
Abstract. Myocardial infarction is associated with an
inflammatory response leading to leukocyte recruitment,
healing and formation of a scar. Members of the chemokine
superfamily are rapidly induced in the infarcted myocardium
and may critically regulate the post-infarction inflammatory
response. CXCL8/Interleukin (IL)-8 is upregulated in the
infarcted area and may induce neutrophil infiltration. In
addition, mononuclear cell chemoattractants, such as the CC
chemokines CCL2/Monocyte Chemoattractant Protein
(MCP)-1, CCL3/Macrophage Inflammatory Protein (MIP)-
1a, and CCL4/MIP-1b are expressed in the ischemic area,
and may regulate monocyte and lymphocyte recruitment.
However, chemokines may have additional effects on healing
infarcts beyond their leukotactic properties. The CXC
chemokine CXCL10/Interferon-g inducible Protein (IP)-10,
a potent angiostatic factor with antifibrotic properties, is
induced in the infarct and may prevent premature angiogen-
esis and fibrous tissue deposition, until the infarct is debrid-
ed and provisional matrix necessary to support granulation
tissue ingrowth is formed. Chemokine induction in the
infarct is transient, suggesting that inhibitory mediators
(such as transforming growth Factor (TGF)-b) may be acti-
vated suppressing chemokine synthesis and leading to reso-
lution of inflammation and transition to fibrosis. Brief repet-
itive ischemia in mice also results in chemokine upregulation
followed by suppression of chemokine synthesis and intersti-
tial fibrosis, in the absence of myocardial infarction.
Chemokine expression may play a role in the pathogenesis of
non-infarctive ischemic cardiomyopathy, where early
ischemia-induced chemokine expression may be followed by
activation of inhibitory mediators that suppress inflamma-
tion, but induce fibrosis. 
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Introduction 

The chemokines [1–7] comprise a superfamily of small high-
ly basic proteins with molecular weights in the range of 8–14
kDa and a strikingly similar tertiary structure [8]. Most
chemokines contain at least four cysteines that form two
disulfide bonds, one between the first and the third and one
between the second and the fourth cysteine. Chemokines are
subdivided into CC, CXC, or CX3C families based on the
number of amino acids between the first two cysteines (Tables
1, 2). Lymphotactin (XCL1) is the only known chemokine
containing only two cysteines corresponding to the second
and fourth cysteines of other classes. CC chemokines are the
most numerous and diverse family, including at least 25 lig-
ands in humans. CXC chemokines are further classified
according to the presence of the tripeptide motif glutamic
acid-leucine-arginine (ELR) in the NH2 terminal region.
Chemokines bind to heptahelical G protein-coupled recep-
tors. Most receptors recognize more than one chemokine and
certain chemokines may bind to several receptors.

Chemokines play a critical role in basal and inflammato-
ry leukocyte locomotion and trafficking [9, 10] and their
principal targets are bone marrow-derived cells. Most
chemokines are secreted and in order to induce a chemotac-
tic response in vivo they must be immobilized on cell or
extracellular matrix surfaces through interactions with gly-
cosaminoglycans [11]. In addition to effects on cell locomo-
tion, certain chemokines are capable of eliciting a variety of
other responses affecting leukocyte adhesion [12], activation
and degranulation, mitogenesis, and apoptosis. It has been
recently recognized that chemokines have a wide range of
effects on many different cell types beyond the immune sys-
tem, including endothelial cells (resulting in angiogenic or
angiostatic effects) [13], smooth muscle cells, neurons and
epithelial cells. 
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Table 1. Properties of the CXC, C and CX3C chemokines.

Systematic name Human common name Mouse common name Expression Receptors bound

CXC chemokine family
CXCL1 GROa GRO/MIP-2/KC? Inducible CXCR2 > CXCR1
CXCL2 GROb GRO/MIP-2/KC? Inducible CXCR2
CXCL3 GROg GRO/MIP-2/KC? Inducible CXCR2
CXCL4 PF4 PF4 Inducible Unknown
CXCL5 ENA-78 GCP-2/LIX? Inducible CXCR2
CXCL6 GCP-2 GCP-2/LIX? Inducible CXCR1, CXCR2
CXCL7 NAP-2 Unknown Inducible CXCR2
CXCL8 IL-8 Unknown Inducible CXCR1, CXCR2
CXCL9 Mig Mig Inducible CXCR3
CXCL10 IP-10 IP-10/CRG-2 Inducible CXCR3
CXCL11 I-TAC I-TAC Inducible CXCR3
CXCL12 SDF-1a/b SDF-1/PBSF Constitutive CXCR4
CXCL13 BCA-1 BLC Constitutive CXCR5
CXCL14 BRAK/bolekine BRAK Unknown
(CXCL15) Unknown Lungkine Unknown
CXCL16 CXCL16 CXCL16 CXCR6

C chemokines
XCL1 Lymphotactin/ATAC/ Lymphotactin XCR1

SCM-1a
XCL2 SCM-1b Unknown XCR1

CX3C chemokine
CX3CL1 Fractalkine Neurotactin/ Both CX3CR1

ABCD-3

Table 2. Properties of the CC chemokines.

