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Abstract Nephrotic syndrome (NS) is characterized by

proteinuria, hypoalbuminemia, generalized edema, and

hyperlipidemia. It begins by changes in the glomerular

filtration barrier, with increased permeability to plasma

proteins. It affects all age groups and can progress to end-

stage renal disease. NS pathophysiology is still unknown.

However, the critical role of the immune system is well

recognized. Animal models are useful tools for the inves-

tigation of NS. Among different experimental models

proposed in the literature, disease induced by Doxorubicin

has been considered helpful to the purpose of many studies.

The aim of this review article is to describe the animal

model of NS induced by the injection of Doxorubicin in

rodents, with emphasis on action of the drug, potential

mechanisms of renal injury, as well biochemical, histo-

logical, and corporal changes obtained with this model.
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Introduction

Nephrotic syndrome (NS) is a common renal disorder

characterized by intense proteinuria, hypoalbuminemia,

generalized edema, and hyperlipidemia. NS may occur in

any age group as a primary renal disease, also known as

Idiopathic Nephrotic Syndrome (INS), or secondary to di-

verse clinical entities such as diabetes, lupus nephritis, HIV

nephritis, hepatitis B, and others [1, 2]. In many cases, NS

leads to end-stage renal disease (ESRD), requiring renal

replacement therapy [1]. Despite advances in INS studies

in recent decades, the pathophysiology of this disease re-

mains unknown [2].

Some experimental models of NS have been proposed in

the literature [3]. These models have contributed to the

understanding of the pathophysiological mechanisms and

to the evaluation of new therapeutic approaches to this

disease [3]. NS induced by intravenous injection of the

chemotherapeutic agent Doxorubicin has served very well

for the purpose of several studies [4, 5]. This review article

will discuss animal models available to study the NS in

rodents, with emphasis on NS induced by Doxorubicin.

The description of this model will include action of the

drug, methodology of the studies, potential mechanisms of

renal injury, and histological, biochemical, and corporal

changes following Doxorubicin injection.

Experimental models of NS

Animal models represent a good strategy to overcome the

ethical and methodological difficulties of obtaining human

material for various scientific investigations [6, 7]. Rats

and mice have been used in several studies of NS [3, 4, 8].

Preference for these rodents is justified by lower
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281, Bairro Santa Efigênia, Belo Horizonte, Minas Gerais

Cep: 30130-100, Brazil

Inflamm. Res. (2015) 64:287–301

DOI 10.1007/s00011-015-0813-1 Inflammation Research

123



maintenance costs, rapid reproduction cycle, good human

disease reproducibility, and possibility of genetic ma-

nipulation [6]. Furthermore, it is possible to obtain rapid

induction of renal disease in rodents and there is avail-

ability of reagents for different assays [9].

Nephrotic syndrome can be induced in animal by pro-

tamine sulfate injection [10, 11], protein overload [12–14],

bacterial antigens administration [8, 15], CD4? stem cell

injections [16], dibasic sodium phosphate injection [17],

anti-podocyte immunoglobulins infusion [18], and inter-

leukin 13 overexpression [19]. NS may also be chemically

induced by the administration of puromycin aminonucle-

oside (PAN) [20–22] or by the chemotherapeutic agent

Doxorubicin, also known as AdryamicinTM [23, 24], a

glycoside antibiotics belonging to anthracycline family,

obtained from Streptomyces peucetius var. caesius [25,

26].

Genetic changes are responsible for many cases of hu-

man NS [27–29]. Therefore, some genetically modified

animals have been developed for the study of this disease

[30–33]. Besides all models obtained by experimental in-

terventions, there is still a rat strain Buffalo/Mna, which

develops spontaneously NS at 3 months of age [27, 34].

Even though there are several animal models for the study

of NS, disease induced by Doxorubicin (Adryamicin) ad-

ministration has been very frequently used in many studies

[4–6, 35–38].

Animal model of NS induced by anthracyclines

Anthracyclines are glycosides antibiotics obtained from

Streptomyces peucetius var. caesius [25, 26]. Doxorubicin

is an anthracyclines red–orange crystalline powder, soluble

in water and slightly soluble in alcohol [26], used in the

treatment of solid tumors. Daunorubicin, another anthra-

cycline, is used in acute myeloid leukemia [39, 40].

Anthracyclines were developed in 1960. The first two an-

thracyclines agents were Doxorubicin and Daunorubicin.

Doxorubicin differs from Daunorubicin only by the binding

of a hydroxyl group [41].

The mechanisms of action proposed for the anthracy-

clines are the interposition between base pairs of nucleic

acids with inhibition of DNA and RNA synthesis [25, 40];

DNA alkylation; interference with separation of DNA

strands; direct effects on membranes; topoisomerase II

inhibition [40]; cellular apoptosis induction [40, 42]; and

free radicals synthesis [43–45].

