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Abstract
Objective Asthma, a well-known disease with high morbidity, is characterized by chronic airway inflammation. However, 
the allergic inflammation mechanisms of follistatin-like protein 1 (FSTL1) have not been elucidated. This study aims to 
investigate the effects of FSTL1 in ovalbumin (OVA)-induced mice and macrophages on nucleotide-binding domain and 
leucine-rich repeat protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway.
Methods Mice were randomly divided into control-WT, OVA-WT, control-Fstl1±, OVA-Fstl1±. Histological changes were 
assessed by HE and PAS staining. The protein levels of Muc-5AC, FSTL1, NLRP3, and IL-1β in lung tissue were detected 
by immunohistochemistry and ELISA. The bronchoalveolar lavage fluid (BALF) in mice and human serum samples were 
detected by ELISA. Then, mice were grouped into control, FSTL1, MCC950 + FSTL1 to further investigate the relationship 
between FSTL1 and NLRP3/IL-1β. Alveolar macrophage cells (MH-S cells) were separated into control, OVA, FSTL1, 
OVA + FSTL1, OVA + siNC, OVA + siFSTL1, MCC950, and FSTL1 + MCC950 groups to explore the effect of FSTL1 on the 
NLRP3/IL-1β signaling. The protein expression of NLRP3 and IL-1β in MH-S cells was detected by Western blot analysis.
Results The present results uncovered that Fstl1± significantly ameliorated OVA-induced Muc-5AC production and mucus 
hypersecretion. Fstl1± was also found to decrease the production of inflammatory cytokines and inflammatory cell infiltration 
in OVA-induced asthmatic mice. Meanwhile, the serum concentrations of FSTL1 and IL-1β were higher in  asthma subjects 
than the health subjects, and Fstl1± ameliorated the production of NLRP3 and IL-1β in OVA-induced asthmatic mice. Fur-
thermore, mice by injected FSTL1 substantially stimulated the expression of NLRP3 and IL-1β, while pretreatment with 
MCC950 in mice significantly weakened the production of NLRP3 and IL-1β induced by injection FSTL1. Pretreatment with 
siFSTL1 or MCC950 significantly reduced the production of NLRP3 and IL-1β induced by OVA or FSTL1 in MH-S cells.
Conclusions The study results showed that FSTL1 played an important role in allergic airway inflammation by activating 
NLRP3/IL-1β. Hence, inhibition FSTL1 could be applied as a therapeutic agent against asthma.

Keywords FSTL1 · NLRP3 · IL-1β · Asthma · Airway inflammation · Alveolar macrophage cells

Introduction

Asthma, a common respiratory disease affecting 1%–18% 
of the population in different countries, is characterized by 
airway inflammatory infiltration and airway hyper-respon-
siveness [1, 2]. Although current therapeutic strategies such 

as beta agonists and corticosteroids are commonly used, the 
morbidity and mortality rates among patients remain high. 
Therefore, novel therapeutic targets and strategies are being 
developed.

Follistatin-like protein 1 (FSTL1), also referred as FRP 
or TSC-36, is a TGF-β1-inducible secreted glycoprotein 
belonging to the SPARC family and is widely generated in 
non-hematopoietic cells especially in the mesenchymal line-
age [3]. FSTL1 is a cardioprotective factor [4], pro-fibrotic 
agent [5], and a bi-directional regulator of tumor based upon 
the origin of the tumorigenic cell line [6]. Asthmatic patients 
express high levels of FSTL1 in plasma and bronchoalveo-
lar lavage fluid (BALF) compared with health subjects [7]. 
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Thus, FSTL1 participates in the pathologic process of asth-
matic airway inflammation.