Systematic name Human common name Mouse common name Expression Receptors bound

CC chemokine family
CCL1 I-309 TCA-3/P500 Inducible CCR8
CCL2 MCP-1/MCAF JE? Inducible CCR2
CCL3 MIP-1a MIP-1a Inducible CCR1, CCR5
CCL3L1 LD78b Unknown Inducible CCR1, CCR5
CCL4 MIP-1b MIP-1b Inducible CCR5
CCL5 RANTES RANTES Inducible CCR1, CCR3, CCR5
(CCL6) Unknown C10/MRP-1 Unknown
CCL7 MCP-3 MARC? Inducible CCR1, CCR2, CCR3
CCL8 MCP-2 MCP-2? Inducible CCR3, CCR5
CCL9 Unknown MRP-2, MIP-1g
CCL10 Unknown CCF18
CCL11 eotaxin eotaxin Inducible CCR3
(CCL12) Unknown MCP-5 Inducible CCR2
CCL13 MCP-4 Unknown Inducible CCR2, CCR3
CCL14 HCC-1 Unknown CCR1, CCR5
CCL15 HCC-2/MIP-1d Unknown CCR1, CCR3
CCL16 HCC-4/LCC-1 Unknown CCR1, CCR2
CCL17 TARC TARC/ABCD-2 Inducible CCR4
CCL18 DC-CK1/PARC Unknown Constitutive Unknown
CCL19 MIP-3b/ELC-exodus-3 MIP-3b/ELC-exodus-3 Constitutive CCR7
CCL20 MIP-3a/LARC/exodus-1 MIP-3a/LARC/exodus-1 Constitutive CCR6
CCL21 6Ckine/SLC/exodus-2 6Ckine/SLC/exodus-2 Constitutive CCR7
CCL22 MDC/STCP-1 ABCD-1 Both CCR4
CCL23 MPIF-1/CKb8 Unknown CCR1
CCL24 Eotaxin-2/MPIF-2 MPIF-2 Inducible CCR3
CCL25 TECK TECK Constitutive CCR9
CCL26 Eotaxin-3 Unknown Inducible CCR3
CCL27 CTACK/ILC ALP/CTACK Constitutive CCR10
CCL28 MEC Unknown CCR3/CCR10



Chemokines can be divided broadly into two categories:
homeostatic chemokines are constitutively expressed in cer-
tain tissues and may be responsible for basal leukocyte traf-
ficking and formation of the fundamental architecture of
lymphoid organs, and inducible chemokines which are
strongly upregulated by inflammatory or immune stimuli,
actively participating in the inflammatory reactions by
inducing leukocyte recruitment [9, 14, 15]. Although this
approach is oversimplified, it offers valuable insight into the
role of certain chemokines in pathological states. A wide
variety of stimuli can upregulate inducible chemokines,
leading to a rapid, marked increase in their local concentra-
tion followed by leukocyte infiltration and an inflammatory
response. Many cell types are capable of producing
chemokines under appropriate conditions. Usually the same
cell produces many chemokines concomitantly in response
to the same stimulus (polyspeirism). Polyspeirism is partic-
ularly striking in endothelial cells and mononuclear phago-
cytes, which express many CC and CXC chemokines upon
stimulation with pro-inflammatory cytokines or lipopoly-
saccharide.

The role of chemokines in cardiovascular disease

Expression of chemokines is found in a wide variety of dis-
ease processes, associated with tissue injury and leukocyte
recruitment [9]. Involvement of chemokines in the pathobi-
ology of conditions, such as multiple sclerosis, HIV disease,
asthma, rheumatoid arthritis and neoplasia, has been inferred
by animal model experiments and supported by correlative
data in humans. Recent studies indicated a potential role for
the chemokines in the pathogenesis of cardiovascular dis-
eases, in particular atherosclerosis [16, 17] and cardiac allo-
graft rejection [18, 19].