In rats and mice, Doxorubicin is rapidly removed from

the plasma after injection and deposited in tissues. The

drug is mainly excreted in bile and moderately in urine [46,

47]. Doxorubicin accumulates in kidney, liver, heart, and

intestine with greater intensity than Daunorubicin. Plasma

levels remain constant and lower after 20 min [47]. At

intravenous doses from 5 to 20 mg/kg, about 34 % is ex-

creted in bile and 6–8 % in urine over a period of 10 h

[46]. Renal accumulation may be responsible for most of

the Doxorubicin nephrotoxicity in comparison to

Daunorubicin [5]. Doxorubicin distribution in rats after

intravenous injection is shown in Fig. 1.

Similar to human disease, in animal models of NS,

initial renal injury occurs during disease induction. Injury

may be caused by immune complexes formation with renal

antigens or by direct action of toxins [29] and drugs such as

Doxorubicin [6]. Many substances produced acute

nephrotoxicity leading to acute tubular necrosis. On the

other hand, Doxorubicin shows not only mild acute effect,

but also significant chronic effects that induce a

nephropathy with NS features [35].

In 1970, Sternberg showed structural changes in rats’

glomeruli after Daunorubicin injection [48]. Subsequently,

studies have pioneered Doxorubicin use to induce renal

injury in rats [37, 49–51] and in mice [4, 9, 52]. Even in the

70s, it was described a clinical case of renal damage in

humans after chemotherapy with Doxorubicin [53].

Proteinuria is an early feature of NS, both in humans and

in animal models, particularly albuminuria. Doxorubicin

induces renal injury in rodents similar to those described in

patients with focal segmental glomerulonephritis [4, 9, 35,

54]. The absence of immunoglobulins and complement

system components in renal tissue of animals at initial

stages of lesion indicates a direct toxic effect of the drug on

renal tissue [9, 50, 55]. Moreover, mechanical obstruction

of blood flow in a kidney immediately before and some

minutes after injection of the drug protects this kidney from

the lesion, thus confirming acute and local effects of

Doxorubicin [55, 56].

Advantages and disadvantages of Doxorubicin-

induced NS model

Although there are several animal models for the study of

NS, disease induced by Doxorubicin administration has

been very frequently used [24, 35, 36]. Among the ad-

vantages of using this experimental model, low cost of the

drug, lower complexity of management, good repro-

ducibility of the model [6], and ability of the drug to induce

renal injury after a single dose [23, 24, 36, 37] can be

mentioned. It is also possible to use lower or fractionated

doses, for long-term studies [35, 45, 58], as shown in

Table 2. The disadvantages of using this animal model are

mainly related to administration techniques and tissue

toxicity of Doxorubicin, since vascular extravasation of the

drug during injection may cause serious tissue damage

[26]. The total bioavailability of injected Doxorubicin is an

important factor for the induction of NS, since differences
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of only 0.5 mg/kg in the injected dose can cause break-

down in disease generation, especially in mice [5].

Induction of progressive renal injury with only one in-

jection of Doxorubicin is also an advantage when

considering technical difficulties of intravenous injection in

rodents and potential tissue injury by extravasation of the

drug. Moreover, it has been shown that multiple doses of

Doxorubicin were associated with cardiomyopathy and

heart failure in rats [59].

Besides Doxorubicin injection, systemic administration

of the aminonucleoside antibiotic, Puromycin, can also

induce NS, resembling human focal segmental glomeru-

losclerosis (FSGS). Puromycin is an antibiotic that inhibits

protein synthesis. Puromycin can be given by multiple

intraperitoneal injections with initial administration of

10 mg/kg followed by 40 mg/kg every 4 weeks or as a

single intravenous dose of 50 mg/kg to cause puromycin

aminonucleoside-induced nephrosis (PAN). After injec-

tion, rats show an early nephrotic phase peaking at 10 days

with complete foot process effacement followed by ap-

parent resolution. Between 10 and 13 weeks, progressive

lower-level proteinuria develops with early segmental

sclerotic lesions leading to well-defined segmental sclero-

sis at 18 weeks [60].

Both Doxorubicin (or adriamycin) and puromycin are

frequently used to induce FSGS because of their strong

dose–response effects [61]. These models have been used

to study serial micropuncture analysis of a single nephron,

while glomerulosclerosis is developing [61]. FSGS treat-

ment studies for which Doxorubicin and Puromycin animal

models are used show that the combination of Angiotensin-

converting enzyme inhibitors (ACE-I) and Ang II blockers

does not have a better effect than ACE-I alone [62]. In

addition, they show that MAPK is essential for podocyte

injury making p38 MAPK a potential therapeutic target

[63] and that vaccination with CCL2 DNA protects against

kidney injury after adriamycin injections [64]. Both drugs

cause direct toxic damage to the podocytes, increase the

permeability of glomerular endothelial cells for larger

molecules, and reduce glomerular charge selectivity, which

leads to tubulointerstitial injury [5].

