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Abstract

Objective and design Our study was designed to elucidate

the precise molecular mechanisms by which sorbitol-

modified hyaluronic acid (HA/sorbitol) exerts beneficial

effects in osteoarthritis (OA).

Methods Human OA chondrocytes were treated with

increasing doses of HA/sorbitol ± anti-CD44 antibody or

with sorbitol alone and thereafter with or without interleukin-

1beta (IL-1b) or hydrogen peroxide (H2O2). Signal trans-

duction pathways and parameters related to oxidative stress,

apoptosis, inflammation, and catabolism were investigated.

Results HA/sorbitol prevented IL-1b-induced oxidative

stress, as measured by reactive oxygen species, p47-NADPH

oxidase phosphorylation, 4-hydroxynonenal (HNE) pro-

duction and HNE-metabolizing glutathione-S-transferase

A4-4 expression. Moreover, HA/sorbitol stifled IL-1b-

induced metalloproteinase-13, nitric oxide (NO) and pros-

taglandin E2 release as well as inducible NO synthase

expression. Study of the apoptosis process revealed that this

gel significantly attenuated cell death, caspase-3 activation

and DNA fragmentation elicited by exposure to a cytotoxic

H2O2 dose. Examination of signaling pathway components

disclosed that HA/sorbitol prevented IL-1b-induced p38

mitogen-activated protein kinase and nuclear factor-kappa B

activation, but not that of extracellular signal-regulated

kinases 1 and 2. Interestingly, the antioxidant as well as the

anti-inflammatory and anti-catabolic effects of HA/sorbitol

were attributed to sorbitol and HA, respectively.

Conclusions Altogether, our findings support a beneficial

effect of HA/sorbitol in OA through the restoration of

redox status and reduction of apoptosis, inflammation and

catabolism involved in cartilage damage.
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Hyaluronic acid/sorbitol � Oxidative stress � Apoptosis �
Inflammation

Introduction

Osteoarthritis (OA) is a frequent musculoskeletal disease

and a major source of disability in the elderly [1]. Knee OA

is the foremost cause of consultations for OA-related

symptoms [2]. It is well-established that during joint

inflammation and degeneration, as in OA, important mac-

romolecules are lost from the extracellular matrix (ECM),

including type II collagen [3]. This phenomenon represents

deregulation of chondrocyte metabolism due to the actions

of inflammatory cytokines, such as interleukin-1beta (IL-

1b), responsible for the downregulation of collagen [4] as

well as proteoglycan biosynthesis [5] and stimulation of

their degradation [6].

Current OA management combines pharmaceutical

and non-pharmacological strategies [7, 8], including
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intraarticular injections of hyaluronic acid (HA), aimed at

decreasing pain and improving joint function [9]. Despite

the long history of this therapy, known as viscosupple-

mentation, and numerous studies of its action, the

mechanisms responsible for HA’s clinical outcome are not

clearly recognized. Intraarticular HA injections may pro-

gress to the recovery of desirable viscoelastic behavior of

OA-altered synovial fluid (SF) [10]. Other biological

functions of exogenous HA in OA include analgesia via

interaction with pain receptors [11], promotion of endog-

enous HA production and various anti-inflammatory effects

[12–14]. Most of these effects could be mediated by

interaction between HA and its receptors, CD44 and hya-

luronan-mediated motility receptor [13, 14].

It has been reported that HA counteracts IL-b-induced

inhibition of collagen biosynthesis at both the transcriptional

and post-transcriptional levels [15]. The mechanism of HA’s

post-transcriptional impact on collagen biosynthesis is seen

in certain experimental conditions on analysis of prolidase

activity. Intraarticular HA administration still offers potent

and well-tolerated therapy to OA patients. In addition to its

unique hygroscopic and rheological properties, HA binds to

its cellular receptor CD44, initiating cell signaling. It is well-

established that HA-dependent signaling affects chondro-

cyte proliferation and differentiation [16] as well as

glycosaminoglycan and collagen synthesis [17].

