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Abstract
Background  Neuropathic pain is caused by primary lesion or dysfunction of either peripheral or central nervous system. Due 
to its complex pathogenesis, often related to a number of comorbidities, such as cancer, neurodegenerative and neurovas-
cular diseases, neuropathic pain still represents an unmet clinical need, lacking long-term effective treatment and complex 
case-by-case approach.
Aim and methods  We analyzed the recent literature on the role of selective voltage-sensitive sodium, calcium and potas-
sium permeable channels and non-selective gap junctions (GJs) and hemichannels (HCs) in establishing and maintaining 
chronic neuropathic conditions. We finally focussed our review on the role of extracellular microenvironment modifications 
induced by resident glial cells and on the recent advances in cell-to-cell and cell-to-extracellular environment communica-
tion in chronic neuropathies.
Conclusion  In this review, we provide an update on the current knowledge of neuropathy chronicization processes with a 
focus on both neuronal and glial ion channels, as well as on channel-mediated intercellular communication.
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Abbreviations
Cav	� Voltage-gated calcium channels
CCI	� Chronic constriction injury
CNS	� Central nervous system
Cxs	� Connexins
DRGs	� Dorsal root ganglions

ECF	� Extracellular fluids
GJs	� Gap junctions
HCs	� Hemichannels
ICF	� Intracellular fluids
Kv	� Voltage-gated potassium channels
Nav	� Voltage-sensitive sodium channels
SNL	� Spinal nerve ligation
TTX	� Tetrodotoxin

Introduction

Neuropathic pain is a debilitating condition of the soma-
tosensory nervous system triggered by nerve lesions, 
frequently associated with different pathologies includ-
ing cancer, diabetes, infection or autoimmune disease, in 
which chronic pain sensitivity is pathologically amplified 
[1]. Chronic neuropathic pain states show peripheral and/or 
central sensitization, resulting in exaggerated perception of 
painful stimuli [2, 3]. A typical characteristic of neuropathic 
pain is stimulus-independent pain, a form of spontaneous 
pain often characterized by either persistent or paroxys-
mal pain perceived as stabbing or burning [2]. Alongside, 
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stimulus-evoked neuropathic pain, characterized by hyper-
algesia and allodynia, frequently occurs after mechanical, 
thermal or chemical stimulation [4, 5]. Finally, neuropathies 
may be also associated with other sensory dysfunctions, such 
as dysesthesias, experienced as tingling or pricking sensa-
tions and may be intermitted or provoked by stimulation 
[4, 5].

During the early phase of neuropathic pain, neurons in 
superficial laminae of the dorsal horn of the spinal cord, 
which receive synapses from dorsal root ganglions (DRGs) 
sensory neurons, are triggered by numerous signals. In par-
ticular, studies published over the last decade have eluci-
dated the role of central nervous system (CNS) resident glial 
cells in many aspects of pathological neuronal functioning, 
occurring in neuropathic pain [6]. Notably, during patho-
logical painful responses or pain sensitization, microglia and 
astrocyte functions are altered and in turn mediate spinal 
microenvironmental modifications, throughout the release 
of soluble factors regulating nociceptive neuronal excit-
ability [7–9]. Primary mechanisms in inducing such altera-
tions are likely to be linked to sensory inputs to the dorsal 
laminae I–III. Such an astrocyte- and/or microglia-induced 
modification of the spinal milieu is recognized as a funda-
mental mechanism in mediating neuropathy chronicization 
processes [8, 9]. On the other hand, ectopic discharges, exci-
totoxic damage, trans-synaptic degeneration and neuronal 
suffering are known to exert a primary neurodegenerative 
insult, contributing to the development of central sensitiza-
tion mechanisms [10–12]. Several evidences suggest that 
excitotoxic stimulation by DRGs neuron discharges induces 
a robust spinal sensory neuron degeneration in the late phase 
of the disease. Such pathological features are coupled with 
a reduction in inhibitory circuitry and dramatic changes in 
ion channels composition exacerbating central excitotoxic 
damage. Moreover, excitotoxic damage may be linked, at 
least partially, to reduced and/or impaired astroglial gluta-
mate clearance efficiency [9, 13–15]. In this scenario, cell-to 
cell interaction and cell-to-extracellular environment com-
munication are emerging as key factors in neurodegenerative 
disorders and chronic pain mechanisms, with a prominent 
role referable to Gap junctions (GJs), which represent the 
fundamental structures for the development and maintenance 
of physiological arrangement in several cellular activities, 
including cell signalling, differentiation and growth [16–20].

