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Abstract
Background  Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. 
Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-
specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, 
T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist 
of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of 
microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symp-
tomatic control.
Finding  Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, 
T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit 
the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for 
ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect 
on preventing tumorigenesis.
Conclusion  n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
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Abbreviations
CTLs	� Cytotoxic T lymphocytes
DCs	� Dendritic cells
DHA	� Docosahexaenoic acid
EPA	� Eicosapentaenoic acid
HPA	� Hypothalamic–pituitary–adrenocortical
ICAM-1	� Intercellular adhesion molecule 1
INF-γ	� Interferon-γ
IL	� Interleukin
LFA-1	� Lymphocyte function-associated antigen 1
LCs	� Langerhans cells

miRNAs	� microRNAs
MHC II	� Major histocompatibility class II
MMPs	� Matrix metalloproteinases
NF-κB	� Nuclear factor-kappa B
n-3 PUFAs	� omega-3 Polyunsaturated fatty acids
OLP	� Oral lichen planus
OPMD	� Oral potentially malignant disorder
PPARα	� Peroxisome proliferator-activated receptor 

alpha
ROS	� Reactive oxygen species
Th	� T helper
TIMPs	� Tissue inhibitors of metalloproteinases
TNF-α	� Tumor necrosis factor-α

Introduction

OLP is a chronic immune and inflammatory disease mainly 
affecting the oral mucosa [1, 2]. The prevalence of OLP in 
general adult population is 0.5–2% with a female predispo-
sition and children can also be involved [2, 3]. OLP carries 
a potential risk of malignancy, with an oral squamous cell 
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carcinoma transformation rate of 0.9–1.1% [4]. OLP classi-
cally affects the buccal mucosa, gingiva, and tongue, exhibit-
ing a bilateral and symmetrical pattern [2, 5]. There are six 
clinical subtypes of OLP: reticular, plaque-like, atrophic, 
erosive, papular, and bullous [5, 6]. The dysbiosis of subgin-
gival microbiota mainly result in periodontitis [7]. Similarly, 
the imbalance between protective and harmful bacteria in 
oral mucosa is associated with the pathogenesis of OLP [8]. 
On one hand, pathological features show dense subepithe-
lial lymphocytes infiltration and intraepithelial CD8+ cyto-
toxic T lymphocytes (CTLs) targeting the basal keratino-
cytes (Fig. 1) [1, 2, 9, 10]. Our group revealed that T helper 
(Th) 1-type immune response plays a prominent role in the 
pathogenesis of OLP. The expression of T-bet was related to 
different clinical features of OLP [11]. Th17 cells with the 
secretion of interleukin (IL)-17 highlighted its role in the 
development of different types of OLP [12]. On the other 
hand, MMP activation, psychological disorder, and oxidative 
damage are correlated with the exacerbation of OLP [2, 5, 
10, 13, 14]. Currently, a permanent cure is not available and 
corticosteroids are well known as the first-line treatment for 
OLP. To some degree, long-term use of corticosteroids has 
side effects, ranging from acne to damage on most major 
organ systems such as musculoskeletal, gastrointestinal, and 
cardiovascular system [15]. Thus, it is crucial to find a novel 
and relatively safe substance for OLP.

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) 
are extracted from transgenic plants, fungi, and other 

microorganisms but mostly fatty fish [16, 17]. n-3 PUFAs 
and their derivatives, especially eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), were reported 
to exert anti-inf lammatory and immunomodulatory 
effects through multiple mechanisms [18]. Oral cavity is 
colonized with microbiomes and changes of these bac-
teria lead to oral diseases. Usage of DHA with low-dose 
aspirin influenced the periodontitis which is initiated by 
bacteria [7]. The T-cell activation can be suppressed by 
n-3 PUFAs through the modulation of plasma membrane 
microdomains [19, 20]. Consumption of n-3 PUFAs is a 
crucial determinant of inflammatory and immune pro-
cesses. Omega-3 fatty acids could inhibit the polarization 
of splenic CD4+ T cells into the inflammatory Th1 and 
Th17-cell subset [21–23]. Data suggested that n-3 PUFAs 
would be beneficial to inflammation and autoimmune dis-
eases such as rheumatoid arthritis, Crohn’s disease, ulcera-
tive colitis, psoriasis, lupus erythematosus, and multiple 
sclerosis [24–28]. Of note, omega-3 fatty acids had a psy-
chological-protective role due to their regulatory effects on 
hypothalamic–pituitary–adrenocortical (HPA) axis [29]. 
EPA and DHA were able to reduce salivary cortisol in 
healthy adults and defend against the increased oxidative 
stress [30, 31]. n-3 PUFAs are considered as safety sea-
food in many aspects [32].