MCP-1 [20], IL-8 [21], IP-10 [22], Stromal Cell-Derived
Factor (SDF)-1 [23], I-309 [24] and fractalkine [25] have all
been identified in human atherosclerotic plaques. MCP-
1/CCR2 interactions appear to have a central role in the
pathogenesis of atherosclerosis: MCP-1 deficient animals
have significantly less arterial lipid deposition in hypercho-
lesterolemia models [26] and CCR2 deficiency has a simi-
larly protective effect within an apoE deficiency model [27].
Furthermore, a decrease in atherosclerotic lesion formation
was observed in mice deficient for the fractalkine receptor
CX3CR1, suggesting a key role for this chemokine in athero-
genesis [28]. Both CC and CXC chemokines have been
implicated in the pathogenesis of cardiac allograft rejection
and graft arteriopathy [29, 30].

Myocardial infarction is associated with an intense
inflammatory response, that ultimately leads to healing and
formation of a scar. Recent studies have demonstrated
chemokine induction in the ischemic myocardium [31–34]
and suggested involvement of these molecules in ischemic
injury and repair, and in the pathogenesis of ischemic car-
diomyopathy [35]. The current review will discuss the regu-
lation and potential role of the chemokines in myocardial
infarction and in non-infarctive ischemic cardiomyopathy.
Understanding the function of chemokines in myocardial
ischemia may lead to the development of specific therapeu-
tic strategies aimed at optimizing cardiac repair.

Initiation of the inflammatory cascade in myocardial
ischemia and reperfusion

Myocardial cell necrosis results in the release of subcellular
membrane constituents, rich in mitochondria, which are capa-
ble of triggering the early acting components (C1, C4, C2 and
C3) of the complement cascade [36]. By binding C1 and sup-
plying sites for the assembly of later acting complement com-
ponents, these subcellular fragments provide the means to dis-
seminate the complement-mediated inflammatory response
to ischemic injury. Generation of reactive oxygen intermedi-
ates may also be crucial for the initiation of the inflammatory
response in the injured myocardium. They have the potential
to directly injure cardiac myocytes and vascular cells and may
be involved in triggering inflammatory cascades through the
induction of cytokines and chemokines [37], and stimulation
of leukocyte chemotaxis [38]. 

Complement activation and free radical generation appear
to be important factors in triggering the cytokine cascade in the
infarcted myocardium. A critical element in the regulation of
cytokines and adhesion molecules in the ischemic myocardi-
um involves the complex formed by Nuclear Factor (NF)-kB
and IkB. NF-kB is activated by a vast number of agents,
including cytokines (such as tumor necrosis factor (TNF)-a
and IL-1b) and free radicals. The genes regulated by the NF-
kB family of transcription factors are diverse and include those
involved in the inflammatory response, cell adhesion and
growth control [39]. Studies from our laboratory [40] indi-
cated a role for TNF-a in initiating the cytokine cascade 
ultimately responsible for intercellular adhesion molecule
(ICAM)-1 induction in the reperfused canine myocardium. 

Chemokine expression in experimental models 
of myocardial infarction

Chemokine upregulation is a prominent feature of the post-
infarction inflammatory response in several mammalian
species [41, 42] (Table 3). The CXC chemokines IL-8 and 
IP-10 and the CC chemokine MCP-1 appear to be consistent-
ly upregulated in various models of experimental myocardial
infarction [41] and may play an important role in regulating
leukocyte trafficking, wound angiogenesis and repair. The
mechanisms responsible for chemokine upregulation in the
ischemic heart have not been elucidated, however the factors
implicated in initiating the inflammatory response (such as
free radical generation, NF-kB activation, TNF-a release, and
complement activation) are likely to stimulate, directly or indi-
rectly, chemokine synthesis in the injured myocardium. Evi-
dence suggests that chemokine induction in models of brief
myocardial ischemia is mediated mainly by reactive oxygen
intermediates [34, 43]. However, in myocardial infarcts cellu-
lar necrosis may trigger additional chemokine-inducing path-
ways and the relative contribution of free radical generation
remains unclear. TNF-a deficient mice undergoing experi-
mental infarction protocols exhibit decreased chemokine and
adhesion molecule expression suggesting an important role for
TNF-a in mediating the post-infarction chemokine response
[44]. Kilgore and co-workers [45] reported an attenuated IL-8
response accompanied by decreased neutrophil infiltration in
C6-deficient rabbits, suggesting that the cytolytic membrane
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attack complex plays an important role in regulating expres-
sion of the chemokine in the infarct. In addition, the rapid
breakdown of extracellular matrix in injured tissues may result
in accumulation of hyaluronan fragments, which are capable
of inducing chemokine synthesis in macrophages [46] and
endothelial cells [47].

Expression of CXC chemokines in myocardial infarcts

The prototypic CXC chemokine IL-8/CXCL8 was purified as
a monocyte-derived factor that attracts neutrophils, but not
monocytes, in Boyden chamber assays [2]. Several other CXC
chemokines are also potent neutrophil chemoattractants and
structure/activity analyses show that this property depends on
the presence of the ELR (glutamate-leucine-arginine) motif,
between the N-terminus and the first cysteine [8, 48]. IL-8 is a
critical regulator of neutrophil influx and activation in inflam-
matory processes [49], however it also exerts potent angiogenic
effects [50], and may play a role in wound healing and repair. 

