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Abstract

Introduction Sepsis is a complex inflammatory disorder

believed to originate from an infection by any types of

microbes and/or their products. It is the leading cause of

death in intensive care units (ICUs) throughout the globe.

The mortality rates depend both on the severity of infection

and the host’s response to infection.

Methods Literature survey on pathobiology of sepsis in

general and failure of more than hundred clinical trials

conducted so far in search of a possible cure for sepsis

resulted in the preparation of this manuscript.

Findings Sepsis lacks a suitable animal model that

mimics human sepsis. However, based on the results

obtained in animal models of sepsis, clinical trials con-

ducted so far have been disappointing. Although

involvement of multiple mediators and pathways in sepsis

has been recognized, only few components are being tar-

geted and this could be the major reason behind the failure

of clinical trials.

Conclusion Inability to recognize a single critical medi-

ator of sepsis may be the underlying cause for the poor

therapeutic intervention of sepsis. Therefore, sepsis is still

considered as a disease—in search of cure.

Keywords Sepsis � Lipopolysaccharide (LPS) �
Toll-like receptors � Cytokines � Activated protein C

Introduction

‘‘Small creatures, invisible to the eye, fill the atmosphere

and breathed through the nose cause dangerous dis-

eases’’—a definition for Sepsis given by an ancient Roman

scholar and writer—Marcus Terentius Varro (116 BC–27

BC) [1]. Today, the world’s human population has crossed

seven billion and the technology in the field of healthcare

to predict/manage diseases is also developed to a great

extent. Despite such great advancements in science, human

population is still susceptible to diseases caused by

pathogenic microorganisms and one such disease/syn-

drome that has become a nightmare is ‘‘SEPSIS’’—a

condition of overwhelming systemic inflammation initiated

in response to an infection by microbes and/or their

released endotoxins leading to multiple organ dysfunction

syndrome (MODS) and death [2, 3].

Sepsis accounts for high mortality rates standing at more

severe than breast cancer, prostate cancer and HIV/AIDS

combined [4], or Hepatitis [5] and continues to be a major

life threatening condition, taking more and more lives. The

causative agents/organisms behind this devastating syn-

drome are believed to be microbes [6, 7] and/or their

products [8].

Hyperactivation of the inflammatory response is a

remarkable feature of sepsis, which can be initiated at any

site vastly by bacteria and/or its prime product—

Lipopolysaccharide (LPS) [9]. However, targeting either

whole bacteria [10] or LPS [11], their receptors [12] and

the downstream pro-inflammatory mediators [11] involved

in exaggerating the inflammation never lead to a fruitful
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outcome of reducing mortality. This indicates the

involvement of other bacterial components such as mem-

brane lipoproteins in exaggerating the inflammatory

process, which are previously unappreciated.

Quantification of pro-inflammatory cytokines is an

extensively employed method to determine the extent of

inflammatory insult and this holds good in case of sepsis

too [13]. Besides, few molecules are identified as the early

mortality predictors, where their levels predict the early

mortality of patients with severe sepsis [14–17]. Although

these early mortality predictors are proven to be the best

markers of severe sepsis, they need extensive validation for

their use in clinical practice [18, 19].

With the failure of more than 100 clinical trials [20] and

early-goal directed therapy (EGDT) formulated by the

‘‘Surviving Sepsis Campaign’’ (SSC) committee [21] in

reducing the mortality of patients with severe sepsis and

septic shock, researchers are now concentrating on several

new strategies so as to come up with an efficient drug to

overcome this devastating disease.

Although proven to be successful in animal models of

sepsis, none of the drugs reached the market, clearing the

hurdles of clinical trials. These unsatisfactory results

obtained in translating the treatment options to bedside

may be attributed to the disadvantages of each animal

model employed in the studies [22]. Besides, development

of new strategies employing modern technology for the

identification of cause and disease progression, use of

combination of drugs and identification of new markers

which can predict the mortality of a patient have led to the

better understanding of pathophysiology associated with

the diseased state.

Definitions for sepsis

Although, the word ‘sepsis’ is under use for more than

2700 years [23], a perfect and universally agreeable defi-

nition was lacking to define sepsis and related disorders. To

solve this issue, and to provide a conceptual and practical

framework to define the systemic inflammatory response to

an infection, the American College of Chest Physicians

(ACCP) and the Society of Critical Care Medicine (SCCM)

hosted a ‘‘Consensus Conference’’ in August 1991 [24] at

Chicago, USA and designed various criteria for defining

sepsis and related disorders (Fig. 1). These definitions

served as the basis for designing inclusion criteria for

various clinical trials and also helped in better under-

standing of the pathophysiology associated with sepsis and

related disorders. Based on the subsequent understandings

in the pathophysiology of sepsis, experts in the field deci-

ded to revisit and modify the earlier definition of sepsis

so as to reflect the recent understandings in the

pathophysiology of sepsis and related disorders. The ‘‘In-

ternational Sepsis Definitions Conference—2001’’, jointly

organized by SCCM, The European Society of Intensive

Care Medicine (ESICM), ACCP, the American Thoracic

Society (ATS), and the Surgical Infection Society (SIS) in

Washington D.C. USA [25], resulted in no new or better

definitions, as there was no evidence in support of replac-

ing the existing definitions for sepsis and related disorders

and hence, the earlier definitions were retained (Fig. 1).

