
Although both neurons and glial cells in the brain can 
uptake and degrade extracellular α-syn, microglia show 
the highest efficiency in vitro [97, 147]. Surprisingly, a 
recent study reported that inhibition of neuronal ALP 
function decreased the toxicity of extracellular α-syn to 
neurons [148], suggesting that targeting ALP in microglia 
is more reasonable for the degradation of α-syn than tar-
geting neurons. The decrease in PD microglial ALP deg-
radation efficiency boosts the accumulation of misfolded 
α-syn and degeneration of DA neurons. An in vitro study 
showed that exosomes secreted by neurons overexpressing 
α-syn inhibited microglial autophagy [149]. The accumu-
lation of α-syn has also been shown to inhibit the level of 
autophagy in microglia, demonstrated by the upregulation 
of autophagy marker SQSTM1/p62 [150], and conversely, 
autophagy blockade can enhance the release and intercel-
lular transfer of α-syn in microglia [151]. The clearance 
of α-syn by microglia is mediated by TLR4/NF-κB signal 
transduction through upregulation of autophagy receptor 
p62/SQSTM1 transcription [147]. Inhibition of autophagy 
in the whole brain induces neurodegeneration [152], while 
the specific loss of microglial autophagy does not lead to 
death or activation of microglia under physiological con-
ditions. However, mice deficient in microglial autophagy 
showed more obvious motor disorders, α-syn deposition 
and loss of tyrosine hydroxylase (TH) neurons under the 
stimulation of α-syn [139, 147]. This suggests that the loss 
of microglial autophagy aggravates α-syn aggregation and 
the vulnerability of DA neurons to α-syn.

Microglial phagocytosis of α‑syn

Autophagy-associated ATG proteins also regulate phagocy-
tosis [153]. Phagocytosis is a cellular process by which cells 
recognize, phagocytize and digest large particles (> 0.5 μm) 
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[154], and functions in developing normal neural circuits 
and maintaining balance in the CNS. Microglia are consid-
ered to be the main phagocytes in the brain, continuously 
removing synapses, apoptotic cells and debris to maintain 
neural function [155]. Microglia improve the neural network 
by removing the synapses overproduced by the CNS during 
development, which contributes to learning and memory 
[156], and antagonize central infection through direct phago-
cytosis of bacteria and viruses [157]. In PD, phagocytosis is 
involved in promoting the clearance of α-syn and apoptotic 
neurons. Phagocytosis of microglia is mainly accomplished 
by the complement system and some receptors, including 
TLRs, scavenger receptor CD14, TAM (Tyro3, Axl and 
Mer) receptor and triggering receptor expressed on myeloid 
cells-2 (TREM2) [158–162].

According to the formation of phagosomes, phagocyto-
sis can be divided into three types: LC3-dependent phago-
cytosis, LC3-independent phagocytosis and xenophagy 
[163]. LC3-dependent phagocytosis mainly activates three 
kinds of signal complexes [164]. The first signal, LC3-
associated protein, is directly coupled to the phagosome 
membrane and necessary for the effective elimination of 
pathogens, dead cells and misfolded proteins [165, 166]. 
The second signal complex, Beclin-1, Rubicon, vacuolar 
protein sorting 34 (Vps34) and UV radiation resistance-
associated gene (UVRAG) are involved in the produc-
tion of phosphatidylinositol 3-phosphate (PI3P), which is 
necessary and functions in phagosome maturation [167]. 
The third signal, nicotinamide adenine dinucleotide phos-
phate oxidase 2 (NOX2), which promotes the production 
of superoxides, is involved in phagocytosis and autophagy 
[168].