Interleukin (IL)-8 upregulation has been documented in
canine [32] and rabbit [51] models of experimental myocar-
dial infarction. In a canine model, IL-8 synthesis was accen-
tuated by reperfusion and was localized in the inflammatory
infiltrate of the infarct border zone, as well as in small veins
in the same area [32]. Recombinant canine IL-8 markedly
increased adhesion of neutrophils to isolated canine cardiac
myocytes [32], suggesting a potential role in neutrophil-
mediated myocardial injury. The exact role of IL-8 in
myocardial infarction remains unclear: a recent study sug-
gested that IL-8 neutralization significantly reduces the
degree of necrosis in a rabbit model of myocardial ischemia-
reperfusion injury without affecting neutrophil infiltration
[52]. Unfortunately, elucidating the role of IL-8 in myocar-
dial infarcts using knockout and transgenic animals is ham-
pered by the absence of an IL-8 homolog in the mouse.

Much less is known about the potential expression and role
of other ELR-containing CXC chemokines in myocardial
infarcts. Growth related oncogene (GRO)-a/CXCL1 was so

named because of its initial description as the product of a gene
differentially expressed in transformed hamster cells that had
suffered loss of growth control [53].  Independently, its murine
homolog was cloned in a differential screening experiment as
the platelet-derived growth factor (PDGF)-inducible KC gene
[54]. GRO-a/KC, a potent neutrophil chemoattractant, is
induced in a rat model of experimental myocardial infarction
[55], however its role in regulating the post-infarction inflam-
matory response remains unclear. GRO-b/CXCL2 and GRO-
g/CXCL3 are closely related proteins that are also potent neu-
trophil chemoattractants; their expression in myocardial
infarcts has not yet been studied. Epithelial Neutrophil Acti-
vating protein (ENA-78/CXCL5) is another ELR-containing
CXC chemokine that exhibits similarities with the GROs.
ENA-78 expression is induced in hepatic ischemia and reper-
fusion [56], however its function in myocardial infarction
remains unknown. Deficiency of CXCR2, the main receptor
for the ELR-containing CXC chemokines, resulted in signifi-
cantly decreased inflammatory leukocyte recruitment in
murine infarcts, suggesting a crucial role for these chemokines
in inflammatory cell infiltration [57]. However, experiments
using a Langendorff preparation indicated protective effects of
CXCR2 signalling on myocardial viability [57]. The molecu-
lar basis for the presumed direct effects of CXCR2 signaling
on cardiomyocytes remains unclear.

In contrast with ELR-containing chemokines, the CXC
chemokines lacking the ELR motif, (such as platelet factor 4
(PF4/CXCL4), IP-10/CXCL10, and monokine induced by 
g-interferon (MIG/CXCL9)), not only failed to induce signifi-
cant in vitro endothelial cell chemotaxis or in vivo corneal neo-
vascularization, but were found to be potent angiostatic factors
in the presence of either ELR-CXC chemokines or the unre-
lated angiogenic factor, basic fibroblast growth factor (bFGF)
[13, 58]. In addition, IP-10 may have direct inhibitory effects
on fibroblast migration [59], serving as an antifibrotic agent.
A recent study from our laboratory demonstrated a marked
transient upregulation of the angiostatic CXC chemokine IP-
10 in reperfused canine myocardial infarcts [33]. IP-10 mRNA
expression is downregulated following 24 h of reperfusion,
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Table 3. Chemokine expression in experimental models of myocardial ischemia and reperfusion.

Chemokine Model Reference Presumed role Cellular localization

CXCL8/IL-8 Dog/infarction 32 Neutrophil infiltration Inflammatory cells, endothelium
CXCL8/IL-8 Rabbit/infarction 51 Neutrophil infiltration Inflammatory leukocytes
CXCL1/GRO-a/KC Rat/infarction 55 Neutrophil infiltration Inflammatory leukocytes
MIP-2 Rat/infarction 55 Neutrophil infiltration Inflammatory leukocytes
LIX Rat/infarction 55 Neutrophil infiltration Cardiomyocytes
CXCL10/IP-10 Dog/infarction 33 Angiostatic effect Microvascular endothelium
SDF-1a Rat/infarction 69
MCP-1 Dog/infarction 31, 62 Mononuclear cell re- Inflammatory leukocytes, endo-