The SCCM in association with ESICM and the Inter-

national Sepsis Forum (ISF) initiated ‘‘Surviving Sepsis

Campaign’’ (SSC) in the year 2002. The goal was to

understand the pathophysiology of sepsis and related dis-

orders, designing appropriate definitions, improving

diagnosis, and treatment options thereby to reduce the

mortality rate due to severe sepsis and septic shock. To

date the SSC committee has met four times and has suc-

cessfully put forth the international guidelines for

management of severe sepsis and septic shock in the SSC-

2012 meeting [26]. A 7.5 year study as per SSC-2004

guidelines by Levy et al. [27] to determine the association

of compliance with the SSC performance bundles and

mortality indicates a 25 % relative risk reduction in mor-

tality rate.

Epidemiology of sepsis

Sepsis and related disorders are the leading cause of death

throughout the world accounting for 19 million cases each

year [28] and 1,400 deaths each day [29]. In a developed

country like United States alone, the incidence of sepsis is

estimated to be 1,655,000 [30] resulting in more than

250,000 deaths each year [31]. This has become a major

economic burden to United States that accounts for a total

of $16.7 billion towards healthcare [29].

Fig. 1 Classification of sepsis based on the severity of infection and

criteria for defining each group
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The result of a multicentre, prospective observational

study of 5478 patients admitted at various Intensive Care

Units (ICUs) in India shows 25 % of the patient admissions

are due to SIRS and organ dysfunction. Out of all admis-

sions the incidence of severe sepsis was 16.45 % and the

mortality rate was 12.08 %, of which 59.26 % of patients

died of severe sepsis [32].

What are the causes of sepsis?

Sepsis is a result of an infection from any microorganisms

(Bacteria/Virus/Fungi) [33] with bacteria being the com-

monest (Table 1). It is estimated that there are ten bacteria

for every human cell and human evolution occurred in

parallel with bacteria [34], allowing them to symbiotically

inhabit many vital organs such as buccal cavity, gastro-

intestinal tract, skin and nasal linings of human body.

However, many times, when our microbial neighbors

penetrate previously negotiated boundaries, complications

arise.

The infection, being the primary cause, can be initiated

anywhere in the body, especially in the urinary tract [35],

abdomen [36], blood stream [37] or lungs [38]. The

microbial invasion activates the host immune system

leading to the recruitment of first line of cells of innate

immune system. These immune cells abrogate the further

invasion and multiplication of microbes by phagocytosis

and killing [39]. However, the results of two popular

clinical trials [40, 41] using anti-microbial components as a

possible cure for sepsis syndrome was in vain. This indi-

cates whole bacteria are not a prerequisite for initiating

sepsis. Even the fragmentation products produced after

bacterial killing by phagocytic cells are probably more than

sufficient to elicit a strong inflammatory response leading

to sepsis, as evident from the negative blood cultures

obtained in severe sepsis patients [42]. One such compo-

nent of gram-negative bacterial membrane, widely

employed as a surrogate endotoxin in research is the

Lipopolysaccharide (LPS).

Lipopolysaccharide (LPS): the bacterial endotoxin

LPS is the major component of gram-negative bacterial

membrane. It is under experimental research since its dis-

covery in 1894 by a German Physician, Richard Friedrich

Johannes Pfeiffer who coined the term ‘‘Endotoxin’’ [43].

It is estimated that each bacterial cell contains two-million

LPS molecules [44], covering approximately 75 % of the

membrane surface [45].

LPS is a complex molecule, comprised of an O-specific

chain (O-antigen), core oligosaccharides and a covalently

bound Lipid A moiety [46]. LPS is the most studied

pathogen associated molecular pattern (PAMP) well known

to elicit its actions through Toll-like receptor-4 (TLR4); a

type of pattern recognizing receptor (PRR) expressed on

the cells of innate immune system [47].

Activation of TLR4 by LPS is not a simple mechanism

which involves many crucial molecules that carry LPS to

TLR4. An acute phase protein produced in the liver,

Lipopolysaccharide binding protein (LBP), mediates the

decisive step of LPS recognition by binding to Lipid A

moiety and forming a LPS-LBP complex [48]. This com-

plex is then recognized by the Cluster of Differentiation 14

(CD14) receptor, a surface molecule that is also known to

form a tertiary complex [49] helping in presenting LPS to

TLR4 [50]. Once bound, the TLR4 undergoes dimerization

with myeloid differentiation factor 2 (MD2) bringing their

intracellular Toll/interleukin-1 receptor (TIR) domains

together and allowing the binding of other adaptor proteins

[51]. Recruitment and binding of adaptor proteins initiate

the TLR4 signaling cascade ending up in the activation and

nuclear translocation of NF-jB [51], which further leads to

the upregulation of a battery of pro-inflammatory cytokines

such as IL-1b, IL-6, IL-8, TNF-a (Fig. 2) along with other

molecules such as, COX-2, E-Selectin, MCP-1 and iNOS

[52–55].

