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Abstract. Leukocyte recruitment is a key host defense mech-
anism to infection and a salient feature of autoimmune dis-
eases such as arthritis. The cell dynamics of these processes 
are diffi cult to study due to the challenge of tracking cells 
fl owing in the circulation and migrating through light scat-
tering tissues. Here, we describe a noninvasive two-photon 
(2P) microscopy approach to study leukocyte homing in the 
mouse footpad. In the absence of infl ammation, cells moved 
> several hundred µm/s in vessels and only rarely adhered to 
endothelium or entered the tissue parenchyma. In response 
to bacterial infection, neutrophils moved in small capillar-
ies at reduced speeds of (14–45 µm/min) and rolled in larger 
vessels at 5–60 µm/min. Within minutes of adoptive transfer, 
neutrophils entered the connective tissue and crawled with 
a median velocity of 7.3 µm/min. 2P imaging has excellent
 spatiotemporal resolution and is a promising in vivo ap-
proach to study the cellular basis of infl ammation. 
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Introduction

The phenomenon of leukocyte rolling and tethering within 
infl amed blood vessels was reported over 130 years ago by 
Julius Cohnheim [1]. In the last few decades, the molecular 
basis of this process has been an area of active interest. A 
host of molecules have been identifi ed that act at different 
stages of leukocyte recruitment including selectins [2], inte-
grins [3], junctional adhesion molecules [4] and chemokines 
[5] as well as factors that antagonize recruitment including 
cellular phosphatases [6] and nitric oxide [7]. However, our 

knowledge of the cell dynamics during the process are lim-
ited due in large part to the technical challenges associated 
with observing cells moving rapidly in the circulation and 
entering tissues under physiological conditions [8]. Consid-
ering the importance of leukocyte recruitment and migration 
in human health and disease [9], we developed a noninva-
sive two-photon (2P) microscopy approach that allows leu-
kocytes to be observed with high spatiotemporal resolution 
within blood vessels and in the tissue parenchyma. 

A major advantage of 2P imaging is that it does not involve 
a surgical preparation, as commonly required for epifl uores-
cence intravital microscopy [10]. Because vessels and tissues 
can be imaged directly through skin, 2P imaging minimizes 
disruption to the physiological tissue state and permits basal 
traffi cking behaviors to be studied. Moreover, since the mice 
are unharmed during the imaging process, it might be pos-
sible to perform longitudinal studies  on individual research 
subjects. The fi rst report of intravital 2P being used to study 
lymphoid tissues appeared in 2003 [11] and since then sev-
eral variations of this approach have been widely adopted to
 study lymphocytes and antigen presenting cells in vivo [12]. 
This technique has changed our static view of the immune 
system and provided a tantalizing glimpse of the complex 
cellular dynamics that underlie the immune response [13]. 

The footpad is a classic site for assessing delayed type 
hypersensitivity (DTH) [14]. Here, we show that the mouse 
footpad is an ideal location to use 2P microscopy to study 
innate immune cell traffi cking during infl ammation. We en-
vision 2P microscopy as an important new tool to study the 
single-cell dynamics of leukocyte traffi cking in vivo during 
infection, vaccination and autoimmune disease.
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Methods

Bone marrow neutrophils were prepared as described by Graham et al. 
[15]. Briefl y, bone marrow was harvested from the femurs and tibia of 
B6 mice. Neutrophils were isolated by Percol (Sigma Aldrich) gradient 
centrifugation and stained with 10 µm CFSE (Invitrogen) for 30 min at 
~37 °C.

C57BL6 Mice were injected in the footpad with 20 × 106 Listeria 
monocytogenes in ~5 µl of PBS, and 2–4 h later, 5 × 106 CFSE labeled 
bone marrow neutrophils were adoptively transferred (i. v.). In other 
experiments we used CD11c-YFP mice (gift of the Nussenzweig lab) 
in which dendritic cells (DCs) express the enhanced yellow fl uorescent 
protein. During the imaging experiment, mice were anesthetized with 
isofl uorane for restraint and to avoid psychological stress on the animal. 
VetBond (3M) was used to secure the paw to the glass coverslip at the 
bottom of the imaging chamber and PBS was added to cover the tissue. 
The mouse’s core body temperature was maintained with a warming 
pad (Braintree Scientifi c) set to 37 °C and supplemental fl uids (Saline) 
administered i. p. or by retro orbital injection. We injected (i. v. or retro 
orbital) 1 mg dextran tetramethylrhodamine, 2,000,000 MW (Invitro-
gen), to label blood vessels during imaging. The rear footpad and toes 
were imaged for periods of 1–4 h before the mouse was euthanized while 
deeply anesthetized.

