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Abstract
Introduction  Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, 
limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as 
pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side 
effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines 
with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals 
are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear under-
standing of the molecular mechanism of their action is needed for clinical acceptance.
Materials and methods  In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia 
via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phyto-
chemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus.
Conclusion  Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, querce-
tin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their 
regulation by these phytochemicals is elaborated and the scope of further research is discussed.
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Introduction

The ability to respond to noxious stimuli is vital for sur-
vival of an organism and can be considered as a protec-
tive mechanism against any damage due to that particular 
noxious stimulus. However, this response is associated with 
an unpleasant distressing feeling or pain. Pain is defined 
by the International Association for the Study of Pain as 
an unpleasant sensory and emotional experience associated 
with actual or potential tissue damage, or described in terms 
of such damage. It is evoked as a defense mechanism against 

noxious stimuli which warns and instructs the individual to 
withdraw from damaging situations, to protect a damaged 
body part while it heals, and to avoid similar experiences in 
the future [1].

Perception of pain in response to noxious simulation is 
initiated with triggering of specialized peripheral sensory 
neurons known as nociceptors. Stimulated nociceptors are 
hyper sensitized to a mild painful stimulus giving perception 
of exaggerated pain or hyperalgesia. Hyperalgesia is defined 
as an augmented response to a noxious stimulus which mani-
fests as an increased sensitivity to pain [2]. As the thresh-
old for response also decreases, sometimes even innocuous 
stimuli may cause pain, a phenomenon called allodynia. 
Hyperalgesia is a hallmark of inflammatory pain triggered 
in response to different types of tissue insults.

The unpleasant feeling of pain is a terrible fear for man-
kind, even more than death itself. Therefore, relief from pain 
is a primary duty of a physician. Tremendous growth in pain 
therapy has improved the quality of life; however, selec-
tion of perfect pain relievers is still a challenge. Targeting 
inflammatory mediators by non steroidal anti inflammatory 
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drugs (NSAIDs) is one of the strategies applied for treat-
ment. However, partial success of NSAIDs guided the 
investigators to adopt new strategy, i.e. targeting multiple 
mediators and pathways simultaneously. Interestingly, most 
of the phytochemicals show multimode action, therefore fit 
better in contemporary idea. Further, long-term use of tradi-
tional drugs is dangerous due to their severe side effects [3]. 
In general, phytochemicals show lesser side effects, which 
further strengthens the idea of pain treatment using phy-
tochemicals. Therefore, a large number of phytochemicals 
have been tested for their antihyperalgesic potential. Most 
recently used antihyperalgesic phytochemicals and their 
molecular mechanism are reviewed.

Nociceptive signaling

Nociceptors are afferent sensory neurons present in periph-
eral as well as visceral regions of the organism, and are 
activated by noxious stimulus. Nociceptors are unique neu-
rons with pseudo-unipolar morphology. They have a cell 
body located in dorsal root ganglia (DRG) with a peripheral 
axon and terminal (ending) that responds to the stimulus, 

and a axonal branch originating from cell body is bifurcated 
and that transmits information to the central region (spinal 
cord dorsal horn or its trigeminal homologue) as well as the 
peripheral region. Nociceptors exhibit bidirectional signal-
ing while transmitting noxious stimuli from the periphery 
to the spinal cord. The two branches are indistinguishable 
biochemically as most of the proteins synthesized by the cell 
body in DRG or trigeminal ganglion are distributed to both 
central and peripheral terminals [4]. This unique property 
contributes to hypersensitization of nociceptors (Fig. 1).

Nociceptive mediators of inflammatory soup stimulate 
and sensitize nociceptors via various receptors present at its 
peripheral terminal. The noxious stimuli are propagated as 
electrical impulses along the peripheral and central axon of 
the nociceptor upto the CNS (the spinal cord for the body 
and the trigeminal nucleus for the head). Environmental 
stimuli like heat, cold, and mechanical stimuli are responded 
by peripheral terminal, whereas endogenous stimuli like pH, 
lipids, and neurotransmitters trigger both the peripheral and 
central terminals [5]. Many of these molecules are targets for 
therapeutic intervention in clinical pain conditions. Both ter-
minals are approached in pain targeting via spinal (intrathe-
cal) delivery or via topical application of drugs.

Fig. 1   Activation of nociceptors by inflammatory mediators. Inflam-
matory mediators are released during tissue injury, leading to activa-
tion of several ion channels which results in depolarization of nocice-
ptive neurons. The depolarized nociceptors up regulate the expression 
and secretion of inflammatory neuropeptides like SP and CGRP by 
DRG. These neuropeptides are distributed to both ends of nociceptors 
through peptidergic fibers (dotted arrows show transport of inflamma-
tory mediators). Antidromic transport of neuropeptides to peripheral 

site further helps in sustained inflammation. On the other hand, trans-
ported inflammatory mediators reaching dorsal horn of spinal cord 
stimulate post synaptic spinal neurons as well as neighboring glial 
cells. Inflammatory mediators act as messengers to develop a cross 
talk between neurons and glial cells, immunocompetent cells, sym-
pathetic terminals, etc. which leads to hypersensitivity of dorsal horn 
neuron
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Inflammatory mediators

Inflammatory mediators are released at peripheral site dur-
ing tissue injury which may act via the surface receptors 
of nociceptors or by internalization, and in turn lead to 
activation of several ion channels resulting in depolariza-
tion of nociceptive neurons. This phenomenon is called 
inflammatory hyperalgesia. The depolarized nociceptors 
up-regulate the expression and secretion of inflammatory 
neuropeptides like substance-P (SP) and calcitonin gene- 
related peptide (CGRP) by DRG. These neuropeptides are 
distributed to both ends of nociceptors through peptidergic 
fibers. Antidromic transport of neuropeptides to peripheral 
site further helps in sustained inflammation. This phenom-
enon is called neurogenic inflammation [5]. On the other 
hand, transported inflammatory mediators reaching dorsal 
horn of spinal cord stimulate post synaptic spinal neurons 
as well as neighboring glial cells. Inflammatory mediators 
act as messengers to develop a cross talk between neurons 
and glial cells, immunocompetent cells, sympathetic ter-
minals, etc. which leads to hypersensitivity of dorsal horn 
neurons [6].