However, strategies of using monoclonal antibodies and

receptor antagonists against LPS and TLR4 to block the

deleterious effects initiated by LPS have been in vain,

suggesting that LPS is not the only component of bacterial

membrane responsible for inducing all the lethal symptoms

in patients with severe sepsis and septic shock. This

hypothesis is also evident from the study conducted by

Freudenberg et al. [56] where the mice strains having

Table 1 List of Bacteria and their common site of infection

Site of infection Bacteria

Skin and soft tissue infections Streptococcus pyogenes

Staphylococcus aureus

Lungs Streptococcus pneumoniae

Hemophilus influenzae

Klebsiella pneumoniae

Legionella pneumophila

Mycoplasma pneumoniae

Abdomen Escherichia coli

Klebsiella pneumoniae

Enterobacter cloacae

Urinary tract Escherichia coli

Klebsiella pneumoniae

Enterobacter cloacae

Pseudomonas aeruginosa

Proteus spp.
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mutation in their Tlr4 gene (C3H/HeJ and C57BL/10ScCr)

were resistant to LPS action, yet highly susceptible to

gram-negative infection, suggesting the involvement of

other components of bacterial membrane in eliciting

inflammation.

Bacterial lipoproteins and peptides are equipotent
as LPS

The probable reason behind the failure of vast number of

clinical trials targeting LPS, its receptor TLR4 or down-

stream signaling molecules can be ascribed to the

involvement of other components of bacteria. The

lipoproteins and peptides of microbial origin possessing

N-terminal lipid modifications are also shown to be potent

inducers of inflammation like LPS [57–59]. However, wide

use of LPS in sepsis research has made these components

unappreciated. Bacterial proteins are known to elicit their

inflammatory properties through TLR2 [60], a different but

related receptor dedicated to recognizing PAMPs of

microbial origin.

Braun lipoprotein (BLP) is the next most abundant

component of bacterial membrane after LPS in E. coli. It is

a low molecular weight lipoprotein with its N-terminal

cysteine residue bearing three palmitoyl residues making

the structure a triacylcysteinyl-modified peptide [61]. It is

estimated that each bacterial cell is composed of 105

molecules of BLP [62]. Although purified and character-

ized as a structural component of bacterial membrane over

Fig. 2 Schematic representation of Toll-like receptor signaling

pathway. TLRs specifically recognize bacteria and/or their products

and their activation is mostly dependent on MyD88. Although

activation of TLR4 & TLR2 initiates the pathway in a similar manner

leading to the activation of NFjB, there are also notable differences

in both the pathways and this schematic diagram represents their

major differences. Interferon (a/b) genes are predominantly upreg-

ulated by the activation of TLR4, while Casapase 8 dependent

apoptotic machinery is activated predominantly by the activation of

TLR2. Tenascin C, a glycoprotein with a myriad of functions is

recently known to be upregulated in response to TLR2 activation in

in vitro model [59]. (The pathway was designed using ChemBioDraw

Ultra 12.0 software). LBP lipopolysaccharide binding protein, TLR

toll-like receptor, MD2 lymphocyte antigen 96, CD-14 cluster of

Differentiation 14, TRAM toll-like receptor 4 adaptor protein, TIRAP

toll-interleukin 1 receptor (TIR) domain containing adaptor protein,

MyD88 myeloid differentiation factor 88, TRIF TIR-domain-contain-

ing adapter-inducing interferon-b, TRAF tumor necrosis factor

receptor-associated factor, IFN interferon, IRAK interleukin-1 recep-

tor-associated kinase, RIP2 receptor-interacting protein 2, FADD fas-

associated death domain protein, PI3K phosphoinositide 3-kinase,

NF-jB nuclear factor jB
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40 years ago [63], BLP has not gained much attention as an

inflammatory component except for few reports describing

its potent inflammatory roles in in vitro systems. BLP has

been shown to activate macrophages [64], lymphocytes

[65] and endothelial cells [57] as efficiently as LPS. The

experiments conducted by us clearly indicate the potential

pro-inflammatory roles of purified BLP in Swiss albino

mice when administered intraperitoneally. The results

show endotoxemia-like pathology, along with the upregu-

lation of pro-inflammatory cytokines, while these effects

were not observed in BLP-injected TLR2 knockout mice

(Lakshmikanth et al., unpublished data). Researchers often

use Pam3CSK4, a synthetic structural analogue of BLP

while targeting various drugs against TLR2. However,

Pam3CSK4 has been shown to be less potent when com-

pared to intact BLP [57] and hence this aspect also needs to

be considered while targeting TLR2.

Although activation of TLR4 and TLR2 leads to similar

outcomes such as overproduction of pro-inflammatory

mediators, there are quite a few differences. This is evident

from the study conducted by Neilsen et al. [57] where,

IFN-c-inducible protein-10, a CC-chemokine was specifi-

cally upregulated by LPS (Fig. 2), but not by BLP.