cruitment thelium
MCP-1 Rat/infarction 80, 81 Mononuclear cell re- Macrophages

cruitment
MCP-1/JE Mouse/infarction 82 Myocyte survival
MCP-1, MIP-1a, Mouse/infarction 90 Leukocyte infiltration
MIP-1b, MIP-2, IP-10
MCP-1 Dog/brief  (15 min) ischemia 34 Angiogenesis, Fibrosis Microvascular endothelium
MIP-1a, MIP-1b, Mouse/brief (15 min) ischemia 43 Angiogenesis, Fibrosis Microvascular endothelium
MIP-2
MCP-1, MIP-1a, Mouse/brief (15 min) 121 Inflammation, 
MIP-1b repetitive ischemia Interstitial fibrosis



whereas IL-8 message levels remain high. IP-10 mRNA and
protein was localized in the microvascular endothelium of
ischemic myocardial segments [33]. In vitro experiments
demonstrated that TNF-a, which is released early after
myocardial ischemia [40] markedly upregulates IP-10 expres-
sion in canine venous endothelial cells [33, 60]. In order to
investigate the mechanisms of IP-10 downregulation after 24 h
of reperfusion, we studied the effects of IL-10 and TGF-b, both
present in the ischemic myocardium [61, 62] in regulating
cytokine-induced IP-10 expression. Our experiments demon-
strated that TGF-b and not IL-10 is capable of suppressing
TNF-a mediated IP-10 upregulation in canine endothelial
cells. The exact role of IP-10 upregulation in the infarcted
myocardium remains unclear. The early transient induction of
IP-10 in the ischemic myocardium may serve to prevent pre-
mature wound angiogenesis and fibrous tissue deposition in
the infarct, until the injured myocardium has been cleared from
dead cells and debris by infiltrating phagocytes, and a fibrin-
rich provisional matrix is formed in order to support ingrowth
of granulation tissue.

SDF-1 is a CXC chemokine with a critical role in cardio-
vascular development [63] and angiogenesis [64, 65]. In addi-
tion, SDF-1 induces chemotaxis of CD34+ progenitors [66]
and primitive hematopoietic cells [67] and controls many
aspects of stem cell function [68]. SDF-1a induction was
recently reported in a rat model of non-reperfused myocardial
infarction [69], however the role of this chemokine in regulat-
ing the post-infarction inflammatory response is unknown.
Recent experiments identified bone marrow-derived stem
cells in the infarcted myocardium [70, 71] suggesting that they
may participate in cardiac repair. Although the mechanisms for
stem cell homing in the ischemic myocardium remain unclear,
SDF-1 may be an important factor regulating their recruit-
ment, maturation and function in the infarct  [72].

Expression of CC chemokines in myocardial infarction

CC chemokines are functionally diverse and their names more
often reflect historical accidents of their cloning or isolation
than their predominant functions [2]. One of the best-studied
CC chemokines, MCP-1/CCL2, is a potent chemoattractant
for monocytes, T cells and NK cells and has been implicated
in diseases characterized by monocyte-rich infiltrates [73, 74].
Its expression and functional significance have been docu-
mented in a wide variety of disease processes, such as athero-
sclerosis [26, 75], multiple sclerosis [76], rheumatoid arthritis
[77], stroke [78], and nephritis [79]. MCP-1 upregulation has
been demonstrated in a canine [31], a rat [80, 81] and a murine
model [82] of experimental myocardial infarction. In the
canine model, induction of MCP-1 mRNA occurred only in
ischemic segments within the first h of reperfusion, peaked at
3 h, and persisted throughout the first 2 days of reperfusion. In
the absence of reperfusion, MCP-1 induction was significant-
ly lower [31]. MCP-1 was localized by immunostaining on
infiltrating cells and venular (but not arterial) endothelium by
3 h. Additional experiments suggested that MCP-1 may be a
major factor responsible for mononuclear cell recruitment into
the ischemic myocardium during the first five h of reperfusion
[62]. In a rat model of experimental myocardial infarction,
administration of a neutralizing antibody to MCP-1 signifi-

cantly reduced infarct size decreasing adhesion molecule
expression and macrophage infiltration [80]. However, MCP-
1 may have important effects on infarct healing unrelated to its
leukotactic actions, and mediated through its direct angiogenic
effects on the vascular endothelium [83], or by direct modula-
tion of fibroblast phenotype and activity [84]. Other studies
suggested effects of MCP-1 on cardiomyocytes: in vitro exper-
iments suggested that MCP-1 may promote the adhesion of
neutrophils to myocytes via ICAM-1 expression [85]. In con-
trast, a recent study indicated that JE/MCP-1 markedly
decreased hypoxia-induced cell death in cultured murine car-
diac myocytes suggesting an unanticipated MCP-1-dependent
cardiomyocyte survival mechanism [82]. MCP-1 may exert
diverse effects on different cell types involved in the post-
infarction inflammatory response; its exact role in myocardial
injury and repair remains to be elucidated. Anti-MCP-1 gene
therapy attenuated left ventricular dilatation in a murine mod-
el of experimental infarction, suggesting an important role for
MCP-1 in post-infarction remodeling [86], however the spe-
cific mechanisms responsible for this effect remain unclear. 