The NLRP3 inflammasome complex, composed by 
NLRP3, adaptor molecule apoptosis-associated speck-
like protein containing a caspase recruitment domain, and 
pro-caspase 1, is a multiprotein oligomer that plays a key 
role in innate immunity [7]. After the pathogen-associated 
molecular patterns or damage-associated molecular pat-
terns are recognized, inflammasome components assemble, 
self-oligomerize, then cleave precursor pro-IL-1β into its 
mature bioactive form IL-1β [8]. IL-1β participates in air-
way inflammatory infiltration, differentiating and activating 
Th2 cells that lead to Th2 cytokines release [9], recruit-
ment of dendritic cell into lymph nodes [10], promotion of 
Th17 inflammatory responses correlating with the severity 
of asthma [11], and initiation of the airway smooth muscle 
hyper-reactivity [12].

MCC950, a small molecule and selective cytokine release 
inhibitor, can specifically block NLRP3 activation and 
reduce IL-1β production [13]. Hence, MCC950 is a poten-
tial therapeutic agent for NLRP3-associated syndromes and 
may alleviate IL-1β-induced airway inflammation. In this 
study, we conducted an in-depth analysis of the effects and 
mechanisms of FSTL1 on NLRP3/IL-1β secretion in mice 
and macrophages. Overall, the results of this study may pro-
vide a pharmacological basis for asthma treatment.

Materials and methods

Subjects

Asthma subjects were diagnosed with asthma according to 
the Global Initiative for Asthma (2019 edition), and age-
matched health subjects were collected at Qilu Hospital of 
Shandong University (Jinan, China). The characteristics of 
asthma and health subjects are shown in Table 1. The study 
was approved by the Ethics Review Committee for Human 
Studies at Qilu Hospital of Shandong University (Grant NO. 
KYLL-2017[ks]-112).

Cell culture and treatment

MH-S cells were purchased from Cell Line Bank (Shang-
hai, China). MH-S cells were cultured in complete culture 
medium supplemented with 10% fetal bovine serum, 100 U/
ml penicillin, and 0.1 mg/ml streptomycin in an incubator 
with a humidified atmosphere of 95% air and 5%  CO2 at 
37 °C. MH-S cells were seeded in six-well culture plates at a 
density of 1 ×  105 cells per well, and then used for all assays.

MH-S cells were stimulated with different doses of 
FSTL1 for 24 h to choose the best stimulus time and con-
centration. MH-S cells were then divided into control, OVA, 

FSTL1, OVA + FSTL1, OVA + siNC, OVA + siFSTL1, 
MCC950, FSTL1 + MCC950 groups. MH-S cells in the 
control group were treated in DMEM alone. MH-S cells in 
the OVA group were treated in DMEM with OVA (40 μM) 
for stimulation 8 h. MH-S cells in the FSTL1 group were 
treated in DMEM with FSTL1 (100 ng/mL) for stimulation 
8 h. MH-S cells in the OVA + FSTL1 group were treated 
in DMEM with FSTL1 (100 ng/mL) and OVA (40 µM) 
for stimulation 8 h. MH-S cells in the OVA + siNC group 
were transfected with siNC for 48 h and then in DMEM 
with OVA (40 μM) for stimulation 8 h. MH-S cells in the 
OVA + siFSTL1 group were transfected with siFSTL1 
(FSTL1 small interfering RNA) using Lipofectamine 2000 
(Invitrogen) according to the manufacturer’s protocol for 
48 h and then in DMEM with OVA (40 μM) for stimula-
tion 8 h. MH-S cells in the MCC950 group were treated 
in DMEM with MCC950 (50  μM). MH-S cells in the 
FSTL1 + MCC950 group were pretreated with MCC950 
(50 μM) for 24 h and then in DMEM with FSTL1 (100 ng/
mL) for stimulation 8 h. Finally, cell supernatant was used 
for detection of NLRP3 and IL-1β.

Model and grouping

Fstl1± mice were a generous gift from Xiang Gao (Nanjing 
University, Nanjing, China) and Xu Zhang (Institute of Neu-
roscience, Shanghai Institute for Biological Sciences, Chi-
nese Academy of Sciences, Shanghai, China). Fstl1± mice 
were generated as described previously [14]. The wild type 
(WT) female C57BL/6 mice, 6–8 weeks, were attained from 
the Animal Experimental Center of Jinan. All protocols were 
approved by the Institutional Animal Care and Use Commit-
tee of Shandong University.