Similarly, a report by Barrenschee et al., [59] indicates

Macrophage-activating lipopeptide-2 (MALP-2), a TLR2

agonist from Mycoplasma fermentas, uniquely upregulated

by inflammatory marker, tenascin C but not by LPS

(Fig. 2). Hence, despite targeting TLR4, TLR2 pathway

should also be considered while attenuating sepsis and

related inflammatory disorders.

Early mortality predictors of severe sepsis

Besides traditional inflammatory markers implicated in

sepsis and related disorders [52–55], a variety of molecules

have been identified as the predictors of early mortality.

Macrophage migration inhibitory factor (MIF) released

from white blood cells in response to their activation by

bacterial components are known to exaggerate the inflam-

matory mechanisms [66]. An increase in serum levels of

MIF is associated with an increased risk towards early

mortality during severe sepsis [67]. Similarly, procalci-

tonin (PCT)—a peptide precursor of calcitonin is produced

from the neuroendocrine cells of lungs and intestine in

addition to its production from the thyroid gland. PCT

levels increase in response to infection and is more specific

for bacterial infections when compared with infections by

other microbes [68]. The higher level of PCT is often

observed in sepsis patients and the level of PCT depicts the

severity of the diseased state [69]. Presepsin, a glycopro-

tein expressed on monocytes and macrophages has been

shown to be superior over PCT in terms of specificity and

its increased levels correlate with the in-hospital mortality

rates of patients with sepsis [70]. Yet another useful

component of serum which can be employed as a risk

marker to predict mortality is lactate, as its levels are

shown to be at the higher end in patients with sepsis and

related disorders [71]. Although, serum lactate levels cor-

relate with organ dysfunction [72], a study by Mikkelsen

et al. [73] indicates the ability of initial serum lactate levels

to predict mortality irrespective of organ dysfunction.

Likewise, higher serum levels of soluble urokinase plas-

minogen activator receptor (suPAR), a marker of immune

activation has also been found to be a marker of mortality

risk prediction [74].

Strategies that failed in attenuating the severity
of sepsis

Despite enormous advancements in understanding the

pathophysiology of sepsis, the mortality rate has failed to

show any major decrease as evident from the failure of

more than 100 clinical trials [20]. The only drug which

made an attempt to reach the market after FDA approval

was ‘XIGRIS’ (activated Drotrecogin alfa), a recombinant

form of activated protein C (rhAPC). Unfortunately, this

was also pulled down from the market by Eli Lilly, Indi-

anapolis, USA [75, 76] and that has left the critical care

specialists with no choice of a single medication for the

treatment of sepsis and related disorders. Out of all the

molecules employed in clinical trials with an aim to reduce

the severe mortality rates due to sepsis and related disor-

ders, very few of them gained a lot of importance as they

were successful in reducing the mortality in homogeneous

population. They include corticosteroids [77], antibodies

against LPS [78–80], antibodies against key cytokine

mediator TNF-a [81–85], receptor antagonists for TLR4

[86, 87], interleukin-1 receptor (IL-1R) [88] and bradykinin

receptor [89], blood coagulation pathway inhibitors [90,

91] and the agents that block platelet activating factor

(PAF) mediated effects [92, 93]. However, none of them

were successful in clearing the phase III clinical trials

(Table 2).

Never ending failure of clinical trials made the SSC

committee employ early-goal directed therapy (EGDT) to

simplify complex processes while treating the patients with

severe sepsis [26]. EGDT include bundles of tasks to be

employed in the first 6 h of admission of patients at the

hospital, some of which include: (1) obtaining blood cul-

tures before treating with antibiotics and administering

with broad spectrum antibiotics, (2) imaging studies to

confirm the potential source of infection and their control
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Table 2 Year-wise list of most important failed clinical trials in search of a cure for sepsis

Year(s) Strategy employed Target Patient

group size

Reference(s)

1987 and 1989 Methylprednisolone HPA axis 651 [182–184]

1988 Human IgG antibody to Escherichia coli J5 and a

standard IgG preparation

Core region of endotoxin (LPS) 100 [78]

1991 Human monoclonal IgM antibody (HA-1A) Lipid A domain of endotoxin LPS 543 [79]

1994 Human monoclonal IgM antibody (HA-1A) Lipid A domain of endotoxin LPS 621 [185]

1994 Human monoclonal IgM antibody (HA-1A) Lipid A domain of endotoxin LPS 600 [186]

1994 BN 52021 (Ginkgolide B) Platelet Activating Factor Receptor (PAF-R)

antagonist

262 [187]

1995 Murine monoclonal antibody (E5) Gram-negative bacterial endotoxin LPS 847 [80]

1995 Anti-tumor necrosis factor alpha monoclonal

antibody (TNF-alpha MAb)

Cytokine pathway 994 [81]

1995 MAB-T88

Human monoclonal IgM antibody directed against

the enterobacterial common antigen (ECA)

