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Abstract
Introduction  Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative 
stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflamma-
tion and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain 
corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, 
mitochondrial dysfunction, and oxidative stress in epilepsy.
Materials and methods  A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) 
databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and 
mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in 
the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels 
can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that 
mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic 
seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflam-
matory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage 
promoting hyperexcitability.
Conclusion  The current review highlights the further opportunity for establishing therapeutic interventions underlying the 
apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular 
mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroin-
flammation in epilepsy.
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IL-1	� Interleukin-1
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MnSOD	� Manganese-dependent superoxide 
dismutase

DNA	� Deoxyribonucleic acid
NAD	� Nicotinamide adenine dinucleotide
FOXO	� Forkhead box transcription factors

Introduction

The epileptic brain is susceptible to oxidative stress due to 
high oxygen-metabolic activity and its high iron content, 
which is needed for neurological processes. The changes 
in the oxygen concentration are observed during an exces-
sive prolonged seizure-like insult in the brain [1]. Exces-
sive glutamatergic neurotransmission-mediated neuronal 
injury in the epileptic brain leads to the activation of glial 
cells as a neuroimmune response activating inflammatory 
cascades involved in neuroinflammation [1, 2]. The signifi-
cant increase of neuroinflammation is one of the causes of 
secondary seizures, further leading to neuronal apoptotic 
death. Under the adverse and traumatic conditions asso-
ciated with prolonged repetitive epileptic seizures, glial 
cells migrate as a neuroimmune response mechanism and 
release pro-inflammatory mediators like cytokines (IL-1β, 
IL-18, and HMGB1), the excessive release of such neu-
rotoxic substances results in neuronal degeneration [3, 4]. 
The high expression of HMGB1 and IL-1β is seen among 
patient’s brain tissue damage in status epilepticus and tem-
poral epilepsy, indicating the excessive neuroinflammatory 
processes mediating neuronal death [3, 4]. Therefore, the 
immunoreactivity such as migration of microglial cells 
in response to the seizure-induced brain tissue damage 
represents the oxidative stress in epilepsy. The numer-
ous mechanisms are associated with prolonged epileptic 
seizures causing neuronal injury resulting in inflamma-
tory responses and production of reactive oxygen spe-
cies involved in neuronal cell death [5, 6]. These include 
the elevation of intracellular calcium ion concentration 
disrupting mitochondrial membrane-mediated neuronal 
death, a prominent feature of seizures-induced neuronal 
damage [7, 8]. The increased intracellular calcium influx 
is a key for initiating the mitochondrial apoptotic pathway. 
The mitochondrial calcium uniporter (MCU) takes up the 
calcium rapidly to maintain cytosolic calcium homeosta-
sis. MCU mutation causes mitochondrial calcium overload 
inducing mitochondrial oxidative stress by increasing ROS 
production representing mDNA alterations with increased 
ROS and depletion ATP production-mediated neuronal 
death [9–11]. The increased mitochondrial reactive oxygen 
species (ROS) initiates inflammatory responses, aggravat-
ing mitochondrial dysfunction and ultimately contribut-
ing to neuronal death through an increase in Bim protein 

(pro-apoptotic protein) and mitochondrial permeability 
transfer pore (MPTP).

Additionally, this results in the release of cytochrome 
C (Cyt C) into the cytosol forming Apaf-1/cytochrome c 
complex with subsequent strong activation of caspase-9 to 
caspase-3 following neuronal DNA fragmentation exhibit-
ing neurodegeneration in epilepsy [10, 12] (Fig. 1). Thus, 
in response to mitochondrial damage, the strong activation 
of system glial cells releases neurotoxin substances IL-1β, 
IL-6, IL-18, and TNF-alpha, HMGB1 inducing neuronal 
death [13–15]. The increased cytokines participate in car-
rying downstream signaling of inflammation via Toll-like 
receptor (TL-1R) activating transcriptional factor NF-kB 
further responsible for elevating pro-inflammatory medi-
ators provoking neurodegeneration in epilepsy [16–18]. 
Thus, the diverse stimuli of such neurotoxic cytokines 
further initiating the downstream intracellular inflamma-
tory signaling by binding to the Toll-like receptor recruit-
ing TRAF2/3 (TNF receptor-associated factor) as well 
activating nuclear factor-kappa beta (NF-kB) increasing 
neurotoxic cytokines levels induced oxidative stress [4, 
13–15]. Furthermore, the excessive cellular ROS-depend-
ent TRAF protein stimulates Src kinase protein to impli-
cate downstream PI3K/Akt/mTOR signaling pathways of 
neuronal death. The other stress-activated proteins like 
c-Jun N-terminal kinase (JNK), mitogen-activated pro-
tein kinase (MAPK) P38 get stimulated by ROS-depend-
ent TRAF protein increasing pro-inflammatory mediators 
levels as well as trigger the mitochondrial apoptosis path-
way inducing neuronal death through apoptotic-inducing 
factors and increased expression of pro-apoptotic proteins 
(BAX, BCL2) [16–19].