Tissue damage or injury is accompanied by concomi-
tant release of inflammatory mediators from local resident 
cells (endothelial cells, keratinocytes, and fibroblasts), 
infiltrated cells (neutrophils, mast cells, basophils, plate-
lets, macrophages,) and from activated nociceptors. These 
mediators collectively constitute the inflammatory soup, 
which consists of wide range of signaling molecules 
including eicosinoids, cytokines, chemokines, neuropep-
tides, neurotrophins, as well as extracellular proteases and 
protons [5]. These pro-inflammatory agents act through 
the cell surface receptors expressed on nociceptors and 
initiate various signaling pathways leading to excitability 
and hypersensitivity of nociceptors. These inflammatory 
mediators are targets for development of pain relievers.

Pro‑inflammatory cytokines

Pain modulation by pro-inflammatory cytokines has been 
studied in several animal models showing that tumor 
necrosis factor-alpha (TNF-α), interleukin (IL-1β and 
IL-6) induce and maintain hyperalgesia. Injury of periph-
eral nervous tissue leads to a rapid and sustained increase 
in cytokine secretion leading to pain behavior [7, 8].

Tumor necrosis factor‑α (TNF‑α)

Inflammatory cytokine TNF-α is known to play a well-
established key role in several pain models [8–12]. TNF-α 
modulates both inflammatory and neuropathic hyperal-
gesia by initiating a cascade of inflammatory cytokines; 
therefore, its inhibitors show significant anti-hyperalgesic 
effects [13–15]. TNF-α receptors are expressed in both 
neurons and glial cells. TNF-α acts on different signal-
ing pathways through cell surface receptors TNFR1 
and TNFR2 to activate stress-activated protein kinases 
(SAPKs) and nuclear factor kappa B (NF-kB) during 
inflammation, which further activate cascade of other 
cytokines, notably IL-1β, IL-6, and IL-8 in the inflam-
matory models of carrageenan-induced and zymosan-
induced hyperalgesic rats [16]. TNF-α activates tetro-
dotoxin-resistant voltage-gated sodium channels (TTX-r 
Na+ channels) via p38 MAPK pathway in cultured DRG 
cells [17]. Literature suggests that TNF-α mediates cen-
tral mechanisms of neuropathic pain through glial sys-
tems [18]. In response to nerve injury and inflammation, 
microglia secrete pro-inflammatory cytokines including 
TNF-α [19], which mediate its effects via the p38-MAPK 
pathway [20]. TNF-α auto-stimulates its own production 
via G-protein coupled receptor (CXCR4) and TNF-α con-
verting enzyme [21, 22].

Despite the significant role of TNF-α in neuropathic as 
well as inflammatory pain, the failure of TNF-α antago-
nists in clinical trials has guided research towards a col-
lective role for glia-derived different mediators and their 
signaling pathways in the modulation of hyperalgesia [23, 
24].

Interleukin‑1β (IL ‑1β)

IL-1β is primarily released by monocytes, macrophages, 
fibroblasts, and endothelial cells during cell injury and 
inflammation. It is also reported to be expressed in noci-
ceptive DRG neurons and spinal cord [25]. It is known 
to play a key role in several pain models [7, 10, 11, 26]. 
IL-1β signals through complex signaling cascades that 
lead to the release of other nociceptive molecules such as 
PGE2, IL-6, SP, and MMP9 in a number of neuronal and 
glial cells [27, 28]. Additionally, IL-1β has been shown 
to cause an increase in the heat-evoked release of CGRP 
from rat cutaneous nociceptors in vitro [29]. RT-PCR and 
in situ hybridization studies have demonstrated expres-
sion of IL-1R1 in sensory neurons [30], which suggests 
that IL-1β may directly act on nociceptors. Administra-
tion of IL-1ra is reported to reduce complete Freund’s 
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adjuvant-induced (CFA-induced) upregulation of nerve 
growth factor (NGF), a neurotrophic factor known to play 
a crucial role in a variety of acute and chronic pain states 
[31]. Upregulation of NGF by IL-1β is known at both the 
transcriptional and post-transcriptional levels [32]. IL-1β 
is known to modulate neuronal excitability by affecting 
neuronal receptors such as transient receptor potential 
cation channel subfamily V member 1 (TRPV1), sodium 
channels, gamma-aminobutyric acid (GABA) receptors, 
and N-methyl-D-aspartate (NMDA) receptors [33].

Interleukin‑6 (IL‑6)

IL-6 contributes to the development of inflammatory and 
neuropathic pain after a peripheral nerve injury [8, 34] and 
in pathogenesis of rheumatoid arthritis [35]. IL-6 is secreted 
by activated microglia and astrocytes, and regulates neuro-
peptide expression in neurons [36]. In addition, intrathe-
cal injection of IL-6 induces tactile allodynia and thermal 
hyperalgesia in intact and nerve-injured rats [34].

Prostaglandin PGE2 up-regulates expression of IL-6 via 
EP4 receptor, and activates PKC pathway in injured nerves 
in case of neuropathic pain model [37]. The role of PGE2 is 
also demonstrated in the synthesis of IL-6 in primary sen-
sory neurons following nerve injury. In vitro studies sug-
gest that prostaglandin E2 receptor 4 (EP4 receptor), PKA, 
PKC, ERK/MAPK, CREB, and NF-kB signaling pathways 
are involved in PGE2-induced IL-6 production in DRG neu-
rons [38]. IL-6 mainly activates the JAK/STAT transduction 
pathway in microglia of spinal cord during neuropathic pain 
[39]. There is evidence of IL-6 induced microglial CX3C- 
chemokine receptor 1 (CX3CR1) expression in the spinal 
cord through p38 MAPK activation after peripheral nerve 
injury [40].

Inflammatory enzymes

The inflammatory enzymes COX and NOS, especially their 
inducible isozymes COX-2 and iNOS, are implicated in the 
development of hyperalgesia. There are important and com-
plex interactions between these two mediator systems.

Cyclooxygenase (COX)

COX plays a key role in biosynthesis of prostaglandins 
from arachidonic acid. Prostaglandins have implication in 
promoting inflammation and hyperalgesia. Pro-inflamma-
tory cytokines like TNF-α induce the expression of COX 
in cultured DRG neurons [41]. The inducible isozyme 
COX-2 is expressed in inflammatory cells and tissues after 

inflammation and causes hyperalgesia [42]; consequently, 
COX-2 selective inhibitors are potent antihyperalgesic 
agents. COX-2 specific inhibitor coxibs markedly reduce 
pain symptoms in rat models of carrageenan, zymosan 
or formalin-evoked hyperalgesia [43–45]. COX-2 plays 
an important role in central sensitization after peripheral 
inflammation in the mouse and rat models of inflammation 
[46, 47]. Recent findings show the activation of both COX-1 
and COX-2 in DRG during inflammatory hyperalgesia lead-
ing to activation of TRPV1 ion channels as well as PKCε 
[48].