Gram-negative bacterial endotoxin LPS 826 [188]

1995 Taurolidine Anti bacterial agent 100 [40]

1995 Bradycor(TM) (CP-0127) Bradykinin receptor antagonist 251 [89]

1996 Dimeric form of the type II TNF receptor linked

with the Fc portion of human IgG1 (TNFR:Fc)

Neutralization of TNF-alpha 141 [83]

1996 BAY 9 1351, a murine monoclonal antibody to

recombinant human tumor necrosis factor alpha

(TNF-a)

Cytokine pathway 420 [82]

1997 Lenercept (p55 tumor necrosis factor receptor

fusion protein)

Neutralization of TNF-a 498 [189]

1997 Human recombinant interleukin-1 receptor

antagonist (rhIL-1ra)

Cytokine pathway 696 [88]

1997 Bradycor (Deltibant, CP-0127) Bradykinin receptor antagonist 504 [190]

1997 Ibuprofen Inhibitor of prostaglandin synthesis (COX

inhibitor)

455 [191]

1998 BAY 9 1351, a murine monoclonal antibody to

recombinant human tumor necrosis factor alpha

(TNF-a)

Cytokine pathway 1879 [85]

1998 BN 52021 (Ginkgolide B) Platelet activating factor receptor (PAF-R)

antagonist

609 [92]

2000 Murine monoclonal antibody (E5) Gram-negative bacterial endotoxin LPS 1090 [192]

2000 rBPI21 Bactericidal/permeability-increasing protein 393 [41]

2000 Lexipafant PAF receptor antagonist 131 [193]

2000 BB-882 PAF receptor antagonist 152 [194]

2001 Lenercept (p55 tumor necrosis factor receptor

fusion protein)

Neutralization of TNF-alpha 1342 [84]

2003 LY315920Na/S-5920 Inhibition of phospholipase A2 type IIA 586 [195]

2003 Tifacogin (recombinant tissue factor pathway

inhibitor)

Blood coagulation pathway 1754 [196]

2004 Recombinant human platelet activating factor

acetylhydrolase (rPAF-AH)

Inactivation of platelet activating factor (PAF) 1261 [93]

2004 NG-methyl-L-arginine hydrochloride (546C88) Inhibition of nitric OXIDE synthase 312 [197]

2005 Drotrecogin alfa activated (Activated form of

Protein C)

Blood coagulation pathway 2613 [198]

2005 LY315920Na/S-5920 Inhibition of phospholipase A2 type IIA 373 [199]

2006 Hydrocortisone and 9-alpha-fludrocortisone HPA axis 354 [200]

2007 Drotrecogin alfa activated (Activated form of

Protein C)

Blood coagulation pathway 477 [201]
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with attention to the balance of risks and benefits, (3)

measuring lactate levels as it is known to be increased

([4 mM/L) in severe sepsis cases due to various factors

[71], (4) fluid resuscitation by administering crystalloids

(30 ml/kg) for patients with hypotension and supplement-

ing albumin to patients who continue to require substantial

amounts of crystalloid to maintain adequate mean arterial

pressure, and (5) applying vasopressors for persistent

hypotension [26]. However, large, multicentre, randomized

clinical trials conducted by protocol-based care for early

septic shock (ProCESS) group [94], the Australasian

Resuscitation in Sepsis Evaluation (ARISE) group [95] and

Protocolised Management In Sepsis (ProMISe) group [96]

employing EGDT protocols also resulted in no better out-

comes. These failures have bound clinician’s hands when

treating patients arriving at the emergency departments.

Animal models employed in sepsis research

Animal models play an important role in drug development

by creating a replica of the diseased condition, and an ideal

animal model should mimic and translate all the relevant

information concerned with the progressive pathophysiol-

ogy associated with the diseased state. Wide varieties of

animal models of sepsis have been developed [22] and are

categorized as surgical models and non-surgical models

[97].

Despite being expensive and involving animal welfare

issues, surgical models are the most relevant models of

sepsis [97], since a significant amount of sepsis cases are a

result of an acquired infection during invasive surgery [98,

99]. Based on the surgical procedure involved, the surgical

models of sepsis are of two types [22], one being cecal

ligation and puncture (CLP) model of sepsis—which

involves ligation below the ileocecal valve followed by

puncturing the cecum using a needle so as to leak the fecal

matter into the peritoneal cavity [100] and the other being

colon ascendens stent peritonitis (CASP) model of sepsis—

which involves inserting a stent into the ascending colon so

as to leak abdominal content [101]. Although, both CLP

and CASP models are efficient in bringing up polymicro-

bial sepsis conditions mimicking clinical course of intra-

abdominal sepsis, there are significant differences in bac-

terial load, generation of cytokines and the survival time

[102]. CLP and CASP models also suffer from inconsistent

results as the ligation distance, size of the needle used to

puncture the cecum in CLP model and diameter of the stent

used in CASP model are the major determining factors of

mortality [22, 102, 103].

