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Abstract

Objective and design To investigate the effects of sulfo-

raphane on endothelial inflammatory gene expression in

endothelial cells.

Materials and methods Human aortic endothelial cells

were used in the study.

Results One-hour pretreatment of endothelial cells (EC)

with sulforaphane (1–4 lM) suppressed TNF-a-induced

MCP-1 and VCAM-1 mRNA and protein levels, but had no

effect on TNF-a-induced ICAM-1 expression. Sulfora-

phane also inhibited TNF-a-induced activation of p38

MAP kinase, but not c-Jun-N-terminal kinase. Sulfora-

phane had no effect on TNF-a-induced NF-jB nuclear

binding activity, IjB-a degradation or activation of NF-

jB-driven transcriptional activity. Expression of dominant

negative Nrf2 inhibited sulforaphane-induced antioxidant

response element (ARE)-driven promoter activity, but had

no effect on sulforaphane-mediated inhibition of VCAM-1

and MCP-1 expression.

Conclusion These data suggest that sulforaphane may be

useful as a therapeutic agent for the treatment of inflam-

matory diseases.

Keywords Sulforaphane � Monocyte chemoattractant

protein-1 � Vascular cell adhesion molecule-1 � TNF-a �
p38 MAP kinase � Nrf2 � Endothelial cells

Abbreviations

ARE Antioxidant response element

HAEC Human aortic endothelial cells

HMEC Human microvascular endothelial cells

ICAM-1 Intercellular adhesion molecule-1

MCP-1 Monocyte chemoattractant protein-1

Nrf2 NF-E2-related factor-2

TNF-a Tumor necrosis factor-a
VCAM-1 Vascular cell adhesion molecule-1

SFN Sulforaphane

Introduction

Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane)

is a naturally occurring isothiocyanate isolated from cru-

ciferous vegetables such as broccoli [1]. Sulforaphane is a

potent cancer chemo-preventive agent that functions by

inducing phase II detoxification enzymes and antioxidant

proteins through the activation of antioxidant response

element (ARE)-mediated transcriptional activity [2]. Nrf2

(NF-E2-related factor 2) is the transcription factor that is

responsible for both constitutive and inducible expression

of ARE-mediated genes [3, 4].

Recent studies indicate that sulforaphane also possesses

anti-inflammatory effects. Treatment of cultured Raw

264.7 macrophages with sulforaphane suppressed lipo-

polysaccharide (LPS)-induced nitric oxide generation,

PGE2 production, TNF-a secretion and inducible nitric

oxide synthase (iNOS) and Cox-2 expression [5]. Sulfo-

raphane also inhibited cell-mediated immune response in

B16F-10 melanoma-induced metastasis-bearing C57BL/6

mice and suppressed the serum levels of proinflammatory

cytokines such as IL-1b, IL-6, TNF-a and GM-CSF during
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metastasis [6]. At the molecular level, sulforaphane treat-

ment inhibited activation of NF-jB [5, 7]. Heiss et al.

reported that sulforaphane can selectively reduce DNA

binding of NF-jB without interfering with LPS-induced

degradation of the inhibitor of NF-jB nor with nuclear

translocation of NF-jB [5, 7]. In contrast, Xu reported that

sulforpahene inhibited NF-jB transcriptional activity,

nuclear translocation of p65 and UVC-induced phosphor-

ylation of IjBa and blocked UVC-induced IjBa
degradation in PC-3 C4 cells [8]. sulforaphane treatment

also inhibited LPS-induced activation of AP-1 in Raw

264.7 cells and ultraviolet (UV) light-induced activation of

AP-1 in human HaCaT keratinocytes [5, 7, 9].