Mechanisms of chronicization 
during neuropathic pain

Lesions or diseases in neuropathic pain predominantly 
involve primary afferent unmyelinated C fibres, which ter-
minate in upper laminae and myelinated mechanoreceptor 
Aβ and nociceptive Aδ fibres, projecting in deeper laminae 

of spinal dorsal horn [21]. Also, changes between central 
excitatory and inhibitory signalling occurs as a conse-
quence of sensory nerve alteration in electrical proper-
ties, as well as signal transmission and either disinhibition 
or facilitation of mechanisms at the level of the spinal 
cord dorsal horn neurons. Particularly, increase of fibre 
firing or loss of inhibitory circuitry determines a state of 
hyperexcitability, ultimately leading to pain chronicization 
[22]. Hyperexcitability condition is shaped by functional 
rearrangements that considerably affect both interneurons 
and second-order nociceptive neurons and, importantly, 
intercellular communications and microenvironmental 
composition [22, 23].

The inhibitory components affected in the process of 
central sensitization include spinal resident inhibitory 
interneurons and the descending modulatory systems. The 
suppression of resident inhibitory circuitry induces a local 
unbalance finally resulting in a prominent excitatory stimu-
lation. Information is then conducted to the thalamus, cor-
tex and limbic regions, including cognitive and emotional 
components [24, 25]. Dysfunction of descending modulatory 
systems, primarily including periaqueductal grey matter, is 
also responsible for maintaining pain hypersensitivity [24, 
25].

Primary afferent fibres form synapses with second-order 
spinal neurons, generating the ascending spino-thalamic 
tract and taking stimulation to the thalamus, whose neu-
rons form synapses with third-order neurons that project 
to the cortex. Second-order nociceptive neurons, which 
convey sensory information to the brain, are the biologi-
cal substrates establishing and sustaining central sensiti-
zation. An increased signalling due to phosphorylation of 
N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, related 
to second-order nociceptive neuron changes, could explain 
the development of allodynia [26]. Second-order nocicep-
tive neuron hyperexcitability is critically linked to a loss of 
GABAergic inhibitory circuitry at spinal level [27]. Altered 
neuronal circuitry and neurotransmission are closely related 
to ion channel rearrangement, influencing sensory trans-
duction through the initiation and propagation of electrical 
signals and neuronal transmission along the axon from the 
periphery to the CNS [22, 28].

Voltage-sensitive ion channels regulate action potential 
and excitability of neurons via rapid, voltage-gated changes 
in ion permeability [29]. Besides ion selectivity through 
transmembrane pore, the most unique characteristic of these 
ion channels is the voltage-dependent activation linked to 
conformational changes mediated by electric field applied 
to the phospholipid bilayer. Their transient activation is 
regulated by transition to an inactive state, phosphorylation 
and receptor state [29]. Dysregulation of voltage-sensitive 
ion channels, in particular sodium, calcium and potassium 
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channels, holds a critical role in contributing to neuropathic 
pain chronicization.

Voltage‑sensitive sodium channels

Voltage-sensitive sodium or Nav channels are responsible 
for the depolarizing phase of the action potential [22]. A 
number of Nav channels have been linked to the devel-
opment of neuropathic pain, including Nav1.3, Nav1.7, 
Nav1.8 and Nav1.9 [30]. In particular, the tetrodotoxin 
(TTX)-sensitive Nav1.3 channel is featured by fast activa-
tion and inactivation kinetics. Nav1.3 rapidly produces per-
sistent and depolarizing current increasing the excitability 
of cells. It is expressed at quite high levels during embryo-
genesis supporting and regulating development of neu-
ronal circuits [31], but it is barely detectable in adult CNS 
[32–34]. High expression of this channel was detected in 
sensory nerve tracts and in spinal cord white matter, dorsal 
roots and deep laminae of the dorsal and ventral horn after 
axotomy and during neuropathic pain [35–38]. Given their 
localization, Nav channels are strongly associated with 
neuropathic pain contributing to spinal hyperexcitability. 
The recent evidence in experimental models of neuropathic 
pain reported a down-regulation of Nav1.1, Nav1.2 and 
Nav1.7 coupled with an up-regulation of Nav1.3 expression 
in adult DRGs, thus suggesting a prominent role of Nav1.3 
during neuropathic pain conditions [34, 39, 40]. Notably, 