Nitric oxide synthase (NOS)

NO synthesized by nitric oxide synthase (NOS) has role 
in spinal nociceptive processing. Over activation of differ-
ent isoforms of NOS plays important role in hyperalgesia 
by mediating neuronal excito-toxicity by activating the 
receptors and downstream MAPK signaling pathways [49]. 
iNOS is expressed in immune cells including glial cells and 
is involved in several signaling pathways of hyperalgesia 
[50]. Pro-inflammatory cytokines like TNF-α, IL-1β, and 
interferon-γ induce the expression of iNOS in microglia by 
activation of NF-κB causing peroxynitrite injury in periph-
eral nerve which plays a major role in peripheral nerve dys-
function and degeneration [51].

Nociceptive receptors

In response to inflammatory mediators, nociceptors are 
sensitized via a number of receptors present at peripheral 
terminals, e.g. TRPV, voltage-dependent and transient 
receptor potential ankyrin (TRPA), melastatin-related tran-
sient receptor potential (TRPM), acid-sensing ion channels 
(ASIC), GPCR, RTK, etc. At the central level, nociceptive 
pathways are modulated mainly by N-methyl-D-aspartate 
receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR), neurokinin 1 
receptor (NK1R), and metabotropic glutamate receptors 
(mGluRs). Recent studies suggest a key role of NMDAR in 
central sensitization during chronic pain states. Therefore, 
blockers of many of these ion channels are being tested for 
their therapeutic potential by many investigators [51–55].

The molecular transducer TRPV1 is activated by nox-
ious heat, reduced pH, and the chemical capsaicin, whereas 
TRPM8, TRPV2 channels respond to cold and methanol 
[56] and the pungent ingredients of mustard and garlic acti-
vate TRPA1 [57]. Triggering of mechanical pain involves 
TRPA1 receptors and potassium channel subfamily K 
(KCNK) channels [5].
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Several ion channels are responsible for thermal and 
mechanical pain hypersensitivity; out of them TRPV1 is 
most studied. It is an ionotropic, Ca2+ permeable, non-
selective cation channel which is suggested to be a key tar-
get of inflammatory mediators during generation of thermal 
hyperalgesia [58]. Studies have shown that TRPV1 functions 
as an integrator of multiple signals and its sensitivity for 
thermal stimuli can be greatly altered by several components 
of the inflammatory soup [59]. Few inflammatory media-
tors function as direct modulators of the channel, whereas 
others act through downstream signaling pathways. These 
interactions result in a decrease in activation threshold of 
these ion channels resulting in allodynia and hyperalgesia. 
However, there is a controversy regarding the intracellular 
signaling mechanisms which are most effective in TRPV1 
modulation [60]. Nonetheless, TRPV1 modulation is sug-
gested to be an important phenomenon in generation of pain 
hypersensitivity, particularly in the setting of tissue injury-
evoked inflammation. Therefore, it may act as a therapeutic 
target in infections, osteoarthritis or rheumatoid arthritis, 
and inflammatory bowel disease.

Inflammatory pathways involved 
in initiation and maintenance 
of hyperalgesia

Nuclear factor kappa B (NF‑kB) pathway

Nuclear factor-κB (NF-κB) belongs to the family of induc-
ible transcription factors, which is known to regulate a vari-
ety of genes involved in different inflammatory and immune 
responses such as infection, tissue injury or ROS generation 
[61] via production of inflammatory cytokines [62]. Under 
normal conditions, NF-kB is localized in the cytoplasm 
of the cell and remains associated with inhibitory protein 
inhibitor of kB (IkB); but depending upon the type of stimu-
lus, the activation of NF-κB follows two different signaling 
pathways. First, the canonical NF-κB pathway is known to 
be triggered by proinflammatory cytokines such as TNF-α 
and IL-1, members of TNF receptor super family, and T-cell 
receptor (TCR) and B-cell receptor [63]. The signaling path-
way is initiated by IKK-mediated inducible degradation of 
IκB; and subsequent release and translocation of NF-kB into 
nucleus initiates transcription of inflammatory genes like 
TNFα, IL-1β, which further regulate down-stream mediators 
[64]. Second, the non-canonical NF-κB pathway or ‘alter-
native NF-kB pathway’ is activated selectively by specific 
stimuli which include ligands of a subset of TNFR super 
family members such as Lymphotoxin β Receptor (LTβR), 
B-cell activating factor receptor (BAFFR), CD40 and Recep-
tor Activator of Nuclear Factor κ B (RANK) [65]. The acti-
vation of non-canonical NF-κB pathway does not involve 

IκBα degradation; rather it involves inducible phosphoryla-
tion of NF-κB2 precursor protein, p100 by IKKα leading to 
activation of RelB/p52 heterodimers [66]. Both the canoni-
cal and non-canonical pathways are involved in regulation of 
immune and inflammatory responses despite the differences 
in signaling mechanism [66, 67]. The activation of transcrip-
tion factor NF-κB during hyperalgesia generally follows the 
canonical pathway [68] (Fig. 2).

NF-κB is widely recognized as a master switch that is 
essential for immune responses. Increased NF-κB activity 
in immune and nervous system cells is linked to several 
chronic pain conditions in humans like rheumatoid arthri-
tis, migraine, nerve injury; as well as inflammation- and 
nerve injury-evoked pain in animals [69]. While NF-κB is 
ubiquitously expressed in a variety of cell types, its con-
tribution is driven largely by signaling in the dorsal root 
ganglia and in astrocytes of spinal cord during inflamma-
tory and neuropathic pain [70]. The activation of NF-κB in 
astrocytes may produce pain by decreasing the expression 
of catechol-o-methyltransferase (COMT), an enzyme that 
inactivates catecholamines and modulates pain [71]. Astro-
cytic NF-κB is reported to be upregulated in CFA-induced 
inflammation [72] as well as in nerve injury [70]. Likewise, 
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loss of astrocytic NF-κB signaling attenuates pain following 
formalin administration [73].

NSAIDs are now believed to target both the NF-kB 
and COX pathways, to inhibit leukocyte recruitment [74]. 
Recent research indicates that natural compounds reduce the 
inflammation and hyperalgesia by blocking the activation of 
NF-kB and other inflammatory mediators.

