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Abstract

Introduction  Chronic pulmonary inflammation has been
consistently shown to increase the risk of lung cancer.
Therefore, assessing the molecular links between the two
diseases and identification of chemopreventive agents that
inhibit inflammation-driven lung tumorigenesis is
indispensable.
Materials and methods Female A/J mice were treated
with the tobacco smoke carcinogen 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) and lipopolysaccharide
(LPS), a potent inflammatory agent and constituent of to-
bacco smoke, and maintained on control diet or diet
supplemented with the chemopreventive agents indole-3-
carbinol (I3C) and/or silibinin (Sil). At the end of the study,
mice were sacrificed and tumors on the surface of the lung
were counted and gene expression levels in lung tissues
were determined by RNA sequencing.
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Results The mean number of lung tumors induced by
NNK and NNK + LPS was 5 and 15 tumors/mouse, re-
spectively. Dietary supplementation with the combination
of I3C and Sil significantly reduced the size and multi-
plicity (by 50 %) of NNK + LPS-induced lung tumors.
Also, we found that 330, 2957, and 1143 genes were
differentially regulated in mice treated with NNK, LPS,
and NNK + LPS, respectively. The inflammatory re-
sponse of lung tumors to LPS, as determined by the
number of proinflammatory genes with altered gene ex-
pression or the level of alteration, was markedly less than
that of normal lungs. Among 1143 genes differentially
regulated in the NNK 4 LPS group, the expression of
162 genes and associated signaling pathways was sig-
nificantly modulated by I3C and/or Sil 4 I3C. These
genes include cytokines, chemokines, putative oncogenes
and tumor suppressor genes and Rosl, AREG, EREG,
Cyplal, Arntl, and Npas?2.

Conclusion To our knowledge, this is the first report that
provides insight into genes that are differentially expressed
during inflammation-driven lung tumorigenesis and the
modulation of these genes by chemopreventive agents.

Keywords Lung tumors - Chemoprevention -
4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone -
Lipopolysaccharide - RNA sequencing

Abbreviations

NNK 4-(methylnitro-samino)-1-(3-pyridyl)-1-
butanone

Sil Silibinin

13C Indole-3-carbinol

RNA-Seq RNA sequencing

LPS Lipopolysaccharide
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Introduction

Lung cancer is the leading cause of cancer death in the
United States and worldwide [1]. Tobacco smoke, which
contains 73 carcinogens, is recognized as the main cause of
cancer [2, 3]. However, only about 10-15 % of smokers
develop lung cancer in their life time [4]. It is not clear why
some smokers develop lung cancer, while others do not.
Epidemiological studies have consistently shown that
smokers with COPD have a significantly increased risk for
lung cancer compared with smokers without COPD [5, 6],
which is one possible explanation for the variable suscep-
tibility of smokers to lung cancer. Agents that contribute to
the inflammatory effects of tobacco smoke include not only
the many organic and inorganic chemicals in the gaseous,
volatile, and particulate phases of cigarette smoke, but also
tobacco-associated microbial elements such as bacteria,
fungi, and diverse microbial toxins [7]. In particular,
lipopolysaccharide (LPS), the major component of the cell
wall of Gram-negative bacteria and a potent inflammatory
agent, has been found in substantial amounts in the main-
stream and sidestream cigarette smoke [8, 9]. Provocation
of healthy volunteers with LPS has been used as a model of
COPD as well as COPD exacerbation [10]. Similarly,
studies in mouse models have shown that LPS-induced
inflammatory and pathologic changes mimic changes ob-
served in human subjects with COPD [11]. We have
recently shown that repetitive administration of LPS to
mice pre-treated with NNK significantly enhanced lung
tumor multiplicity and tumor growth [12].

Although Rudolf Virchow noted, more than a century
ago, the association between chronic inflammation and
cancer [13], the underlying mechanisms are not yet fully
known. Inflammatory signaling pathways and cytokines,
reactive oxygen and nitrogen species, prostaglandins, and
specific microRNAs are incriminated as potential links
between chronic inflammation and cancer [14]. Further
deciphering the molecular signatures of inflammation-dri-
ven tumorigenesis could lead to a better understanding of
how the disease develops and the identification of novel
diagnostic markers and preventive and therapeutic targets.
A promising approach to achieve this goal is next-gen-
eration whole transcriptome RNA sequencing (RNA-Seq).
Compared to microarrays, RNA-Seq has a larger dynamic
range, the ability to detect all expressed transcripts as a
function of depth of read coverage, the ability to detect
transcript structure, and identify long noncoding RNAs that
have important transcriptional and posttranslational gene
regulatory roles [15].