However, the mitochondria are a major factor in the pro-
duction of the reactive oxygen species with elevated cytokine 
levels and contribute to apoptotic neuronal death [17, 20]. 
Therefore, chronic epileptic seizures result in alterations of 
intracellular calcium levels meditated impairment of mito-
chondrial bioenergetics, contributing to declining ATP-
mediated brain damage in epilepsy [19, 21]. The prolonged 
electrical discharge in the epileptic brain promotes the home-
ostatic alterations of intracellular calcium accumulation and 
increased reactive oxygen species production with chronic 
activation of microglial cells representing neuroinflamma-
tion in epilepsy. Therefore, the neuroimmune system causes 
early inflammatory changes in the brain and the increased 
release of glutamate, causing persistent hyperactivation 
of metabotropic receptors (NMDA, AMPA) that result in 
increased intracellular calcium concentration mediated exci-
totoxicity. Together, the excessive migration of glial cells, 
metabotropic receptors, and voltage-gated calcium chan-
nels prolong the intracellular calcium concentration which 
triggers the mitochondrial calcium release inducing exci-
totoxicity and eventually initiating mitochondrial apoptotic 
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pathway-mediated neurodegeneration in epilepsy [22, 23]. 
The increased intracellular calcium levels potentiate mPTP 
opening leading to calcium trafficking across the mitochon-
drial membrane causing mitochondrial swelling and initiat-
ing the pro-apoptotic signaling with increased levels (Bcl-2, 
Bax) [23, 24]. The mitochondrial membrane damage causes 
the release of the cytochrome C (cyt C) into the cytosol, 
further causing neuronal death by different mechanisms, i.e., 
activating the caspase-3 than caspase-9-mediating activation 
of nucleases promoting DNA damage and apoptosis [25–27]. 
The release of cytochrome C results in a deficiency of ATP 
(bioenergetic deficits), with a corresponding rise in ROS 
and activation of the neuroimmune system, which further 

initiates the neuronal dysfunction in epilepsy. The rise in 
ROS increases the neuroimmune response to activation of 
glial cells releasing neurotoxic substances and contributing 
to neuronal death in epilepsy through apoptotic-inducing 
factors. [28, 29]. Thus, targeting the neuroinflammation 
causing mitochondrial oxidative stress or mitochondrial oxi-
dative stress causing neuroinflammation might act as a novel 
treatment neuroprotective approach in attenuating neuronal 
death by prolonged excessive seizures.

Fig. 1   Representation of 
correlation between neuroin-
flammation and mitochondrial 
dysfunction in epilepsy
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Pathways correlating neuroinflammation 
and mitochondrial dysfunction 
and neuronal death in epilepsy

The persistent activation of neuroglial cells in response to the 
concurrent seizures further causes mitochondrial dysfunc-
tion-mediated neuronal death in epilepsy [30–32]. There-
fore, the various neuroinflammatory cascades get initiated in 
response to the prolonged seizure-induced neuronal injury. 
The elevated levels of pro-inflammatory mediators’ levels 
represent the aberrant migration of astrocytes. Microglial 
cells release cytotoxic substances like cytokines (IL-1 beta, 
TNF-alpha, IL-6, etc.) factors exacerbate the mitochondrial 
oxidative stress in epilepsy [31, 32]. Seizure-induced physi-
ological changes in the epileptic brain include dysregulation 
of glia immune-inflammatory activity that is characterized 
by activation of various neuroinflammatory cascades like 
NF-kB, RIPK, MAPK, ERK, JNK, and JAK–STAT signal-
ing involved in causing brain inflammation further related 
to mitochondrial damage promoting hyperexcitability with 
elevated levels of cytokines, chemokine-mediated neuronal 
dysfunction in epilepsy, or vice versa [32, 33]. Elevated lev-
els of TNF-alpha stimulate the neuronal hyperexcitability 
focusing mitochondrial oxidative stress under prolonged sei-
zures (status epilepticus) which have seemed to be regulat-
ing activator protein 1 (AP-1)-mediated apoptotic neuronal 
death through activation of NF-kB and MAPK/ERK and 
p38/ JNK signaling as inflammatory response provides a 
clear correlation of neuroinflammation-mediated mitochon-
drial apoptotic signaling in epilepsy [32, 33].

Additionally, the other inflammatory mediator, Interleu-
kin-1 bet, initiates PI3K/mTOR/Akt signaling which seems 
to be inducing aberrant apoptotic hippocampal neuronal 
death by interacting with mitochondria-derived activators 
caspase-3, BCL2-associated X, BH3 proteins causing cog-
nitive dysfunction in temporal lobe epilepsy or status epi-
lepticus [34]. Whereas the cytokine HMGB1 also seems to 
be involved in intracellular calcium ironic concentration by 
impacting GABA-ergic inhibitory transmission and increas-
ing NMDA transmission linked to increased calcium influx 
further overloads mitochondria-mediated excitotoxicity in 
epilepsy [33, 35, 36]. The current review provided the corre-
lation of neuroinflammatory pathways, and evidence of ele-
vated levels of inflammatory mediators mediated mitochon-
drial oxidative stress underlying excitotoxicity in epilepsy.