Based on these facts, we speculate that n-3 PUFAs may 
have a therapeutic potency for OLP through antigen-spe-
cific and non-specific mechanisms involved in the patho-
genesis of OLP.

Fig. 1   n-3 PUFAs act on the 
immune cells of OLP. n-3 
PUFAs could inhibit the expres-
sion of ICAM-1, LFA-1, MHC 
II, and CD80 on DCs, and sup-
press the expression of CD28 
on Th cells, interfering the 
interaction between dendritic 
cells and Th cells and further 
restraining the activation of 
cytotoxic T cells which kill the 
basal keratinocytes. n-3 PUFAs 
also could inhibit the develop-
ment of Th1 and Th17 through 
down-regulating the production 
of IL-2, TNF-α, IFN-γ, and 
IL-17
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Status of Omega‑3 polyunsaturated fatty 
acids in oral microbial community

As the entry part of the gastrointestinal tract, oral cavity 
and its microorganisms are essential to OLP. Streptococcus 
was decreased and gingivitis bacteria exhibited positive 
correlations with the levels of infiltrated CD3+, CD4+, and 
CD8+ cells in OLP lesions [8]. Fusobacterium, Leptotri-
chia, and Lautropia were abundant in the buccal mucosa 
of OLP [33]. Fusobacterium nucleatum and Treponema 
denticola damaged the physical barrier of epithelial cells 
[34]. Saliva samples of OLP patients were different in the 
oral microbiota compared to control group, which were 
recommended as one of the diagnostic tools for OLP [35]. 
An 1-year clinical trial showed that oral microbial com-
position was individual, and the balance between health 
and disease was influenced by oral microorganism of bac-
teria and fungi, especially Malassezia [36]. 30% of OLP 
patients suffered oral candidiasis after corticosteroid ther-
apy [37]. These studies emphasized the primary role of 
oral microbiota in the pathogenesis of OLP.

During a 3-month pilot trial, daily DHA consumption 
suppressed the Porphyromonas gingivalis growth and 
decreased the expression of local inflammatory markers [7, 
38]. n-3 PUFAs as functional foods can be considered as 
prebiotics, because it shows capability of increasing anti-
inflammatory molecules, like short-chain fatty acids [39]. 
On the other hand, n-3 PUFAs are beneficial to preventing 
chronic inflammatory disease such as inflammatory bowel 
disease and modulating the microbiota between intestinal 
wall integrity and host immune cells [16]. 4 g of mixed 
DHA/EPA supplement (as capsules and functional drink) 
for 8 week trail increased the amount of Bifidobacterium, 
Oscillospira, Roseburia, and Lachnospira species, while 
decreased that of Coprococcus and Faecalibacterium spe-
cies in human intestinal microbiota [40]. Although the 
accurate mechanisms that n-3 PUFAs regulate the oral 
microbial community are unknown, n-3 PUFAs may affect 
oral microbial diversity.

Influence of n‑3 PUFAs on antigen‑specific 
mechanisms of OLP

Effects of n‑3 PUFAs on antigen‑presenting cells

Dendritic cells (DCs) are necessary and sufficient for the 
activation of naive T cells [41]. In OLP lesions, DCs pri-
marily Langerhans cells (LCs) are significantly increased 
in the epithelial–stromal junction where epithelial damage 
predominantly occurs [42]. These cells have the principal 

function of capturing pathogens and presenting antigens 
to T cells, which leads to the primary immune response 
[10]. Lymphocyte function-associated antigen 1 (LFA-1) 
is involved in the process of mediated killing, and LFA-1/
intercellular adhesion molecule 1 (ICAM-1) interactions 
have been shown to stimulate signaling pathways that 
influence T-cell differentiation [43]. When DCs recapture 
an antigen, the antigen is presented by major histocompat-
ibility class II (MHC II) through an endosomal cellular 
pathway, triggering a secondary immune response which 
may explain the appearance of the clinical signs of OLP 
[10, 44]. DCs are involved in the pathogenesis of antigen-
specific mechanisms of OLP.