Which animal should be used for Doxorubicin-

induced NS: rat or mouse?

Rats and mice are generally used to study glomeru-

lopathies. There are advantages and disadvantages of both

animal strains, as shown in Table 1. Rat strains used in

most studies are Sprague–Dawley [48, 58, 65], Wistar [23,

55, 66], and Lewis [56, 66]. In experiments with mice,

BALB/c strain is almost exclusively used [52, 67–72].

Mice of 129/SvJ strain also develop NS after Doxorubicin

administration [6, 68, 73], but this strain has been less

commonly used.

Regardless of experimental model and animal strain

used, most studies are conducted in males and young adult

animals (Table 2). Some studies have shown that ovarian

hormones interfere with the development of renal injury in

NS model induced by Doxorubicin [58, 74]. Male mice

after castration were less susceptible to drug-induced renal

injury [58]. Still, some studies with female animals have

obtained success in NS induction [52, 55, 67, 71].

Regarding animal age, mice at 6–8 weeks (20–25 g) are

usually used [64, 75, 76] or rats at an average age of 8 weeks

Fig. 1 Body distribution of

Doxorubicin in rats at 3 and

48 h after intravenous injection

(modified from Wang et al. [4])
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[35, 58] and weighing 150–350 g [60, 77]. Some ex-

periments were performed in younger [55] or older animals

[67] according to the aim of the study. In this regard, Hahn

et al. [67] investigated age effect on the induction of renal

damage by Doxorubicin in mice at 5 and 12 weeks of age and

found that injury was more severe in older animals. This

difference in toxicity may be related to higher plasma and

tissue peaks of the drug and the lowest rate of urinary ex-

cretion in older animals [78]. Table 2 summarized several

studies of NS induced by Doxorubicin in rodents.

Advantages and disadvantages of each animal strain must

be considered in choosing the experimental model. How-

ever, the fact that several mice strains are resistant to NS

induced by Doxorubicin should also be considered [5, 6, 73].

Therefore, almost all studies with mice have used BALB/c

[9, 54, 67–72] or 129/SvJ [6, 68, 73]. This resistance is an

autosomal recessive Mendelian inheritance and may be re-

lated to increased activity of arginine methyl transferase-7

(Prmt7) protein that inactivates Doxorubicin [68]. Despite

resistant to Doxorubicin action, mice of C57BL/6 strain can

develop NS after receiving higher doses of the drug [32, 71].

Doxorubicin: administration routes and doses

Doxorubicin hydrochloride should be used intravenously

with caution due to the risk of extravasation during

injection [26]. In rodents, the tail vein is preferred for in-

jection [67, 68, 79]. Other routes have been used less often,

such as the femoral vein [80], intraperitoneal [65], intrac-

ardiac [57–81], and penile vein [56] (Table 2).

Intraperitoneal route is easier to administrate, whereas in-

travenous injection provides direct availability of the drug

and eliminates the absorption dependence on peritoneal

membrane [6], since complete absorption of the drug is

important for the induction of kidney damage.

In one of the first studies using Doxorubicin to induce

NS in rats, it employs single intravenous injection of

7.5 mg/kg of body weight [37]. In subsequent studies, the

doses generally used in rats ranged between 5.0 and

7.5 mg/kg. However, lower and higher doses have also

been used ranging from 1.5 mg/kg [56] to 20.0 mg/kg [48]

(Table 2). In mice, the doses used to induce NS varied on

average between 10.0 and 11.0 mg/kg of body weight. As

occurred for rats, lower and higher doses of the drug have

also been used according to mice strain, ranging from

5.3 mg/kg in BALBc strain [54] to 25 mg/kg in C57BL/6

mice, a strain partially resistant to the Doxorubicin action

[71].

There is general preference for single injection of

Doxorubicin. However, lower or fractionated doses appear

to be better for long-term studies [35, 45, 58] (Table 2).