In the present study, we have used RNA-Seq to
characterize gene expression alterations associated with
inflammation-driven lung tumorigenesis and modulation
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of these effects by the chemopreventive agents silibinin
(Sil) and/or indole-3-carbinol (I3C). Mice pre-treated
with the tobacco smoke carcinogen 4-(methylnitro-
samino)-1-(3-pyridyl)-1-butanone (NNK) received LPS,
once a week, throughout the study and were maintained
on a control diet or a diet supplemented with Sil and/or
I3C. Sil is a constituent of the traditional medicinal plant
milk thistle (Silybum marianum), whereas I3C is a
derivative of glucobrassicin found in commonly con-
sumed Brassica vegetables such as cabbage, cauliflower,
broccoli, and Brussels sprouts. We have previously re-
ported the strong antitumor activities of low doses of a
combination of I3C and Sil in cell line and animal
models of lung cancer [16].

Materials and methods
Chemicals, reagents and diets

13C, Sil, and LPS were from Sigma (St Louis, MO). NNK
was synthesized as described elsewhere [17]. Mouse diets
AIN-93G/M were purchased from Harlan Teklad (Madis-
on, WI).

Tumor bioassay

Female A/J mice, 5-6 weeks of age, were acquired from
the Jackson Laboratory (Bar Harbor, ME). Mice were ac-
climated to the laboratory environment for 1 week in a
pathogen-free environment. All experiments were per-
formed according to the US National Institutes of Health
(NIH) Guide for the Care and Use of Laboratory Animals,
and approved by the Institutional Animal Care and Use
Committee, the University of Minnesota.

The tumor bioassay was performed using a mouse
model of inflammation-driven lung tumorigenesis as de-
scribed previously [12]. Briefly, 1 week after arrival, mice
were intraperitoneally treated with a single dose of NNK
(100 mg/kg, in 0.1 ml physiological saline) or the vehicle
alone. Beginning 1 week after NNK administration, groups
of mice were intranasally instilled with LPS (5 pg/mouse
in 50 pL of phosphate-buffered saline), once a week, until
the end of the study. I3C (20 pmol/g diet) and Sil
(20 pmol/g diet) were administered in the diet, individually
or in combination. At week 22, the mice were euthanatized
with an overdose of carbon dioxide. The lungs were har-
vested and the tumors on the lung surface were counted and
their sizes determined under a dissecting microscope. Lung
tissues were preserved in RNA later solution (life tech-
nologies, Carlsbad, CA) and kept at —80 °C until used for
RNA isolation.
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RNA extraction

For mice treated with NNK, NNK + LPS, NNK + LPS
+ I3C, NNK + LPS + Sil and NNK + LPS + Sil + Sil,
lung tumors (from three mice/group, 30 mg tumor tis-
sue/mouse) were dissected, pooled, and used for the
preparation of RNA. Histopathological studies of the tu-
mors showed that all of the lung tumors were at adenoma
stage. For mice treated with physiological saline solution
(control group) or LPS, normal tissue was dissected (from
three mice/group, 30 mg normal lung tissue tissue/mouse)
and used for the preparation of RNA. Total RNA was ex-
tracted from lung tumors or normal lung tissues using the
miRNeasy Mini Kit (Qiagen, Valencia, CA) according to
the manufacturer’s instruction. The concentration (A260)
and purity (A260/A280 and A260/A230) of RNA were
determined using NanoDrop 1000 spectrophotometry. The
integrity of the RNA preparations was confirmed by Agilent
Bioanalyzer and/or Caliper GX. RNA samples with RNA
integrity number higher than seven were selected for RNA
sequencing.