Dietary intake of n-3 PUFAs inhibits the expression of 
MHC class II molecules and adhesion molecules ICAM-1 
and LFA-1 on human peripheral blood monocytes [45–47]. 
A n-3 PUFAs-rich diet downregulates cell-mediated immune 
responses. It is possible that one of the mechanisms is the 
inhibitory function on antigen-presenting cells [45]. Treat-
ment with omega-3 fatty acids gave rise to a significant 
reduction in DCs proportion when compared to control 
groups [48]. n-3 PUFAs diminished the antigen presentation 
activity of rat DCs via reducing the level of MHC II mol-
ecule [49]. The key aspects (CD11c+, CD80) of DC surface 
expression are suppressed by n-3 PUFAs [50]. Therefore, 
n-3 PUFAs are beneficial to OLP in the antigen presentation 
aspect (Fig. 1).

Influence of n‑3 PUFAs on T cells

When CD4+ T helper cells and CD8+ CTLs binding to MHC 
II and MHC I molecules, respectively, T cells are activated 
in OLP lesions [10]. Most of CD4+ T cells infiltrated in the 
lamina propria; on the contrary, the majority of intraepithe-
lial lymphocytes in OLP are composed almost exclusively 
of CD8+ CTLs [2, 10]. MHC class II antigen-presenting 
cells in OLP express high levels of CD40, CD80, and 
secrete IL-12 which are confirmed to promote a Th1 CD4+ 
T-cell response with IL-2 and interferon (IFN)-γ secretion 
[10, 51–53]. CD28 is the receptor for CD80 and is one of 
the expressed molecules that provide signals required for 
T-cell activation and survival [54]. CD8+ CTLs are involved 
in disease pathogenesis, and activated CD8+ T cells trigger 
keratinocyte apoptosis in OLP [55]. The proportion of Th17 
cells in patients with OLP was significantly higher than that 
in controls; furthermore, Th17 cells in atrophic-erosive OLP 
were elevated when compared with that in reticular OLP 
[12]. Our previous studies observed a higher T-bet mRNA 
level and T-bet/GATA-3 mRNA ratios, along with a signifi-
cantly high expression of programmed cell death receptor-1 
and programmed death ligand-1 in OLP patients [11, 56]. 
T-bet mRNA gives rise to IFN-γ which is the most critical 
mediators of Th1 [57]. It also manifested the dominance of 
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Th1 CD4+ T lymphocytes in the inflammatory environment, 
which may stimulate the activities of CD8+ CTLs in OLP 
[11, 56, 57]. This demonstrates that T-cell immunologic dys-
regulation plays a central role in the pathogenesis of OLP.

It is worth noting that T-cell proliferation was inhibited 
through a dietary with highly purified EPA and DHA in a 
mouse model [58]. n-3 PUFAs suppressed IL-2 secretion and 
IL-2 receptor α chain mRNA transcription [58, 59]. DHA 
reduced the production of IL-2 via modifying the impor-
tant phospholipid-derived intracellular second messengers 
(e.g., phospholipase Cγ, diacylglycerol, and ceramide) of T 
cells [58]. n-3 PUFAs were reported to interfere with Ca2+ 
signaling and suppress mitochondrial translocation to the 
immunologic synapse, which is crucial in T-cell activa-
tion [19, 20]. CD28 and CD80 coreceptors are among the 
mechanisms by which n-3 PUFAs directly suppress T-cell 
activation [58–60]. Dietary n-3 PUFAs are incorporated into 
cellular membranes and phospholipids, consequently, affect-
ing lipid metabolism [60–62]. n-3 PUFAs have regulatory 
effects on the suppression of Th1 and Th17 development 
(Fig. 1) [21, 63, 64].