Microglial phagocytosis is beneficial to tissue homeosta-
sis, preventing the overflow of proinflammatory and neuro-
toxic molecules by rapidly removing dying cells through 
receptor-mediated signaling [163, 169]. For example, micro-
glia specifically expressing TREM2 can enhance the phago-
cytosis of microglia and attenuate inflammation by nega-
tively regulating activation of NF-κB signal transduction 
mediated by TLR4 and transferring M1-like to M2-like phe-
notype polarization [170, 171]. Some studies have used the 
proportion of M2/M1 microglia to indirectly represent the 
phagocytosis of microglia [172] because of the scavenging 
effect of M2 microglia on α-syn in PD [173]. The apoptotic 
neurons by microglial phagocytosis mediated by TREM2 
receptor is associated with the reduction of proinflammatory 
cytokines [162]. α-Syn serves as both regulator and effector 
of microglial phagocytosis [174]. The exogenous monomer 
α-syn promotes the phagocytosis of microglia, while aggre-
gated α-syn impairs this function [175, 176]. Aggregated 
α-syn inhibits the phagocytosis of microglia through the FCγ 

RIIB/SHP-1 pathway and mediates the release of TNF-α and 
IL-1β from microglia [177]. Prostaglandin E receptor sub-
type 2 regulates α-syn phagocytosis and CD11b-mediated 
microglial activation [178]. α-Syn interacts with CD11b to 
activate NOX2 through extracellular signal-regulated kinase 
1/2 kinase activation and the RhoA-dependent pathway, 
leading to microglial migration [179, 180].

Other nonclassical proteins, such as lymphocyte-activa-
tion gene 3, are also involved in regulating the phagocytosis 
of α-syn by microglia [181]. Although low-density lipopro-
tein receptor-related protein (LRP)1 is necessary for neurons 
to phagocytize α-syn monomers and oligomers [182], and 
enhancement of LRP1 in microglia significantly activates 
phagocytosis of microglia through upregulating Beclin1 and 
LC3 upon inflammation, it is not clear whether it can pro-
mote the phagocytosis of α-syn by microglia [183].

The lack of some pathogenic genes such as DJ-1 in PD 
has been shown to impair autophagy and reduce the phago-
cytosis of α-syn by microglia [184]. LRRK2 is also associ-
ated with autophagy and phagocytosis of microglia, and the 
imbalance of the LRRK2/ALP axis can lead to the accumu-
lation of α-syn [185] (Fig. 3).

Microglial autophagy in NLRP3 
inflammasome clearance

Growing evidence indicates that activation of inflammasomes 
is associated with autophagy and that they interact with each 
other [186, 187]. Overactivated NLRP3 inflammasomes in 
microglia aggravate PD pathology, and accelerate neuronal 
death and progression of neurodegenerative diseases [95]. 
Autophagy activation in microglia decreases expression of 
NLRP3 protein and inactivates NLRP3 inflammasomes. Drug-
stimulated microglial autophagy reduces NLRP3 inflamma-
some activation induced by LPS, which can be blocked by 
ATG5 or knockout [188]. Microglial autophagy in clearance of 
NLRP3 inflammasomes represent a way in which autophagy 
regulates inflammation in microglia [94]. Knockout of ATG5 
in BV2 cells or primary microglia leads to autophagic disor-
ders and increases NLRP3 levels [189]. Ketamine, an anti-
depressant, induces autophagy of primary microglia cultured 
from prefrontal cortex and hippocampus. Autophagy induced 
by ketamine suppresses the activation of NLRP3 inflammas-
omes in microglia induced by LPS and ATP, and this effect is 
blocked by autophagy inhibitor bafilomycin A1 (BafA1) [190].

We summarized the recent studies on autophagy and 
NLRP3 inflammasomes in microglia in different disease 
models (Table 1), to prove that promoting autophagy is an 
important way to inhibit NLRP3 inflammasomes.
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Interplay of autophagy and inflammation 
in microglia of PD

α-Syn mediates the double-edged sword role of microglia in 
PD pathology. In the early stage, α-syn promoted activation 
of microglia, which degraded α-syn through phagocytosis 
and autophagy. However, during disease progression, α-syn 
oligomers or fibrils aggregated from α-syn monomers in the 
extracellular matrix impair the autophagy and phagocytosis of 
microglia, induce M1 microglia and NLRP3 inflammasome 
activation, and release of inflammatory factors that promote 
M1 microglia change from M2 phenotype. Together with 
some pathogenic genes of PD, a positive feedback is created 
to aggravate the accumulation of α-syn in PD pathology and 
progression of PD. In the following section, we review the 
interaction between autophagy and inflammation in microglia.