Mice were randomly divided into control-WT, OVA-WT, 
control-Fstl1±, OVA-Fstl1± groups (n = 8/group). The OVA-
induced allergic airway inflammatory model was established 
as previously reported [15]. Mice were sensitized by i.p. 
injection of 50 µg OVA (grade V, Sigma, USA) on days (0, 

Table 1  Characteristics of asthma and health subjects

Data are shown as means ± SEM. FVC, forces vital capacity; FEV1/
FVC, the ratio of forced expiratory volume in the first second to 
forced vital capacity; MEF5/25, mid-expiratory flow; BDT, bron-
chodilation

Characteristic Asthma subjects Health subjects

Number 30 28
Age (years) 60.5 ± 10.9 61.5 ± 7.6
Gender (male/female) 16/14 13/15
FVC (% of predicted) 48.5 ± 18.9 120.8 ± 7.1
FEV1/FVC (% of predicted) 55.5 ± 11.9 99.3 ± 6.6
MEF75/25 24.1 ± 16.5 85.0 ± 9.5
BDT Positive Negative
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7, and 14), followed by intranasal administration of 10 µg 
OVA on days 21–28. Mice in the control-WT or control-
Fstl1± groups were treated in corresponding manner with 
isometric PBS alone. The wild-type mice were grouped into 
control, FSTL1, MCC950 + FSTL1 to further investigate the 
relationship between FSTL1 and NLRP3/IL-1β. Mice in the 
FSTL1 group were intranasally administered with 10 µg 
FSTL1 (Sino Biological, Beijing) daily for 15 days [16], 
and PBS intranasal mice were treated with PBS. Mice in 
the FSTL1 + MCC950 group were i.p. injected with 200 µg 
MCC950 (Target Molecule, USA) 2 h before each FSTL1 
administration.

BALF collection and analysis

BALF was collected to analyze cellular components and 
cytokines in supernatants. After ligating one side of the 
bronchus, we flushed the other side of lungs with 0.5 mL 
of ice-cold PBS for three times via tracheal catheter [17, 
18]. Approximately, over 80% of the instilled volume was 
recovered. Then, the BALF samples were centrifuged, and 
the supernatant was collected and stored at − 80 ℃ for the 
following measurement of cytokines.

The cell pellets were resuspended in 1  mL of PBS, 
and 0.1 mL of suspension was obtained to count the total 
number of nucleated cells under a cytometer. The differ-
ential cell counts were smeared on slides and processed by 
Wright–Giemsa staining (Sigma-Aldrich, St. Louis, MO, 
USA). At least 200 cells were classified and counted for 
each slide by using the brightfield microscope according to 
cell morphology.

Histological analysis

The lung tissues of mice were fixed in 10% formalin for 
more than 24 h and then dehydrated, paraffin-embedded, and 
cut into 5-μm-thick sections. The sections were dewaxed, 
rehydrated, and stained via hematoxylin–eosin (HE) and 
periodic acid–schiff (PAS) staining. According to previously 
described methods [19], the severity of peribronchial and 
perivascular inflammation was graded using lung inflam-
matory scores of 0–4, and the goblet cell hyperplasia was 
evaluated using numerical scores of 0–4 as determined by 
the PAS-positive cells in each airway.

Immunohistochemistry

Sections were deparaffinized, rehydrated, pretreated with 
10 mM sodium citrate for antigen recovery, prevented from 
the endogenous peroxidase by 3%  H2O2, and blocked with 
5% bovine serum. Next, the slides were incubated with pri-
mary antibodies of anti-FSTL1, anti-NLRP3, and anti-Muc-
5AC at 4 °C. After extensive washing, the sections were 

incubated with the corresponding HRP-conjugated second-
ary antigens for 1 h at room temperature and then developed 
with DAB solution (Boster, China). Finally, the slides were 
counterstained with hematoxylin. The positive area of the 
target protein was measured using the Image-Pro Plus 6.0 
software (Media Cybernetics, USA).