The present study was undertaken to evaluate the

influence and potential molecular mechanism of HA/sor-

bitol on IL-1b- and hydrogen peroxide (H2O2)-dependent

stimulation of catabolic and inflammatory responses, oxi-

dative stress and apoptosis in cultured human

chondrocytes. Clinical investigation has disclosed that HA/

sorbitol significantly reduces pain for at least 6 months

after the first injection [18, 19]. HA/sorbitol is a commer-

cially available product (Synolis V-A) which contains a

unique combination of key ingredients: sodium hyaluro-

nate and sorbitol. It provides lubrication and shock

absorption to joints. In addition, sorbitol prevents tissue

damage caused by inflammation and helps to protect

sodium hyaluronate from degradation [20]. However, the

mechanism of HA/sorbitol signaling is poorly defined.

Materials and methods

Specimen selection

Discarded human post-surgery OA articular cartilage was

obtained from OA patients (n = 24, age 67 ± 9 years

mean ± SD) who had undergone total knee arthroplasty.

Informed consent was received from them to study their

tissues for research purposes. All patients were evaluated

by rheumatologists according to American College of

Rheumatology criteria [21]. These specimens represented

moderate to severe OA graded by the Mankin system [22].

Cartilage was mostly taken from femoral regions. Our

experimental protocol for research into human tissues was

approved by the Research Ethics Board of Hôpital du

Sacré-Cœur de Montréal.

OA knee cartilage specimens were sliced and rinsed

before chondrocyte extraction by sequential enzymatic

digestion [23]. Cartilage samples were digested with 1 mg/

ml of pronase (Sigma-Aldrich, Oakville, ON) for 1 h at

37 �C, and then with 2 mg/ml of type IV collagenase

(Sigma-Aldrich) for 6 h in Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen, Burlington, ON) supple-

mented with 10 % heat-inactivated fetal bovine serum

(FBS, Invitrogen), 100 units/ml of penicillin, and 100 lg/

ml of streptomycin (Invitrogen). Chondrocytes were see-

ded at high density in culture flasks at 37 �C in a

humidified atmosphere of 5 % CO2/95 % air until they

were confluent and ready for experimentation.

HA/sorbitol and experimental culture conditions

SynolisTM V-A (Anteis SA, Geneva, Switzerland), the spe-

cific HA/sorbitol formulation tested, is based on HA of high

molecular weight ([2 MDa), of non-animal origin with a high

HA concentration (20 mg/ml) combined with a high con-

centration of sorbitol (40 mg/ml), a free radical scavenger.

First-passage chondrocytes were prepared, as described

previously [23]. Briefly, the cells were seeded in 24-well

plates at high density (2 9 105 cells/cm2) and cultured in

DMEM (Invitrogen) supplemented with 10 % FBS (Invit-

rogen), 100 units/ml of penicillin and 100 lg/ml of

streptomycin (Invitrogen) at 37 �C in a humidified atmo-

sphere. To ensure that isolated chondrocytes conserve their

original phenotype, type II collagen was measured rou-

tinely by real-time polymerase chain reaction. In our

experiments, the culture medium was replaced by DMEM

containing 1 % FBS 24 h before treatment.

OA chondrocytes were pretreated with increasing HA/

sorbitol concentrations (0, 20, 50, 100, 500 lg/ml) for 2 h,

followed by incubation with or without 1 ng/ml of IL-1b
(R&D Systems, Minneapolis, MN), or 0.5 mM H2O2

(Sigma-Aldrich) for 1 or 24 h in 1 % FBS-DMEM. In each

experimental condition, the final sorbitol concentration was

0, 40, 100, 200 or 1,000 lg/ml. In another set of experi-

ments, OA chondrocytes were pre-treated or not with 1 lg/

ml anti-CD44 antibody and 50 lg/ml HA/sorbitol for 2 h,

followed by another incubation for 24 h with or without

1 ng/ml IL-1b (R&D Systems). The cells were also treated

with 100 lg/ml sorbitol or 50 lg/ml HA alone (Sigma-

Aldrich) for 2 h, followed by another incubation for 24 h in

the presence or absence of 1 ng/ml IL-1b (R&D Systems)

or 0.5 mM H2O2 (Sigma-Aldrich).
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Prostaglandin E2 (PGE2), metalloproteinase-13 (MMP-

13), and nitric oxide (NO) measurement

Media were collected after chondrocyte incubation for

24 h, and PGE2 and MMP-13 levels were assessed by

enzyme immunoassay (Cayman Chemical Company, Ann

Arbor, MI) or enzyme-linked immunosorbent assay

(ELISA) kits (R&D Systems), respectively. Detection

sensitivity was 9 and 8 pg/ml, respectively. All assays were

performed in duplicate. Nitrite, a stable end-product of NO,

was quantified in supernatants according to a spectropho-

tometric method based on the Griess reaction [24].