Microglial autophagy in inflammation 
inhibition

Autophagy inhibition of chronic neuroinflammation may be 
related to the pathogenesis of PD and AD, while in cerebral 
ischemia, brain injury and other diseases that trigger acute 
neuroinflammation, the enhancement of autophagy may 
aggravate disease progression [194, 212, 213]. In the acute 
phase of intracerebral hemorrhage with ventricular exten-
sion, activated NLRP3 in microglia promotes the extracel-
lular release of IL-1β, which leads to excess autophagy and 
neuronal apoptosis in vivo and in vitro through the AMPK/
Beclin-1 pathway [194]. These different results from PD 
may depend on the time and degree of autophagic activa-
tion, so the correct fine-tuning of time and intensity is vital 
for clinical application.

Fig. 3   Microglia degrade α-syn by autophagy and phagocytosis. Created with BioRender.com
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Table 1   Summary of autophagic effects on NLRP3 inflammasomes in microglia of different disease models

Model Drugs Conclusions

Major depressive disorder Ketamine Ketamine triggered autophagy and reduced 
NLRP3 in microglia, which could be 
significantly blocked by the autophagy 
inhibitor BafA1

[190]

Spinal cord injury (SCI) Trehalose Autophagy deficit increased microglial 
production of proinflammatory cytokines. 
Trehalose reduced p62, NLRP3, STING, 
and IBA-1 at 3 days post-injury

[191]

AD Stavudine (D4T) D4T reduces the activation of the NLRP3 
inflammasome, and it might stimulate 
autophagy as well as the molecular mecha-
nism that modulates Aβ cytotoxicity

[192]

Chronic unpredictable mild stress Oridonin Oridonin normalized autophagy-related pro-
tein levels, and reduced levels of cytokines 
by blocking the interaction between 
NLRP3 and NIMA-related kinase 7

[193]

Intracerebral hemorrhage MCC950 Activated NLRP3 in microglia contrib-
uted to excessive autophagy, leading to 
neuronal apoptosis. MCC950 reduced 
edema formation and improved cognitive 
dysfunction

[194]

BV2 treated with 2,4-dichlorophenoxyacetic 
acid (2,4-D)

Lycium barbarum polysaccharide (LBP) 2,4-D promoted microglial cell activation, 
released inflammatory factors, activated 
NLRP3 inflammasomes, and inhibited 
autophagy. LBP reversed these effects

[195]

PD Urolithin A UA promoted autophagy and reduced 
NLRP3 inflammasome activation both 
in vitro and in vivo

[196]

PD SB203580 SB203580 promoted CMA-mediated 
NLRP3 degradation by increased the dis-
covery of transcription factor EB (TFEB)

[197]

SCI Zinc Zinc promoted microglial autophagy-
induced NLRP3 inflammasome inactiva-
tion through regulated miR-374a-5p

[198]

BV2 treated with LPS Angiotensin-converting enzyme (ACE) The anti-inflammatory action of ACE be 
suppressed by autophagy abrogated

[43]

Experimental autoimmune encephalomyeli-
tis (EAE)

Caffeine Caffeine exerts a protective effect on EAE 
by reducing NLRP3 inflammasome activa-
tion via the induction of autophagy in 
microglia

[189]

AD Achyranthes bidentate polypeptide fraction 
k (ABPPk)

ABPPk promoted autophagy and downregu-
lated the Aβ oligomers-induced NLRP3 in 
BV2 microglia

[199]

BV2 treated with LPS Dimethyl itaconate (DI) DI-induced autophagy, whereas inhibition of 
autophagy with 3-MA reversed its inhibi-
tory effect of NLRP3

[200]

Chronic constrictive injury Divanillyl sulfone (DS) DS promoted autophagy and inhibited 
NLRP3 activated

[201]

Ischemic stroke Pien-Tze-Huang (PTH) PTH inhibited NLRP3,enhanced the 
autophagy via AMPK/mTOR/ULK. The 
effect could be blocked by 3-MA and 
AMPK blocker (compound C)

[202]