Levels of inflammatory cytokines in BALF

The levels of IL-4, IL-5, IL-13, and IL-1β in the BALF 
supernatant of mice were detected using ELISA kits (CUS-
ABIO, China) according to the manufacturer’s instructions. 
The FSTL1 and IL-1β levels in human serum were also 
measured by ELISA (Abcam, USA). All calibrations and 
analyses were performed in duplicate.

Levels of IL‑1β in lung tissues

The levels of IL-1β in lung tissues were detected accord-
ing to the manufacturer’s instructions (Abcam, USA). Lung 
tissue was minced and thoroughly rinsed in PBS to remove 
blood. Homogenize 100 mg of wet tissue in 500 µL extrac-
tion buffer. The mixture of tissue and extraction buffer was 
incubated on ice for 20 min, and then centrifuged at 18,000g 
for 20 min at 4 °C. The supernatants were transferred into 
clean tubes. The samples were immediately aliquoted and 
stored at − 80 °C. The unit of IL-1β concentration was ng/
mL.

Western blot analysis

Lung supernatants were obtained for protein concentra-
tion determination using the BCA protein assay kit (Boster, 
China). Then, equal amounts of protein samples were 
separated by SDS-polyacrylamide gel electrophoresis and 
transferred to polyvinylidene difluoride (PVDF) mem-
branes. PVDF membranes were blocked with 5% non-fat 
milk for 1 h at room temperature, and then incubated with 
diluted primary antibodies of NLRP3, IL-1β, and GAPDH. 
Then, PVDF membranes were incubated with HRP-conju-
gated secondary antibody for 2 h at room temperature. The 
binding of all antibodies was detected using an enhanced 
chemiluminescence.

Statistical analysis

The data are expressed as mean ± SEM. Two groups were 
evaluated by Student’s ttest. Comparisons among multiple 
groups were performed using one-way and two-way ANOVA 
analysis. Differences between the groups were considered to 
be significant when P < 0.05.
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Results

Fstl1± attenuated inflammatory cells 
and pathological changes after OVA exposure

As shown in Fig. 1A–F, mice in the OVA-WT group exhib-
ited irregular lung tissue structure, thickened airway epi-
thelium, and infiltration of inflammatory cells around the 
bronchus compared with the control and Fstl1± group. 
PAS staining showed excessive secretion of mucus and 

Muc-5AC in the OVA-WT group compared with the con-
trol and Fstl1± group. However, Fstl1± treatment signifi-
cantly improved the lung tissue damage and inflammatory 
cell infiltration caused by OVA, and significantly inhibited 
the secretion of mucus and and Muc-5AC caused by OVA.

Fstl1± inhibited the production of inflammatory 
cells and cytokines in BALF

As shown in Fig. 2A–I, results showed the infiltration of 
inflammatory cells in to BALF, mainly including eosinophils, 

Fig. 1  Mice in OVA-WT and OVA-Fstl1± groups were sensitized 
with OVA by i.p. injection at days 0, 7, and 14, and an OVA chal-
lenge was performed by intranasal administration every day at 
days 21–28. The control mice were treated only with PBS. Histo-
logic examination was stained with HE (A, magnification 400 ×). 
PAS staining (B, magnification 400 ×) and immunohistochemis-

try (C, magnification 400 ×) stained with Muc-5AC were used to 
assess mucin production. D bronchial inflammation score of A. E 
mucus intensity of B. F Muc-5AC intensity of C. Data shown are 
mean ± SEM. # p < 0.05 versus the control-WT group. #*p < 0.05 ver-
sus the OVA-WT and Control-Fstl1± groups
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neutrophils and macrophages, leukocytes and lymphocytes 
were significantly elevated after OVA treatment. In addition, 
results also showed the infiltration of inflammatory cytokines 
(IL-4, IL-5, IL-13, and IL-1β) into BALF were significantly 
elevated after OVA treatment (Fig. 2A–I). However, Fstl1± 
treatment in mice significantly improved the infiltration of 
inflammatory cells and cytokines into BALF caused by OVA 
compared with control (Fig. 2A–I).