Inhibition of n‑3 PUFAs on the NF‑κB signaling 
pathway

Our previous research revealed an elevation of NF-κB which 
can be regulated by p65 (a subunit of NF-κB) in the nuclei 
of infiltrated lymphocytes in OLP [65]. NF-κB signaling 
pathway is triggered by the Toll-like receptors via proinflam-
matory factors such as tumor necrosis factor (TNF)-α. The 
transcriptional downstream of NF-κB is promoted after 
the phosphorylation of IκBα protein. An overexpression of 
NF-κB leads to the chronic inflammatory process in OLP 
[66, 67]. Studies have shown that the expression of NF-κB 
is inhibited by n-3 PUFAs in the colonic mucosa, arterial 
endothelial cells, hepatocytes, and kidney [68–70]. In gen-
eral, NF-κB is downregulated through the consumption of 
n-3 PUFAs in two different manners (Fig. 2): a decline in 
the activity of the NF-κB subunit p65/RelA by inhibiting 
phosphorylation, such as p65/RelA serine 536 phosphoryla-
tion (p-p65 (S536)) [71]; a high level of inhibition on NF-κB 
DNA-binding activity and NF-κB p65 subunit nuclear trans-
location which were observed in rats. Additionally, the mice 
with SLE were fed with n-3 PUFAs-DHA, which increased 
the most median life span to 658 days [72]. 4 weeks of feed-
ing with a high ratio of omega-3 fatty acids mice resulted in 
the attenuation in p65 expression and nuclear localization, 
leading to the downregulation of NF-κB [73].

Effects of n‑3 PUFAs on cytokines

Abnormal secretion of cytokines, such as TNF-
α, IFN-γ, IL-2, IL-6, and IL-17, is evident in the 

inflammatory-related cytokines involved in OLP [57]. In 
addition to TNF-α, increased IFN-γ, IL-6, and IL-17 are 
identified in the serum and lesions of OLP, respectively, 
indicating an imbalance in Th1 and Th17 cytokine pro-
files in OLP [56, 57]. n-3 PUFAs have a privilege effect 
on the inflammation led by Th1 and Th17. IL-17 is an 
important proinflammatory cytokine associated with the 
pathogenesis of OLP [12, 74]. n-3 PUFAs directly affect 
the development of Th17 cells by reducing expression of 
the Th17-cell signature cytokine IL-17A and transcription 
factor RORγt, implicating a n-3 PUFA-dependent, anti-
inflammatory mechanism of action via the suppression of 
the development of this inflammatory T-cell subset [23]. 
A clinical trial showed the efficacy of 4 g omega-3 fatty 
acids on TNF-α, IL-6, and nitric oxide catabolites levels, 
which were decreased by involving competitive inhibition 
of arachidonic acid. n-3 PUFAs also inhibited the migra-
tory activity of leucocytes via alteration of cytoskeletal 
components [75–77]. n-3 PUFAs may influence OLP by 
modulating TNF-α, IFN-γ, IL-6, and IL-17.

Effects of n‑3 PUFAs on non‑specific 
mechanisms in OLP

Influencing on MMPs via n‑3 PUFAs in OLP

Matrix metalloproteinases (MMPs) containing more than 20 
members are a family of zinc-containing endo-proteinases 
with the primary proteolytic function of connective tis-
sue matrix proteins and basement membrane components 
[78, 79]. A balance can be achieved through the interaction 
between tissue inhibitors of metalloproteinases (TIMPs) and 
MMPs, because MMPs are reduced by tissue inhibitors of 
TIMPs through a stable, inactive enzyme-inhibitor complex 
with MMPs or pro-MMPs [2]. There is tissue destruction in 
the pathology of OLP due to an imbalance between MMPs 
and TIMPs which is found in the pathology of OLP. T cells 
release MMP-9 activators which assist in the activation of 
pro-MMP-9, resulting in basement membrane disruption in 
OLP [2, 10]. Increased MMP expression and an imbalance 
between MMPs and TIMPs play a pivotal role in the patho-
genesis of OLP. Studies have shown an inhibitory effect of 
n-3 PUFAs on MMP-9 in multiple sclerosis and dystrophic 
cardiomyopathy [80, 81]. n-3 PUFAs significantly decrease 
immune cell-secreted MMP-9 levels in vivo [82, 83]. Shinto 
et al. [80] confirmed that EPA and DHA decreased MMP-9 
protein levels and MMP-9 activity, and significantly sup-
pressed human T-cell migration in vitro. n-3 PUFAs modu-
late the cardiac and skeletal muscle environment towards an 
anti-inflammatory influence by affecting proinflammatory 
mediators, including MMP-9 and TIMP-1 [81].
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n‑3 PUFAs have anti‑oxidative effects on OLP