Perioperative neurocognitive disorder Dexmedetomidine (DEX) DEX promoted the autophagy process of 
microglia and reduced NLRP3 expression

[203]

Subarachnoid hemorrhage Mer tyrosine kinase (MerTK) Inhibiting autophagy with 3-MA reversed 
the inhibition of NLRP3 inflammasome 
activation of MerTK

[204]
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Exploring the relationship between autophagy and 
inflammation in microglia is helpful to clarify the patho-
genesis of PD. Activated microglia have been detected in 
the brains of patients with PD [28], as well as in a variety 
of PD animal models [214, 215]. Similarly, low autophagic 
levels of microglia have been detected in different PD 
models, accompanied by increased inflammation induced 
by microglia [216]. Several studies have also proved that 
autophagy in microglia appears to be reciprocally regu-
lated with inflammation. For example, when autophagy of 
microglia is halted, α-syn induces an increase in NLRP3 
inflammasome and IL-1β, suggesting that autophagic dis-
orders of microglia promote α-syn-induced inflammation 
[217]. TLRs are directly related to inflammatory signals 
in microglia [218], and their activation arrests microglial 
autophagy. Neuroinflammation derived from activated 
microglia induces neuronal TLR2/4-p38/JNK activation 
to disrupt autophagy and aggravate accumulation of α-syn 
[106]. p38 inhibits autophagy but increases microglial 
inflammation by regulating ULK1 phosphorylation [219]. 
The use of rapamycin, an autophagy agonist, also results 

in microglial autophagy and inflammation [220]. In addi-
tion, transient receptor potential vanilloid 1 is associated 
with microglia autophagy in PD, and its activation upregu-
lates expression of ATG5 in microglia, and activates Ca2+/
CaMKK2/AMPK/mTOR signaling pathways to facilitate 
autophagy by elevating AMP-activated kinase (AMPK) 
protein phosphorylation [212]. AMPK involvement in the 
autophagy pathway modulation of microglial inflammation 
has also been demonstrated [221].

Autophagy activation in microglia can improve neuroin-
flammation, which is a potential therapeutic target of PD.

α‑Syn and NLRP3 degradation by microglial 
autophagy in inhibition of inflammation

α-Syn in PD regulates the production of NLRP3 inflammas-
omes and impairs the ability of microglial autophagy and 
phagocytosis. Therefore, targeting autophagy in microglia 
to promote the degradation of α-syn and NLRP3 in PD is a 
promising therapeutic target.

Table 1   (continued)

Model Drugs Conclusions

Acute ischemic stroke PPARγ coactivator-1α (PGC-1α) PGC-1α promotes autophagy and mitophagy 
through ULK1 and reduces NLRP3 activa-
tion

[205]

BV2 treated with LPS Melatonin Melatonin reduces NLRP3 inflammasome 
activation by increasing α7 nicotinic 
receptor (nAChR)-mediated autophagic 
flux

[206]

SCI Zinc Zinc inhibited NLRP3 while increasing 
the level of autophagy, when 3-MA and 
BafA1 were applied, the effect were 
reversed

[207]

PD Andrographolide Andrographolide promoted the Parkin-
dependent autophagic flux formation and 
inhibited NLRP3 inflammasome activation 
in microglia

[105]

AD Lychee seed polyphenol (LSP) LSP inhibits Aβ-induced activation of 
NLRP3 inflammasome via LRP1/AMPK-
mediated autophagy induction

[183]

Cerebral ischemia Progesterone Progesterone attenuates stress-induced 
NLRP3 inflammasome activation and 
enhances autophagy

[208]

Cerebral ischemia Geniposide Geniposide inhibited NLRP3 inflammasome 
and increased autophagic activity follow-
ing OGD/R in microglial

[209]

BV2 treated with LPS Trans-10-hydroxy-2-decenoic acid (10-
HDA)

10-HDA promoted autophagy by activating 
forkhead box O1 and inhibited NLRP3

[210]

PD Kaempferol (Ka) Ka promoted macroautophagy/autophagy in 
microglia, leading to reduced NLRP3

[188]