Absorbance was measured with a micro-ELISA Vmax

photometer (Bio-Tek Instruments, Winooski, VT).

Cell viability

Chondrocyte viability was evaluated, as described previ-

ously [25], by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-

tetrazolium bromide (MTT) assay in 96-well plates (Fisher

Scientific Company, Ottawa, ON), by incubating the cells

with 0.5 mg/ml MTT reagent (Sigma-Aldrich) for 15 min

at 37 �C. Then, 100 ll of solubilization solution (0.04 M

HCl-isopropanol) was added, formazan salt was dissolved,

and absorbance was read at 570 nm with a micro-ELISA

Vmax photometer (Bio-Tek Instruments).

Protein detection by Western blotting

20 lg of total proteins of chondrocyte lysates, treated

under the indicated conditions, were loaded for discontin-

uous 4–12 % sodium dodecyl sulfate-polyacrylamide gel

electrophoresis. They were then transferred electrophoret-

ically onto nitrocellulose membranes (Bio-Rad

Laboratories, Mississauga, ON) for protein immunodetec-

tion and semi-quantitative measurement [23]. The primary

antibodies deployed were rabbit anti-phospho and total p47

NADPH oxidase (pp47-NOX, Sigma-Aldrich), anti-induc-

ible NO synthase (iNOS, Cayman Chemical Company),

anti-phospho and total p38 mitogen-activated protein

kinase (p38 MAPK, Cell Signaling Technology, Inc.,

Danvers, MA), anti-phospho and total extracellular signal-

regulated kinases 1 and 2 (ERK1/2, Cell Signaling Tech-

nology, Inc.), anti-phospho nuclear factor-kappaB/p65

(NF-jB/p65, Cell Signaling Technology, Inc.), anti-glu-

tathione-s-transferase A4-4 (Gsta4-4, Sigma-Aldrich), and

anti-human b-actin (Sigma-Aldrich). After serial washes,

the primary antibodies were revealed by goat anti-mouse or

anti-rabbit immunoglobulin G conjugated to horseradish

peroxidase (Cell Signaling Technology, Inc.). Immunore-

active proteins were detected with SuperSignal blotting

substrate (Pierce, Rockford, IL) and exposed to Kodak

X-Omat film (Eastman Kodak Company, Rochester, NY).

Cellular level of 4-hydroxynonenal (HNE)-protein

adducts

Total cellular levels of HNE-protein adducts were calcu-

lated in chondrocyte extracts by in-house ELISA under the

conditions indicated [23]. HNE-modified bovine serum

albumin served as standard for HNE-protein adduct assay.

Reactive oxygen species (ROS) measurement

Intracellular ROS formation was quantified with MitoS-

OXTM Red reagent (Invitrogen). Its oxidation by superoxide

produces red fluorescence, as described by Bentz et al. [26].

Briefly, chondrocytes were seeded at a density of

2 9 104 cells/well in 96-well black plates (Becton–Dickin-

son, San Jose, CA). They were pretreated with increasing

concentrations of HA/sorbitol 2 h before their exposure to

IL-1b. Fluorescence was measured by a fluorescence plate

reader at 510-nm absorption and 580-nm emission. The data

were expressed as relative MitoSOXTM Red fluorescence.

DNA fragmentation

Cytoplasmic histone-associated DNA fragments were quan-

tified with Cell Death Detection ELISAPLUS kit (Roche

Applied Science, Laval, QC) according to the manufacturer’s

recommendations. Briefly, chondrocytes (2 9 106 cells)

were pretreated for 2 h with increasing HA/sorbitol concen-

trations (0–500 lg/ml) and then treated with or without 1 ng/

ml IL-1b for 24 h. After incubation, the cells were lysed with

lysis buffer for 30 min and centrifuged at 200g for 10 min.