MIP-1a and MIP-1b were purified from lipopolysaccha-
ride (LPS)-treated monocytic cell lines [87, 88] and are
mononuclear cell chemoattractants, although less efficient
than MCP-1 [89]. A robust induction of MIP-1a and MIP-1b
is noted in murine infarcts [90], and MIP-1a levels are ele-
vated in patients with myocardial infarction [42], however
the importance of these chemokines in myocardial injury and
repair has not been investigated. The cDNA encoding
RANTES (Regulated upon Activation, Normal T-cell
Expressed and Secreted) was isolated in a T- versus B-lym-
phocyte differential screen, and found to be inducible by
mitogens or antigen in a variety of T-cell lines and circulating
lymphocytes [91]. RANTES, an important chemoattractant
for monocytes, eosinophils, and specific subsets of T-cells
[92] was found in the serum from patients with acute myocar-
dial infarction [42], however information on its local expres-
sion in healing infarcts is lacking.

Role of chemokines in regulating specific cellular
responses in healing infarcts (Fig. 1)

The role of chemokines in regulating neutrophil recruitment
in the infarct

CXCR2–/– mice have decreased leukocyte infiltration in the
infarct [57], suggesting direct involvement of CXC chemokines
in recruitment of inflammatory cells. At the early stages of
myocardial infarction IL-8 may be important in regulating neu-
trophil recruitment and activation. One of the earliest sequelae
of reperfusion involves neutrophil trapping in the microvascu-
lature. Engler and coworkers [93] demonstrated that entrap-
ment of leukocytes in the microcirculation precedes their role
in the inflammatory reaction. Neutrophils are large and stiff
cells and may adhere to capillary endothelium preventing
reperfusion of capillaries following coronary ischemia. The
mechanism by which neutrophil trapping occurs in the
microvessels is likely to be multifactorial. Chemotactic factors,
such as IL-8, rapidly induce neutrophils to change shape and to
become less deformable [94]. Neutrophils also release a variety
of autacoids, such as thromboxane B2 which induce vasocon-
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striction and platelet aggregation and leukotriene B4 which
induces neutrophil activation. Neutrophil interaction with
endothelial cells via specific adhesion molecules results in their
margination and adhesion to the endothelium. 

There is increasing evidence that leukocyte-endothelial
interactions are regulated by a cascade of molecular steps that
correspond to the morphological changes that accompany
adhesion. This adhesion cascade has been divided into sequen-
tial steps based on visual assessment of the post-capillary
venules during the early stages of acute inflammation. In the
absence of inflammation, leukocytes are rarely seen to interact
with the vessel wall. After the inflammatory stimulus is
applied, leukocytes roll along the post-capillary venules (but
not arterioles or small arteries) at velocities distinctly below
that of flowing blood. Some rolling cells can be seen to arrest
and after a few minutes change shape in apparent response to
local chemotactic stimuli. Extravasation into the extravascular
tissue follows. Each of these steps requires either upregulation
or activation of distinct sets of adhesion molecules [95]. The
selectin family of adhesion molecules mediates rolling, the ini-
tial capture of leukocytes from the rapidly flowing blood-
stream to the blood vessel, before their firm adhesion and dia-
pedesis at sites of tissue injury and inflammation [96].
Although rolling appears to be a prerequisite for eventual firm
adherence to blood vessels under conditions of flow, selectin-
dependent adhesion of leukocytes does not lead to firm adhe-
sion and transmigration, unless another set of adhesion mole-
cules, the integrins, is engaged. Integrins are a family of het-

erodimeric membrane glycoproteins that consist of an a and a
b subunit; these subunits are associated through noncovalent
bonds and transported to the cell surface as a complex [97]. IL-
8 and possibly other neutrophil chemoattractant chemokines
synthesized by microvascular endothelial cells, may play an
important role in leukocyte recruitment and activation in the
infarcted myocardium beyond their chemotactic properties
[98]. IL-8 induces the neutrophil respiratory burst and granule
release, and enhances cellular adhesion, a b2 integrin-depen-
dent event. Recent experiments suggested that both mitogen-
activated protein kinase (MAPK) and protein kinase C (PKC)
are activated in response to IL-8 stimulation, and that these
may represent independent pathways for b2 integrin activation
in neutrophils [98]. It appears that neutrophils may need to
sample immobilized IL-8 molecules presented by the vessel
wall before forming a sufficient number of high avidity b2
integrin bonds for firm adhesion [99]. Obviously, neutrophil
recruitment in the infarcted myocardium may require the par-
ticipation of non-chemokine associated mechanisms such as
activated complement, leukotrienes and platelet activating fac-
tor (PAF). 