Library preparation and RNA sequencing

Samples were prepared, using a TruSeq RNA Sample
Preparation Kit (version 2), according to the manufactur-
er’s instructions for RNA-Seq sample preparation. Twenty-
one barcoded libraries (average gel size selected inserts of
around 200 bp) were generated by University of Minnesota
Biomedical Genomics Center Core Facility. The libraries
were combined into three pools for sequencing (16 samples
were sequenced in one lane and five samples were se-
quenced across two lanes using an Illumina‘s HiSeq 2000,
50 bp paired-end flow cell for 50 cycles). Twenty million
reads were generated for each of the RNA samples. In the
following step, a filter procedure was applied to remove
sequences with low quality scores.

RNA-Seq data analysis

Paired-end RNA-sequencing data with mate-pair distance
of 100 bp in FASTQ format were imported into CLC Bio
Genomics Workbench 7 (CLC Bio, Qiagen, Boston, MA)
for quality, mapping, and expression analyses. Sequencing
quality analysis was performed using the built-in Se-
quencing QC Report within the Genomics Workbench to
generate detailed reports of sequencing quality and over-
represented sequences analyses. Transcriptomics analysis
was then performed on samples that passed sequencing QC
analysis to detect the expression level of each gene by
mapping the sequencing reads to the latest mouse reference
genome and annotation version mm10. Mapping was also
performed on the inter-genic regions to identify potential

noncoding transcripts. Mapping options were set to the
default settings, with read alignment mismatch cost = 2,
insertion cost = 3, deletion cost =3, length frac-
tion = 0.8, similarity fraction = 0.8, auto-detect paired
distances, strand specific = both, and maximum number of
hits for a read = 10. An expression value for each gene
was set to total exon counts (or total reads successfully
mapped to one or more exons of each gene). Pair-wise
empirical analysis of differential gene expression was
performed on all pairs of sample groups using ‘Exact Test’
for two-group comparisons with trimmed mean of M-val-
ues (TMM) normalization to adjust for differences in
sequencing depths [18], which is the same statistical al-
gorithm implemented in EdgeR Bioconductor package
[19]. False discovery rate (FDR)-corrected p-values of less
than 0.05 and fold change of greater or equal to two were
used as criteria for significantly regulated genes. Pathway
analysis and gene ontology (Ingenuity Pathways Analysis;
IPA, Ingenuity Systems, Inc., Redwood City, CA) were
performed to identify putative diseases and functions as-
sociated with the differentially regulated genes. Genes of
interest were validated by quantitative reverse transcrip-
tase-polymerase chain reaction (QRT-PCR).

Quantitative RT-PCR analysis

RNA (1 pg) was reverse transcribed to cDNA in 20 pL
reaction using the QuantiTect Reverse Transcription Kit
(Qiagen, Valencia, CA) according to manufacturer’s in-
structions. Quantification of mRNAs was performed on
Applied Biosystems 7900HT Fast Real-Time PCR System
with 384-Well Block Module (Life Technologies, Carls-
bad, CA) using QuantiTect SYBR Green PCR Kit (Qiagen,
Valencia, CA) and gene-specific forward and reverse pri-
mers (Supplemental Table S1). One microliter of the
resulting cDNA sample was added to a 10 pL reaction and
the final concentration of each primer is 0.5 M. Samples
were tested in triplicates and no template controls were
included in each set of reactions. Amplification was carried
out using the following conditions: 95 °C for 15 min, fol-
lowed by 40 cycles of 94 °C for 15 s, 55 °C for 30 s, and
70 °C for 34 s. Melt curve analysis was performed at the
end of every qPCR run. All samples were normalized to an
internal control gene, Actb (B-actin), and the comparative
Ct method was used to assess the relative gene expression.