The supernatant and a mixture of anti-histone-biotin and anti-

DNA-peroxidase were added to streptavidin-coated micro-

plates and incubated for 2 h at room temperature. Absorbance

was measured at 405 nm after addition of the substrate.

Statistical analysis

All values are expressed as mean ± SD unless indicated

otherwise. Multiple comparisons were made by one-way

analysis of variance, as required, followed by Bonferroni’s

multiple-comparison post-test. Statistical analysis was

undertaken with GraphPad Prism software, version 4b

(GraphPad Software, San Diego, CA). In all tests, the

criterion for statistical significance was P \ 0.05.

Results

HA/sorbitol abolishes ROS generation and pp47-NOX

To test the hypothesis that HA/sorbitol scavenges ROS,

OA chondrocytes were pretreated with HA/sorbitol
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(0–500 lg/ml) for 2 h, followed by another treatment with

1 ng/ml IL-1b for 24 h. ROS generation was quantified by

commercial kit. Our data indicated that relative MitoS-

OXTM Red fluorescence was stronger in IL-1b-treated cells

and reached 9.2 ± 1.7 9 103/2 9 104 cells (P \ 0.001)

(Fig. 1a). However, when the cells were treated with both

1 ng/ml IL-1b and 100 lg HA/sorbitol, relative MitoS-

OXTM Red fluorescence weakened significantly to

1.3 ± 0.33 9 103/2 9 104 cells (P \ 0.001, vs. IL-1b)

(Fig. 1a). Finally, an additional experiment was performed

to determine the possible ability of HA/sorbitol to inhibit

pp47-NOX, a ROS-generating enzyme. Western blotting

analysis showed that HA/sorbitol, at a concentration of

20 lg/ml, prevented IL-1b-induced pp47-NOX (Fig. 1b).

Collectively, our data indicated that suppression of ROS

production and ROS-generating NOX confirmed the anti-

oxidant properties of HA/sorbitol.

HA/sorbitol prevents HNE production and Gsta4-4

downregulation

It is well-documented that the generation of ROS, such as

superoxide anion and hydroxyl radical, plays an important

role in initiating lipid peroxidation (LPO). Thus, the pur-

pose of this part of the present study was to investigate

whether HA/sorbitol’s capacity to inhibit HNE production

was attributed to its ability to also prevent ROS generation.

To do so, OA chondrocytes were pretreated with HA/sor-

bitol (0–500 lg) for 2 h, followed by exposure to 1 ng/ml

IL-1b for 24 h.

As illustrated in Fig. 2a, escalating HA/sorbitol doses

blocked IL-1b-induced HNE production. HA/sorbitol at

50 lg reduced HNE level by 50 % (P \ 0.01), compared

to cells treated with IL-1b alone. These data suggest that

inhibition of the LPO process by HA/sorbitol could be

related to low ROS levels.
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Fig. 1 HA/sorbitol suppresses ROS generation and p47-NOX phos-

phorylation. Confluent human osteoarthritic (OA) chondrocytes were

treated for 2 h with escalating doses of HA/sorbitol (0–500 lg/ml),

followed by incubation for 24 h in the presence or absence of 1 ng/ml

IL-1b. a ROS generation was quantified in cell extracts with

MitoSOXTM Red reagent. ROS levels were expressed as relative

MitoSOXTM Red fluorescence. b p47-NOX protein phosphorylation

(pp47-NOX) was analyzed by Western blotting in extracts of human

OA chondrocytes treated as described above. The data are

mean ± SD of 4 independent experiments. *P \ 0.05, **P \ 0.01,

***P \ 0.001: compared to untreated cells; #P \ 0.05, &P \ 0.01,
@P \ 0.001: compared to IL-1b-treated cells (color figure online)
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Fig. 2 HA/sorbitol reduces IL-1b-induced HNE generation and

Gsta4-4 downregulation in human osteoarthritic chondrocytes.