Role of chemokines in mononuclear cell recruitment 
and fibrous tissue deposition

Despite the potentially injurious effects of the inflammatory
response in the ischemic myocardium, both experimental and
clinical evidence demonstrate that an open infarct vessel pro-
motes repair even when reperfusion occurs when no myocar-
dial tissue can be salvaged [100, 101]. The role of reperfusion-
induced inflammation in the repair process has been suggest-
ed in several experimental models [101]. Infiltrating mononu-
clear cells and mast cells appear to orchestrate the cardiac
repair process through a complex cascade involving cytokines
and growth factors [41, 61, 102, 103]. Mononuclear cells infil-
trate the infarcted myocardium in the first few hours of reper-
fusion. Evidence suggests that the CC chemokine MCP-1 may
be an important factor responsible for mononuclear cell
recruitment. Studies in a canine model of experimental
myocardial infarction indicated that monocyte chemotactic
activity in the first h after reperfusion was wholly attributable
to C5a [62]. After 3 h of reperfusion, monocyte chemotactic
activity in the cardiac lymph was largely dependent on MCP-
1 acting in concert with TGF-b1 [62]. MCP-1 mRNA and pro-
tein was rapidly upregulated in the venular endothelium of
ischemic myocardial segments. In addition to its potential
effects on mononuclear cell recruitment, MCP-1 may also reg-
ulate macrophage activation and phenotype [104] and may
affect cytokine expression in the infarct. MCP-1 is crucial for
development of Th2 responses and lymph node cells from
immunized MCP-1 –/– mice show markedly decreased IL-10
expression, despite the absence of a defect in T cell trafficking
[105]. In healing infarcts T-cell derived IL-10 may be impor-
tant in inhibiting expression of pro-inflammatory cytokines
and in regulating extracellular matrix remodeling [61]. 

The mononuclear cell chemoattractants MIP-1a and
MIP-1b are also markedly induced in myocardial infarcts,
however their contribution in recruiting mononuclear cells
remains unknown. It is possible that different chemokines
may selectively recruit specific subsets of monocytes and
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Fig. 1. Effects of chemokines on healing myocardial infarcts. Studies
using experimental models of myocardial infarction have demonstrated
that the CC chemokines MCP-1, MIP-1a and MIP-1b and the CXC
chemokines IL-8, IP-10 and SDF-1 are induced in the infarcted
myocardium. Chemokines may be crucial for recruitment of hematopoi-
etic cells in the injured areas, however they may also modulate pheno-
type and gene expression in non-blood derived cells. Infarct angio-
genesis and fibrous tissue deposition may be directly affected through
MCP-1, IL-8 and IP-10 mediated mechanisms. IP-10, a potent angiosta-
tic factor with anti-fibrotic properties may have a unique role in infarct
healing delaying premature angiogenesis and fibrosis until the wound 
is debrided, and a provisional matrix necessary to support granulation
tissue ingrowth is formed. Chemokine-mediated effects on specific cel-
lular responses in the healing myocardium may modulate post-infarc-
tion ventricular remodeling.



lymhocytes in the injured myocardium affecting distinct
pathways of the inflammatory response. Studies using ani-
mals deficient in MCP-1 and MIP-1a are currently in
progress in our laboratory and may elucidate the specific role
of these chemokines in infarct healing. 

The role of the chemokines in infarct angiogenesis

Formation of new blood vessels is critical for supplying the
healing infarct, with oxygen and nutrients necessary to sus-
tain metabolism. Angiogenesis is dependent on a complex
interaction between extracellular matrix, endothelial cells
and pericytes in response to an imbalance in the presence of
angiogenic as compared to angiostatic factors in the local
environment [106]. Myocardial ischemia is associated with
synthesis and early release of potent angiogenic factors, such
as vascular endothelial growth factor (VEGF) [107, 108] and
basic fibroblast growth factor (bFGF) [109]. Chemokine
involvement in infarct angiogenesis should be considered as
part of the dynamic interaction between angiogenic and
angiostatic factors in various stages of healing. Members of
the CXC chemokine family may play a role in the regulation
of angiogenesis [13, 110]. CXC chemokines behave as either
angiogenic or angiostatic depending on the presence of the
‘ELR’ motif. ELR positive CXC chemokines, such as IL-8,
are potent angiogenic factors, inducing both in vitro endothe-
lial chemotaxis and in vivo corneal neovascularization [50].
In contrast, the ELR negative chemokines, such as IP-10,
demonstrate robust angiostatic effects in the presence of IL-
8 or basic FGF [111, 112]. 