Results
Differential gene expression analysis by RNA-Seq

The mouse tumor bioassay has clearly demonstrated that
LPS-induced chronic pulmonary inflammation enhanced
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Table 1 Effects of I3C and Sil, alone and in combination, against
NNK-induced and LPS-enhanced lung tumors in A/J mice

Treatment Chemopreventive ~ Mice number  Lung

group agent initially/at tumors/mouse
termination

None None 10/10 0.1 £0.3

LPS None 10/10 0.1 £0.2

NNK None 15/15 4.8 £38

NNK + LPS  None 20/17 147 £ 4.1

NNK + LPS  I3C 20/20 15.0 £ 11.1

NNK 4 LPS  Sil 20/18 125 £52

NNK 4+ LPS  I3C + Sil 20/20 7.1 £45°

Beginning at age 6-7 weeks, groups of female A/J mice received
NNK (100 mg/kg) by intraperitoneal injection. LPS was adminis-
tered, once a week, by intranasal instillation (2 pg/mouse in 50 pl
physiological saline solution, 25 pl in each nostril) throughout the
study. I3C and Sil were given in the diet at a concentration of
20 pmol/g beginning 2 weeks after NNK administration until the
termination of the study

 Significant compared with group 1 (p < 0.05)

lung tumorigenesis, whereas dietary administration of
I3C + Sil reduced the tumor burden (Table 1). Classifi-
cation of the lung tumors into different size categories also
revealed that the frequency of the largest tumors (>1 mm)
was significantly reduced by Sil + I3C or I3C alone (from
6.3 + 2.9 tumors/mouse in the control group to 1.0 + 1.3
and 1.6 £ 1.8 tumors/mouse in mice given Sil 4+ I3C or
13C alone, respectively, data not shown).

To characterize gene expression alterations associated
with inflammation-driven lung tumorigenesis and to ex-
amine if these effects could be modulated by the
chemopreventive agents Sil and/or I13C, total RNA was
extracted from the lung tumors and the samples were
processed for gene expression analysis by RNA-Seq. Total
sequencing reads were achieved within at least 90 % of the
targeted 20 million read depth for each sample, except for
one control sample with a depth of 16.7 million reads.
The sequencing depths for the rest of the samples
ranged from 18.6 to 31.4 million reads. The calculated
sequencing quality score was approximately 37.9 £ 0.37
(mean £ SD) across all samples, indicating that virtually
all of the reads had zero errors and ambiguities (a score of
30 is considered a benchmark for quality in next-generation
sequencing). To identify alterations in gene expression, the
different treatment groups (NNK, LPS, NNK + LPS,
NNK + LPS + Sil, NNK + LPS + I3C, and NNK +
LPS + Sil 4+ I3C) were compared to the vehicle control
group. Based on gene expression profiles, an unsupervised
principal component analysis (PCA) of covariance was first
performed across all treatment groups. Both control and
LPS groups showed distinct clusters directed toward op-
posite vectors (Fig. la), indicating strong intragroup
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Fig. 1 Analysis of genes differentially expressed in lung tissues of p
mice treated with LPS, NNK, or NNK + LPS. a Principle component
analysis of covariance among samples. b Venn diagram of differen-
tially regulated genes. ¢ Enriched canonical pathways of the
differentially expressed genes using ingenuity pathway analysis
(IPA). d IPA upstream regulator analysis. Positive z-score indicates
activation (red) and negative z-score indicates inhibition (green). The
magnitude of the z-score represents of the level of significance in
prediction. Top upstream regulators are shown with a z-score of >2.5
or <—2.5 (color figure online)

correlation of gene expression but differences in intergroup
gene signatures. Samples from NNK-treated mice not only
clustered together but they were also closer to the groups
treated with NNK 4 LPS and NNK + LPS + Sil, sug-
gesting a transcriptomic signature different from the
control- and LPS-treated groups. The transcriptomic sig-
natures of the NNK + LPS + I3C- and NNK + LPS +
Sil + I3C-treated groups were very similar, and their sig-
natures were readily discerned from those of the other
sample groups.