a HNE-protein adducts and b Gsta4-4 protein expression were

measured by ELISA and Western blotting, respectively, in cellular

extracts of chondrocytes treated with various concentrations of HA/

sorbitol (0–500 lg/ml) for 2 h in the presence or absence of 1 ng/ml

IL-1b for 24 h. The data are mean ± SD of 4 independent experi-

ments. *P \ 0.05, **P \ 0.01, ***P \ 0.001: compared to untreated

cells; #P \ 0.05, &P \ 0.01, @P \ 0.001: compared to IL-1b-treated

cells
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Gsta4-4 exhibits high catalytic efficiency in HNE

metabolism. Here, we tested our hypothesis that HA/sor-

bitol prevents IL-1b-induced Gsta4-4 downregulation in

human OA chondrocytes. Our results revealed that Gsta4-4

protein expression was lower in IL-1b-treated than in

untreated cells (Fig. 2b). However, 100 lg HA/sorbitol

significantly abolished IL-1b inhibition of Gsta4-4

expression in OA chondrocytes. Altogether, our findings

confirm that HA/sorbitol restores redox status by prevent-

ing Gsta4-4 downregulation in OA chondrocytes.

HA/sorbitol prevents NO and iNOS production in OA

chondrocytes

Next, we performed additional experiments to demonstrate

that HA/sorbitol averts NO release and inhibits iNOS

expression in isolated human OA chondrocytes. Cells were

treated for 2 h with increasing doses of HA/sorbitol

(0–500 lg) and thereafter with or without 1 ng/ml IL-1b

for 24 h. As illustrated in Fig. 3, HA/sorbitol significantly

reduced IL-1b-induced NO release (Fig. 3a) and iNOS

protein levels (Fig. 3b) in a dose-dependent manner. At

100 lg, it suppressed NO release and iNOS expression by

95 % (P \ 0.001). Collectively, these data confirm that

HA/sorbitol is a potent iNOS inhibitor.

HA/sorbitol abrogates IL-1b-induced PGE2 and MMP-

13 production

This part of our study was designed to verify HA/sorbitol’s

ability to attenuate IL-1b-evoked production of inflamma-

tory and catabolic mediators known to be involved in

cartilage damage, such as PGE2 and MMP-13, respec-

tively. When cells were treated with IL-1b, HA/sorbitol

prevented PGE2 (Fig. 4a) and MMP-13 (Fig. 4b) release.
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Fig. 3 HA/sorbitol suppresses NO generation and iNOS expression.

Confluent human osteoarthritic (OA) chondrocytes were treated for

2 h with 10 escalating doses of HA/sorbitol (0–500 lg/ml), followed

by incubation for 24 h in the presence or absence of 1 ng/ml IL-1b.

a NO levels were measured in culture medium by the Griess method.

b iNOS protein expression was analyzed by Western blotting in

extracts of human OA chondrocytes treated as described above. The

data are mean ± SD of 4 independent experiments. **P \ 0.01,

***P \ 0.001: compared to untreated cells; #P \ 0.05, &P \ 0.01,
@P \ 0.001: compared to IL-1b-treated cells
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Fig. 4 HA/sorbitol inhibits IL-1b-induced PGE2 and MMP-13 pro-

duction in human osteoarthritic chondrocytes. Isolated cells were

pretreated with increasing doses of HA/sorbitol (0–500 lg/ml) for

2 h, followed by incubation for 24 h in the presence of 1 ng/ml IL-1b.

MMP-13 (a) and PGE2 (b) levels were measured in culture medium

by commercial kits. The data are mean ± SD of 4 experiments.

Student’s unpaired t test: *P \ 0.05, **P \ 0.01, ***P \ 0.001:

compared to untreated cells; #P \ 0.05, &P \ 0.01, @P \ 0.001:

compared to IL-1b-treated cells
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At 100 lg, it reduced PGE2 and MMP-13 levels by 60 %

(P \ 0.001).