MAPK pathways

Other than the classical role of MAPKs in cell death and 
survival, studies in the past decade revealed direct or indi-
rect involvement of all the three MAPKs in neuropathic 
and inflammatory hyperalgesia. Role of MAPKs has been 
suggested to be specific in pain hypersensitivity with negli-
gible effect on physiological pain perception [75]. Various 
inflammatory mediators are implicated in peripheral sensiti-
zation of nociceptors and initiation of hyperalgesia. However 
at central site, microglia and astrocytes contribute to the 
release of multiple inflammatory mediators, neuromodula-
tors, and growth factors which enhance excitability within 
the dorsal horn of the spinal cord [76]. Central sensitization 
results from activation of different membrane receptors and 
channels via phosphorylation, leading to various intracel-
lular kinase cascades. Several different intracellular signal 
transduction cascades converge on MAPK. Peripheral or spi-
nal nerve injury activates p38 in spinal neurons, microglia, 
and Astrocytes, whereas ERK activity is reported to increase 
in microglia and Astrocytes [77]. Recent literature suggests a 
significant role of p38 in post-operative pain [78]. Increasing 
body of evidence indicates a crucial role of glial cells in the 
pathogenesis of pain [79].

ERK-MAPK activation is suggested as a master switch or 
gate for the regulation of central sensitization [80]. Activa-
tion of ERK is reported to be induced in spinal cord dorsal 
horn (SCDH) neurons by persistent noxious input, produced 
by various sources [81]. Stimulation of DRG neurons with 
TNF-α leads to ERK activation, and subsequent increase in 
expression of TRPV1 [82]; which is a major target of periph-
eral sensitization. Further, morphine-induced hyperalgesia 
involves activation of ERK in brain cortex [83]. Recent study 
reveals the role of ERK signaling in the periphery as it influ-
ences the transition from acute to chronic postoperative pain 
[84]. Therefore, activation of ERK has been considered as 
neuronal marker of pain [85]. Pharmacological intervention 
targeted specifically at the signal transduction pathways in 
nociceptive neurons may provide new therapeutic opportuni-
ties for pathological pain.

Recently, we have demonstrated that ROS produced dur-
ing peripheral inflammation leads to activation of ERK in 
DRG as well as in spinal dorsal horn [86]. Therefore, we 
have suggested that antihyperalgesic property of natural 
polyphenols like resveratrol and curcumin may be attributed 

to their antioxidant property [87–89]. We have shown a 
functional correlation between down-regulation of ERK 
signaling in spinal cord by resveratrol with its antioxidant 
and antihyperalgesic potential [89]. The findings suggest that 
ERK-MAPK might be a major target of natural compounds 
used for hyperalgesia treatment.

Antihyperalgesic drugs

Clinical and molecular studies provide evidences that 
inflammation is responsible for acute inflammatory hyper-
algesia as well as for maintenance of chronic pain. NSAIDs 
are most widely used antihyperalgesic drugs, especially in 
case of acute hyperalgesia although their long use leads to 
adverse effects like risk of elevated blood pressure, blood 
clots, platelet dysfunction, peptic ulcer, nephropathy and 
renal failure, inhibition of labor, cardiac failure, and sudden 
cardiac death [90, 91]. Opioids are used in case of chronic 
hyperalgesia. The major concern of long-term treatment 
of opioids includes increased risk of addiction, tolerance, 
and neuropsychological effects. The symptoms are nausea, 
vomiting, constipation, itching, dizziness, sweating, seda-
tion, lethargy, CNS adverse events, and overdose leading to 
death [92]. Serious side effects of available antihyperalgesic 
or pain relieving drugs pose a challenge to scientist to search 
an alternative therapy with least side effects.

Antihyperalgesic phytochemicals

Recent studies show involvement of ROS in initiation and 
maintenance of hyperalgesia [93]. These are implicated in 
inflammatory as well as neuropathic pain [94, 95]. ROS is 
known to mediate development and maintenance of capsai-
cin-induced hyperalgesia in mice, primarily through central 
sensitization [96]. Recently, antioxidants have shown prom-
ising effect in elimination of pain. Polyphenols of dietary 
source like vegetables, fruits, and drinks (wine and tea) are 
being tested for their analgesic action [87, 88]. Scientists are 
engaged in search of antioxidant and anti inflammatory agent 
as pain relievers with minimum side effects.

A number of herbal products with antioxidant and anti 
inflammatory properties are known since ancient times 
which exhibit anti hyperalgesic potential. These prod-
ucts are used to treat pain and inflammation with almost 
no side effects. Although safe in most cases, ancient pain 
therapy using herbal medicines are ignored because nei-
ther their active components nor their molecular targets are 
well defined. However in the past decade, scientists have 
identified a number of targets which are manipulated by 
herbal products during intervening hyperalgesia. The active 



639Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and…

1 3

Table 1   Herbal compunds and their molecular targets during antihyperalgesic action in different pain models

Sr. no. Herbal compound Model of hyperalgesia Molecular targets References

1 Curcumin Diabetic neuropathic pain NO and TNF-α [97–99]
TRPV1 [100]
Opioid system [101]
NOX [102]
TTX-R Na+ channel [103]

Neuropathic pain p-ERK, p-CREB [104, 105]
CX3CR1, NF-κB [106]
Monoamine system and opioid receptors [107]
BDNF and COX-2 [108]
P2X3 receptor [109]

Inflammatory hyperalgesia TNF-α, IL-1β and IL-6 [87]
Nrf-2 and NF-κB [110]
ASICs [111]
TRPV1 [112]

Morphine tolerance Opioid receptors [107]
Opioid induced hyperalgesia CaMKIIα [113]

2 Resveratrol Neuropathic pain TNF-α, IL-1β, IL-6 and IL-10 [114]
NMDAR [115]
SIRT1 [116, 117]
Serotonergic system [118]
P2X7receptor [119]

Bone cancer pain CX3CR1 [120]
Inflammatory hyperalgesia COX-2 [87, 121]

COX-1 [122]
Prostaglandin E2, COX-2 [121]
TNF-α, IL-1β, IL-6 and IL-10 [88, 114]
TRP channels [123–125, 142]
TRPA1 [126]
Na+ and K+ ion channels [124, 127]
ERK-MAPK [87]
ERK and mTOR signaling [128]
P2 × 7 receptor [129]