Nav1.3 channels contribute to the development of sponta-
neous ectopic discharges and sustain typical firing rates 
of injured sensory nerves. Moreover, the TTX-sensitive 
Nav1.7 channels, prevalently localized in sensory endings, 
are characterized by slow inactivation kinetics and fast 
activation with small depolarizing ramps [40, 41]. Indeed, 
in a rat model of spinal nerve ligation (SNL), a reduction 
of about the fifty percent of Nav1.7 has been observed. 
Knockout model for Nav1.7 has been reported to sponta-
neously develop allodynia [42]. In physiological condi-
tions, Nav1.8 channels are highly expressed in nociceptors; 
a robust Nav1.8 reduction has been associated with neu-
ropathy, while Nav1.8 ablation reduces the development of 
mechanical allodynia and thermal hyperalgesia in a model 
of neuropathic pain [43]. Nav1.9, a TTX-resistant channel, 
is prevalently localized in DRGs, nociceptive neurons and 
in C and Aδ fibres, with lower expression levels in large 
diameter Aβ fibres [44]. On one hand, experimental model 
of neuropathic pain reported a concomitant Nav1.9 channel 
down-regulation in injured neurons, but little or no effect 
on neighbouring neurons and on thermal hyperalgesia and 
mechanical hypersensitivity [40, 45, 46]. On the other 
hand, Nav1.9-null mice have shown absent inflammatory 
hyperalgesia in response to inflammatory mediators [45, 
47, 48]. As such, the role of Nav1.9 is likely linked to 
maintain inflammatory-induced hyperalgesia rather than 
inducing chronicization of neuropathic conditions (Fig. 1).

Fig. 1   Voltage-sensitive ion channels during neuropathic pain. Illus-
tration of the localization and modulation (red arrows = decrease; 
green arrows = increase) of the main sodium (Nav), calcium (Cav) and 

potassium (Kv) voltage-sensitive channels during neuropathic pain 
in the peripheral nerves, dorsal root ganglion (DRG) and spinal cord 
laminae I–V
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Voltage‑sensitive calcium channels