Correlation of neuroinflammatory PI3k/
Akt and Bad/Bcl (XL) mediated neuronal 
mitochondrial apoptotic death in epilepsy

Under the seizure-induced neuronal cell stress response, 
there is an activation of adenosine monophosphate-activated 
protein kinase that has a role in the up-regulation of pro-
apoptotic BH3-only protein Bcl-2-modifying factor (Bmf) 
[37, 38]. AMPK enzyme is activated in response to the cell 
stress-like depletion of ATP in the affected brain region 
caused by rapid prolonged epileptic seizures [37, 39]. In 
epilepsy, the increased intracellular calcium concentra-
tion induces excitotoxicity injury by disrupting mitochon-
drial membrane-mediated neuronal apoptotic death [39]. 
Therefore, the AMPK sensitizes mitochondrial dysfunction 
induces apoptosis by up-regulation of Bax. The activated 
Bax and Bak further promote mitochondrial dysfunction by 
forming MPTP and allowing the release of cytochrome c, 
further activating caspase cascade-mediated apoptotic neu-
ronal death [38, 39]. Along with apoptosis regulation, the 
AMPK also tends to attenuate neuroinflammation by inhib-
iting the NF-kB and activating neuroprotective signaling 
through SIRT1, PPARG coactivator 1-alpha, AMPK/p53/
NF-κB, and AMPK/FoxO/NF-κB pathways [40]. Therefore, 
the studies provided the correlation of AMPK with inflam-
mation, i.e., the activation of AMPK suppressing NF-kB and 
decreasing pro-inflammatory mediators IL-6, TNF-α, and 
iNOS that are further involved in mitochondrial oxidative 
stress. In turn, AMPK inhibits the NF-κB signaling pathway 
and increases cellular NAD+ levels by activating sirtuin 1 
(SIRT1), FO XO, and PGC1α [41]. Thus, it should consider 
the dual role of AMPK in mitochondrial dysfunction and 
neuroinflammation either as a neuroprotective effect or neu-
ronal death depending upon stress stimuli [40].

Role of inflammasome and mitochondrial 
dysfunctioning in epilepsy

The recurrence of epileptic seizures and aberrant acti-
vation of neuroimmune system of excessive migration 
of glial cells releasing the pro-inflammatory mediators 
like cytokines (IL-1β, IL-18, and HMGB1) give rise to 
the neuronal excitability and neurodegeneration seen 
among status epilepticus and temporal lobe epileptic 
patients [15, 17, 42]. The NLRP3 inflammasome protein 
is highly expressed in microglial cells. It gets activated 
by increased intercellular calcium or reactive oxygen 
species, mitochondrial and autophagolysosomal system 
dysfunctioning results in neuronal death [15, 43, 44]. The 
inflammasome NLRP3 gets activated in response to the 
increased intracellular calcium-induced cellular stress and 
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further initiates the caspase-dependent secretion of pro-
inflammatory mediators. In epilepsy, the hyperactivation 
of metabotropic receptors focuses on excitotoxicity by 
increased intracellular calcium influx induces the mito-
chondrial Ca2+ overload leading to mitochondrial oxida-
tive stress associating increased ROS-mediated neuronal 
apoptotic death [23, 24]. The MPT further releases the 
cytochrome C by altering cardiolipin molecules abun-
dantly found on the mitochondrial membrane binds 
cytochrome C to the mitochondrial membrane [45]. Under 
the mitochondrial oxidative stress, cardiolipin bind-
ing gets alters that encourage cytochrome C to release 
by detaching the cytochrome C from the mitochondrial 
membrane and subsequently initiates neuronal apoptotic 
death [46, 47]. In this process of neuronal death, the car-
diolipin also initiates the activation of inflammasome 
NLRP3, triggers caspase-1 maturation, and increases 
the secretion of pro-inflammatory cytokines (IL-1β and 
IL-18) [45, 46]. Thus, the increased pro-inflammatory 
mediator indicates the mitochondrial oxidative stress with 
increased expression of NF-κB or mitochondrion-derived 
inflammation-induced neuronal death under the stress 
condition of prolonged epileptic seizures.

Alteration of sirtuin regulating 
neuroinflammation and mitochondrial 
dysfunction in epilepsy