According to Bertani and co-workers, to induce NS in rats,

Table 1 Advantages and disadvantages in the use of rats and mice as models of renal disease (modified from Pippin et al. [6])

Advantages Disadvantages

Rats Mice Rats Mice

Large amount of renal tissue enables

various analyzes

Greater availability of genetically

modified animals

Limited availability of

genetically modified animals

Existence of strains resistant

to Doxorubicin

Models of podocyte injury well defined Short pregnancy time Greater expenditure of reagents

to induce or treat renal disease

Limited glomerular

complement activation

Easy isolation of glomeruli free of tubular

fragments which provide a lot mRNA

and protein

Low cost of acquisition and

maintenance

Existence of strains resistant to

Doxorubicin

Difficult isolation of

glomeruli free of tubular

fragments

Highest urine volume available for several

analyzes

Increased availability of reagents

and markers for

immunological studies

Reduced availability of reagents

and markers for

immunological studies

Few models of podocyte

injury

Minor blood volume

available for various

analyzes

Bigger animals facilitate surgical

procedures

Mice monoclonal antibodies

use increase the depth

markings

Larger blood volume enables different

analyzes

Require greater surgical

skills

Minor venous diameter

requires more skill to

injection

Minor urinary volume and

higher evaporation during

collection
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doses of 3.0, 5.0, or 7.5 mg/kg were able to induce pro-

teinuria, which persists for several months, but lower doses

resulted in less pronounced renal damage [50]. In the study

of Vielhauer and co-workers, NS was induced in mice by

two injections of 13.0 mg/kg with an interval of 14 days

between injections [75]. According to these authors, in-

jections of 11.0 mg/kg of Doxorubicin in mice induced

only transient proteinuria during 4–6 weeks [75].

Injection techniques

Peripheral veins represent the main route for Doxorubicin

injection (Table 2). Animal restraint facilitates the injec-

tion procedure. For best vein location in rats’ tail and,

particularly, in mice, the use of heating boxes can promote

vasodilatation before venous injection [5]. In general, in-

travenous injection is performed in awake animals [5, 37,

54], but some authors prefer to prior anesthetize the animal

[24, 71, 80].

One option to reduce Doxorubicin injected dose and

consequently side effects is the use of techniques that po-

tentiate drug effect. This way, De Boer and co-workers

obstructed blood flow in one kidney (renal artery clamping)

during drug injection [56]. This maneuver allowed the use

of only 1.5 mg/kg in rats [56]. Blood flow obstruction

technique of the contralateral kidney was also used, along

with injections of 3.5 mg/kg [77] and 7.5 mg/kg [50] of

Doxorubicin in rats.

In order to overcome technical difficulties of intra-

venous injection, Rangan and co-workers proposed the use

of intracardiac injection in pre-anesthetized animals [57].

Since Doxorubicin is a chemotherapeutic agent only for

hospital use, biosafety precautions are necessary for the

manipulation of this drug such as use of disposables gloves,

masks, goggles, and appropriate clothing. The solution

should be carefully handled. In case of contact with skin or

mucosa, the area should be washed thoroughly with soap

and water [26].

Reproducibility of NS induced by Doxorubicin

The animal model of NS induced by Doxorubicin has a

good reproducibility [4–6, 35, 37]. For this reason, the

model has been frequently used [23, 36, 38, 54–56]. In

addition, studies using rodents model of NS induced by

Doxorubicin have similarities in histological findings of

renal injury. However, there is a chronological variability

between studies, probably due to the differences in animal

strain and Doxorubicin dose [45, 82].

Most studies are conducted in males and young adult

animals (Table 2). A protective role of ovarian hormones

on renal injury induced by Doxorubicin [58, 74] may

probably interfere with the reproducibility of this model in

female animals. Concerning age, renal injury by Doxoru-

bicin is more severe in older animals [67] probably due to

higher plasma and tissue peaks of the drug and lowest rate

of urinary excretion in these animals [78].

The reproducibility of the NS model induced by Dox-

orubicin is mainly related to the dose of drug used, since

small variations in bioavailability of injected Doxorubicin

may cause failure in disease generation [5]. It is possible to

induce NS after single injection of Doxorubicin [23, 24, 36,

37] although some researchers prefer intermittent doses

[45, 65], as shown in Table 2.

As a consequence of the narrow therapeutic index of

Doxorubicin, small differences in injected doses can cause

large variations in intensity of renal damage [5]. Therefore,

Pippin and co-workers recommend a pilot study to deter-

mine the dose of Doxorubicin and to confirm induction of

NS in rodents [6].

Thus, the reproducibility of animal model of NS induced

by Doxorubicin appears to be related to dose of the drug

and duration of the experiment. Since lower doses of

Doxorubicin cause milder renal lesions, it is necessary to

consider that injury may take longer to reach the typical

histological pattern of the disease. In this regard, each

study should follow specific methodology based on pro-

posed goals, but always considering duration of the

experiment. Additionally, a pilot study should be per-

formed to determine optimal experimental design.

Biochemical and corporal changes in rodents
with NS induced by Doxorubicin

Biochemical changes

Proteinuria is the major characteristic of NS and serves to

confirm effectiveness of the animal model. Albumin was

not only detected in urine between 5 and 7 days after

Doxorubicin injection [4, 6, 37] or a little before, but may

also occur urinary loss of immunoglobulins, especially IgG

[9, 52]. Besides proteinuria, there are hypoalbuminemia,

high levels of serum creatinine [4, 54], hematuria, reduc-

tion in creatinine clearance [9], and increase in albumin/

creatinine ratio in spot urine [52, 71]. On the other hand,

some authors did not find significant changes in serum

levels of albumin [9, 35] or urine and plasma creatinine

[35, 37, 52].