To overcome the disadvantages of CLP and CASP

models of sepsis, a reliable and reproducible rodent model

of sepsis—‘polymicrobial peritoneal contamination and

infection (PCI) model’ has been developed [104, 105]. PCI

involves the administration of human fecal matter into the

peritoneal cavity of rodents to develop the classical

symptoms of sepsis [104, 105]. In contrast to CLP and

CASP models, the major advantage of PCI model is its

simplicity in terms of sample preparation, injection and the

ease of controlling the severity of infection by manipulat-

ing the amount of fecal matter to be injected [105]. With

these advantages, PCI is now being employed in sepsis

research [104, 106–109].

Yet another surgical model of sepsis is the ‘implantation

model’ which involves implanting a fibrin clot impregnated

with live bacteria into the peritoneal cavity through a major

surgery [110]. Fibrin clots aid in the slow release of bac-

teria into the bloodstream. This model is an elegant one

Table 2 continued

Year(s) Strategy employed Target Patient

group size

Reference(s)

2008 Hydrocortisone HPA axis 499 [202]

2009 Phospholipid emulsion (GR270773) Endotoxin neutralization 1379 [203]

2010 TAK-242, a small-molecule inhibitor of Toll-like

receptor-4-mediated signaling

Toll-like receptor-4 signaling pathway 274 [87]

2010 Eritoran tetrasodium (E5564) Toll-like receptor-4 signaling pathway

inhibitor

300 [204]

2012 Drotrecogin alfa activated (Activated form of

Protein C)

Blood coagulation pathway 1697 [205]

2013 Eritoran tetrasodium (E5564) Toll-like receptor-4 signaling pathway

inhibitor

1961 [86]

2013 Recombinant thrombomodulin (ART-123) Blood coagulation pathway 741 [91]

2014 Pyridoxalated hemoglobin polyoxyethylene (PHP) Hemoglobin-based nitric oxide scavenger 377 [206]
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over others due to slow mortality and choice of organism

based on the field of interest [97], thus allowing the

researcher to design specific drugs based on the organism

being used.

The non-surgical model is the widely used animal model

of sepsis for mimicking pathophysiological conditions

associated with sepsis syndrome as it is more advantageous

in terms of cost and animal welfare issues [97]. It involves

the administration of animals with pathogenic organisms

either in live or heat-killed form or administration of

endotoxins through various routes (i.p/i.v) depending on

the experimental needs. Based on the component of

injections the non-surgical model of sepsis has been cate-

gorized as infection model, which involves injecting live

bacterium and intoxication model, which involves injecting

non-infectious components such as heat-killed bacteria or

bacterial endotoxin LPS [111].

The infection model involving administration of a live

pathogenic organism of interest would induce sepsis [112,

113], however, the spreading of infection, the generation of

inflammatory cytokines and the mortality rates are all

determined by the route of administration [97] and the

bacterial strains used in the experiments determine the

hemodynamic responses [112].

The intoxication model known also as endotoxemia

model of sepsis is the widely used model, since the

administration of LPS mimics almost all the pathological

consequences that occur during sepsis [114]. However,

there are many disadvantages of using endotoxemia model,

since the systemic clinical signs are initiated immediately

after the administration of LPS. For example, the TNF-a
level increases within an hour of LPS administration and

the levels decline after 4 h. But, this is more unlikely to

occur in human system and the inflammatory cytokine

levels may raise based on the severity of infection [114].

The other major disadvantage of using endotoxemia model

is that the concentration of LPS required to elicit strong

inflammatory response is much higher in mice when

compared to humans [115], indicating a variation in the

sensitivity to LPS in different animal species [116]. In

addition to differences in sensitivity among various animal

models of different species, Yang et al. showed variation in

sensitivity to LPS in murine models of sepsis. In this, the

most widely used strains of mice, C57BL/6J strain, shows

less sensitivity to LPS while BALB/c is more sensitive

[117].

All animal models, irrespective of whether surgery is

involved or not, possess disadvantages in addition to var-

ious advantages [118]. So, the researchers should consider

all the disadvantages before opting for a particular animal

model. Unfortunately, an ideal animal model of sepsis is

yet to be developed.

Inclusion of antibiotics along with novel candidate
drugs while treating sepsis

Strategies of targeting a single entity in clinical sepsis

never lead to fruitful outcomes as evident from the failure

of a vast number of clinical trials. Yet another strategy that

could be employed while treating patients with severe

sepsis is the use of antibiotics in combination with candi-

date drug molecule. Although very few reports suggests the

beneficial effects of inclusion of antibiotics along with

various drugs, the results of experiments using animal

models of sepsis clearly demonstrate the potentially bene-

ficial roles of combination therapy in reducing the

mortality rates. Reports by Bauhofer et al. [104] and Aydin

et al. [119] describe the positive effects of combination of

antibiotics with Granulocyte colony stimulating factor (G-

CSF)—a stimulator of bactericidal activity of granulocytes,

in reducing the mortality of animals. Similarly, use of

antibiotics in combination with Tumor Necrosis Factor

Inhibitor and an endotoxin antagonist, E5531, significantly

protected mice from lethality as reported by Fei et al. [120]

and Christ et al. [121], respectively. With these beneficial

effects, including antibiotics along with various drugs

would improve the survival of sepsis patients.