Oxidative stress plays an essential role in the pathogenesis 
of several inflammatory and autoimmune diseases [84, 85]. 
In OLP serum, the level of malondialdehyde, a fundamental 
representative of oxidative stress, was significantly enhance, 
and the total antioxidant capacity was markedly declined 
[86], indicating the pathogenic role of oxidative stress in 
OLP. And reactive oxygen species (ROS), pro-oxidative 
free radicals, have been found participated in both the OLP 

pathogenesis and carcinogenesis [14, 85, 87]. It is evident 
that ROS damages cellular components via free amino acids, 
protein peroxidation of nucleic acids, and lipoproteins, dis-
rupting cellular processes such as DNA repair and apoptosis 
[88]. Managing antioxidants in patients with OLP is useful 
to elaborate on a treatment strategy and to monitor OLP 
itself. Increased antioxidant genes might be an adaptive reac-
tion against increased oxidative stress. Besides, a diet rich in 
n-3 PUFAs alters gene expression profiles to defend against 
excess peroxisome proliferator-activated receptor alpha 

Fig. 2   Interactions between n-3 
PUFAs and NF-κB signal-
ing pathway. NF-κB signaling 
pathway triggered by TNF-α is 
promoted after the phosphoryla-
tion of IκBα protein. n-3 PUFAs 
are able to reduce the NF-κB 
pathway in two ways: inhibiting 
the phosphorylation of p65, or 
decreasing the binding activity 
of NF-κB with DNA and thus 
impeding the NF-κB p65 subu-
nit nuclear translocation
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(PPARα) activation and ROS production [14, 30]. Cells iso-
lated from rats’ diet with n-3 PUFAs exhibited higher pro-
portions of the n-3 PUFAs in their membrane phospholipids 
and were shown to be less sensitive to the effects of ROS. 
Anti-oxidative enzyme gene expression was enhanced after 
dietary supplemented with omega-3 fatty acids [30, 89].

Ameliorating psychological pressure by n‑3 PUFAs 
in OLP

Psychological or mental disorders have a high correlation 
with OLP [90]. The HPA axis is involved in functional 
illnesses, such as anxiety disorder,  insomnia, and major 
depressive disorder through regulating the expression of 
adrenocorticotropin [91]. Cortisol is one of the important 
substances and exhibits high serum and salivary levels in 
OLP patients [90, 92]. Sleep disturbances are considered 
a symptom of mood disorders which are associated with 
the initiation and relapse of OLP [90]. There is concrete 
evidence that n-3 PUFAs, notably DHA and EPA, have a 
stress-protective role, due to their inhibitory effects on 
stress-elicited adrenal activation through the central nervous 
system. n-3 PUFAs directly affect the adrenal glands [29, 93, 
94]. A randomized trial showed that after treatment with n-3 
PUFAs for 6 weeks, there was a decrease in salivary cortisol 
[31]. Consumption of oily fish rich in omega-3 consumption 
improved the sleep quality and showed an inverse associa-
tion with the Pittsburgh sleep quality index [95].

n‑3 PUFAs have positive effects on OLP via miRNAs 
and autophagy

MiRNAs are small non-coding RNA molecules containing 
about 18-25 nucleotides. MiRNAs function in RNA silenc-
ing and post-transcriptional regulation of gene expres-
sion [96]. Our previous studies showed that circulating 
miR-34a-5p and miR-130b-3p were upregulated, while 
miR-301b-3p and miR-125a were downregulated in OLP. 
Besides, miR-34a-5p was positively correlated with the 
severity of OLP [53, 97]. MiR-34a-5p was modulated in 
OLP progression through the PI3K/Akt signaling pathway. 
MiR-146a was higher in local lesion with OLP [98]. Sev-
eral miRNAs, such as miR-let-7 family, are regulated by 
EPA, leading to the reductions in NF-κB, Toll-like receptor 
4, and proinflammatory cytokines in the mouse liver [99]. 
n-3 PUFAs regulated immune homeostasis in an inflamma-
tion rat model through inflammatory pathways by targeting 
miR-19b-3p, -146b-5p, and -183-5p [100].