Our results showed that rats with NS induced by dox-

orubicin also have severe dyslipidemia (Table 3).

Accordingly, other studies reported high serum cholesterol

levels [24, 83], apolipoproteins, and triglycerides [84, 85],

highlighting the role of dyslipidemia in NS pathogenesis in

this animal model [56, 84, 85]. A positive correlation was
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detected between plasma levels of cholesterol and albumin

loss in urine [85]. Furthermore, glomerular sclerosis rate

presented higher correlation with plasma levels of choles-

terol than with proteinuria [56]. In addition to these

classical biochemical parameters, blood urea nitrogen

(BUN) [35, 37, 86], plasma and urinary sodium [3, 23, 24]

and potassium levels [24], alanine aminotransferase, uric

acid [86], and cystatin C (CyC) [87] have also been mea-

sured in this animal model.

Hemostatic changes were also reported in Doxorubicin-

induced NS, with an increased tendency to blood clotting

[88, 89]. This characteristic is also common to patients

with idiopathic NS, and is associated with high incidence

of thromboembolic events [90–92].

Corporal changes

In general, there are weight loss reports in this NS animal

model at first weeks after Doxorubicin injection [35, 71,

77, 82]. Later there is weight gain in animals with NS, but

so much slower than in control animals [4, 54, 83]. Ac-

cording to Mihailovic-Stanojevic and co-workers, weight

loss may be related to dose of the drug and animal strain

used, not being, therefore, a constant finding [93]. The

weight loss may be also related to side effects of the drug,

as discussed later.

In relation to internal organs, although it was reported a

progressive reduction in renal weight of animals injected

with Doxorubicin [54], majority of the studies, including

data from our group, found an increase in this organ weight

[4, 35, 82]. Table 3 and Fig. 2 show our results of bio-

chemical and physical changes in rats with NS induced by

Doxorubicin. Increased kidney weight in Doxorubicin-in-

jected rats is probably due to local edema and renal tissue

fibrosis [4, 35]. Other internal organs such as heart, lung,

and liver have been poorly investigated in this model.

According to Zheng and co-workers, these organs are not

affected by the doses of Doxorubicin usually used to

induce NS in mice for a period of 15 days [68]. Other

changes reported in this animal model of NS were ascites

[37, 94], pulmonary congestion, pleural effusion [94], and

hypertension [35, 80].

Renal histology in rodents with NS induced
by Doxorubicin

In NS induced by Doxorubicin, tubule-interstitial lesions

are minimal on day 7, moderate on day 14, and severe

between 21 and 28 days after drug injection [95]. Renal

histology has been similar to what is commonly seen in

patients with NS [6, 54, 79].

By light microscopy, rats and mice with doxorubicin

nephropathy showed renal tissue alterations like interstitial

inflammatory infiltrate, tubular hypertrophy, increased

collagen deposition (fibrosis), thickening of the basement

membrane, Bowman’s space enlargement, and reduced

Fig. 2 Body weight alterations in rats with nephropathy induced by

doxorubicin, *p \ 0.05, T time in days, NS nephrotic syndrome

(personal archive)

Table 3 Biochemical and corporal alterations in rats with nephropathy induced by doxorubicin

Control Group Doxorubicin group

T-07 T-14 T-21 T-28

Mean (SEM) Mean (SEM) Mean (SEM) Mean (SEM) Mean (SEM)

Total cholesterol (mg/dL) 66.6 (7.6) 97.6 (12.4) 350.1 (33.1)* 544.3 (73.9)* 513.7 (96.6)*

Triglycerides (mg/dL) 72.9 (6.5) 41.1 (7.4)* 569.4 (164.5)* 686.9 (54.8)* 574.3 (122.9)*

Proteinuria (mg/L) 33.2 (3.1) 44.5 (5.3) 45.3 (5.5) 58.7 (6.8)* 71.5 (3.4)*

Food consumption (mg/day) 30.2 (0.7) 20.5 (3.2)* 22.2 (2.2)* 22.5 (1.6)* 26.9 (2.3)

Kidney weight (mg)** 9.3 (0.4) 9.45 (0.3) 10.7 (0.5)* 12.8 (0.4)* 13.8 (0.8)*

Kidney weight was corrected for body weight (personal archive)

* p \ 0.05, T time in days

** SEM standard error of mean
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number of glomerular cells (atrophy), as shown in Fig. 3.