We next performed pair-wise Exact Test comparisons,
with TMM normalization, to identify genes differentially
expressed in each treatment group as compared to the ve-
hicle control group. Based on our statistical significance
criteria of FDR < 0.05 and fold change >2 or <—2, we
identified 330 genes (240 upregulated and 90 down-
regulated) that were significantly deregulated in mice
treated with NNK as compared to the control group
(Fig. 1b; Supplementary Table S2). The most upregulated
gene was Spagllb (216-fold), whereas Cyplal was the
most downregulated gene (15-fold). The group treated with
LPS alone showed the highest number of deregulated genes
(a total of 2957 genes, 1761 genes upregulated and 1196
genes downregulated, Fig. 1b, Supplementary Table S3).
As expected, the most upregulated genes were cytokines
and chemokines (Csf3, Ccl4, Cxcl9, and Il17A increased
1794- , 378-, 951- , and 309-fold, respectively, compared
to the control group), whereas Ucpl was the most down-
regulated gene (decreased 74-fold). Animals exposed to a
combination of NNK + LPS showed 1143 deregulated
genes (711 upregulated and 432 downregulated, Fig. 1b,
Supplementary Table S4). Of these genes, 84, 647, and 183
genes overlapped with NNK, LPS, and both NNK- and
LPS-treated groups, respectively, whereas 229 genes were
uniquely deregulated. In this group, the most upregulated
and downregulated genes, respectively, were Spagllb
(826-fold) and Slc28al(91-fold).

Genes associated with inflammation and immune
responses were underrepresented in lung tissues
of NNK + LPS-treated mice

According to the results from ingenuity pathway analysis
(IPA), genes associated with inflammatory and immune
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Inflammatory mediator gene

Table 2 continued

@ Springer

change (g-value) change

(g-value)

change

Plasma membrane Transmembrane receptor

2.183 1.72E-08
—8.302 4.79E-02

160.774 2.99E-15

eukin 4 receptor

Extracellular space Cytokine

eukin 5

Extracellular space Cytokine

eukin 6

Plasma membrane Transmembrane receptor

3.10E-05

3

7.779 3.71E-18
—2.535 3.62E-02

71.645 2.24E-20

eukin 7 receptor

Plasma membrane Transmembrane receptor

eukin 9 receptor

e ]

Inter]

1ldra
115

Inter]

Inter

16

Inter

17r
119r
Inf

Inter

Extracellular space Cytokine

3.00E-02

33

Tumor necrosis factor

responses were clearly more represented in lungs of mice
treated with LPS than in mice treated with NNK + LPS
(Fig. 1c, d). Table 2 shows common inflammatory and
immune response genes differentially expressed in mice
treated with LPS, NNK, and NNK + LPS. In mice treated
with NNK + LPS, the proinflammatory genes Ifg and 1i21]
were expressed at a high level (18-fold and 36-fold higher,
respectively, compared to the level in the control group),
although this level was much lower than that observed in
the LPS group (increased by 232- and 168-fold, respec-
tively). Contrary to inflammation and immunity-related
genes, genes associated with calcium signaling, CDC42
signaling, allograft rejection, OX40 signaling, and B cell
development were overrepresented in the NNK + LPS
group compared to the LPS group. Mice treated with LPS
exhibited underrepresentation of genes associated with
cellular differentiation (Fig. 1d). Similar but relatively
weaker effects were obtained in the NNK and NNK + LPS

group.

Chemopreventive agents Sil and I3C reversed
the expression of a subset of NNK + LPS-regulated
genes