Increased oxidative stress and activation of the cytokines 
are the hallmarks of neurodegeneration in epilepsy. Grow-
ing evidence shows that decreased levels of sirtuin (SIRT1 
and SIRT3) protein in the epileptic brain indicate mito-
chondrial dysfunction, causing neurodegeneration under 
the stressful condition of prolonged seizures. Sirtuin 
proteins are highly expressed in neuronal and non-neu-
ronal cells (glial cells) that tend to possess neuroprotec-
tive mechanisms against seizure-induced neuronal death 
followed by prolonged repetitive seizures in the brain 
[48–50]. Evidenced data concluded the involvement of 
sirtuin in inhibiting the mitochondrial permeability tran-
sition pore (mPTP) formation. Downregulation of sirtuin 
protein during recurrent spontaneous seizures resulted in 
mitochondrial permeability transition pore (mPTP) forma-
tion with subsequent ATP depletion caused by increased 
intracellular calcium trafficking triggering apoptotic neu-
ronal death [51, 52]. Therefore, Sirtuin protein regulates 
the mitochondrial bioenergetic by activating peroxisome 
proliferator-activated receptor coactivator 1-α (PGC-1α), 
modulating mitochondrial function with increased activa-
tion nuclear respiratory factor (NRF). Alteration in Sirtuin 
protein is linked to the alteration in the redox reaction 

indicating the mitochondrial oxidative stress under the 
prolonged repetitive seizures [48]. Sirtuin protein also 
regulated oxidative stress and neuroinflammation by 
influencing the deacetylation of (PGC-1α) and suppresses 
the oxidative stress through overexpression of MnSOD 
anti-oxidant that has a role in scavenging-free radicals 
[53–56]. Perhaps, the most prominent function of sirtuin 
in the regulation of mitochondrial function also regulates 
the neuroinflammation by deacetylation of NF-κB p65 
subunit elucidating anti-inflammatory activity [53, 57]. 
Therefore, SIRT3 prevents the glial cell secretion of pro-
inflammatory mediators contributing to neuronal damage 
in epilepsy [58]. Increased inflammatory mediators are the 
components of epileptogenesis that aggravate secondary 
recurrent seizures [59]. Therefore, sirtuin acts as a poten-
tial neuroprotective strategy in epilepsy.

Neuroinflammatory JAK–STAT signaling 
promoting mitochondrial dysfunction

Atypical activation of JAK–STAT signaling is mainly 
related to the neuroinflammatory processes aggravat-
ing neuronal impairment in Epilepsy. Diverse stimuli 
of cytotoxic substances released by activated glial cells 
in response to prolonged seizure-induced brain damage 
like axon sprouting represent neuroinflammation in epi-
lepsy [60]. The elevated levels of cytokines (TNF-α, IL-6, 
IL-1β) cause secondary development of seizures that are 
adversely associated with neuronal apoptosis by activating 
JAK–STAT in glial cells favoring neuroinflammation in 
epilepsy [32, 61]. Activation of JAK/STAT pathway illus-
trates an overview of the mechanism of increased neuronal 
stress with progressive ultrastructural alteration of mito-
chondrial dysfunction promoting apoptosis with increased 
Bcl-2 apoptotic protein enduring apoptotic neuronal death 
under the prolonged seizures-induced CNS insult [62–64]. 
The pre-clinical findings uncover an activation of the 
JAK/STAT pathway under excessively prolonged seizures 
induced neuronal injury and likely to be involved in caus-
ing neurodegeneration in epilepsy. The correlation of the 
JAK/STAT pathway with mitochondrial dysfunction was 
screened using WP1066, an inhibitor of the JAK/STAT 
pathway that resulted in the prevention of the development 
of epileptic seizures in rodents [64]. Therefore, the present 
target STAT3 tends to be involved in mitochondrial oxida-
tive stress in epilepsy, as concluded by the decreased lev-
els of pro-survival proteins Mcl-1 mRNA, Bcl-xl, c-myc 
mRNA that regulates mitochondrial function, which gets 
decreased under chronic epileptic seizures [62]. Therefore, 
targeting STAT3 tends to be an effective strategy in pre-
venting epileptic seizures and providing the mechanism 
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of mitochondrial dysfunction under prolonged repetitive 
epileptic seizures mediating apoptotic death in Epilepsy.

NF‑kB/caspase‑1, NF‑kB/RIPK, 
and P38MAPK/ERK/JNK signaling correlated 
mitochondrial dysfunction in epilepsy

Neuroinflammation is an innate neuroimmune response 
to chronic seizure-induced brain damage with adequate 
activation of glial cells contributing to secondary seizures 
[65]. Invasive activation of microglia cells secretes pro-
inflammatory mediators like interleukin-6, TNF-alpha; 
cyclooxygenase-2 gets secreted in response to the sei-
zures-induced neuronal damage. Nuclear factor-kappa B 
(NF-kB) is a modulator of transcribing pro-inflammatory 
mediator genes involved in neuroinflammation and its pro-
gression. The correlation of NF-kB with mitochondrial 
dysfunction in epilepsy has not been yet explored. Still, the 
other disease study evidence suggested the translocation 
of NF-kB into mitochondrial DNA, releasing cytochrome 
C into the cytosol, and triggering caspases mediated apop-
totic neuronal death [66]. Altered NF-kB, which is the 
primary regulator of neuroinflammation that gets acti-
vated by diverse stimuli (like TNF-alpha, Interleukin-1 
beta, and growth factors) is responsible for increasing 
the pro-inflammatory cytokines (TNF-alpha IL-1, IL-6), 
ROS (MnSOD, CuZn SOD) [67, 68]. Thus, the increased 
cytokine levels further cause the mitochondrial dysfunc-
tion-mediated neuronal apoptotic death by activating the 
downstream JAK–STAT pathway that gets activated during 
excessive repetitive epileptic seizures [69]. Therefore, the 
activation of the neuroinflammatory pathway JAK–STAT 
and elevated pro-inflammatory mediators' levels indicate 
increased neuroinflammation undergoes pyroptotic neu-
ronal death through caspase-1-dependent mitochondrial 
damage [70, 72, 73]. The diverse stimuli of TNF-alpha-
activated Toll-like receptor also further recruits RIP1 
signaling phosphorylating NF-KB, causing necroptosis 
by the formation of mitochondrial permeability transition 
(MPT) pore formation resulted in mitochondrial neuronal 
apoptotic death pathway with increased apoptotic proteins 
(caspase 3 and BAX) [72, 73]. There is also a subsequent 
stimulation of the P38MAPK/ERK/JNK pathway carrying 
the downstream signaling of apoptotic neuronal death as 
a secondary response of neuroinflammation with elevated 
levels of NF-kB transcribing inflammatory mediators 
(TNF-alpha, IL-1, IL-6) contributing to mitochondrial 
oxidative stress by forming a mitochondrial permeability 
transition pore (MPTP) leading to neuronal impairment in 
epilepsy [53, 72].