Fstl1± inhibited OVA‑induced NLRP3/IL‑1β signaling 
pathway

The serum FSTL1 and IL-1β levels in asthma patients 
were assessed. The characteristics of patients with 

asthmatic and healthy are shown in Table 1. As shown 
in Fig. 3B, C, the levels of FSTL1 and IL-1β in serum 
were elevated in patients with asthma compared with 
the control. In addition, the expressions of FSTL1 and 
NLRP3 and IL-1β in bronchi were dramatically increased 
compared the control group (Figs. 3A, D, and 4A–D). 
However, Fstl1± significantly inhibited the expression of 
FSTL1 in bronchi, and further inhibited the expression of 
NLRP3 and IL-1β in bronchi (Figs. 3A, D, and 4A–D). In 
conclusion, Fstl1± reduced the expression of NLRP3 and 
IL-1β by inhibiting FSTL1 expression in bronchi.

Fig. 2  Total leucocytes and the percentage of different cells (eosino-
phils, lymphocytes, neutrophils, and macrophages) were observed 
within the BALF (A–E). The cytokine levels of IL-4 (G), IL-5 (H), 

IL-13 (I), and IL-1β (F) in BALF were detected by ELISA. Data 
shown are mean ± SEM. #p < 0.05 versus the control-WT group. 
#*p < 0.05 versus the OVA-WT and Control-Fstl1± groups
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Pretreatment with MCC950 attenuated 
the activation of NLRP3/ IL‑1β signaling pathway 
induced by FSTL1 in mice

The results showed that the inflammation degree of lung 
tissues induced by FSTL1 was increased (Fig. 5A, C). 
In addition, the expression levels of NLRP3 and IL-1β 
ascended after inhalation with FSTL1 through the nose 
compared with control (Fig. 5B, D, E). However, this air-
way inflammation and the expression levels of NLRP3 
and IL-1β induced by FSTL1 were significantly inhibited 
by pretreatment with MCC950 (Fig. 5A–E). Therefore, 
the results further demonstrated that FSTL1 promoted the 
activation of NLRP3 and IL-1β signaling.

FSTL1 promoted the activation of NLRP3/ IL‑1β 
signaling in MH‑S cells.

As shown in Fig. 6A–D, the expression of NLRP3 increased 
in a dose-dependent manner when MH-S cells were treated 
by FSTL1. We detected the components at different time 
points, showing that the level of NLRP3 significantly ele-
vated after FSTL1 stimulation for 12 h. Therefore, the above 
results proved that FSTL1 (100 ng/μl) stimulation MH-S 
cells for 12 h was the best choice.

In addition, the expression levels of NLRP3 and IL-1β 
induced by FSTL1 or OVA or OVA + FSTL1 ascended 
compared with control (Fig. 6E–G). Results also showed 
that the expression levels of NLRP3 and IL-1β induced by 

Fig. 3  Lung sections of mice were prepared and stained with immu-
nohistochemistry to evaluate the protein expression of FSTL1 (A) in 
lung tissues. FSTL1 (B) and IL-1β (C) levels in the serum of control 
and asthma were detected by ELISA. The correlation between serum 

FSTL1 and IL-1β levels is shown in D. E FSTL1 intensity of A. Data 
shown are mean ± SEM. #p < 0.05 versus the health group. #*p < 0.05 
versus the control-WT group. #**p < 0.05 versus the OVA-WT and 
Control-Fstl1± groups
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OVA + FSTL1 was significantly higher than OVA or FSTL1 
group (Fig. 6E–G). Transfection with siFSTL1 significantly 
inhibited the expression levels of NLRP3 and IL-1β induced 
by OVA compared with OVA + siNC group (Fig. 6E–G). 
Finally, the expressions of NLRP3 and IL-1β induced by 
FSTL1 were significantly inhibited by pretreatment with 
MCC950 (Fig. 6E–G).