HA/sorbitol blocks H2O2-induced cell toxicity

and death

In the next set of experiments, we evaluated the ability

of HA/sorbitol to reduce H2O2 cytotoxicity in cultured

chondrocytes. Cell viability was assessed with MTT

reagent. After 24 h of incubation, pretreatment with

20–500 lg HA/sorbitol for 2 h, before adding 0.5 mM

H2O2 to culture media, prevented H2O2-induced cell

death (Fig. 5a) as well as markers of apoptosis, includ-

ing caspase-3 activation (Fig. 5b) and DNA

fragmentation (Fig. 5c). These data suggest that HA/

sorbitol probably precludes H2O2’s effects through direct

hydroxyl radical- or HNE-quenching or p47-NOX

inactivation.
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Fig. 5 HA/sorbitol suppresses H2O2-induced caspase-3 activation,

cell death and DNA fragmentation. Confluent human osteoarthritic

(OA) chondrocytes were treated for 2 h with 10 escalating doses of

HA/sorbitol (0–500 lg/ml), followed by incubation for 24 h in the

presence or absence of H2O2 (0.5 mM). a Caspase-3 activity was

assessed in cellular extracts by commercial kit. b Cell viability was

analyzed by MTT assay. c DNA was extracted after each treatment by

commercial kit, and cytoplasmic histone-associated DNA fragments

were quantified by kit. The data are mean ± SD of 3 independent

experiments. *P \ 0.05, **P \ 0.01: compared to untreated cells;
#P \ 0.05, &P \ 0.01: compared to H2O2-treated cells
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Fig. 6 HA/sorbitol prevents p38 MAPK and p65-NF-jB but not

ERK1/2 activation. OA chondrocytes were incubated with escalating

doses of HA/sorbitol (0–500 lg/ml) for 2 h, followed by a second

incubation for 24 h in the presence or absence of 1 ng/ml IL-1b.

Cellular extracts were then subjected to Western blotting with specific

polyclonal antibodies, anti-phospho and anti-total p38 MAPK, anti-

phospho and total NF-jB/p65, and phospho and anti-total ERK1/2, as

described in ‘‘Materials and methods.’’
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HA/sorbitol inhibits p38 MAPK and NF-jB/p65

activation but not ERK1/2

To gain insights into the signaling pathways activated by

IL-1b in isolated OA chondrocytes in the presence or

absence of HA/sorbitol, we examined the phosphorylation

patterns of p38 MAPK, ERK1/2 and NF-jB/p65. When

cells were incubated with IL-1b and HA/sorbitol for

60 min, p38 MAPK and NF-jB/p65 phosphorylation levels

were lower than in cells treated with IL-1b alone (Fig. 6).

In contrast, HA/sorbitol had no effect on ERK1/2 protein

activation evoked by IL-1b.

Distinct effects of sorbitol and HA

Finally, and to highlight the distinct effects of sorbitol

and HA, OA chondrocytes were treated with 100 lg/ml

sorbitol (*0.5 mM) or 50 lg/ml HA alone with or

without 1 ng/ml IL-1b or 0.5 mM H2O2. As illustrated

in Fig. 7a, b, sorbitol significantly reduced IL-1b-

induced ROS generation and H2O2-induced cell death

(P \ 0.01). However, HA alone had a significant but

moderate effect, compared to sorbitol (P \ 0.05). To

determine the effect of HA, cells were treated with

1 lg/ml anti-CD44 antibody and 50 lg/ml HA/sorbitol,

followed by a second incubation with 1 ng/ml IL-1b
for 24 h. As shown in Fig. 7c–e, the addition of anti-

CD44 antibody blocked the biological effects of HA/

sorbitol, as measured by NO, PGE2, and MMP-13

determination.
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b Fig. 7 Distinct effects of sorbitol and HA. a, b Sorbitol suppresses

ROS generation and prevents cell death. Confluent human osteoar-

thritic (OA) chondrocytes were treated for 2 h with 100 lg/ml

sorbitol or 50 lg/ml HA, followed by a second incubation for 24 h in

the presence or absence of 1 ng/ml IL-1b or 0.5 mM H2O2. ROS

generation was quantified in cell extracts with MitoSOXTM Red

reagent. Cell viability was measured by MTT assay. c, d HA/sorbitol

blocks NO, PGE2, and MMP-13 production through the CD44

pathway. Cells were pretreated with 1 lg/ml anti-CD44 antibody and

50 lg/ml HA/sorbitol for 2 h, followed by another incubation for

24 h with 1 ng/ml IL-1b. NO level was assessed in culture media

according to a spectrophotometric method based on the Griess

reaction. PGE2 and MMP-13 levels were determined in culture media

by EIA and ELISA kits, respectively. The data are mean ± SD of 4

independent experiments. *P \ 0.05, **P \ 0.01, ***P \ 0.001:

compared to untreated cells; #P \ 0.05, &P \ 0.01, @P \ 0.001:

compared to H2O2- or IL-1b-treated cells
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Discussion