Autophagy is a catabolic process that mediates cellular 
degradation and recycling. Meanwhile, autophagy is an 
vital pathway for maintaining homeostasis and is connected 
with human oral diseases [101]. Dietary n-3 PUFAs reduce 
atherosclerosis inflammation by activating macrophage 

autophagy and attenuating intracellular ROS [102]. Above 
all, n-3 PUFAs might downregulate inflammation and 
help maintain homeostasis on OLP through miRNAs and 
autophagy.

Preventing malignancy in OLP

The World Health Organization (WHO) identified OLP 
as an oral potentially malignant disorder (OPMD), which 
rates approximately 1.1% [4, 103]. Researchers have been 
attempting to address the malignant transformation of OLP. 
Biomarkers that can predict malignant transformation have 
been validated in OLP lesions, such as the increased P53 and 
MMP-9, and the decreased caspase-3 [104]. Mignogna et al. 
reported the possible role of macrophages, mast cells, lym-
phocytes, and fibroblasts which contribute to the process of 
carcinogenesis in OLP via secreting cytokines, MMPs, and 
CCL5 molecules. Besides, overexpressed MMPs can cause 
DNA damage, bypassing p53 tumor suppression function 
[105]. We also reviewed OLP as one of the OPMD showed 
a higher expression of p53 and 8-nitroguanine [106].

It is illuminating that n-3 PUFAs have the ability to 
increase the expression of p53 and modulate Bcl-2 to induce 
apoptosis of cancer cells [107–111]. The high content of 
n-3 PUFAs with a decrease in n-6/n-3 PUFA ratio induces 
apoptosis by p53, Bcl-2, caspase-7, and caspase-3 in cancer 
cells [109–111]. During a 7,12-dimethylbenz(α)anthracene-
induced mammary carcinogenesis rats’ model, omega-3 fatty 
acids have the potential to limit mammary tumorigenesis 
in vivo by inducing apoptosis and suppressing the growth of 
the tumor cells [110]. Moreover, n-3 PUFA intake conferred 
additional benefits and lowered the risk of colorectal cancer-
specific mortality to patients with colorectal cancer [112].

Safety of n‑3 PUFAs

There is a good image of n-3 PUFAs in public. Fish oil is 
considered as nutritious supplement for inflammatory bowel 
disease, cardiovascular, and many other inflammatory dis-
eases. Public health advice is different across countries. 
European Food Safety Authority suggests that a consump-
tion of 250 mg per day of EPA and DHA appears to be 
sufficient for healthy subjects, while the American Heart 
Association (AHA) is more positive [113]. AHA recom-
mends 720 mg per day of EPA and DHA supplements for 
adults from dietary supplements than from foods (410 mg 
per day) [114]. Excessive usage of n-3 PUFAs leads to 
potential risks. Overdose of EPA and DHA may affect plate-
let activation and significantly reduce platelet aggregation 
which leads to side effect for wound healing [115]. Public 
concerns about the low doses of chemical pollutant mixtures 
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(organochlorine pesticides, methylmercury, dioxins, and 
dibenzofurans) contained in seafood [32]. To minimize the 
risk of pollutant, it would be necessary to control the qual-
ity of seafood products. More importantly, clinicians should 
balance the potential benefits of n-3 PUFAs supplementation 
against the potential risks when recommending n-3 PUFAs.

Conclusion

n-3 PUFAs have the properties of inhibiting antigen presen-
tation, T-cell activity, and NF-κB signaling pathway, reduc-
ing the production of MMP-9, alleviating psychological 
disorders oxidative, maintaining miRNAs and autophagy, 
and preventing malignancy (Fig. 3). In addition, n-3 PUFAs 
modulate the number of different bacteria in oral cavity and 
are potential adjunctive management for OLP. Nevertheless, 
studies about n-3 PUFAs in OLP are still void. To translate 
theoretical assumption to clinical application, basic experi-
mental studies are needed to figure out what the potential 
effects of n-3 PUFAs on OLP are in vitro and in vivo. Mean-
while, multi-center randomized blinded controlled trials are 
necessary to provide evidence-based data of the optimized 
usage and dosage of n-3 PUFAs for the management of OLP. 
Given all these possessions of n-3 PUFAs, it is possible to 
take n-3 PUFAs as a candidate for OLP management. In 
conclusion, n-3 PUFAs might be a safe, inexpensive, and 
non-conventional adjunctive therapy for OLP.
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