By electron microscopy, the main characteristic of rats and

mice with experimental NS is the wide effacement of foot

process [9, 35, 37, 54, 96]. Due to proteinuria, renal

damage normally begins with intratubular crystals forma-

tion [50]. With disease progression, it detected reduction in

cellularity, atrophy and glomeruli tuft collapse, in addition

to mesangial expansion [4, 9], glomerular adhesions of

capillary tuft to Bowman’s capsule (synechiae) and cres-

cent-like lesions [96]. At the late phase, it can be observed

glomerular sclerosis and vacuolation, pronounced intersti-

tial fibrosis [35], and tubular atrophy [4, 54], with reduction

in tubular cells size, loss of brush border, and cellular

vacuolation [4, 9].

Inflammatory response contributes to renal injury, since

persistent proteinuria promotes continuous stimulus for

tubular cells, which secrete chemokines and cytokines

[2, 97]. Albumin excess in renal tubules increased the

monocytes chemoattractant protein-1 (MCP-1/CCL2)

expression, a cytokine responsible for macrophage

chemotaxis. However, in the absence of inflammatory in-

filtrate, proteinuria per se was not sufficient to induce renal

interstitial fibrosis [75]. Furthermore, changes in distribu-

tion of nephrin protein, CD2AP and ZO-1 were associated

with increased podocyte expression of CD80, a co-s-

timulatory molecule generally present in cells related to

immune response [15].

Renal immunohistochemistry of animals with lesions

induced by Doxorubicin exhibits, at early stages, interstitial

accumulation of macrophages [4, 54], with subsequent

decline, and an increase in CD4? and CD8? T lympho-

cytes [4]. Infiltration of macrophages, an important

component of innate immunity, is one of the most striking

and constant features of chronic renal injury, and the de-

gree of mononuclear cell infiltrate is predictive of

subsequent disease progression [98]. Macrophages can

contribute extensively to tissue damage and progressive

renal failure via a number of mechanisms, including their

production of proinflammatory cytokines and their T cell

stimulatory capacity [98, 99]. Tissue factors determine the

phenotype of monocytes/macrophages recruited into the

renal tissue, whereas the profile of locally released cy-

tokines regulates the differentiation of mononuclear cells.

Th1-type cytokines induce differentiation into classical

macrophages, denominated M-1, that produce cytotoxic

and proinflammatory cytokines, while Th2-type cytokines

induce alternative macrophages, denominated M-2, re-

sponsible for the synthesis of anti-inflammatory cytokines

[100, 101]. More recently, it is shown that M-2 macro-

phages originating from the action of IL-10 and TGF-b also

inhibited M-1 macrophages and TCD4 and TCD8 lym-

phocytes. In addition, this cell line also induced the

differentiation of regulatory T cells at the renal interstitium

of rats with NS induced by doxorubicin, with consequent

improvement of the disease [100]. Accumulation of in-

flammatory cells occurs only in the interstitium. In general,

B lymphocytes have not been detected [4]. Tissue changes

are also characterized by increased expression of type IV

collagen, fibronectin, and laminin in glomerular tuft and

Bowmans’s capsule [9].

By means of electron microscopy and immunohisto-

chemistry, it has been possible to detect podocytes’

changes [37, 52, 96]. After first hours of Doxorubicin in-

jection, partial loss of podocytes architecture is already

observed [37, 52]. Significant decrease in the number of

podocytes, by apoptosis, is already observed 3 days after

Doxorubicin injection [91]. At the late phase of NS in-

duction (after 21 days), generalized fusion of podocytes

and intracytoplasmic vesicles can be observed [9, 35, 37].

Renal injury progresses to complete loss of podal process

[54] and formation of vacuoles containing fibrin [35]. Due

to Doxorubicin-induced podocyte injury, glomerular ad-

hesions of capillary tuft to Bowman’s capsule (synechiae)

were also observed, starting from 16 days, and followed by

crescent-like lesions at 30 days [96].

Loss of selectivity of glomerular filtration barrier causes

intraglomerular accumulation of macromolecules with

subsequent mesangial matrix deposition and glomerular

sclerosis [35]. It has been suggested that early urinary al-

bumin excretion is due to sialoproteins loss during the first

hours after Doxorubicin injection [37]. Further studies have

demonstrated that electrical changes in glomerular filtra-

tion barrier were subsequent to structural lesions [9, 55].

More recently, proteinuria was associated with a reduction

in thickness of glomerular endothelium glycocalyx layer,

inducing changes in both electrical selectivity and size

specificity of the glomerular filtration barrier [71].

Focal segmental glomerulosclerosis (FSGS) resulted

from most rat models of nephron injury despite original

etiology. Podocytes injury plays a major role in FSGS,

since loss of podocytes leads to capillary tuft adhesions to

Bowman’s capsule, followed by altered filtration and ulti-

mately nephron degeneration and fibrosis [98]. According

to Kriz [97], major mechanisms contributing to the pro-

gression of segmental glomerular injury to global sclerosis,

tubular degeneration, and local interstitial fibrosis probably

are misdirected filtration and filtrate spreading [98].