3 Quercetin Inflammatory hyperalgesia IL-1β, GSH [130]
Neuropathic pain TNF-α, IL-1β, TAK1, IKK and JNK2 [131]

c-Fos, iNOS [132]
Nitric oxide (NO), oxidative stress [133]
TLR signaling [131]
PKCε [134]

Intense acute swimming-induced muscle 
pain

TNF-α, IL-1β and IL-10, COX-2
NF-κB, Nrf2 and HO-1

[135]

Tamoxifeninduced adenomyosis TRPV1, pp38 and pERK [136]
Cancer pain Oxidative stress, IL-1β and TNFα [137]
Rheumatoid arthritis Glutathion(GSH), TNF-α, IL-1β, COX-

2, NF-κB, Nrf-2 and HO-1
[138]

VEGF, bFGF, MMP-2 [139]
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Table 1   (continued)

Sr. no. Herbal compound Model of hyperalgesia Molecular targets References

4 Eugenol Inflammatory hyperalgesia TRPV1 [140]
Voltage-gated potassium channels [141]

Neuropathic pain cyclic nucleotide-gated (HCN) channels [142]
TTX-resistant and TTX-sensitive 

Na + channels
[143]

Dental pain Voltage-gated sodium channel [144, 145]
5 Naringenin Neuropathic pain – [146]

Inflammatory hyperalgesia IL-33, TNF-α, and IL-1β and NF-κB 
pathway

[147]

Cytokines, Nrf-2 and the NO-cGMP-
PKG-KATP Channel Signaling 
Pathway

[148]

Diabetic neuropathy Superoxide dismutase
NO, TNF-α

[149, 150]

6 Epigallocatechin gallate (EGCG) Diabetic neuropathy Spinal ROS [151]
Neuropathic pain TLR-4, TNF-α, and IL-1β and NF-κB 

pathway
[152]

nNOS [153]
RhoA, FASN and TNF-α [154]
CX3CL1 Chemokine [155]

7 Capsaicin Neuropathic pain TRPV1 activation [156]
– [157]
Piezo 1 and Piezo 2 activity [158, 159]

Inflammatory hyperalgesia p38 MAPK/MK2/PGE2 Axis [160]
8 p-Cymene Inflammatory hyperalgesia Opioid system and cytokines [161]
9 Citronellol Inflammatory hyperalgesia – [162]
10 Carvacrol Inflammatory hyperalgesia – [163]

Cancer pain IL-10 and GABAA [164]
11 Trans-caryophyllene Inflammatory and Neuropathic pain IL-1β, opioid and endocannabinoid 

system
[165]

12 α-spinasterol Inflammatory hyperalgesia TRPV1 [166]
13 Lycopene Neuropathic pain Connexin 43 [167]

Oxidative stress markers and antioxidant 
system

[168]

Diabetic neuropathy – [169]
14 Tingenone Inflammatory hyperalgesia Opioidergic system [170]

NO/cGMP and ATP-sensitive K(+) 
channels

[171]

15 Ellagic acid 6-hydroxidopamine induced hyperalgesia – [172]
16 6-Gingerol Neuropathic pain – [173]
17 Emodin Neuropathic pain P2X2/3 receptor [174]

– TRPV1 [175]
18 Fisetin Diabetic neuropathy ROS, spinal GABAA receptors [176]

Neuropathic pain Spinal serotonergic system [177]
19 Reutin Inflammatory hyperalgesia Opioidergic system [178]
20 Baicalin Neuropathic pain HDAC1 [179]
21 Genistein Neuropathic pain Proinflammatory cytokines, NGF, iNOS 

and eNOS
[180]

22 Diosmin Neuropathic pain IL-1β, Tnfα, and IL-33/St2 [181]
Acetic acid-induced visceral pain IL-6, IL-1β, and TNF-α, opioid and 

D2 dopaminergic pathways
[182]
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Table 1   (continued)

Sr. no. Herbal compound Model of hyperalgesia Molecular targets References

23 Myricitrin Chemical models of overt nociception Nitric oxide-L-arginine and protein 
kinase C pathways

[183]

Postoperative pain – [184]
24 Vitexin Postoperative pain Opioid receptors and GABAA receptors [185]

Inflammatory hyperalgesia TRPV1, oxidative stress, and cytokines [186]
25 Hesperidin Neuropathic pain TNF-α and IL-1β, oxido-nitrosative 

stress
[187]

TNF-α, IL-1β and IL-6 [188]
26 Luteolin Neuropathic pain GABAA receptors [189]
27 Puerarin Neuropathic pain IL-6, IL-1β, and TNF-α and NF-κB 

pathway
[190]

28 Liquiritigenin Neuropathic pain – [191]
29 Hesperetin Neuropathic pain IL-6, IL-1β, and TNF-α, oxidative stress [192]
30 Cardamonin Inflammatory hyperalgesia COX-2 and Tgase-2 [193]

TNF-α, IL-1β, and IL-6 [194]
Neuropathic pain Opioidergic system [195]
–  hTRPA1 Cation Channel [196]

31 Morin Bone cancer pain TNF-α, IL-1β, and IL-6, IL-10 [197]
32 Tanshinone IIA Neuropathic pain TNF-α, IL-1β and MAPK pathways [198]

Inflammatory hyperalgesia  IL1-β, IL-6, TNF-α and NF-κB path-
way, TRPV1

[199]

Bone cancer pain IL-1β, IL-6 and TNF-α [200]
33 (+)-Borneol Inflammatory and Neuropathic pain – [201]

Neuropathic pain TRPA1 [202]
34 Citral Inflammatory hyperalgesia Serotonin [203]
35 Celastrol Inflammatory and Neuropathic pain Cannabinoid pathway [204]
36 Parthenolide Neuropathic pain NF-κB, p38MAPK, ERK1/2, IL-1β, 

IL-18, iNOS, IL-6, IL-10, and TIMP1
[205]

37 Euphol Inflammatory and Neuropathic pain – [206]
38 Maslinic acid Inflammatory hyperalgesia [207]
39 Lupeol Inflammatory and post operative pain IL-1β and TNF-α [208]
40 Bilobalide Inflammatory hyperalgesia – [209]
41 Linalool Acute pain – [210]
42 Zerumbone Neuropathic pain – [211]

Arginine-nitric oxide-cGMP-K+ ATP 
channel

[212]