These observed anti-inflammatory effects of sulfora-

phane may have involved the activation of the Nrf2/ARE

pathway. Several recent studies have demonstrated that the

Nrf2/ARE pathway is involved in immune and inflamma-

tory processes. It has been shown that Nrf2-deficient mice

had increased inflammatory cell infiltration in hyperoxia

and bleomycin-induced lung injury [10, 11]. Nrf2-knock-

out mice also exhibited prolonged inflammation during

cutaneous wound healing [12] and displayed enhanced

bronchial inflammation and susceptibility to cigarette

smoke-induced emphysema [13]. Previously, we reported

that adenovirus-mediated over-expression of Nrf2 sup-

pressed expression of inflammatory genes such as vascular

cell adhesion molecule-1 (VCAM-1) and monocyte che-

moattractant protein-1 (MCP-1) in endothelial cells [14]. In

this study, we investigated the effects of sulforaphane on

TNF-a-induced inflammatory gene expression in endothe-

lial cells. Our results demonstrated that treatment of

endothelial cells with sulforaphane inhibited TNF-a-

induced VCAM-1 and MCP-1 expression and p38 MAP

kinase activation. However, these effects were independent

of Nrf2/ARE pathway activation. Furthermore, sulfora-

phane did not inhibit NF-jB activation at concentrations

that inhibited VCAM-1 and MCP-1 expression.

Materials and methods

Cell culture and DNA plasmids

Human aortic endothelial cells (HAECs) were obtained

from Cambrex (Walkersville, MD, USA) and cultured in

EGM-2 growth medium. Cells were used between passages

5 and 9. Human microvascular endothelial cells (HMEC)

were grown as described previously [15] and were cultured

in modified MCDB 131 (Invitrogen, Carsbad, CA, USA),

supplemented with 10% fetal bovine serum and EGM single

quote (Cambrex). Cells were maintained at 37�C in a 5%

CO2 incubator. p3xARE-luc contains 3 tandem copies of

MQO1 ARE sequences linked to a luciferase reporter gene

and has been described previously [16]. 5xNF-jB/Luc was

purchased from Promega Corp (Madison, WI, USA).

pcDNA3-DN-Nrf2 expressing dominant negative Nrf2

mutant and pcDNA3-Keap1 were described previously

[16]. Sulforaphane was obtained from Calbiochem Corp

(San Diego, CA, USA). Antibodies for phosphorylated p38

MAP kinase and phosphorylated c-Jun-amino-terminal

kinase (JNK) were obtained from Promega Corporation.

Antibodies for p38 MAP kinase and JNK were obtained

from Cell Signaling Technologies (Danvers, MA, USA).

Preparation of RNA and Quantikine mRNA analysis

Total RNA samples were isolated by the Trizol method

(Life Technologies, Grand Island, NY, USA) and quanti-

tatively measured by UV spectrophotometer. VCAM-1,

MCP-1 and GAPDH mRNA levels were determined with a

Quantikine mRNA colorimetric quantification kit (R&D

Systems, Inc, Minneapolis, MN, USA) according to the

manufacturer’s instructions.

ELISA for MCP-1 protein

HAECs grown in 24 well plates were treated with TNF-a
(100 U/ml) for 4 h. Conditioned media were collected and

assayed for MCP-1 protein levels by ELISA using the

Quantikine Colorimetric Sandwich ELISA kit (R&D Sys-

tems) according to the manufacturer’s instruction.

ELISA for cell surface expression of adhesion

molecules

HAECs grown in 96-well plates were pretreated or not with

sulforaphane for 1 h and then incubated with TNF-a
(100 U/ml) for 4 h. Primary mouse antibodies for VCAM-

1 and ICAM-1 were obtained from Southern Biotechnol-

ogy Associates. Cell surface expression of adhesion

molecules was determined by ELISA with primary binding

with specific mouse antibodies, followed by secondary

binding with a horseradish peroxidase-conjugated goat

anti-mouse IgG antibody. Quantification was performed by

determination of colorimetric conversion at OD450 nm of

3,30,5,50-tetramethylbenzidine.

Transfection and promoter activity assays

Since HAECs are relatively resistant to efficient transient

transfection, we used HMECs for these experiments.

HMECs were grown to 60–70% confluence in 12-well

plates and transfected with various plasmids as indicated in

the figure legends using SuperFect transfection reagent

according to the manufacturer’s instructions (Qiagen, Inc,

Valential CA, USA). Plasmids pRL-TK (renilla luciferase
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constitutively expressed under the control of the thymidine

kinase promoter) was co-transfected in all samples and

used to normalize for transfection efficiency. Firefly and

renilla luciferase activities were measured using a lucifer-

ase reporter assay system according to the manufacturer’s

instructions (Promega Corp).