EAE HU-308 HU-308 could promote autophagy and 
inhibit expression and activation of 
NLRP3 inflammasome in BV2 microglia

[211]
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The increased level of autophagy promotes the phago-
cytic ability of BV2 cells and degrades exogenous α-syn 
[163], suggesting that microglia degrade α-syn by 
autophagy promotion, thus reducing neuroinflammation 
caused by microglial activation. Some drugs aimed at this 
mechanism have been developed and were effective in PD 
models. PD180970, a small molecular inhibitor of tyrosine 
kinase, induces autophagy in a mammalian target of rapa-
mycin (mTOR)-dependent manner and inhibits the release 
of IL-6 and monocyte chemoattractant protein (MCP)-1 
by reducing TLR4-mediated NF-κB activation to improve 
α-syn-mediated neurotoxicity. [222]. Caffeic acid activates 
JNK/Bcl-2-mediated autophagy, promotes the degradation 
of aggregated α-syn, and shows neuroprotective activity 
in PD [223].

In PD, NLRP3 in microglia is mainly activated by 
α-syn, and its degradation is also related to autophagy. 
Inhibition of autophagy aggravates neuroinflammation 
and neurodegeneration mediated by NLRP3 inflammas-
omes [224]. Small molecule kaempferol induces selective 
autophagy of NLRP3 protein degradation by ubiquitin to 
inactivate NLRP3 inflammasomes, showing a significant 
protective effect in various murine PD models, reducing 

the loss of TH [188]. MCC950 (NLRP3 inhibitor) can 
impair mTOR-mediated autophagy and increase degrada-
tion of α-syn [225].

Activation of NLRP3 inflammasomes and neuroinflam-
mation induced by α-syn accumulation can cause CNS 
dysfunction, and autophagy impairment aggravates neu-
roinflammation and accumulation of α-syn, leading to a 
vicious cycle. Autophagy of microglia directly promotes 
the degradation of α-syn and NLRP3, thus alleviating PD 
pathology and maintaining the internal environment of the 
CNS.

Application of microglial 
autophagy‑targeting drugs

At present, PD treatment can only alleviate the symp-
toms but cannot delay progression. Therefore, there is 
an urgent need for developing new method to treat PD, 
and combined with what we have described above, we 
believe that targeting microglia autophagy is a potential 
therapeutic target. We summarize the current drugs target-
ing microglial autophagy in PD. These drugs can enhance 

Table 2   Current drugs targeting microglia autophagy in PD

Drugs Cell lines Cell treatments Animals Animal treatment Conclusion

Andrographolide N9 LPS, MPP + and ATP C57BL/6 mice MPTP LC3-II↑, p62↓, 
NLRP3, Cleaved 
caspase1, Cleaved 
IL-1β↓

[105]

Pyrroloquinoline 
Quinone

BV2 Rotenone LDH, IL-1β, TNF-α, 
NO↓, LC3-II / LC3-
I, Atg5↑

[229]

Fasudil BV2/primary micro-
glia

Sprague–Dawley rat 6-OHDA LC3B-II↑, IL-1β↓ [230]

Urolithin A BV2 LPS C57BL/6 mice MPTP p62↓, LC3B-II↑, 
Iba1, NLRP3, cas-
pase-1, IL-1β↓

[196]

INT-777 BV2 MPP +  C57BL/7 mice MPTP p62↓, LC3B-II↑, 
Nrf2, HO-1, 
NQO1↑, TNF-α↓

[231]

PD180970 BV2 LPS C57BL/7 mice MPTP Iba1↓, MCP-1, IL-6↓, 
LC3B↑

[222]

Rifampicin HM Rotenone p-JNK, IL-1β, IL-6↓, 
LC3-II/LC3-I↑

[232]

VX702 BV2 LPS TNF-α, IL-1β, 
iNOS↓, LC3-II/
LC3-I↑

[216]

Kaempferol BV2/primary micro-
glia

LPS and ATP C57BL/7 and A53T 
mice

LPS NLRP3, Cleaved 
caspase1, IL-1β↓, 
p62↓, ATG5, 
ATG7, LC3-II↑

[188]

Rifampicin BV2 Rotenone IL-1β, IL-6↓, ROS, 
MMP↓, LC3-II/
LC3-I↑

[233]
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microglial autophagy and reduce neuroinflammation in 
PD (Table 2), showing the potential capability to remove 
α-syn for the treatment of PD, but they still need to be 
verified experimentally.