5-HT receptors [213]
43 Sinularin Inflammatory hyperalgesia iNOS, COX-2 and TGF-β [214]
44 Bullatine A Neuropathic pain, inflammatory pain, 

diabetic neuropathic pain,and bone 
cancer pain

microglial dynorphin A [215]

45 Lemnalol Neuropathic pain TNF-α [216]
46 Salvinorin A Inflammatory hyperalgesia kappa opioid receptor and CB1 receptor [217]
47 Incarvillateine Inflammatory and Neuropathic pain Adenosine system [218]
48 Ursolic acid Neuropathic pain pro-inflammatory cytokines and oxida-

tive stress
[219]

Inflammatory hyperalgesia PPARα [220]
49 Retinoic acid Inflammatory hyperalgesia PPAR-β/δ receptors [221]
50 Carnosol and carnosic acid – microsomal prostaglandin E2 synthase-1 

(mPGES-1) and 5-lipoxygenase (5-LO)
[222]

51 Garcinol Neuropathic pain (IL)-1β, IL-6, iNOS, COX-2, NF-κB [223]
52 Ginsenoside Rg3 Incision pain IL-1β and IL-6 [224]
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components are shown to inhibit the activation, release, and 
action of inflammatory mediators.

Here, we have reviewed more than 50 antihyperalge-
sic phytochemicals used in the studies conducted recently 
(Table 1). Three sources were used to search for appropriate 
papers. These included Medline-PubMed, Google Scholar, 
and Scopus using different combinations of keywords like 
pain, hyperalgesia, phytochemicals, herbal products, and 
phytotherapy. The databases were searched for studies pub-
lished after 2010. Citations were limited to purified active 
constituents. Studies using crude or partially purified plant 
extracts were excluded. Additional papers were included by 
searching name of individual phytochemical in combination 
with above key words; and after the analysis of all references 
from the selected articles (some of them were published 
before 2010). Seven most cited phytochemicals; Curcumin, 
capsaicin, resveratrol, quercetin, eugenol, naringenin, and 
EGCG have been described in detail.

Curcumin

In India and other parts of Asia, turmeric is used to treat 
many health conditions. Curcumin, a substance in tur-
meric, may help to reduce inflammation. Both the ancient 
Indian and Chinese systems of medicine have recognized 
curcumin’s beneficial properties for thousands of years. 
Curcumin is considered as an excellent pain reliever 
[227–230]. It is believed to have anti-inflammatory, anti-
oxidant, and anticancer properties [231–233]. Several 
studies suggest that it might ameliorate pain and inflamma-
tion in animal models and in case of human osteoarthritis 
and rheumatoid arthritis [234]. We have shown antihy-
peralgesic action of curcumin in rodents by modulation 
of antioxidant enzymes and down regulation of TNF-α, 

IL-1β and IL-6 [87]. Curcumin attenuates diabetic neuro-
pathic pain in mouse, possibly through its inhibitory action 
on NO and TNF-α release [97, 98]. Curcumin has been 
shown to regulate numerous transcription factors [106, 
110], cytokines [99], protein kinases [104, 105], adhesion 
molecules, redox status [87] and enzymes [102] that have 
been linked to hyperalgesia. It can inhibit the activity and 
the synthesis of COX-2 and 5-lipooxygenase (5-LOX), as 
well as other enzymes that have been implicated in inflam-
mation and hyperalgesia [102, 108]. Curcumin is shown 
to be as effective as ibuprofen for the treatment of knee 
osteoarthritis with fewer gastrointestinal adverse effects 
[235]. It is believed to lead to a phase out of NSAID use, 
at least as a treatment for mild-to-moderate osteoarthritis. 
Now modern research is showing that curcumin may be 
one of nature’s most powerful potential healers.

Curcumin contains vanilloid ring similar to that pre-
sent in capsaicin, the main pungent ingredient in hot chili 
peppers (Fig. 3). The burning sensation of chili pepper is 
mediated via activation of capsaicin receptor (TRPV1). 
Recent studies demonstrate that pain relieving action of 
curcumin is due to antagonism of TRPV1 [100, 112]. In 
addition, antihyperalgesic action of curcumin is mediated 
by inhibition of other ion channels like TTXR-Na + chan-
nel and ASICs [103, 111]. Curcumin-induced antinocic-
eptive action on neuropathic pain has also been reported 
via inhibition of TNF-α/NO release [97, 99], as well as by 
differential regulation of descending monoamine system 
and opioid receptors [101, 107, 113].

In spite of tremendous potential of curcumin in pain 
relief, its use is generally limited by its poor bioavailabil-
ity. Therefore, research has been focused to increase its 
bioavailability by nano-encapsulation [109, 236, 237]. 
Nano-encapsulated curcumin shows better bioavailability 

Table 1   (continued)

Sr. no. Herbal compound Model of hyperalgesia Molecular targets References

53 Carnosic acid Neuropathic pain sirtuin1 and p66shc [225]
54 Paeoniflorin Chemotherapy induced pain adenosine A1 receptors [226]

Fig. 3   Structural similarity 
between curcumin and capsaicin
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and relieve pain by inhibiting brain-derived neurotrophic 
factor (BDNF) and P2X purinoceptor 3 (P2X3) [109, 237].

Capsaicin

Capsaicin is the main pungent ingredient in hot chili peppers 
has been used as a topical analgesic for centuries. Capsaicin 
is a highly selective agonist for TRPV1 receptors expressed 
in afferent neuronal C fibers and some Aδ fibers. Prolonged 
activation of TRPV1 by capsaicin through enzymatic or 
osmotic changes results in loss of receptor functionality, 
causing impaired local nociception for extended periods 
[156]. Capsaicin-induced local depletion of substance P was 
previously thought to be its mechanism for pain relief. How-
ever, this is no longer considered to be the case, rather other 
mechanisms may be involved [157]. For instance, Borbiro 
et al (2015) have demonstrated that activation of TRPV1 
inhibits Piezo channels through a calcium-induced depletion 
of phosphoinositides [158]. This regulation could contrib-
ute to the cellular mechanisms by which the TRPV1 acti-
vation by capsaicin mitigates mechanical hypersensitivity. 
Recently capsaicin is demonstrated to alleviate inflammation 
by targeting MAPK-PGE2 pathway which has broadened our 
understanding for new avenues of therapy in neuro-inflam-
matory pain [160].