Discussion

Asthma is a heterogeneous disease, which is usually char-
acterized by chronic airway inflammation. FSTL1 plays an 
important role in airway remodeling, and we further investi-
gated the role of FSTL1 in airway inflammation induced by 
asthma. The present study results supported that targeting 
FSTL1 may be a potential treatment strategy for patients 
with asthma.

FSTL1, a secreted glycoprotein, participates in 
many biological processes and is involved in various 

inflammatory diseases and conditions [20]. Both anti- and 
pro-inflammatory effects for FSTL1 have been studied, 
such as in rheumatoid arthritis [21, 22], osteoarthritis [23, 
24], juvenile rheumatoid arthritis [25], acute coronary syn-
drome [26], intervertebral disc disease, and obeosity [27, 
28]. The present study demonstrated that FSTL1 signifi-
cantly exacerbated airway inflammatory cells and factors 
infiltration into the BALF. Moreover, the inflammatory 
damage and mucus secretion were inhibited by Fstl1±.

The mechanism by which FSTL1 exerts its pro-inflam-
matory effects has not been determined,  and various 
signaling pathways may be involved. Yury et al. pointed 
that FSTL1 could be consumed by endotoxin-stimulated 
monocytes and macrophages, thereby enhancing NLRP3 
inflammasome-mediated IL-1β secretion from above cells 
[29]. The present study identified that FSTL1 acted on pro-
moting the activation of NLRP3/IL-1β signaling in OVA-
induced asthma. Pretreatment with MCC950 obviously 
inhibited the expression of NLRP3 and IL-1β in mice and 
MH-S cells.

Fig. 4  The expression of NLRP3 (A) and IL-1β (B) in bronchi was stained with immunohistochemistry. C NLRP3 intensity of A. D IL-1β inten-
sity of B. Data shown are mean ± SEM. #p < 0.05 versus the control-WT group. #*p < 0.05 versus the OVA-WT and Control-Fstl1± groups
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Alveolar macrophages (AMs) are important candidates 
for inducing airway inflammation. AMs express high lev-
els of NLRP3 mRNA and are the major sources of locally 
produced IL-1β [30]. IL-1β is associated with neutrophil 
inflammation [31], asthma severity [32], frequent exacerba-
tions [33, 34]. Ken et al. reported that DC-derived IL-1β 
promotes OVA-specific Th2 cell activation, thus aggravat-
ing the allergic airway eosinophilia depending on an IL-4/
IL-13-STAT6 pathway [35]. The administration of anti-IL-
1β-neutralizing antibody dramatically reduces the increase 
in IL-4, IL-5, IL-13, and tumor necrosis factor-α (TNF-α) in 
lungs [36]. The present study showed that pretreatment with 
MCC950 or siFSTL1 obviously inhibited the expression of 

NLRP3 and IL-1β induced by FSTL1 in mice and MH-S 
cells, and further reduced bronchial inflammatory injury. 
Therefore, the TSTL1-induced activation of NLRP3/IL-1β 
signaling plays a key role in the progression of asthma 
inflammation.

Due to some deficiencies in this study, further stud-
ies are needed to determine the mechanism of FSTL1 
involvement in asthma pathogenesis. In conclusion, the 
study results have underscored the key role of FSTL1 
in promoting allergic airway inflammation by activat-
ing NLRP3/IL-1β. This study and our continuing efforts 
may provide a novel treatment or diagnostic strategy for 
asthma.

Fig. 5  Mice in the FSTL1 group were intranasally administered 
with 10 µg FSTL1 daily for 15 days. Mice in the FSTL1 + MCC950 
group were i.p. injected with 200 µg MCC950 2 h before each FSTL1 
administration. Histopathologic changes were stained with HE (A, 
magnification 400 ×). The protein of NLRP3 (B, magnification 400 ×) 

was stained with immunohistochemistry. The level of IL-1β (E) in 
lungs was detected by ELISA. C bronchial inflammation score of A. 
D NLRP3 intensity of B. Data shown are mean ± SEM. #p < 0.05 ver-
sus the control group. #*p < 0.05 versus the OVA group
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