In this study, we sought to determine if the chemopre-
ventive effects of Sil and I3C observed in the tumor
bioassay would be paralleled by modulations in gene ex-
pression. Indeed, dietary administration of I3C + Sil or
I3C alone to NNK + LPS-treated mice significantly re-
versed the expression of several chemokines, cytokines,
putative oncogenes, and tumor suppressor genes to the
level found in the vehicle control group. Genes whose
expressions were altered in the NNK + LPS group by >5-
fold and modulated by I3C alone or Sil + I3C are listed in
Table 3, whereas all the genes significantly altered in the
NNK + LPS group and modulated by I3C alone or
Sil 4 I3C are listed in Supplementary Table 5. Although
Sil showed some modulatory activities, the effects were not
significant. Hierarchial clustering of the genes deregulated
by NNK + LPS and modulated by the chemopreventive
agents indicated differential effects between Sil + I3C and
I3C. For instance, a set genes downregulated by
NNK + LPS group, compared to the vehicle group, were
upregulated mainly by I3C (Fig. 2a, gray bar #1; Fig. 2b,
gray bar #2). On the other hand, some genes whose ex-
pressions were upregulated by NNK + LPS were
downregulated by both I3C and Sil + I3C (Fig. 2a, second
cluster, black bar #2; Fig. 2b, first cluster black bar #1).
Genes regulated by LPS were not affected significantly
either by I3C or Sil + I3C (Fig. 2c). As shown earlier,
tumor samples from animals treated with NNK + LPS
displayed a set of 229 unique genes and the expression of
these genes was reversed by both I3C and Sil + I3C (black
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«Fig. 2 Modulatory effects of Sil, I3C, and Sil 4+ I3C on
NNK + LPS-regulated genes. Unsupervised hierarchical clustering
(euclidean distance matrix) of genes differentially expressed in
(a) NNK vs. Con; (b) NNK + LPS vs. Con; and (¢) LPS vs. Con.
d Genes uniquely regulated by NNK + LPS vs. Con (not found in
samples treated with NNK or LPS alone). Gray vertical bars show
distinct clusters of differentially regulated genes being reversed by
treatment with chemopreventive agents I3C or combination of Sil and
I3C. e Venn diagram of genes regulated by NNK + LPS and reversed
by I3C alone, Sil 4+ I3C, or both I3C and Sil 4 I3C treatment.
f Subset of genes regulated by NNK + LPS and modulated I3C alone
and/or Sil + I3C. None of the genes were significantly modulated by
Sil alone. g IPA canonical pathway analysis of the three clusters of
genes shown in f. h Molecular and cellular functions from IPA of the
three clusters of genes shown in f. i Venn diagram and Heatmap of
genes uniquely regulated by NNK + LPS and modulation of the
expression of these genes by I3C or Sil + I3C

bars #1 and #2, Fig. 2d). Supplementary Table S5 shows
comparative modulatory effects of Sil, I3C, and Sil + I13C
on genes whose levels were significantly altered by treat-
ment with NNK + LPS.

Of the 432 genes downregulated by NNK + LPS, 81,
15, and 8 genes were upregulated by I3C alone, Sil + I3C,
and by both I3C alone and Sil 4 I3C, respectively
(Fig. 2e). Also, among genes that were upregulated in
NNK + LPS group (711 genes), 12, 30, and 16 genes were
downregulated by I3C alone, Sil + I3C, and 16 both 13C
alone and Sil + I3C, respectively. The expression profiles
of these differentially regulated genes were summarized in
the hierarchical clustering heatmap with three visually
distinct gene clusters (Fig. 2f, red and green bars). Gene
enrichment analysis of the three main gene clusters showed
that genes enriched in cluster 1 (downregulated by
NNK + LPS, but upregulated by I3C) showed very strong
association with calcium signaling, epithelial adherens
junction signaling, actin cytoskeleton signaling, and RhoA
signaling (Fig. 2g). The molecular and cellular function of
these genes includes regulation of cell morphology, cellular
assembly and organization, cellular development, cell
survival, cell proliferation, and cell death (Fig. 2h). Genes
in cluster 2 (genes downregulated by NNK + LPS, but
upregulated only by Sil 4 I3C) were relatively fewer and
had an association with AMPK signaling, G-alpha q sig-
naling, calcium transport, and the visual cycle. These genes
are involved in small molecule biochemistry, cell-to-cell
signaling and interaction, molecular transport, and cell
signaling and cell cycle. Genes in cluster 3 (upregulated by
NNK + LPS, but downregulated by both I3C and
Sil 4+ I3C) showed association with circadian rhythm sig-
naling, coagulation system, choline degradation, and
arginase pathway (Fig. 2g) and are involved in protein
processing, including protein synthesis, translational
modification, and protein degradation. The genes from
clusters 1, 2, and 3, their associated canonical pathways,
and molecular and cellular functions are deposited at GEO

repository: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE64027. Characterization of a subset of genes
uniquely regulated in the NNK + LPS group identified 38
genes to be modulated by I3C or Sil + I3C (Fig. 2a, b).
These genes were highly associated with cell signaling,
lipid metabolism, and small molecule biochemistry
(Fig. 2¢).