Resveratrol

Resveratrol is a natural polyphenol and a phytoalexin pro-
duced by several plants in response to injury or when the 
plant is under attack by pathogens such as bacteria or fungi 
(Fig. 4). Sources of resveratrol in food include the skin of 
grapes, blueberries, raspberries, mulberries. Richest sources 
of resveratrol are grapes and red wine. It has no known toxic 
side-effects [238]. The anti-inflammatory activity of resvera-
trol has been well documented and can be ascribed to inhi-
bition of pro-inflammatory cytokines, chemokines and pro-
motion of anti-inflammatory cytokine IL-10 [88, 114, 120]. 

It is reported to suppress the nociceptive neuronal activity 
[239, 240]. Resveratrol could be a complementary and alter-
native medicine to clinical pain management approaches, 
especially in patients with chronic severe pain being treated 
with morphine for long time through action on the NMDA 
receptors and neuroinflammatory responses [115, 241, 242].

Previous reports indicate anti-nociceptive action of res-
veratrol by inhibition of COX-1 and COX-2 activity during 
inflammation-induced hyperalgesia [121, 122]. But now it is 
almost established that resveratrol decreases the production 
of prostaglandin E2 (PGE2) by inhibiting the cyclooxyge-
nase (COX)-2 cascades [121]. Inhibitory action of resvera-
trol on spinal COX-2 expression has also been demonstrated 
in our lab [87].

In addition to anti-inflammatory mechanism, anti-hyper-
algesic action of resveratrol is also supported by modula-
tion of the activity of voltage’-gated and ligand-gated ion 
channels at peripheral and central levels. Resveratrol has 
been reported to modulate the excitability of neurons in the 
peripheral nervous system by activating voltage-dependent 
and transient receptor potential (TRP) channels [123–126]. 
Inhibition of TRP ankyrin 1 (TRPA1), a mechano-sensitive 
channel by resveratrol [126], suggests that it inhibits action 
potential firing via the mechanical transduction process. 
Moreover, Na+ and K+ ion channels of DRG are also modu-
lated by resveratrol [124, 127]. Furthermore, antinociceptive 
effect of resveratrol after systemic administration appears 
to be mediated via an opioidergic mechanism [243]. Inter-
estingly, opioidergic and inflammatory pathways are linked 
with concomitant ROS generation [244]. ROS is now con-
sidered as an essential component of hyperalgesia devel-
opment. Therefore, anti-oxidant property of resveratrol is 
supposed to a key property which might be employed in 
most of its anti-hyperalgesic mechanisms [245, 246]. In 
this context, we recently analyzed the effect of resveratrol 
treatment on modulation of endogenous antioxidant defense 
system in peripheral and central nervous system. We found a 
correlation between modulation of antioxidant enzymes and 
anti-hyperalgesic effect of resveratrol. Furthermore, ROS 
scavenging property of resveratrol was also manifested in 

Fig. 4   Structure of resveratrol 
and quercetin
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modulation of ROS sensitive signaling pathway such as 
TNFR1-ERK signaling [89]. ERK activation in spinal dorsal 
horn is now considered as hallmark of hyperalgesia which 
serves as a single convergence point for several signaling 
pathways; therefore, inhibition of ERK signaling in spinal 
cord further strengthens the candidature of resveratrol as 
a potent anti-hyperalgesic agent [85]. Resveratrol potently 
inhibits IL-6-mediated signaling to ERK in sensory neurons, 
blocking the perception of pain. Resveratrol administered at 
the time of incision is capable of completely blocking the 
development of persistent pain sensitization by upregulat-
ing the N-methyl-D-aspartate receptor (NMDAR) which is 
thought to be significant in morphine tolerance. Blocking 
NMDAR function effectively weakens tolerance to morphine 
and increases morphine’s analgesic properties [115]. Inhi-
bition of microglial activation via AMPK signaling by res-
veratrol further contributes to reduce morphine’s tolerance 
[128, 247]. Other targets of resveratrol during hyperalgesia 
are P2X purinoceptor 7 (P2X7) and Sirtuin 1 (Sirt1) [116, 
117, 119, 129]. Recent reports suggest its antihyperalgesic 
action by inhibiting glial activation [248].

Quercetin

Quercetin, a plant polyphenol is one of the most abundant 
dietary flavonoids, found in many fruits, vegetables, leaves, 
and grains (Fig. 4). Quercetin is classified as an antioxidant 
and is reported to exhibit a wide range of pharmacologi-
cal properties, for example, anti-inflammatory and antican-
cerous [249], anti-hepatic fibrosis [250], anti-hyperalgesic 

[131], and neuroprotective in different animal models of 
neuropathy [132, 133, 251].

Quercetin is a non-specific protein kinase enzyme inhib-
itor [252]. The analgesic effects of quercetin observed in 
models of nociception were described to be dependent on 
many mechanisms, including NO production, activation of 
GABA and serotonin receptors, opioid like effects, inhibi-
tion of TRPV1 and NMDAR, inhibition of inflammatory 
cytokines (TNF-α and IL-1β) and inflammatory enzyme 
(COX-2) as well as by reducing oxidative stress [130, 253]. 
Quercetin is reported to elucidate its neuroprotective effect 
in diabetic neuropathy [251], alcohol-induced neuropathy 
[133], arthritic pain [138, 139, 254–256], adenomyosis-
induced hyperalgesia [136], cancer-evoked pain [137] and 
paclitaxel-induced nuropathic pain [134]. Quercetin is a 
potential molecule for the treatment of muscle pain condi-
tions. It reduces muscle mechanical hyperalgesia by inhibit-
ing myeloperoxidase (MPO) and NAG activities, cytokine 
production, oxidative stress, COX-2 and NFκB activation; 
and by inducing Nrf2 and HO-1 and glial cells’ activation 
[135, 257]. Recently, Nie et al. (2017) have reported that 
quercetin decreases hyperalgesia by decreasing the expres-
sion levels of TRPV1, pp38, and pERK in DRG neurons 
suggesting that potential mechanism of action of quercetin 
is through reduced central sensitization [136].

Eugenol

Eugenol is a colorless to pale yellow, aromatic oily liquid 
extracted from certain essential oils especially from clove oil 
(80–95%), nutmeg, cinnamon, basil, and bay leaf. Eugenol 

Fig. 5   Structure of eugenol, 
EGCG, and naringenin
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(4-allyl-2-methoxyphenol) a methoxyphenol with a short 
hydrocarbon chain is a member of the phenylpropanoids 
class of chemical compounds (Fig. 5).