Correlation of AMPK pathway 
in neuroinflammation‑mediated 
mitochondrial dysfunction

AMP-activated protein kinase (AMPK) is neuronal stress 
sensor-activated under chronic seizure-induced stress exac-
erbating neuronal death resulting from ATP depletion and 
dysregulated intracellular calcium homeostasis [74]. Apart 
from the pathological involvement of AMPK, it also modu-
lates mitochondrial functioning having a role in neuronal 
survival depending upon the stress level with immense 
energy demands. AMPK has a dual role in neuronal survival 
as well as neuronal death [75, 76]. The sustained epileptic 
seizures induce excitotoxic stress by accumulating cyto-
toxic reactive oxygen species that are the consequences of 
structural damages in the brain associated with mitochon-
drial DNA with a significant decline of ATP. Thus, such 
impairment in the epileptic brain is the hallmark of neuronal 
death observed after repetitive, continuous seizures [77, 78]. 
Under the pathological condition, AMPK integrates energy 
balance by increasing neuronal biogenesis via upregulating 
the AMPK/PGC-1α pathway [79].

Furthermore, the activation of the AMPK/PGC-1α path-
way correlates with NRF-1, and TFAM levels are increased 
to maintain the normal mitochondrial membrane poten-
tial and mitochondrial biogenesis under prolonged exces-
sive epileptic seizures [79]. Activation of AMPK increases 
the ability of mitochondrial biogenesis to produce ATP and 
further regulating the activity of SIRT1 activating PCG1-
alpha, decreasing mitochondrial oxidative stress by increas-
ing mitochondrial anti-oxidant enzymes (UCP2/SOD2) 
[54]. AMPK activation also regulates neuroinflammation 
by inhibiting the NF-kB and decreasing the expression of 
CCL2, TNF-α, and inducible nitric oxide synthase (iNOS) 
levels that are implicated during epileptogenesis responsible 
for causing neurodegeneration by activation of STAT1 sign-
aling [79]. This further provides a correlation of the relation 
between bioenergetics and inflammation-mediated neuronal 
death. Therefore, the activation of the AMPK/PGC-1α/ 
SIRT1 pathway is a treatment strategy for neurodegenerative 
diseases that showed a neuroprotective effect against status 
epilepticus-induced seizure damage [48, 54].
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Peroxisome proliferator‑activated receptors 
γ/mitochondrial uncoupling protein 2 
signaling correlating neuroinflammation 
and mitochondrial dysfunction in epilepsy

Peroxisome proliferator-activated receptor γ is a ligand-acti-
vated transcriptional factor that acts a therapeutic potential in 
epilepsy, regulating the expression of pro-inflammatory levels 
[TNF-α, IL-1β, IL-6, iNOS, inducible cyclooxygenase (COX) 
2] by direct inhibition of NFκB pathway [80–83]. Apart from 
the regulation of neuroinflammation, the PPAR γ molecule 
also enhances the mitochondrial respiratory chain activity, fur-
ther preventing neuronal death by increasing the expression 
of mitochondrial UCP2 [84]. Mitochondrial UCP2 regulates 
mitochondrial ROS production, further preventing the mito-
chondrial oxidative stress and reducing the neuronal damage 
by controlling the expression of pro-apoptotic protein Bax and 
releasing cytochrome C-mediated apoptotic neuronal death 
[84]. The activation of PPAR γ tends to be neuroprotective 
in reducing the status epilepticus-mediated neurodegenera-
tion by preventing the mitochondrial oxidative stress releasing 
cytochrome C initiating apoptotic signaling [85]. Therefore, 
the PPAR-γ has been demonstrated as a therapeutic strategy in 
epilepsy and reducing the cellular injury caused by repetitive 
prolonged chronic seizures and reducing oxidative stress and 
neuroinflammation [84, 89, 90].