Calcium channels have been classified into low-threshold 
(T-types) and high threshold (L-, N-, P/Q- and R-types). 
Activation of voltage-gated calcium channels increases 
neurotransmitter release and enhances excitatory synaptic 
transmission in the nociceptive circuits [49]. L-type chan-
nels are distributed in neuronal cell bodies and dendrites 
of superficial laminae of the dorsal horn, where they medi-
ate the activation of calcium-dependent enzyme activi-
ties, gene transcription, synaptic signalling and plasticity, 
as well as the activation of other ion channels, such as 
calcium-activated potassium channels [50]. In neuropathic 
pain models L-type channels are shown to be dysregulated 
in DRGs and in the spinal cord [50]. For example, some 
of their splicing variants, such as Cav1.2 and Cav1.3, are 
down-regulated in rat DRGs neurons following chronic 
constriction injury (CCI) of the sciatic nerve, while Cav1.2 
is up-regulated in the spinal cord post SNL [51]. P/Q-type 
channels are expressed at the pre-synaptic terminals in 
the spinal dorsal horn, mainly laminae II–VI, where they 
play a role in neurotransmitter release. Their role in pain 
processing depends on the nociception aetiology [52]. In 
neuropathic pain models, P/Q-type channel blockade, as 
well as their deletion, resulted in no effect on mechani-
cal allodynia and thermal hyperalgesia and in no changes 
in nociceptive responses to non-injurious thermal stimuli 
[52]. Calcium N-type channels are mostly distributed in 
DRGs cell bodies and in the synaptic terminals. The block 
of N-type current inhibits the release of substance P and 
calcitonin gene-related peptide (CGRP) from sensory neu-
rons [53]. N-type channels are also widely distributed in 
spinal dorsal horn neurons, DRGs cell bodies and their 
central terminals, exerting a prominent role in pain trans-
mission and processing. After peripheral nerve injury, 
these channels are up-regulated in spinal dorsal horn [54]. 
It has been demonstrated that intrathecal administration 
of ω-conotoxin, a modulator of gating properties, leads 
to a reduction of action potential-induced calcium influx 
by 50% without blocking the pore, reducing hyperalge-
sia and allodynia in neuropathic pain [55]. Analogously, 
it has been reported a reduction of nerve injury-induced 
allodynia by the potent N-type Cav2.2 inhibitor N-triazole 
oxindole TROX-1 [56]. R-type channels contribute to 
central sensitization in the spinal cord during neuropathic 
pain processing. Indeed, their blockade inhibits the neu-
ronal responses of C and Aδ fibres in the dorsal horn and 
neuropathic pain states in nerve-injured rats. Moreover, 
up-regulation of Cavα2δ1 subunit, which is associated with 
L-type, N-type, P/Q-type and R-type calcium channels has 
been observed after peripheral neuropathy in DRG and in 
the dorsal horn of the spinal cord [57–60] and it has been 

related to the analgesic effects of gabapentinoids (Fig. 1) 
[61, 62].

Voltage‑sensitive potassium channels

A family of ion channels involved in the sensory transduc-
tion machinery in DRGs neurons are the inhibitory voltage-
gated potassium channels or Kv channels, mediating the 
repolarizing phase of action potentials. Since Kv conduction 
counteracts membrane depolarization and/or action poten-
tial, Kv activity generally inhibits sensory neuron excitability 
[63]. Recently, the crucial role in sensory transduction of 
Kv2 channels in DRGs was reported [64]. Indeed, reduc-
tions of Kv activity seem to be a hallmark of the hyperexcit-
ability featuring neuropathic pain [65, 66]. Particularly, Kv2 
channels regulate excitability of neurons, both in normal 
conditions and in neuropathic pain experimental models. 
A decreased expression of Kv2 channels has been observed 
also in preclinical models of neuropathic pain in the DRGs 
neurons of animals subjected to sciatic nerve axotomy [67] 
or CCI [68]. Although multiple factors are contributing to 
establishing excitotoxic and inflammatory milieu during 
chronicization processes of neuropathy, Kv channel func-
tion and expression in DRG neurons has been reported as a 
significant factor in inducing overactivation and persistent 
pain (Fig. 1) [69].