Recently, in Doxorubicin-induced lesions, a sequence of

events leading to glomerulosclerosis starting by early

podocyte loss, abnormal podocyte migration, proliferation

of glomerular parietal epithelial progenitor cells, and for-

mation of hyperplastic lesions (synechiae and crescents)

was described [96, 102]. Podocyte injury with consequent

proteinuria depends on the beta-catenin activity [32], which

is induced by endothelin-A receptor (ETAR) activation,

and resulting in increased beta-arrestin-1, in podocytes
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[102]. Beta-catenin is a protein that sets P-cadherin to

cytoskeleton in podocyte slit diaphragm [32]. Proteinuria is

also related to reduced nephrin, podocin [19, 94], and

synaptopodin expression [103]. Some therapies against

proteinuria in animal model of NS induced by Doxorubicin

were related to the maintenance of these structural proteins

Fig. 3 Renal histology in rats with Doxorubicin-induced nephropa-

thy (personal archive). Control group (a–d) showing normal renal

tissue; Doxorubicin group (e–h) exhibiting interstitial inflammatory

infiltrate, tubular hypertrophy, interstitial fibrosis, and thickening of

the basement membrane. Representative microphotographs stained by

hematoxylin eosin (HE a and e), periodic acid of Schiff (PAS b and f),
Masson’s trichrome (c and g) and Ammoniacal Silver (d and h)
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[103–105]. Therefore, it is clear that podocytes are ex-

tremely important for glomerular architecture and function

[6, 106, 107].

Figure 4 illustrates podocyte and inflammatory changes

in Doxorubicin-induced nephropathy.

Inflammation profile in Doxorubicin-induced
nephropathy

The susceptibility to renal injury by doxorubicin may be

related to T-helper response, since C57BL/6 mice, which

present a predominance of Th1 response, are resistant to

nephropathy induced by doxorubicin, while BALB/c mice,

in which Th2 response predominates, are susceptible to the

disease [5]. Recently, high concentrations of IL-4 and of

eoxtaxin/CCL11, both mediators related to Th2 response,

were detected in renal tissue of animals with NS induced

by doxorubicin [108].

Several studies also showed the predominance of Th2

response in human NS. As an example, Lama et al. [109]

detected high levels of IL-2 and of IFN-gama in children

with steroid-sensitive NS. However, according to Araya

et al., there is no compelling evidence to define a pre-

dominance of Th2 response in human NS [110]. Some

types of human glomerulonephritis, including crescentic

and membranoproliferative glomerulonephritis, have a

predominantly Th1 immune response pattern, while others,

such as membranous nephropathy, IgA nephropathy and

minimal change NS, show a predominantly Th2 response

[2]. Some studies have considered that primary NS (in-

cluding FSGS) presents an imbalance between Th1/Th2

responses [110], with a trend toward greater Th2 response

[108, 111].

Other animal strains and experimental models of NS

showed varied patterns of immune response. The Buffalo/

Mna rat, an animal strain with spontaneous NS, exhibited

early changes in the balance between Th1 and Th2 with

predominance of Th2 (IL-10 and IL-13) and inhibition of

Th1 (IL-2 and IFN-gama) before the onset of proteinuria

[34, 112]. Mice transfected with IL-13 developed NS with

overexpression of receptors for IL-4 and IL-13 in glomeruli

[113]. Serum levels of IL-13 were correlated with the

glomerular expression of B7-1 (CD80) in these animals

[113]. CD80 is a co-stimulatory molecule generally present

on the surface of B lymphocytes and of antigen-presenting

cells that is associated with decreased apoptosis and in-

duction of proliferation of TCD4 cells [114].

New therapeutic perspectives for Doxorubicin-
induced nephropathy

Renin Angiotensin System (RAS) and Kallikrein-Kinin

System (KKS) have been recently evaluated as potential

targets for the treatment of Doxorubicin-induced

nephropathy. Renoprotective and anti-proteinuric effects of

ACE inhibitors and angiotensin type 1 receptor antagonists

are well known [115]. However, recent studies also showed

important renal effects for the counterregulatory RAS axis

Fig. 4 Schematic view of

podocyte and inflammatory

changes in Doxorubicin-induced

nephropathy. ECM extracellular

matrix, TGF-b transforming

growth factor beta, CTGF

connective tissue growth factor,

NF-jB nuclear factor kappa B,

RAC-1 Ras-related C3

botulinum toxin substrate 1,

FOXO4 forkhead box protein

O4, RAGE receptor for

advanced glycation end

products, VEGF vascular

endothelium growth factor,

VEGFR vascular endothelium

growth factor receptor
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formed by the enzyme homologue to ACE (ACE2), the