Recent advancements in search of cure for sepsis

Technologies employed in delineating the cause

of sepsis

Decades of struggle in sepsis research has lead to the better

understanding of disease progression. Researchers are now

involved in identifying the exact cause by employing var-

ious advanced technologies so as to treat the patients

immediately in a more specific way. The particular

pathogen behind the microbial infection is being analyzed

by Polymerase Chain Reaction (PCR)-based assays,

replacing the standard microbial culture methods [122,

123]. The disseminated intravascular coagulation is one of

the major problems often observed in patients with severe

sepsis and septic shock [124] and this defect can be

quantified in vitro by modified thromboelastometry [125], a

technique that measures the fibrinolytic activity in whole

blood samples. Quantification of metabolic biomarkers is

of great importance in diagnosing the worsened diseased

state to initiate timely treatment options. For this purpose

Garcia-Simon et al., have developed a 1H NMR based

analysis protocol to quantify the metabolic markers in urine

[126]. However, implementing the use of these techniques

in clinical labs is only after their extensive validation and

most importantly, depends on their cost effectiveness.
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Strategies employed to attenuate cardiac

dysfunction

With the failure of more than 100 randomized clinical

trials [20], researchers are finding new avenues to block

the severity of sepsis and related disorders. Of the organs

most affected during severe sepsis and septic shock,

heart plays a major role [127], as low cardiac output is

often the major problem seen in cases of severe sepsis

resulting in hypoperfusion and end-organ damage [72].

To circumvent the problems associated with low cardiac

output, the ionotropic drug—Levosimendan, a calcium

sensitizer, earlier shown to be effective in animal models

[128, 129] and also to be superior over widely employed

ionotropic drug Dobutamine [130], is now being

employed in clinical trial to test its efficacy in improving

the organ dysfunctions in septic shock patients [121].

Resuscitation using selepressin, a selective vasopressin

type-1a receptor agonist involved in vasodilation has

been shown to be effective in animal models of sepsis

and is also shown to be more effective than vasopressin

in blocking the vascular leakage [131, 132]. Selepressin

is now under phase 2b/3 initiated by Ferring Pharma-

ceuticals for the treatment of septic shock. Trimetazidine

(TMZ), an inhibitor of b-oxidation pathway, has been

shown to possess anti-ischemic activities through exten-

sive utilization of myocardial glucose and maintaining

proper energy metabolism [133]. TMZ has recently

shown to have protective roles by blocking LPS-induced

myocardial dysfunction and apoptosis in experimental

sepsis model [134, 135]. Hence, TMZ can also be a

candidate drug molecule to alleviate the problems asso-

ciated with heart.

Strategies to circumvent the problems associated

with acute kidney injury

Acute kidney injury (AKI) following cardiac dysfunction is

the frequent condition often observed in sepsis patients

[136]. The severity of kidney dysfunction can be deter-

mined by quantifying the serum troponin I level as reported

recently by Thiengo Dda et al. [137]. Administering the

dephosphorylating enzyme, alkaline phosphatase to sepsis

associated AKI patients has shown beneficial effects by

reducing the urinary excretion of tubular injury biomarkers

and plasma markers of inflammation [138]. Recent

prospective, two-center, open-labeled randomized, con-

trolled trials conducted by Abdul-Aziz et al. have shown

the beneficial effects of continuous administration of b-
lactam antibiotics in patients not undergoing renal

replacement therapy [139].

Nuclear proteins as the marker of mortality due

to sepsis

Histones, the component of eukaryotic cell nuclei involved

in folding the DNA into nucleosomes [140] are now shown

to have a role in inflammatory condition, where these

nuclear components are released to the exterior by dam-

aged and activated cells. They possess cytotoxic and pro-

inflammatory effects which depict the severity of inflam-

mation, thereby joining the list of damage associated

molecular patterns (DAMPs) [141]. These released his-

tones act through TLR2 and TLR4 and are responsible for

cytokine release, endothelial dysfunction, end-organ dam-

age and mortality in animal models of sepsis [142, 143].

Infusion of histones in mice has been shown to cause

pulmonary vascular obstruction, induced right ventricular

pressure increase and dilatation leading to cardiac injury

[144]. These deleterious effects are shown to be attenuated

by the use of heparin [145]. Extracellular histone levels are

also shown to predict mortality in sepsis patients [146] and

hence, targeting extracellular histones is of great impor-

tance so as to come up with an efficient drug to treat sepsis

and related disorders.

High-mobility group protein B1 (HMGB1) are the

abundant and ubiquitous chromatin-associated nuclear

proteins [147, 148] belonging to the superfamily of high-

mobility group (HMG) proteins [149]. Its presence is

restricted to nucleus in naive cells because of the presence

of two lysine-rich nuclear localization sequences [150].