HA is a widely distributed tissue ECM component char-

acterized by a repeating disaccharide of N-

acetylglucosamine and D-glucuronic acid and providing

various structural and regulatory functions, including joint

lubrication [27]. HA has been administered clinically to

treat OA for more than 25 years. Although controversy still

surrounds its clinical value [28, 29], numerous clinical

trials and meta-analyses have reported durable benefits in

knee OA [30–33]. In addition to OA, HA significantly

alleviates pain and inflammation in some OA patients [34].

The rheological properties of SF are complex and depend

on the molecular weight (MW) of HA and its concentration

[35]. Both these HA parameters are significantly decreased

in SF from OA and rheumatoid arthritis (RA) compared to

normal knees. Low-MW fragments are biologically active

in promoting inflammation [36, 37]. Emerging data suggest

that high-MW HA has potential to suppress signaling

activated by low-MW HA fragments in chondrocytes and

various cells through different receptors, including the

principal HA receptor CD44 [38].

In this study, we tested HA/sorbitol which contains a

unique combination of key ingredients: sodium hyaluro-

nate and sorbitol. Sodium hyaluronate is a natural

component of joint SF that provides lubrication and shock

absorption. Sorbitol prevents tissue damage caused by

inflammation and helps to protect sodium hyaluronate from

degradation [20]. It is considered to be a potent scavenger

of hydroxyl radicals [39]. We have demonstrated that HA/

sorbitol abrogates IL-1b-induced production of catabolic,

inflammatory and oxidative stress mediators, such as

MMP-13, NO, iNOS, PGE2, ROS and HNE as well as

H2O2-induced markers of apoptosis, including caspase-3

activation and DNA fragmentation. Interestingly, our

findings showed that the antioxidant as well as the anti-

catabolic and anti-inflammatory properties of HA/sorbitol

conjugate could be attributed to sorbitol and HA, respec-

tively. All these processes (catabolism, inflammation,

oxidative stress and apoptosis) are deemed to be hallmarks

of cartilage degradation and synovial inflammation in OA.

Upon examination of signaling pathways, we noted that

HA/sorbitol prevented IL-1b-induced p38 MAPK and NF-

jB/p65 activation, but not that of ERK1/2.

Our results are in concordance with the literature.

In vitro and in vivo studies have demonstrated that HA

reduces the expression of MMPs, iNOS and COX-2 [40,

41]. In particular, HA, via its CD44 receptor, suppresses

MMP production through p38 MAPK downregulation in

IL-1b-stimulated rheumatoid synovial fibroblasts [42] and

chondrocytes [43]. Because p38 MAPK activation kindles

the expression of various inflammatory genes that cause

arthritis, its suppression could protect articular cartilage

from destruction [44]. NF-jB is another important player

as it initiates and sustains inflammatory reactions. It reg-

ulates many genes, including cytokines, chemokines, and

adhesion molecules, that participate in the pathophysiology

of synovial inflammation and bone and cartilage degrada-

tion [45]. HA can suppress NF-jB activation by fibronectin

in RA chondrocytes [46]. With regard to ERK1/2 activation,

our findings are in agreement with those of Julovi et al.

[43], who reported that HA was ineffective in counteract-

ing IL-1b-induced ERK1/2 phosphorylation in both OA and

RA chondrocytes. In contrast to our study, Hashizume and

Mihara showed that HA suppressed MMP induction by IL-

6 in human chondrocytes via ERK1/2 inactivation through

CD44 signaling [47]. CD44 inhibition, by blocking anti-

body, significantly reverses the inhibitory effect of HA on

MMP-13 production. Taken together, HA is likely to

suppress the intracellular pathways activated by catabolic

stimulators in arthritic joints.