mediator Angiotensin-(1-7) and its receptor, Mas receptor

(for review, see reference [116]). In this regard, Silveira

et al. [38] showed that both antagonism of angiotensin type

1 receptor with losartan and stimuli of Mas receptor with

AVE0991 exerted beneficial effects in Doxorubicin-in-

duced nephropathy. Both compounds attenuated

biochemical changes and reduced tissue inflammation and

fibrosis [38]. In addition, beneficial effects of losartan were

absent in mice with genetic deletion of Mas receptor,

suggesting a critical role of Angiotensin-(1-7) in renopro-

tective actions of AT1 antagonists [38].

Concerning the role of KKS, Pereira and co-workers

used knockout animals and kinin receptor antagonists to

unveil the role of kinin receptor 2 (B2RBK) in Doxoru-

bicin-induced nephropathy [117]. The disease was induced

in wild-type and B2RBK-knockout mice, using a single

intravenous injection of Doxorubicin. In wild-type mice,

blockage of the receptor with antagonists prevented FSGS

when administered soon after disease induction and re-

versed signs of disease—including proteinuria—when

administered during the later stages. Treatment with the

B2RBK antagonist also downregulated fibrotic and in-

flammatory proteins that are associated with renal lesions.

The authors report that FSGS is exacerbated in B2RBK-

knockout mice, and, consistent with previous studies,

higher B1RBK receptor expression was observed in these

animals. Interestingly, treatment of B2RBK-knockout mice

with a B1RBK antagonist ameliorated disease. The results

reported indicate that kinin receptors are potentially im-

portant targets in FSGS, because their blockage with

antagonists can restore podocyte architecture and protect

against clinical symptoms, such as proteinuria. Although

this work focused primarily on B2BRK, the data suggest

cross-talk between the two receptors, which should be

explored further in future studies. The understanding of

molecular mechanisms provided by experimental models

could help in the development of new therapeutic ap-

proaches against FSGS [117].

Side effects of Doxorubicin use in rodents

The first problem is the risk of Doxorubicin extravasation

during injection. Due to direct toxicity to tissues, Dox-

orubicin can cause severe necrosis [26] that makes the

model impracticable [57]. Figure 3 shows tissue damage

produced by Doxorubicin extravasation.

Doxorubicin toxicity is more pronounced in highly pro-

liferative tissues, being bone marrow, digestive tract, and

gonadal tissues the most affected sites [26]. Studies in hu-

mans showed cardiac abnormalities induced by

anthracyclines [40, 118] and related to the Doxorubicinol

metabolite [118]. Congestive heart failure in humans has

been related to the total dose of 550 mg/m2 [26], which is

significantly higher than dose used in animal models of renal

injury. For example, in young adult rats (200–300 grams), it

has been used an average dose of 7.5 mg/kg of body weight,

which corresponds to approximately 105 mg/m2 [37].

In studies aiming to assess Doxorubicin cardiotoxicity in

mice, the dose of 15.0 mg/kg was used [59, 119]. This dose

induced early oxidative changes [59] and congestive heart

failure [119]. There are also reports of cardiac changes in

rats with the administration of only 6.0 mg/kg of the drug

intravenously [120] or 10 mg/kg intraperitoneal [121],

which were not related to Doxorubicinol metabolite [120].

However, cardiac alterations generally have not been the

focus of evaluation in studies of NS induced by Doxoru-

bicin in rodents.

Doxorubicin causes anorexia at the first 24 h after in-

jection, which can last for several days. There is also the

possibility of oral mucosa lesions [26]. In addition, as

previously described [37, 84, 85] and shown by our results

(Fig. 2), a side effect rather described in rodents is reduc-

tion of weight gain during the first weeks after drug

injection. According to the literature [24, 72], this alter-

ation has been associated with reduction in food intake or

inhibition of protein synthesis [59]. The use of intraperi-

toneal injection with glucose and electrolytes solutions can

prevent weight loss in animals treated with Doxorubicin

[72].

Concluding remarks

Animal models have provided advances in research on

renal diseases, including NS. NS induced by Doxorubicin

in rodents is broadly used in studies with different ap-

proaches and aims. In order to choose the animal model of

NS, one should consider the strain susceptibility, as well as

commercial availability of reagents and biological markers

for measured parameters.

Considering technical difficulties and potential compli-

cations during Doxorubicin application, there seems to be a

general trend to use single dose injected into the tail vein.

Despite the variety of methods employed, especially in

relation to disease induction and Doxorubicin dose, renal

lesions and biochemical alterations in this model are very

similar to those of human FSGS. Therefore, NS induced by

Doxorubicin is a quite feasible model for research.
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