Western blot analysis

HAECs were lysed for 30 min on ice in 1 ml of a lysis

buffer as previously described [16]. Protein samples

(15 lg) were subjected to electrophoresis on 10% SDS-

PAGE gel and transferred to a nitrocellulose membrane.

Antibody-bound protein bands were then visualized via

HRP-dependent chemiluminescence (Amersham Corp,

Piscataway, NJ, USA).

Monocyte adhesion assay

The human monocytic U937 cell line was used in the

adhesion assay as previously described [17]. U937 cells

were labeled with 5 lM Calcein AM (Invitrogen) and

resuspended in protein-free RPMI culture medium at a

concentration of 5 9 106 cells/ml. The fluorescently

labeled U937 cell suspension was added to the HAEC

monolayers in 96-well plates at a concentration of 3 9 104

cells/well, and the mixture was incubated at 37�C for

30 min. The monolayers were rinsed four times with

RPMI, and 200 ll of PBS was added to each well. Fluo-

rescence was measured with a fluorescein filter at 485 nm/

535 nm using the Perkin Elmer Victor2 V multi-plate

reader.

Adenoviruses

The adenovirus encoding murine dominant negative Nrf2

cDNA (Ad.DN-Nrf2) was previously described [18].

Infection was carried out with the indicated multiplicity

of infection (MOI) for 24 h, after which the infection

media was aspirated and replaced with fresh media.

Ad.GFP, an adenovirus encoding the green florescence

protein (GFP) gene, was used as a control for adenovirus

infection.

Statistical analysis

Values were expressed as the means ± SD of at least three

experiments. Statistics were performed by ANOVA with

Tukey’s post hoc test or Student’s t test where appropriate.

Values were considered significantly different at the 95%

confidence level.

Results

Sulforaphane suppresses TNF-a-induced MCP-1

and VCAM-1, but not ICAM-1, gene expression

To investigate whether sulforaphane can suppress TNF-a-

induced inflammatory gene expression, HAECs were

treated with sulforphane (1–4 lM) for 1 h and then

exposed to TNF-a (100 U/ml) for 4 h. Treatment of

HAECs with TNF-a-induced a marked increase in MCP-1

protein secretion and cell surface expression of VCAM-1

and ICAM-1 (Fig. 1). Pretreatment with sulforaphane

suppressed TNF-a-induced MCP-1 protein secretion and

cell surface expression of VCAM-1 protein in a concen-

tration-dependent manner (Fig. 1). Similarly, sulforaphane

suppressed TNF-a-induced MCP-1 and VCAM-1 mRNA

accumulation in HAECs (Fig. 2). However, treatment with

sulforaphane had no effect on either TNF-a-induced cell

surface expression of ICAM-1 protein (Fig. 1) or ICAM-1

mRNA levels (Fig. 2).

Sulforaphane suppresses TNF-a-induced monocyte

adhesion to endothelial cells

To determine whether inhibition of VCAM-1 gene

expression by sulforaphane would suppress TNF-a-induced

monocyte adhesion, HAECs were pretreated with sulfora-

phane (4 lM) for 1 h and then exposed to TNF-a for 4 h.

As shown in Fig. 3, TNF-a treatment produced a marked

increase in U937 cell adhesion to HAECs. Treatment with

sulforphane resulted in approximately 98% inhibition of

U937 adhesion to endothelial cells.

Sulforaphane activates the ARE-driven promoter

through an Nrf2-dependent mechanism

Sulforaphane is a well-characterized phase II inducer and

activates ARE-mediated transcriptional activity [19–21].

To examine the concentration-dependent responses of

sulforaphane on ARE-driven promoter activity, HMECs

were transfected with 3xARE-luc and exposed to sulfo-

raphane (1–3 lM) for 4 h. HMECs were used as HAECs

are refractory to transient transfection. Treatment with

sulforaphane produced a concentration-dependent increase

in ARE transcriptional activity (Fig. 4a). To determine if

the Nrf2 transcriptional factor is important in sulfora-

phane-induced ARE promoter activity, HMECs were co-

transfected with dominant negative Nrf2 vector. Sulfora-

phane-induced activation of ARE promoter activity was

inhibited by co-transfection with a DN-Nrf2 mutant

expression vector or with Nrf2 inhibitory protein Keap1

(Fig. 4b).
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Sulforaphane suppresses TNF-a-induced VCAM-1

and MCP-1 expression through an Nrf2-independent

mechanism

To examine the role of Nrf2 in sulforaphane-mediated

inhibition of VCAM-1 and MCP-1 expression, HAECs

were infected with Ad.GFP and Ad.DN-Nrf2 for 24 h.