Time-lapse imaging was performed using a custom-built dual-laser 
video-rate 2P microscope. CFSE labeled BM neutrophils and Rhod-
amine dextran labeled blood vessels were excited by a Chameleon XR 
Ti:sapphire laser (Coherent) tuned to 820 nm. For experiments with 
CD11c-YFP mice we used simultaneous laser excitation at 915 nm and 
820 nm. Fluorescence emission was passed through 490 nm and 560 di-
chroic mirrors placed in series and detected as red (560–650 nm), green 
(490–560 nm), and blue (<490 nm) channels by three head-on Bi-alkali 
PMTs. A customized version of ImageWarp (A&B software) was used 
to control the various hardware devices during real-time acquisition and 
to process and archive the image data. Each plane consists of an image 
of 200 µm by 225 µm (x and y = 2 pixel/µm). Z-stacks were acquired by 
taking between 21 and 61 sequential steps at 2.5 µm spacing. To increase 
signal contrast, we averaged between 10–20 video frames for each z-
slice. Time points between stacks ranged from 18 to 48 s depending 
on the settings for each experiment. Multi-dimensional rendering was 
performed with Imaris (Bitplane) and cell tracking was performed with 
PicViewer Software (John Dempster University of Strathclyde) [16].

Results

To characterize the 3D tissue structure, we examined the 
footpads of CD11c-YFP mice with 2P microscopy (Fig. 
1A). The native tissue appeared as discrete strata (Fig. 1B, 
supplemental movie 1); the surface of the skin, which gave 
off a diffuse blue-green autofl uorescence, a sessile network 
of DCs positioned 10–50 µm below the skin surface (green 
cells, Fig. 1B), and a third region 50–150 µm deep that pro-
duced a distinctive second harmonic generation signal (blue 
fi bers, Fig. 1B), presumably due to collagen in the connec-
tive tissue along the bone. Rhodamine dextran injection re-
vealed a complex network of microvessels (red structures, 
Fig. 1B) within the connective tissue (blue). These vessels 
were between 3–15 µm in diameter and displayed a highly 
kinked and branched morphology. 

Next we examined the homing dynamics of adoptively 
transferred neutrophils. In the absence of infl ammation, 
neutrophils fl owed in microvessels of the footpad at several 
hundred µm/sec (data not shown). Only rarely did we fi nd 
evidence of neutrophil extravasation in the absence of in-
fl ammation (0–2 transferred neutrophils per footpad). In con-
trast, if mice were challenged with bacteria (Listeria mono-

cytogenes) 2–4 h before adoptive transfer, large numbers of 
neutrophils were recruited from the circulation into infl amed 
tissues. Within 15 min after transfer, many neutrophils ex-
travasated into the tissue and were crawling in the connective 
tissue (Fig. 1C, supplemental movie 2) with velocities be-
tween 5–10 µm/min (median velocity 7.3 µm/min, SD ± 2.5). 
At this time we also found neutrophils with a “torpedo like” 
morphology in small capillaries (3–15 µm in diameter) mov-
ing at speeds of 14–45 µm/min (Fig. 1C, supplemental movie 
2). In larger vessels (20–50 µm in diameter), cells moved at 
speeds of 5–60 µm/min, similar to the rolling and tethering 
behaviors observed for monocytes with confocal imaging 
[17] but slower than what has been observed in the ear skin 
model [18]. Neutrophils often formed clumps in these larger 
vessels, which over 20–30 min, dissociated as cells entered 
the tissue parenchyma or dislodged and fl owed away (data 
not shown). 

Because each z-step in our image stack is an average of 
10–20 video-rate frames, rapidly moving cells appeared as a 
single spot or a sequence of spots in our images. Each spot 
corresponds to a single video-rate frame and the distance be-
tween spots, equals the distance the cell traveled in 1/30 of a 
second. An example of a cell moving ~300 µm/sec is shown 
in Figure 1D. Using this approach, we could measure neu-
trophil velocities up to 1.5 mm/s in the circulation. 