Involvement of purinergic receptors 
in inflammation‑mediated mitochondrial 
dysfunction

Purinergic receptors are ATP-gated non-selective cationic 
channels highly expressed in neurons and non-neuronal cells 
(astrocytes and oligodendrocytes) [88]. In response to pro-
longed seizure-induced brain damage, the elevated levels of 
P2X7 receptor represent the migration of microglial cells 
releasing cytotoxic pro-inflammatory mediators (IL-1β, IL-6, 
IL-18, and TNF-α) mediated neuronal death [89]. Thus, the 
P2X7 is a significant driver of immunoreactivity contributing 
to mitochondrial oxidative stress. Second, the hyperactivation 
of the P2X7 receptor allows the increased permeability of Ca2+ 
ions, leading to increased intracellular calcium ion concentra-
tion inducing mitochondrial Ca2+ overload [90]. In addition, 
the mitochondrial Ca2+ overload promotes mitochondrial-
derived ROS and inducing the opening of the permeability 
transition pore, releasing cytochrome C into the cytosol with 
increased expression of pro-apoptotic proteins suggesting 
mitochondrial dysfunction-mediated neuronal death [32, 94, 
95]. Targeting the P2X7 receptor provides a future perspective 
in decreasing the immunoreactivity and preventing mitochon-
drial oxidative stress-mediated neuronal death in epilepsy.

An illustration of glial cell migration releasing neurotoxic 
inflammatory mediators (TNF-alpha, IL-1, IL-6, and IL-18) 
activates purinergic receptor-mediated increased intracellular 
calcium influx causing mitochondrial oxidative stress. Further 
activating neuroimmune response with increased expression of 
pro-inflammatory mediators by activated nuclear factor kappa 
beta (NF-kB) expressing increased neurotoxic inflammatory 
mediators initiating multiple neuroinflammatory cascades 
(NF-kB/MAPK/JNK/P38/ERK) correlating the altered levels 
of intracellular molecules (SIRT, PGC-1-alpha, PPAR gamma, 
AMPK, and PGC-1) mediated mitochondrial oxidative stress 
or vice versa, i.e., increased influx of calcium through hyper-
activation of voltage-gated ion channels causing mitochon-
drial calcium overload mediated mitochondrial oxidative stress 
increasing the ROS as well elevated levels of inflammatory 
mediators suggesting the activation of neuroinflammatory 
pathways initiating neuronal apoptosis by activation of cas-
pase-9, 3 mediated excitotoxicity in epilepsy.

Preclinical evidence and potential novel 
therapeutic interventions targeting 
neuroinflammation and mitochondrial 
dysfunction in epilepsy (Fig. 2)

The various pre-clinical studies provided evidence of 
elevated levels of inflammatory mediators [TNF-alpha, 
(IL)-1β, and IL-6] under the chronic epileptic seizures 
along with increased levels of mitochondrial-derived 
activators caspase-3, BCL2-associated X, BH3 proteins 
resulted in neurodegeneration [32, 33]. Elevated levels of 
inflammatory mediators in epileptic brain tissue represent 
the activation of the neuroimmune system in response 
to the prolonged seizures produced excitotoxicity and 
increased levels of pro-apoptotic proteins are the key indi-
cators of the relation of mitochondrial dysfunction and 
neuroinflammation-mediated neurodegeneration in epi-
lepsy [33]. The altered neuronal network with synchro-
nous discharging of neurons in epilepsy induces neuroin-
flammation and oxidative stress-like excitotoxicity events 
underlying neurodegeneration with structural changes like 
hippocampal cell degeneration and mossy fiber sprouting 
in TLE and status epilepticus [78]. Therefore, the review 
summarizes the pre-clinical pharmacotherapy targeting 
neuroinflammatory signaling cascades linked to mitochon-
drial dysfunction involved in epilepsy (Table 1; Fig. 2).
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Future prospective and conclusion

Excessive glutamatergic neurotransmission-mediated neu-
ronal injury in the epileptic brain leads to the activation of 
glial cells as a neuroimmune response activating inflam-
matory cascades involved in neuroinflammation. The 
significant increase of neuroinflammation is one of the 
causes of initiation of secondary seizures associated with 
the production of reactive oxygen species (ROS/RNS) fur-
ther increasing the risk of mitochondrial oxidative stress 

leading to neuronal apoptotic death. The elevated levels 
of inflammatory mediators such as chemokines, cytokines, 
and prostaglandin are the biomarkers in chronic epilep-
tic seizure-induced neuronal dysfunctioning, indicating 
the activation of astrocytes and microglia and altering 
the blood–brain barrier that seems to be altered in anti-
epileptic drug resistance. Various pre-clinical studies 
have explored the mechanistic correlation of inflamma-
tory mediators released by glial cells releasing NADPH 
oxidase in epilepsy which is the consequence of increased 
intracellular calcium ion concentration altering mitochon-
drial membrane permeability causing mitochondrial per-
meability transition pore (MPTP) formation-mediated 