Infection with Ad.DN-Nrf2 led to marked expression of

truncated Nrf2 protein in HAECs (data not shown). Cells

were then pretreated with sulforaphane (4 lM) for 1 h

and exposed to TNF-a (100 U/ml) for 4 h. As shown in

Fig. 5, sulforaphane inhibited TNF-a-induced cell sur-

face expression of VCAM-1 and secretion of MCP-1 by

HAECs. Infection with Ad.DN-Nrf2 did not reverse sul-

foraphane-mediated inhibition (Fig. 5). These data suggest

that the Nrf2/ARE pathway is not involved in sulfora-

phane-mediated inhibition of VCAM-1 and MCP-1

expression.
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Fig. 1 Sulforaphane (SFN) suppressed TNF-a-induced MCP-1 and

VCAM-1, but not ICAM-1, protein expression in HAECs. HAECs

were pretreated with sulforaphane (1–4 lM) for 1 h and then exposed

to TNF-a (100 U/ml) for 4 h. Conditioned medium was collected and

MCP-1 protein levels were determined by ELISA. Cell surface

expression of VCAM-1 and ICAM-1 protein was determined by

ELISA. Values are mean ± SD, n = 4. *P \ 0.05 compared with

TNF-a-treated group
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Fig. 2 Sulforaphane suppressed TNF-a-induced MCP-1 and VCAM-

1, but not ICAM-1, mRNA accumulation in HAECs. HAECs were

pretreated with sulforaphane (1–4 lM) for 1 h and then exposed to

TNF-a (100 U/ml) for 4 h. Relative mRNA levels for MCP-1,

VCAM-1 and ICAM-1 were determined by Quantikine mRNA kits

and normalized to GAPDH levels. Values are mean ± SD, n = 4.

*P \ 0.05 compared with TNF-a treated group
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Sulforaphane has no effect on TNF-a-induced NF-jB

activation

We used three approaches to determine the effect of sul-

foraphane on NF-jB activation: nuclear NF-jB-binding

activity, IjBa degradation, and NF-jB promoter activity.

As shown in Fig. 6a and b, TNF-a-induced IjBa degra-

dation and nuclear NF-jB-binding activity were not

suppressed by sulforaphane pretreatment in HAECs. Sim-

ilarly, pretreatment with sulforaphane did not inhibit TNF-

a-induced activation of NF-jB-driven promoter activity in

HMECs (Fig. 6c). These data suggest that inhibition of

MCP-1 and VCAM-1 gene expression by sulforaphane is

mediated by an NF-jB-independent mechanism.

Sulforaphane suppresses TNF-a-induced activation

of p38 MAP kinase, but not JNK, in HAECs

p38 MAP kinase is involved in TNF-a-induced VCAM-1

and MCP-1 expression in endothelial cells [22, 23]. To

investigate whether sulforaphane is capable of suppressing

TNF-a-induced activation of p38 MAP kinase, HAECs

were pretreated with sulforaphane (4 lM) for 1 h and

exposed to TNF-a (100 U/ml) for 10 and 20 min. TNF-a-

treatment resulted in a marked increase in phosphorylated

p38 MAP kinase levels. Treatment with sulforaphane

inhibited TNF-a-induced phosphorylation of p38 MAP
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Fig. 3 Sulforaphane inhibited TNF-a-induced monocyte adhesion.