Discussion

To date, most intravital imaging approaches require surgery 
to access the blood vessels as described in depth by Mempel 
et al. [19]. Moreover, only cells in the circulation or attached 
to the endothelium can be clearly seen; once cells extrava-
sate, tissue-induced light scattering makes it diffi cult to track 
cell movement. Because surgery in itself causes tissue dam-
age and infl ammation, this might adversely affect leukocyte 
behavior [10] and essentially precludes obtaining a physi-
ological base line level of homing, which is an important 
control parameter. Recently, several groups have used non-
invasive single-photon techniques such as confocal and near 
IR imaging to study leukocyte homing [17, 18, 20]. While 
these studies represent signifi cant technological advances in 
their own right, 2P imaging has the advantages of decreased 
phototoxicity [21] and superior imaging depth that should 
make it possible to follow cells longer and deeper into tis-
sues. Because the neutrophils stay motile for several hours in 
the imaged regions we don’t think we have generated signifi -
cant heat or photodamage, however it is not possible to rule 
this out formally. Furthermore, the footpad is a classic site 
for assessing infl ammation via a DTH reaction [14] and is 
arguably more physiological than other sites, such as the cre-
master muscle preparation described by Baez in 1973 [22]. 

Considering that leukocyte extravasation has been stud-
ied over the last century, it is surprising that only a few stud-
ies have yielded quantitative data regarding leukocyte veloci-
ties in the circulation [17, 18]. In fact the most common form 
of analysis is to measure changes in leukocyte abundance 
in the images over time in relatively large vessels (>100 µm 
in diameter) [2]. The velocities we measured for adoptively 
transferred neutrophils were similar to values obtained for 
monocytes (5–30 µm/min) [17]. A detailed analysis of veloc-
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ity and migratory behavior in physiological and pathological 
settings will provide fresh insight regarding the molecular 
machinery involved in this process. In particular, transgenic 
and knockout mouse models with genetically defi ned defects 
in chemokine [5] or integrin signaling [23] will be extremely 
informative. In these models in vivo imaging will be essen-
tial to distinguishing between closely related defects, such 
as, decreased rolling interactions or failed leukocyte fi rm ad-
hesion, which would be diffi cult to discern in fi x tissue sec-
tions. In terms of pharmaceutical development, we anticipate 
that 2P imaging will be useful for determining the precise 
mechanism of a drug’s action, e. g., effects on cell homing, 
motility or chemotaxis, and hence will facilitate the rational 
design of more potent and specifi c therapeutics.

In summary our imaging approach is simple, robust and 
has high spatiotemporal resolution. The 2P method described 
here has higher resolution than bioluminescence and PET 

Fig. 1. (A) Footpad preparation for 2P im-
aging. An anesthetized mouse’s hind paw 
was secured with Vetbound tissue glue to 
the bottom of a heated (37 °C) imaging 
chamber, covered with PBS and imaged 
with a 20 × 0.95 NA Olympus water dip-
ping objective. The mouse is resting on a 
37 °C warming pad to prevent hypothermia.
(B) 3D reconstruction of mouse footpad 
tissue. The image shows a rendered tissue 
volume with the dimensions x = 225 µm, y = 
200 µm and z = 150 µm. Rhodamine dextran 
labeled blood vessels appear red, CD11c-
YFP expressing cells appear green and con-
nective tissue appears blue. Scale bar equals 
40 µm.
(C) Time-lapse images of neutrophils hom-
ing to infl amed footpad. Each time point 
represents a maximum intensity projec-
tion of 31-z-planes (75 µm). The scale bar 
represents 40 µm. Yellow arrows indicate a 
CFSE-labeled neutrophil (green) with “tor-
pedo like morphology” moving in a small 
capillary (red). White arrows show a repre-
sentative neutrophil migrating in the tissue 
parenchyma.

(D) Measuring high-speed cell movement in microvessels. A continuous 1-second video-rate record (single plane) showing a CFSE labeled neutrophil 
fl owing through a vessel at 300 µm/s. Each dot is the cell captured in successive frames. By measuring the distance traveled between frames (see aster-
isk, each 1/30 of a second apart) cell velocity can be calculated. Scale bar equals 20 µm.

approaches, allows single-cell dynamics to be studied in 3D 
unlike conventional pathology or near IR imaging, and can 
image cells functioning in their native tissue environment at 
greater depths and with less photodamage than confocal mi-
croscopy. 2P in vivo imaging will deliver new insights for 
understanding how the host responds to infection or vaccina-
tion and how the regulation of leukocyte traffi cking contrib-
utes to autoimmune diseases such as arthritis and lupus. 
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