Role of non‑selective gap junction 
and hemichannels

GJs are involved in direct intercellular communication and 
are characterized by the juxtaposition of two hemichan-
nels (HCs) of adjacent cells, that allows the diffusional 
exchange of ions, metabolites (glucose, lactate and small 
metabolites) and second intracellular messengers (cAMP, 
IP3, ATP) between intracellular fluids (ICF) [70–72]. In 
addition, HCs themselves may actively contribute to alter 
extracellular fluids (ECF) and may individually act as mem-
brane pore connecting ICF and ECF. GJs are aggregates in 
specific plasma membrane regions of adjacent cells forming 
GJ plaques, in which GJs are rapidly assembled, disassem-
bled or remodelled [72]. HCs are added to the periphery of 
existing plaques and they are docked with HCs of adjacent 
cells, whereas old HCs are removed from the central por-
tion of plaques to be destroyed [73, 74], with turnovers that 
are particularly rapid as compared to other membrane pro-
teins. Each HC is composed by six subunits called connexins 
(Cxs), that arranging in a circle, delimit the central aqueous 
pore of HCs [16]. Cxs are a family of proteins encoded by 21 
genes in human, each one named according to its theoretical 
molecular mass. Their molecular weight ranges from 26 to 
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56 kDa and some Cxs are selectively expressed in specific 
tissue and/or cell populations. Although their molecular 
weight is different, they have similar biophysical structures 
and features. Cxs are composed by four transmembrane 
domains, two extracellular loops, an intracellular loop and 
an intracellular carbo-tail [70]. Both homomeric and hetero-
meric HCs may constitute homotypic (same HCs) and heter-
otypic (different HCs) GJs. Despite such characteristics, the 
aqueous pore of the GJs has a diameter of about 2 nm and 
shows low ionic selectivity. It is widely accepted that GJs are 
preferentially in an open-state configuration, even if the gat-
ing is related to a rotation of the subunits which allows the 
pore formation. Cx43 is the most abundant Cx in mammals, 
widely expressed in glial cells from neurogenesis to adult 
brain. As the core glial GJ- and HC-forming protein, plays 
a leading role in physiological homeostasis of the nervous 
environment and injury [16, 75–77]. Cx43-composed GJs 
allow highly coupled intercellular network in CNS, intercon-
necting astrocytes but also mediating astrocytes–microglial 
cell coupling (Fig. 2) [78]. In particular, reactive astrocytes 
express high levels of Cx43 and increased Cx43-induced 
coupling in a number of acute and chronic degenerative 
affections of CNS [79–81]. Recent evidences support the 
hypothesis of a detrimental role of such a coupling that is 
believed to increase cell death signalling, as well as inflam-
matory and neurodegenerative insults [79].

Astroglial Connexin 43 sustains central 
sensitization during chronic neuropathy

Several data suggest that aberrant excitability of dorsal 
horn neurons evoked by peripheral nerve injury might not 
be a consequence merely of changes in neurons, but rather 
of multiple alterations of glial cells, including astrocytes 
and microglia, which undergo morphological hypertrophy, 
proliferation and specific gene expression profile [82–86]. 
Astrocytes exert bystander effects on neurons modulating 
their Cxs profile, thus playing a crucial role in pathologi-
cal conditions via a detrimental exchange of ion channels, 
metabolites and secondary messengers.

In particular, the release of astroglial mediators, increases 
the activity of nociceptive neurons, sustaining inflamma-
tion and neuropathy development and maintenance. GJs/
HCs have been progressively investigated to clarify the det-
rimental transition from acute to chronic condition, invari-
ably more complex to be treated [2]. The fundamental role 
of cell-to-cell and cell-to-extracellular environment signal-
ling has emerged as promising target to develop chronically 
active therapeutic options [9, 87]. This scenario has been 
comprehensively reviewed recently [88], highlighting cur-
rent evidences on GJs and pannexin channels interplay and 
on potential therapeutic efficacy as alternative options to 
opioid analgesia. Several data support Cxs involvement in 
the induction and maintenance of chronic pain, so that antin-
ociceptive effects of various molecules modulating activ-
ity or expression of Cxs has been investigated in multiple 
chronic pain models [89, 90]. In particular, Cx43 is con-
sidered a triggering factor for disease chronicization in the 

Fig. 2   Central sensitization mechanisms upon peripheral nerves 
injury. Illustration of spinal cell coupling underlying central sensiti-
zation involving resident spinal cord cells (astrocytes and microglial 
cells) and connexin-mediated cell coupling (gap junctions—GJs) 

and cell-to-extracellular communication mediated by hemichannels 
(HCs). Communication between cells (intracellular fluids—ICF—of 
cell 1 and cell 2) and between ICF and extracellular fluid (ECF)
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CNS [5, 75]. Animal models of chronic pain, including CCI 
of the sciatic nerve, SNL, hind paw carrageenan-induced 
inflammation and unilateral hind limb bone cancer, showed 
astrocytic Cx43 protein overexpression in both the spinal 
dorsal horn, the sciatic nerve and the DRGs ipsilaterally to 
injury [76, 91–94]. Prevented nociceptive hypersensitivity 
through GJs blocker carbenoxolone and Cx43 RNA inter-
ference, further sustain Cx43 involvement along the pain 
pathway. Despite multiple evidences, the exact mechanism 
by which Cx43 acts, is still matter of debate. It has been 
described that astroglial Cx43 HCs mediate neuropathic 
pain by releasing chemokines in nerve sciatic-injured mice 
treated with peptide5, a Cx43 mimetic peptide that blocks 
HCs; it significantly improves mechanical pain hypersensi-
tivity by selectively reducing ATP, which in turn determines 
reduction of the NOD-like receptor protein 3 inflammasome 
complex, a key mediator of neuroinflammation [76].