Targeted microglial autophagy also shows latent ther-
apeutic effects in other disease models. Metformin pro-
motes the phenotypic transformation of microglia from 
M1 to M2, enhances the fusion of autophagosomes and 
lysosomes by inhibiting the AMPK–mTOR signaling 
pathway, and significantly slows down the inflammatory 
response in the spinal cord [226]. PNU-282987 is an ago-
nist of α-7nAChR, which promotes the polarization of 
microglia into anti-inflammatory subtype (CD206) and 
the level of autophagy in microglia [227]. AMPK agonist 
AICAR, resveratrol alleviates inflammation in microglia 
by potentiating autophagy [228]. Pien-Tze-Huang, a Chi-
nese patent formula, regulates AMPK/mTOR/ULK-related 
pathways to increase autophagy of microglia and inhibit 
NLRP3 activity [202].

In summary, we believe that the mediation of autophagy 
in microglia can inhibit PD neuroinflammation and clear 
α-syn, which is a potential target for the treatment of PD.

Concluding remarks

The risk factors associated with PD are usually accompa-
nied by an increase in inflammatory response, such as α-syn 
aggregation and mutations in some related genes. At the 
same time, studies have reported defective autophagy in PD, 
which is related to the accumulation of α-syn. The accumu-
lation of α-syn can directly damage microglial autophagy 
and phagocytosis, which compromises clearance of α-syn. 
Loss or mutation of DJ-1, GBA or LRRK2 also damages 
microglial autophagy and phagocytosis, which aggravates 
progression of PD. In summary, under physiological con-
ditions, endogenous α-syn maintains the phagocytosis of 
microglia, and microglial phagocytosis of apoptotic neurons 
and their release of exogenous α-syn maintain the stabil-
ity of the internal environment. Once environmental factors 
are induced or related genetic mutations occur, accumulated 
α-syn impairs the autophagy and phagocytosis of micro-
glia and promotes the transformation of microglia to M1 
phenotype, which represents stronger neuroinflammation. 
In this process, M1 microglia with phagocytized α-syn pro-
mote the release of inflammatory cytokines. The increase 
of inflammatory cytokines further promotes the transforma-
tion of microglia from M2 to M1 phenotype. Aging also 
aggravates the transformation of microglia to proinflamma-
tory phenotype, and genetic mutations further aggravate the 
above-mentioned pathological process.

Inhibition of neuroinflammation in PD is an effective way 
to delay progression of PD. In recent years, some researchers 
have tried to verify the role of autophagy-targeting micro-
glial inflammation in PD. In most studies, activation of 
autophagy reduced the activation of microglia, manifested 
by a decrease in inflammatory cytokines and increase in M2 
microglia, which to some extent represents enhancement of 
microglial phagocytosis. The effects of autophagy and its 
inducers on the inhibition of neuroinflammation are focused 
on the degradation of PD-related pathogenic factors. On the 
one hand, microglial autophagy is involved in the degra-
dation of NLRP3 inflammasomes, which is an important 
step in the relief of neuroinflammation. On the other hand, 
microglial autophagy is involved in the degradation of α-syn, 
which functions in microglial and NLRP3 activation. There-
fore, these protective effects may be due to the phagocytosis 
and degradation of α-syn by microglia.

Autophagy and phagocytosis of microglia work together 
in the degradation of α-syn. For example, LC3 and Beclin1, 
which are needed for phagocytosis, are also major proteins in 
autophagy. Some receptors dependent on phagocytosis, such 
as TLR4 and TREM2, are involved in microglial autophagy. 
However, the direct relationship between autophagy and 
phagocytosis has not been well studied, and the degrada-
tion of α-syn in microglia in PD is generally described as 
autophagy. Further exploration of the connection and differ-
ence between the two would be helpful to fully understand 
the pathology of PD.
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