However, it is released to the extracellular milieu by var-

ious cell types in response to their activation by various

factors [151–157]. The released HMGB1 may act through

TLR4 [158, 159] or through the receptor for advanced

glycation endproducts (RAGE) [160, 161] leading to the

activation of NF-jB resulting in the production of pro-

inflammatory cytokines [162]. Recent report by Zheng

et al. [163] shows the loss of vascular endothelial mono-

layer integrity in vitro induced by HMGB1 present in the

sera of patients with sepsis. Use of Dabrafenib, a B-Raf

inhibitor, ameliorated HMGB1-induced vascular perme-

ability in addition to blocking HMGB1 release as reported

by Jung et al. [164]. Anti-HMGB1 antibodies are shown to

reduce the LPS-induced lethality in mouse model of

endotoxemia [151] and are also shown to be beneficial in

protecting the mice against endotoxin-induced acute lung

inflammation [165]. Release of HMGB1 (late mediator)

and its inflammatory properties might be the reason behind

the failure of monoclonal antibody therapies directed

against TNF-a or IL-1b (early mediators). Developing an

efficient drug targeting HMGB1 and using it in conjugation

with other drugs would be a wise idea to bring down the

mortality rates associated with sepsis and related disorders.
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Combination therapy as a new strategy to treat

sepsis

Sepsis-induced organ damage is mediated by the involve-

ment of multiple pathways [166] and hence, designing a

single drug to block all the pathways simultaneously is not

feasible. In this regard, researchers are now employing the

use of a combination of drugs to attenuate the septic

challenge in animal models of sepsis. A recent study by

Kwon et al. [167] show the beneficial effect of combination

of niacin and selenium in attenuating the severity of lung

injury and mortality in endotoxemia and CLP models of

sepsis. Besides, treating animals either with niacin or

selenium individually failed to mount the similar response

[167]. In a similar study, Lima et al. [168] have used

monoclonal antibodies against the two major receptors

TLR2 and TLR4 in combination with antibiotics to cir-

cumvent the adverse effects of polymicrobial sepsis. The

results have shown a remarkable improvement in survival

rate in addition to reduced neutrophil infiltration and

cytokine production [168]. Although proven to be benefi-

cial in experimental models of sepsis, the strategies of

using combination of drugs have to undergo validation to

reach clinical trials.

New cell-based therapies against sepsis

Mesenchymal stem cells (MSCs) are shown to be

promising therapeutic options against various tissue inju-

ries and immune disorders [169]. MSCs are shown to be

protective in models of acute lung injury [170], cardiac

dysfunction [171], renal failure [172] and hepatic injury

[173]. Apart from this, MSCs therapeutic roles have been

proved even in animal models of endotoxemia [174, 175]

and polymicrobial sepsis [176, 177]. With all these bene-

ficial roles, MSCs have not yet reached the phases of

clinical trials for the treatment of sepsis [178].

Future perspectives in search of cure for sepsis

Since sepsis is a complex disease involving multimedia-

tors, targeting a single entity is unattainable as evident

from the failure of clinical trials against LPS which throws

light on the involvement of other possible components of

bacterial membrane in the pathogenesis of sepsis. As

observed by us (Unpublished data) and others [57], purified

BLP is as potent as LPS in inducing severe inflammatory

response both in vitro and in vivo. Hence, targeting several

other components of bacteria like BLP along with LPS

would be a good strategy in attenuating the severity of

sepsis. In addition, researchers need to focus on blocking

the deleterious effects mediated by the released nuclear

proteins as they are shown to be the late mediators of

sepsis. Another strategy would be to employ combination

of drugs as they are proven to be beneficial in regulating

the process of initiation and disease progression [168].

Similarly, inclusion of antibiotics in combination with

other standard drugs would improve the survival rates of

sepsis patients as shown in various animal models of sep-

sis. However, the strategy of employing a combination of

drugs needs to be validated both in animal models of sepsis

and clinical trials. Although very few reports suggest the

beneficial roles of adjunct therapy using high-dose of IgM,

enriched intravenous Ig, (IVIG) [179, 180], considering

this option would be a good strategy for the treatment of

patients with sepsis. As the use of MSCs have been proven

to be beneficial in modulating the immune response and

converting the macrophages and neutrophils to anti-in-

flammatory phenotype in animal models of sepsis [181],

clinical trials may be carried out to bring MSCs to market

as one of the therapeutic options.

Conclusion

Although, many of the molecular events occurring during

sepsis are dissected, an appropriate single molecular entity

that needs to be targeted is still a mystery. One can argue

that, in a disease involving multimediators it is unlikely to

have a single entity that can be targeted. Moreover, more

than 100 clinical trials have been undertaken and have

failed to identify a critical mediator for sepsis and related

disorders [20]. Furthermore, this disease/syndrome also

lacks a suitable and appropriate animal model as evident

from the disadvantages of each model [118] and this may

also be the reason behind the failure of so many clinical

trials. Therefore, sepsis is still considered as a disease, in

search of a cure. Hopefully, modern biology will come up

with a suitable animal model or a molecular target so as to

develop a magic bullet to treat this deadly disease soon.
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