Pharmacologic studies have demonstrated that eugenol 
has anticonvulsant [258], local anesthetic [259], antistress 
[260], and anti-oxidation activity because of its ability to 
reduce superoxide to H2O2 [261] or to scavenge the free 
radicals through chelation of metal ions [262]. It shows 
anti-bacterial [263], antifungal [140], and anti-inflamma-
tory activity by inhibiting inflammatory mediators such as 
COX-2, IL-1β, and TNF-α in LPS-activated macrophages 
and analgesic activity due to selective binding at the capsai-
cin receptor [264]. In pre-clinical studies, eugenol shows its 
antihyperalgesic action in neuropathic and arthritic hyperal-
gesia [142, 265, 266]. Eugenol is used as a local anesthetic. 
Reversible inhibition of nerve impulse and compound action 
potentials by eugenol was recorded in various nerves includ-
ing tooth pulp nerve, sciatic nerve, and superior cervical 
ganglion neurons of rats [267]. It has been extensively used 
as a therapeutic agent in dentistry for sedation in patients 
with toothache, pulpitis, and dental hyperalgesia.

Eugenol successfully inhibited voltage-gated sodium 
channels when tested in dental primary afferent neurons 
[144] and DRG neurons [145] of rats, suggesting that euge-
nol might block action potentials in both nociceptive affer-
ent fibers. Supporting evidence is yet to be found whether 
eugenol binds directly to voltage-gated sodium channels and 
modulate; however, it is clear that modulation of voltage-
gated sodium channels is a mechanism that contributes to 
the analgesic action of eugenol. Voltage-gated potassium 
channels play roles in repolarization of cell membrane after 
action potential firing. Eugenol has been found to inhibit 
voltage-gated potassium channels in both capsaicin-sensitive 
and capsaicin-insensitive neurons [141]. Eugenol exerts its 
anesthetic action via antagonism of NMDAR, an NMDA-
sensitive ionotropic glutamate receptor [268] that plays an 
important role in synaptic modulation and memory function.

Naringenin

Naringenin is a bitter and colorless flavonoid, predomi-
nantly found in grapefruit (Fig. 5). It has shown several 
biological activities like antioxidant, anti-inflammatory, 
anti-cancerous, and neuroprotective effects in several 
studies. Likewise, its antihyperalgesic potential has been 
revealed during past 5 years. Till date, its antihyperalge-
sic potential could be attributed to its antioxidant prop-
erty. The anti-hyperalgesic potential of naringenin in 
diabetic neuropathy is shown by modulation of oxidative 
and inflammatory markers [149] and by improvement 
in the activity of antioxidant enzyme superoxide dis-
mutase (SOD) [150]. Further studies revealed its effect on 

ROS-dependant downstream signaling pathways in inflam-
matory hyperalgesia. Recently, naringenin has been dem-
onstrated to show its effect on superoxide anion-induced as 
well as CFA-induced hyperalgesia via modulation of oxi-
dative stress, cytokines, nuclear factor erythroid 2-related 
factor 2 (Nrf-2), and NO − cGMP − PKG pathway [147, 
148]. Furthermore, naringenin treatment is also effective 
in neuropathic pain by inhibition of microglial activation 
in spinal cord [146]. However, use of naringenin as antihy-
peralgesic agent is limited due to its poor bioavailability. 
Attempts should be made to increase its bioavailability 
either by structural modification or by nano-conjugation 
in order to attain final development.

Epigallocatechin gallate (EGCG)

Epigallocatechin gallate (EGCG), also known as epigal-
locatechin-3-gallate, is the most abundant catechin in 
tea, found in high content in the dried leaves of green tea 
(Fig. 5). It is a polyphenol which has recently attracted 
several scientists across the globe due to its tremendous 
potential to affect human health and disease. EGCG is 
known to have neuroprotective effects in various patholog-
ical states in the nervous system [269], which is generally 
attributed to its antioxidant property. Initial studies have 
shown that its antioxidant property may also be exploited 
for relief in neuropathic pain. The antihyperalgesic action 
of EGCG is suggested to be brought by inhibition of spi-
nal nNOS which has encouraged researchers to exploit 
the antioxidant property of EGCG for relief in neuro-
pathic patient [153]. Similarly, its potential to decrease 
diabetes-induced neuropathic pain is demonstrated by 
reduction in spinal ROS [151]. Further studies suggest 
the involvement of other inflammatory mediators in its 
antihyperalgesic action. For instance, intrathecal injec-
tion of EGCG is reported to improve the pain behaviors in 
CCI-induced neuropathic pain which is accompanied by 
decreased expression of TLR4, NF-κB, HMGB1, TNF-α, 
and IL-1β and increased content of IL-10 in the spinal 
cord [152]. Recent reports suggest a new role of EGCG 
during alleviation of neuropathic pain, i.e. inhibition of 
neuronal–microglial communication. It is attained by 
inhibition of chemokine CX3CL1 and RhoA expression 
in spinal cord [154, 155].

In general high doses of EGCG are required for treat-
ment of neuropathic pain. Therefore, administration of 
pure EGCG in pills or capsule forms may be appropriate 
for alleviating neuropathic pain [154]. However, further 
research evidences are required before implementation of 
this mode of treatment.
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Summary and future scope

A number of inflammatory mediators like pro-inflammatory 
cytokines TNF-α, IL -1β, IL-6, and inflammatory enzymes 
COX, NOS; nociceptive receptors TRPV, TRPA, TRPM, 
NMDAR, AMPAR, and channels ASIC, KCNK; and inflam-
matory pathways like NF-kB pathways and MAPK pathways 
provide specific molecular targets for pain therapy. We have 
reviewed the mechanism of action of herbal products of 
recent interest and the target points which are being inter-
vened in treating inflammation and hyperalgesia.

An antihyperalgesic drug should be able to act at periph-
eral level or central level or at both levels simultaneously, 
depending upon different etiologies of different pain condi-
tions. Therefore, pharmacognocy and pharmacokinetics of 
herb-derived phytochemicals is needed before therapeutical 
use. Another concern is the poor absorption and, therefore, 
low bioavailability of most of the phytochemicals. Their 
tissue availability may be improved by some structural 
modifications or by targeted nano-delivery. Furthermore, 
toxicological parameters must be checked in this course. 
The scientific development in this direction is not satisfac-
tory. Future research should focus on pharmacokinetics, 
targeted nano- delivery, and toxicological parameters of 
phytochemicals.
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