Validation of RNA-seq results by qRT-PCR analysis

We selected 20 genes, based on their relevance to car-
cinogenesis and differential expression in RNA-Seq
analysis, for verification by qRT-PCR. The qRT-PCR as-
says which were carried out on the same samples used for
RNA-Seq analysis confirmed the sequencing results for all
20 genes. The results of 11 of these genes are shown in
Fig. 3b. The magnitude of change in gene expression
measured by RNA-Seq and qRT-PCR methods correlated
well (Fig. 3a, b). In both assays, SpaglIb, kininogen-2
(Kng2), neuropeptide Y receptor 2R (Npy2r), epiregulin
(Ereg), retrotransposon-like 1 (Rtll), c-ros oncogene 1
(Rosl), and claudin 2 (Cldn2) were overexpressed in the
NNK + LPS group, as compared to the vehicle group,
whereas aryl hydrocarbon receptor nuclear translocator-
like (Arntl), neuronal PAS domain protein 2 (Npas2), early
B-cell factor 2 (Ebf2), and cytochrome P450-1A1 (Cyplal)
were downregulated in both RNA-Seq and qRT-PCR as-
says. The same trend was observed for the modulatory
effects of the chemopreventive agents.

Discussion

Although epidemiological studies consistently demon-
strated that smokers with COPD have a higher risk of lung
cancer, compared to smokers without COPD [5, 6], the
molecular links between the two diseases are not clear.
Moreover, there are no safe and effective agents for the
prevention of inflammation-related lung tumorigenesis.
Therefore, in the present study, we sought to identify genes
that are deregulated in Ilung tumors induced by
NNK + LPS and to assess the efficacy of Sil and I3C,
alone or in combination, to modulate the expression of
these genes. In previous studies, we and others have shown
that part of the chemopreventive activities of I3C and Sil
are associated with suppression of inflammatory pathways
[16, 20, 21].

Although mice treated with NNK + LPS were expected
to exhibit the highest number of differentially regulated
genes, the number of genes deregulated in this group was
more than twofold lower than that of the LPS group. In
addition, only 28 % of the genes differentially expressed in
the LPS group were observed in the NNK + LPS group,

@ Springer
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group), and partly due to the defective expression of
proinflammatory cytokines and chemokines by inflamma-

whereas 81 % of the genes deregulated in the NNK group
were found in the NNK + LPS group. IPA results indi-
cated that these differences were mainly due to the

tory cells associated with tumors. We found that levels of
proinflammatory cytokines/chemokines such as Tnf, Infg,

IL2]

underrepresentation of inflammation and immune response

Ccll9, Cxcl9, and Cxcll0 were at least

Ccl4, Ccl8,

s

genes in the NNK + LPS group. The low number of

tenfold lower in the NNK + LPS group as compared to the
level in the LPS group, whereas a large number of proin-

deregulated inflammation and immune response genes in

the NNK + LPS group as compared to the LPS group
could be ascribed partly to the comparison of tissues with

different

flammatory genes were not deregulated at all in the

NNK + LPS group (Table 1). This is typical of the situa-
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which proinflammatory molecules are not expressed at
adequate level to induce cytotoxic effects against tumor
cells but are capable of inducing reactive oxygen/nitrogen
species that cause DNA damage/mutation in the sur-
rounding epithelial cells, predisposing them to
premalignant transformation and tumor initiation [22].
Further growth of the premalignant cells could be sup-
ported by the proinflammatory and prosurvival signaling
pathways NF-xB and STAT?3, which are activated by TNF
alpha and IL-6, respectively. Low levels of cytokines have
also been associated with poor antitumor immune response
and tumor progression. Sustained low-level expression of
interferon gamma has been found to promote the devel-
opment of several types of tumors, including hepatoma,
mammary adenocarcinoma, and melanoma, by upregulat-
ing genes involved in T cell immune tolerance such as
Pdll, Pdi2, Ctla4, and Foxp3 [23]. In the present study,
mice treated with NNK + LPS had 8- and 5-fold higher
levels of Pdll and Foxp3, respectively, as compared to the
level in the control group (Supplementary Table S4), which
suggests immune evasion of the lung tumor cells.