Fig. 2   Pharmacological drugs 
targeting interlinked pathways 
between mitochondrial dysfunc-
tion and neuroinflammation in 
epilepsy
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Table 1   List of novel pharmacological agents targeting neuroinflammatory signaling-mediated mitochondrial dysfunctioning in epilepsy

S. no. Drugs Target/pathways Anti-epileptic mechanism of action References

1 Amentoflavone NF-KB signaling Amentoflavone tends to be an effective therapy 
for epilepsy that showed to be effective in 
preventing neuroinflammation by inhibiting 
the NF-kB and suppressing the pro-inflamma-
tory mediators (TNF-alpha, (IL)-1β and IL-6) 
that further increases reactive oxygen species 
indicating mitochondrial oxidative stress and 
activating neuronal apoptotic signaling with 
increased expression of caspase-3, p53 and 
pro-apoptotic proteins (Bax, Bcl-2)

[93]

2 BezafibratePioglitazone PPAR–PGC-1α pathway; Nf-kB signaling Drugs bezafibrate, pioglitazone acts as anti-
epileptic by activating the PPAR-PGC-1α 
pathway that possesses a neuroprotective 
effect by increasing the sirtuin and indirectly 
protecting the mitochondrial dysfunction 
caspase 3 levels were reduced in treatment 
rodents against chemical-induced epileptic 
seizures mediating apoptotic neuronal death

PPARγ also tends to have anti-inflammatory 
activity by inhibiting the and nuclear 
factor-kB (NF–κB) and down-regulating 
pro-inflammatory mediators genes such as 
cyclooxygenase-2 (COX-2), nitric oxide 
synthase (iNOS), as well as other cytokines 
and chemokines (interleukins, TNF-alpha) 
that tends to elevated under chronic repetitive 
seizure-induced neuroinflammation causing 
secondary seizures leading to neuronal death

[85, 88, 94]

3 Borneol P38/MAPK/NF-kB signaling; Caspase-3 Borneol tends to be an effective therapy in 
epilepsy by reducing neuroinflammation and 
inhibiting caspase activation and preventing 
neuronal death, indicating the correlation 
of neuroinflammation by activating P38/ 
MAPK/NF-kB signaling and caspase 3, indi-
cating mitochondrial dysfunction-mediated 
neuronal apoptosis in epilepsy

[95]

4 Carbenoxolone NF-kB p38 pathway Carbenoxolone showed an anticonvulsant effect 
by inhibiting the NF-kB p38 pathway and 
reducing the gap junction migration of glial 
cells mediated neuronal death by causing 
mitochondrial dysfunction in epilepsy

[96]

5 Paeoniflorin MAPK; JNK signaling Paeoniflorin treatment reduces epileptic 
seizures by suppressing the activation of 
mitogen-activated protein kinase (MAPK) 
underlying neuroinflammation as well as JNK 
activation that further increases the Bcl-2/
Bax-activating caspase-3 indicating the 
mitochondrial apoptotic neuronal death was 
suppressed with paeoniflorin treatment

[97–100]
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Table 1   (continued)

S. no. Drugs Target/pathways Anti-epileptic mechanism of action References

6 Dimethylfuramate NF-kB signaling; p38 MAPK, JNK Dimethylfurama treatment showed anti-
inflammatory and anti-apoptotic actions 
in epilepsy by preventing the neuroinflam-
mation in response to chronic epileptic 
seizures by down-regulating inflammatory 
genes (cytokines IL-1β, IL-6, and TNF-α) 
expression representing excessive migration 
of glial cells as well apoptotic (Bax, Cas-
pase-3) proteins indicating the mitochondrial 
oxidative stress increasing the mitochondrial 
permeability pore formation and releasing 
cytochrome C activating caspase-3-mediated 
neuronal apoptotic death

[101]

7 EPI-743 EPI-743 absorbs free radicals before they 
damage mitochondria, further reducing ROS-
mediated increased inflammatory mediators

EPI-743 reduces neuroinflammation and 
neuronal oxidative stress by preventing 
mitochondrial dysfunction that showed to be 
neuroprotective in epilepsy

[102]

8 Genistein NF-kB signaling; JAK2/STAT3 signaling Treatment with genistein showed to be effective 
in epilepsy treatment by inhibiting the JAK2/
STAT3 pathway that seems to be activated in 
epilepsy responsible for neuroinflammation, 
indicating the excessive migration of glial 
cells releasing neurotoxic factors (TNF-α and 
IL-1) with increased expression of apoptotic 
proteins (caspase-3, Bax, and Bcl) aggravat-
ing seizure-induced neuronal death in epi-
lepsy. Genistein treatment in epileptic rodents 
reduces NF-kB and JAK2/STAT3 signaling 
and prevents mitochondrial apoptotic neu-
ronal death that significantly increased under 
chronic seizures

[103]