HAECs were pretreated with sulforaphane (4 lM) for 1 h and then

exposed to TNF-a for 4 h. Adhesion of monocytic cell line U937 cells
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Fig. 4 Sulforaphane activates ARE-driven transcriptional activity

through Nrf2-dependent mechanism in HMECs. a HMECs cultured in

12-well plates were transfected with 0.5 lg of p3xARE/Luc for 24 h

and exposed to sulforaphane (1–3 lM) for 4 h. b HMECs cultured in

12-well plates were transfected with 0.5 lg of p3xARE/Luc plus

0.5 lg pcDNA3-DN-Nrf2, pcDNA3-Keap1 or empty vector pcDNA3

and exposed to sulforaphane (4 lM) for 4 h. These cells were also

transfected with 0.1 lg of pRL-TK for normalization of transfection

efficiency. Cells extracts were harvested and luciferase assays were

performed. Values represent mean ± SD, n = 3. *P \ 0.05 com-

pared with non-treated treated cells
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Fig. 5 Expression of dominant negative Nrf2 has no effect on

sulforaphane-mediated inhibition of TNF-a-induced VCAM-1 and

MCP-1 expression. HAECs were infected with Ad.GFP or Ad.DN-

Nrf2 (MOI of 100) for 24 h and then exposed to TNF-a (100 U/ml)

for 4 h. a Cell surface expression of VCAM-1 was determined by

ELISA. b Conditioned medium was collected and MCP-1 protein

levels were determined by ELISA. Values represent mean ± SD,

n = 4. *P \ 0.05 compared with TNF-a-treated cells infected with

Ad.GFP
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kinase (Fig. 7). In contrast, treatment with sulforaphane

had no effect on TNF-a-induced phosphorylation of JNK in

endothelial cells. These data suggest that sulforaphane may

inhibit TNF-a-induced MCP-1 and VCAM-1 expression

through inhibition of p38 MAP kinase activation.

Discussion

In the present study, we investigated the effects of sulfo-

raphane on TNF-a-induced inflammatory gene expression

in endothelial cells. Our data demonstrated that sulfora-

phane was able to suppress TNF-a-induced MCP-1 and

VCAM-1 expression, as well as monocyte adhesion to

endothelial cells. Sulforaphane also inhibited TNF-a-

induced activation of p38 MAP kinase, without affecting

TNF-a-induced activation of NF-jB or JNK. Although

treatment with sulforaphane-induced increases in ARE-

driven promoter activity, sulforaphane’s inhibitory effects

of VCAM-1 and MCP-1 were not dependent on Nrf2.

These data suggest that sulforaphane may suppress

inflammatory gene expression through inhibition of the

activation of p38 MAP kinase.

Several studies have demonstrated the anti-inflamma-

tory effects of sulforaphane. In cultured Raw 264.7

macrophages, pretreatment with sulforaphane suppressed

LPS-induced iNOS as well as Cox-2 gene expression [5].

Similarly, sulforaphane pre-treatment inhibited production

of IL-8, GM-CSF, and IL-1b from primary human
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bronchial epithelial cells upon stimulation with diesel

extract [19]. Wu et al. reported that feeding spontaneous

hypertension rats with sulforaphane increased GSH

reductase and GSH peroxidase activities, decreased oxi-

dative stress and decreased infiltration of activated

macrophages in cardiovascular system including inner

intimal layers of the aorta, carotid artery and endocardium

of the heart [24]. Our results provide further support to the

notion that sulforaphane has anti-inflammatory effects and

may be beneficial for the prevention and treatment of

inflammatory diseases such as atherosclerosis.

The present study showed that sulforaphane has no

effects on TNF-a-induced activation of NF-jB. These

results are at variance with earlier reports. Heiss et al.

reported that sulforaphane at 10 and 20 lM concentrations

inhibited LPS-induced DNA binding of NF-jB, without

interfering with IjB-a degradation and nuclear transloca-

tion of NF-jB in the murine macrophage cell line Raw

264.7. The authors further demonstrated that sulforaphane

may directly interfere with NF-jB DNA binding by mod-

ifying the critical thiol moiety of the NF-jB subunits [5].

In human prostate cancer PC-3 C4 cells, Xu et al. reported

that treatment with 20 and 30 lM sulforaphane inhibited

UVC-induced NF-jB activation and expression of NF-jB-

regulated genes. In this study, sulforaphane also inhibited

UVC-induced activation of IKKb and IKKa and degrada-

tion of IjB-a. [8]. However, our results demonstrated that

sulforaphane at 4 lM concentration suppressed TNF-a-

induced inflammatory gene expression without affecting

IjB-a degradation, NF-jB nuclear translocation and NF-

jB transcriptional activity. The difference may be due to

concentration used in the studies. These studies were

conducted with relatively high concentrations (10–30 lM)

of sulforaphane in comparison with our study that uses

4 lM. In our study, endothelial cells are much more sen-

sitive to sulforaphane than other cell types; 30 lM of

sulforaphane was toxic to endothelial cells. Furthermore,

cell type differences may also contribute to the discrep-

ancies in the observations.