Some examples of individual cancer-associated genes
that were significantly more up - or downregulated in the
NNK + LPS group, compared to the NNK group, include
the EGFR ligands Ereg and Areg, proto-oncogene tyrosine-
protein kinase Rosl, and the putative tumor suppressor
genes Arntl and Npas2. EREG and AREG (more than
twofold higher expression in the NNK + LPS group
compared to the NNK group) are cognate epidermal
growth factor receptor ligands that have been shown to be
overexpressed in most common human epithelial malig-
nancies, including lung cancer [24, 25]. Observations made
in different models of inflammation-related neoplasia
suggest that Ereg and Areg are at the interface between
inflammation and cancer since both genes are induced by
inflammatory cytokines and overexpressed by tumor-as-
sociated cells such as fibroblasts and mast cells [26, 27].
Ros1 receptor tyrosine kinase (overexpressed by sevenfold)
has been found to be upregulated in 22 % of NSCLC and
as an independent prognostic factor for overall survival of
stage I lung adenocarcinoma patients [28]. The putative
tumor suppressor genes Arntl and Npas2 (underexpressed
by 3- and 4-fold, respectively) are members of the circa-
dian rhythm genes that maintain the timing for a range of
physiological and behavioral processes. In addition to its
tumor suppressor effects [29], ARNTL plays a role in the
regulation of tobacco smoke-induced lung inflammatory
responses since targeted deletion of the gene in the lung
epithelium augmented cigarette smoke-induced pulmonary
inflammation [30]. Also, human NPAS2 has a substantial
impact on tumorigenesis, possibly through regulation of
cancer-related genes, such as those involved in cell cycle
checkpoint and DNA repair [31].

In mouse lung tumor bioassay, we observed that dietary
administration of Sil + I3C to NNK + LPS-treated mice
significantly reduced the tumor number as well as tumor
size. To assess if the chemopreventive efficacy of
Sil + I3C  would be paralleled by modulation of
NNK + LPS-induced gene alteration, we compared gene
expression profiles of lung tumors from the control group
versus groups treated with Sil, I3C, or Sil 4+ I3C. Overall,
dietary administration of Sil 4+ I3C and I3C alone, but not
Sil alone, reversed the expression of several cytokines,
chemokines and putative oncogenes, and tumor suppressor
genes to the level found in the vehicle control group (See
Tables 2, 3). Since most of these genes have a well-
established role in tumorigenesis, it is reasonable to pos-
tulate that modulation of the expression of these genes
could be mechanistically related to the chemopreventive
activities of Sil + I3C. Moreover, Sil + 13C and I3C alone
modulated the expression of several cancer-related genes
that were uniquely deregulated in mice treated with
NNK + LPS. This group of genes includes Hkdcl [32],
Chdh [33], Rgs5 [34], Filipl [35], Arntl [29] and Npas2
[31].

Among the genes whose expression was altered by the
chemopreventive agents, the level of Cyplal was
modulated to the greatest extent, being upregulated 86- and
81-fold by I3C and Sil + I3C, respectively. Although
CYPIAT1 converts some procarcinogens into ultimate car-
cinogens and thereby increasing the risk of DNA damage
and tumorigenesis, it has also been reported to increase
detoxication and clearance of NNK [36] and ben-
zo(a)pyrene [37] and to convert 17B-estradiol into
2-hydroxy-estradiol (2-OHE2), a potent cell cycle in-
hibitor, instead of 4-hydroxy-estradiol (4-OHE2), a highly
DNA reactive metabolite [38]. In the present study, 13C
was administered after treatment with NNK, and thus the
chemopreventive activities of CYPIAl cannot be at-
tributed to modulation of carcinogen metabolism.
However, since accumulating preclinical and clinical data
show a strong link between estrogen and lung cancer de-
velopment [39], CYP1A1 might suppress estrogen-related
lung tumorigenesis by enhancing the preferential metabo-
lism of estrogen toward the less toxic metabolite
2-hydroxy-estradiol.

Conclusions

Taken together, we showed that the expression of several
cancer-associated genes was deregulated in inflammation-
driven lung adenomas and these genes are potential targets
for the chemopreventive activities of Sil 4+ I3C. In par-
ticular, Ereg, Areg, Rosl, Cyplal, Arntl, and Npas2 are
interesting because of their established roles in
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tumorigenesis. Currently, studies are underway to deter-
mine if similar gene expression alterations are found in
inflammation-driven mouse lung adenocarcinomas and to
assess the modulatory effects of Sil and I3C.
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