Over the years, dysregulated Cx43 and changes of Cx43-
based GJs/HCs have been associated with CNS inflamma-
tion, including neurodegenerative and vascular diseases. 
Hallmarks of inflammatory conditions are reactive gliosis 
characterized by both astrocyte hypertrophy and prolifer-
ating astrocytes and microglia. In particular, degenerative 
stimuli occurring in other neurodegenerative diseases, such 
as in multiple sclerosis, Parkinson’s disease, Alzheimer’s 
disease and amyotrophic lateral sclerosis, are closely related 
to neuroinflammation and reactive glial cell response [95]. 
Such a phenomenon may represent either a triggering factor 
or a consequence of neuronal suffering and neurodegenera-
tion. The overexpression of the Cx43 in several suffering 
conditions has been also investigated to establish whether 
it was cause or effect in the specific context. In the spinal 
cord, Cx43 expression is highly increased in both acute and 
chronic injuries, fostering inflammation and pro-apoptotic 
signalling [77, 96–98]. Particularly, evidences showed that 
inhibition of Cx43-based channels reduces secondary dam-
ages during acute and chronic disorders [78, 99]. As such, 
Cx43 up-regulation in spinal cord astrocytes is critical for 
the maintenance of late-phase neuropathic pain, but the 
specific role of Cx43 is still worthy of further investiga-
tion to find new therapies for chronic neuropathic condi-
tions. Recently, an experimental model of neuropathic 
pain induced by the unilateral sciatic nerve CCI has been 
employed to investigate the effects of the multitarget biased 
mu and delta opioid receptor agonist LP2 [9, 100, 101]. In 
this context, the levels of astrocytic Cx43 in the spinal cord 
dorsal horn of CCI rats and its involvement in chroniciza-
tion of neuropathy have been analyzed. Experimental evi-
dence strongly supports the hypothesis of an active role of 
astrocytes in triggering pro-apoptotic signalling, fostered 
by Cx43 up-regulation in ipsilateral dorsal horn, that sus-
tained chronic pain in the CNS of CCI rats. Glial-derived 
mediators such as IL1β, TNFα, ROS and ATP (also acting 

on purinergic P2X receptors on neurons and microglia), fur-
ther sustain neuroinflammation, excitotoxic stimulation and 
neuronal suffering [102–104].

Concluding remarks

Neuropathic pain still represents an open challenge for 
researchers in the field. Current therapeutic options showed 
limited efficacy that overall are not able to reduce or alleviate 
neuropathic pain in patients. Advances in understanding the 
molecular and cellular changes in the transition from acute 
to chronic pain are supporting the hypothesis of a crucial 
role of voltage-sensitive ion channels and intercellular/cell-
to-extracellular environment channels, such as GJs and HCs. 
Certainly, several factors contribute to the establishment of 
an excitotoxic spinal environment, including overstimula-
tion and neuronal suffering. Modulation of ion channel pool 
induces sensitization and hyperexcitability of sensory neu-
rons, increasing neurotransmission and excitotoxic signals. 
Such a phenomenon is fostered by reactive glial cell popula-
tion. Indeed, astroglial GJs and HCs severely impact extra-
cellular compartment composition in terms of ions, small 
metabolites, reactive oxygen species, cytokines and mes-
sengers. This condition increases nervous system network 
complexity during neuropathy chronicization, characterized 
by a strong modulation induced by glial cell populations, 
considerably involved in neuronal transmission and its regu-
lation. Thus, therapeutic approaches aiming at reducing and/
or modulating CNS channels function and gating may repre-
sent successful strategies to reduce excitotoxic stimuli and 
microenvironment conditioning, ultimately counteracting 
chronicization and supporting neuroprotection.
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