9 Gastrodin NF-kB and MAPK signaling (ERK1/2, JNK, 
and p38)

Gastrodin effectively protects the mitochondrial 
oxidative stress induced by prolonged repeti-
tive seizures via inhibition of intracellular 
signaling of apoptosis signaling-regulating 
kinase-1 (ASK-1), p38 mitogen-activated 
kinase (MAPK) cascades, and also, the 
reduction of expression of caspase-3, bax/
bcl-2 ratio indicates the correlation of 
mitochondrial oxidative stress caused due to 
hyperactivation of glutamatergic receptorin-
creasing intracellular calcium ion concentra-
tion increasing the reactive oxygen species 
accompanies with increased expression of 
NF-kB mediated pro-inflammatory mediators 
(TNF- alpha, interleukin-1 beta)

[104, 105]

10 Melatonin NF-kB signaling; AMPK-SIRT1 Melatonin showed a neuroprotective effect in 
epilepsy by inhibiting mitochondrial oxida-
tive stress caused by increased intracellular 
calcium level disrupting mitochondrial mem-
brane with decreased SIRT1 levels releasing 
cytochrome C activating caspase-3 mediating 
apoptotic neuronal death. Also, the mitochon-
drial dysfunction activated the NF-kB signal-
ing increasing neuroinflammation that has a 
role in increased oxidative stress, melatonin 
acts as an anti-inflammatory as well anti-
oxidant therapy preventing epileptic seizures

[106, 107]
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neurodegeneration in Epilepsy. This indicates that target-
ing neuroinflammation can prevent mitochondrial apop-
totic neuronal death in epilepsy or vice versa. Dysregula-
tion of the miRNA system has emerged as a mechanism 
that underlies epileptogenesis. Alterations of mRNAs are 
associated with mitochondrial dysfunction and targeting 

mRNAs studies preventing mitochondrial oxidative stress 
in epilepsy. Pharmacological modulation or manipulation 
of miRNAs offers a novel, multi-targeting approach to 
regulate the gene expression patterns in epileptogenesis. 
Selective targeting of miRNAs offers the therapeutic pos-
sibility for the management of epilepsy (Fig. 3). Therefore, 

Table 1   (continued)

S. no. Drugs Target/pathways Anti-epileptic mechanism of action References

11 Metyrapone NF-kB signaling; p38MAPK and JAK–STAT 
pathway

Metyrapone tends to have an anti-oxidant 
property that prevents brain damage after 
chronic seizure by decreasing the reactive 
oxygen species in mitochondria and prevent-
ing ROS-induced neuronal death. Also, 
Metyrapone showed an anti-inflammatory 
effect by inhibiting the NF-kB and reducing 
the inflammatory mediator (COX -2, IL-1β, 
TNF-α) that gets altered during redox state, 
further promoting apoptosis signaling with 
increased levels of pro-apoptotic proteins 
(Bax; caspase-8) and p38MAPK and JAK–
STAT pathway activation mediated neuronal 
death

[108–110]

12 Resveratrol PGC1α and PPARγ signaling pathways; 
AMPK-SIRT1 signaling pathway; PPARγ, 
NF-kB-dependent pathway; ERK and P38 
MAPK pathway

Resveratrol tends to increase the mitochondrial 
biogenesis estimated by increased levels 
of Sirt1, peroxisome proliferator-activated 
receptor γ (PPARγ) along with PGC-1α 
and NRF-1 were increased after the treat-
ment with resveratrol and also resveratrol 
attenuated the neuronal apoptotic death by 
inhibiting caspase-3 activities, indicating the 
alteration of mitochondrial functioning medi-
ating neuronal death like consequences after 
prolonged seizures. Additionally, reservatrol 
also tends to increase PPAR-alpha expression 
that increases anti-inflammatory activity by 
inhibiting NF-KB signaling-dependent P38 
MAPK pathway mediating neuronal death 
and reducing pro-inflammatory mediators that 
get elevated in response to brain injury

[53, 111]

13 GW9662; Rosiglitazone PPARγ agonist Treatment with rosiglitazone showed a neuro-
protective effect in status epilepticus by pre-
venting neuroinflammation and mitochondrial 
dysfunction-mediated neuronal death under 
chronic epileptic seizures

[83, 84]

14 Tetramethylpyrazine NF-kB-dependent pathway; ERK and P38 
MAPK pathway

Tertamethylpyrazine tends to be neuro-
protective in epilepsy by inhibiting the 
voltage-gated calcium channels and reduces 
mitochondrial oxidative stress caused by 
aberrant electrical activity in the brain results 
in increasing of reactive oxygen species with 
elevated levels of pro-inflammatory mediators 
that are the consequences of brain injury in 
epilepsy indicating the activation of NF-kB-
dependent ERK and P38 MAPK pathway and 
also, there is a downregulation of PGC1α, 
NRF-1 that regulates the mitochondrial 
bioenergetics

[112–114]
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the current review has summarized the evidenced-based 
targets and correlation with multiple neuroinflammatory 
pathway activation in response to the seizure-induced 
mitochondrial apoptotic neuronal death signaling that 
might act as a future target for the treatment of epilepsy. 
Nevertheless, further investigations are essential to clarify 
the correlation of neuroinflammatory pathways and mito-
chondrial dysfunction-mediated excitotoxicity in epilepsy.
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