Recent studies have demonstrated that the Nrf2/ARE

pathway is involved in immune and inflammatory pro-

cesses. Nrf2-deficient mice had exacerbated inflammatory

responses in hyperoxia and bleomycin-induced lung injury

[10, 11], and enhanced bronchial inflammation and sus-

ceptibility to cigarette smoke-induced emphysema [13].

We reported earlier that adenovirus-mediated over-

expression of Nrf2 suppressed the expression of VCAM-1

and MCP-1 in endothelial cells [14]. Sulforaphane is one of

the most potent activators of the Nrf2/ARE pathway and

can exert indirect antioxidant effects [1, 2, 25]. However,

our data showed that although expression of dominant

negative Nrf2 inhibited sulforaphane-induced ARE-driven

transcriptional activity, it had no effect on sulforaphane-

mediated inhibition of VCAM-1 and MCP-1. Because the

total time of exposure to sulforaphane in our experiments

was no more than 5 h, it is unlikely that the inhibition of

VCAM-1 and MCP-1 observed in our studies is a result of

the induction of endogenous antioxidant and/or anti-

inflammatory proteins (i.e., HO-1) by Nrf2 subsequent to

activation by sulforaphane. Therefore, these data suggest

that sulforaphane has anti-inflammatory effects indepen-

dent of genes activated via the Nrf2/ARE pathway. It is

possible that prolonged treatment with sulforaphane will

have two components of anti-inflammatory activity: one

that is mediated via more acute actions of sulforaphane

(i.e., effects described here on p38 activation) and one that

may require longer exposure to sulforaphane and which is

dependent on the subsequent activation of Nrf2-dependent

genes (i.e., HO-1).

In addition to the well-known role of the NF-jB path-

way in regulating inflammatory gene expression, the p38

MAP kinase pathway plays an important role in regulating

the expression of many inflammatory genes such as MCP-

1 [23], VCAM-1 [26], and TNF-b [27]. Using specific p38

MAP kinase inhibitors or a dominant-negative mutant of

MKK6 (the upstream kinase activator of p38), it has been

reported that p38 MAP kinase is required for the activation

of VCAM-1 and MCP-1 expression in response to IL-b
and TNF-a [23, 26, 28]. Hwang et al. reported that sul-

foraphane inhibits H2O2-mediated activation of Erk1/2 and

p38 MAP kinase and protects H2O2-induced inhibition of

gap junctional intercellular communication in rat liver

epithelial cells [29]. ATF2 is a downstream transcription

factor activated by p38 MAP kinase and forms heterodi-

mers with members of the AP-1 family [30, 31]. ATF2

knockout mice show decreased LPS-induced inflammation

including reduced expression of E-selectin, P-selectin,

VCAM-1, IL-6 and KC [32]. Sulforaphane may inhibit

activation of ATF2 through inhibition of p38 MAP kinase

and suppress the expression of VCAM-1 and MCP-1. The

present study demonstrated that sulforaphane is able to

suppress TNF-a-mediated activation of the p38 MAP

kinase, which suggests that sulforaphane’s anti-inflamma-

tory effects may be mediated through the inhibition of p38

MAP kinase. Additional studies are needed to address how

the inhibition of p38 activity by sulforaphane may mediate

the selective nature of the inhibition of various inflam-

matory response genes (i.e. VCAM-1 vs ICAM-1) and to

what degree other signaling and transcriptional networks

may be involved.

In summary, treatment with sulforaphane suppressed

TNF-a-induced MCP-1 and VCAM-1 expression and

monocyte adhesion to endothelial cells. The mechanisms of

sulforaphane’s action may be mediated by inhibition of p38

MAP kinase. These data provide further support for anti-

inflammatory role of sulforaphane and suggest that
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sulforaphane may be useful as a therapeutic agent for the

treatment of inflammatory diseases.
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