Our investigation into the effect of HA/sorbitol gel on

redox status revealed a decrease in HNE and ROS gener-

ation as well as Gsta4-4 upregulation. The latter is a major

HNE-metabolizing enzyme, and its inhibition induces

chondrocyte apoptosis [48]. In particular, the antioxidant

capacity of HA/sorbitol conjugate is mostly attributed to

sorbitol rather than HA. The results of the present study are

in contrast to those of others in that sorbitol can act as an

oxidant agent [49, 50]. In those experiments, the authors

used very high sorbitol concentrations (0.4–1 M). In regard

to HA, our observations are in agreement with previous

reports indicating the antioxidant properties of HA in dif-

ferent cell types. Ke et al. [51] demonstrated that HA

reduces LPO products and ROS generation but, in contrast,

induces the activity of superoxide dismutase, catalase and

glutathione peroxidase. The antioxidant mechanisms of HA

include also its capacity to inhibit the Fenton reaction via

the entrapment of iron ions and to scavenge directly free

radical [52]. On the other hand, the impact of extensive

ROS and reactive nitrogen species accumulation on HA

stability and properties has also been reported. Several

authors have demonstrated that HA oxidation by these

reactive species is linked with HA cleavage and fragmen-

tation, resulting in reduced HA viscosity [53–55]. Monzon

et al. [56] provided evidence that ROS evoke HA frag-

mentation in normal human bronchial epithelial cells via

hyaluronidase 2 (Hyal2) upregulation. Hyal2, a HA-

degrading enzyme, could be considered as a key candidate

orchestrating inflammatory responses coupled with HA

fragmentation, particularly in oxidative stress conditions.

In the present study, we also investigated the effect of HA/

sorbitol on IL-1b-induced apoptosis of human OA chon-

drocytes. We found that HA reverses the process and inhibits

apoptosis, as shown by caspase-3 assay and DNA fragmen-

tation analysis. In a similar investigation conducted on
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isolated human chondrocytes, Grishko et al. [57] determined

that HA has the capacity to protect mitochondria and its

genome from the damaging effects of oxidative stress and

preserve one of the most essential mitochondrial functions,

energy production. Another study showed that HA inhibited

IL-1b-induced chondrocyte apoptosis [58]. It has been

established that adding HA to media dose dependently

reduces the impairment of mitochondrial membrane poten-

tial and restores mitochondrial ATP production. In an

experimental rabbit model of OA, HA administration is

effective in ameliorating damage associated with the OA

process, as evidenced by decreased apoptosis.

The chondrocyte death/apoptotic phenomenon in OA is

complex and seems related to excessive synthesis of factors

having pro-apoptotic activity in cartilage and synovium.

Among them, NO and PGE2 seem predominant [59]. Peng

et al. [60] demonstrated that HA blocks apoptosis and

dedifferentiation of articular chondrocytes caused by NO

production in a dose-dependent manner. The inhibitory

effects of HA on apoptosis are derived from their ability to

block NO-induced inhibition of protein kinase C alpha

(PKCa). These results suggest that HA exerts a protective

action on cartilage chondrocytes induced by NO, not only

by reversing mitochondrial depolarization, but also by

blocking PKCa inhibition. Altogether, suppression of NO

and inflammatory cytokine activity within joints might be

an important mechanism of the clinical action of intraar-

ticular HA injection in OA treatment.

HA’s effect appears to be mediated through CD44

receptor binding. A large body of evidence indicates that

CD44 receptors may play a critical role in the normal

function and survival of many cell types. CD44 can pro-

mote resistance to apoptosis in the colonic epithelium via a

mitochondria-controlled pathway [61]. In addition, it has

been shown that CD44 expression in some cell types, such

as stem cells, may provide the means to internalize HA by

endocytosis, and one of the functions of internalized HA

may be protection of DNA from oxidants [52]. In relation

to cartilage biology, it has been determined that CD44 is

important in both the normal and abnormal functions of

cartilage through its adhesion to HA, which induces a

variety of stimulatory signals that regulate chondrocyte

proliferation as well as matrix synthesis in the cartilage

microenvironment [62].

The present study shows that HA/sorbitol dose dependently

suppresses catabolic and inflammatory responses as well as

oxidative stress-induced chondrocyte apoptosis in isolated

human OA chondrocytes. The suppression of these responses

within joints might be a crucial mechanism of clinical HA/

sorbitol action by intraarticular injection in OA treatment.
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