We have recently demonstrated that IP-10 in induced in
both canine [33] and murine [90] myocardial infarcts. IP-10
mRNA expression peaked after 1–3 h of reperfusion and was
markedly decreased by 10 h of reperfusion. IP-10 mRNA and
protein was localized in the venular endothelium of ischemic
myocardial segments. By 24 h of reperfusion neither IP-10
mRNA nor protein were detected. We suggest that IP-10, a
weak mononuclear cell chemoattractant, may have a unique
role in infarct healing preventing premature granulation tis-
sue formation until the wound is debrided and a fibrin-based
temporary matrix, necessary to support ingrowth of granula-
tion tissue is formed. Ongoing functional studies using anti-
body neutralization and IP-10 KO animals [113] will test this
intriguing hypothesis.

MCP-1 may also have an active role in infarct angiogen-
esis. MCP-1 is a direct mediator of angiogenesis, and
endothelial cells express functional CCR2 receptors [83],
[114]. In addition, MCP-1 (–/–) mice exhibit delayed wound
angiogenesis demonstrating lower capillary density than
their wildtype littermates [115]. Studies using MCP-1 defi-
cient mice may elucidate the potential role of MCP-1 in neo-
vascular formation after experimental myocardial infarc-
tion.

Do chemokines regulate stem cell recruitment 
in the infarcted myocardium?

Cardiomyocytes are thought to be terminally differentiated
cells. However, recent reports suggested that myocytes may in

some cases re-enter the cell cycle. Beltrami and coworkers
identified events characteristic of cell division such as the for-
mation of the mitotic spindles and contractile rings, karyoki-
nesis, and cytokinesis in myocytes from patients who died
from myocardial infarction [116]. Four percent of myocyte
nuclei from regions adjacent to the infarct exhibited expres-
sion of Ki-67, a nuclear antigen associated with cell division.
These proliferating cells may originate from cardiac resident
stem cells or circulating stem cells that home to the heart and
may expand producing a differentiated progeny upon stimula-
tion. Although recruitment of bone marrow-derived endothe-
lial progenitor cells may be important for neovascularization,
the concept of myocardial regeneration through stem cell infil-
tration has not been universally accepted [117–119]. Recent
studies suggested that bone marrow cells can induce myocar-
dial regeneration after infarction suggesting that blood-borne
cells may differentiate into cardiomyocytes [70, 120]. The
mechanisms involved in homing of primitive stem cells remain
unknown, however inflammatory mediators such as SCF, a
factor highly induced in infarcts [103] and certain chemokines
may be important in stem cell recruitment. A recent study
using a rat model indicated that the CXC chemokine SDF-1a
was sufficient to induce therapeutic stem cell homing to the
infarcted myocardium [72]. Although, therapeutic approaches
targeting stem cells are an important long-term goal in treat-
ment of myocardial infarction, regeneration of myocardium
using our current expertise may not be a realistic target, con-
sidering the lack of understanding of the mechanisms involved
in stem cell homing and differentiation.

Downregulation of chemokine synthesis and resolution
of inflammation may be crucial for effective repair

Induction of chemokines, cytokine upregulation, and leu-
kocyte infiltration occur in the inflammatory phase of
myocardial infarction and may be important in clearance of
the wound from dead cells and debris. However, this acute
localized inflammatory response is transient, and its sup-
pression is rapidly followed by fibrous tissue deposition (Fig.
2) [90]. During the proliferative phase of healing, chemokine
synthesis and leukocyte recruitment are suppressed, ensuring
the transition from inflammation to fibrosis. Inhibition of
chemokine synthesis after a dramatic early peak may be cru-
cial for the repair process, preventing prolonged expression
of inflammatory mediators in the healing infarct, and contin-
uous leukocyte recruitment and injury. The mechanisms
responsible for inflammatory gene downregulation and reso-
lution of the inflammatory response in healing wounds
remain poorly understood. Our previous work using a canine
model of reperfused infarction suggested IL-10 [61] and
TGF-b [33] as potentially important mediators in the resolu-
tion of the post-infarction inflammatory response. IL-10
appears to play a role in IL-6 downregulation after infarction
[61]. TGF-b, but not IL-10, inhibited cytokine-induced
chemokine expression in canine venous endothelial cells
[33], suggesting that these inhibitory factors may have dis-
tinct roles in regulating the inflammatory process. In addi-
tion, TGF-b orchestrates fibroblast-mediated responses and
may be important for induction of a wide variety of fibrosis-
associated genes. Because of the diversity of its functional
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effects, TGF-b may serve as the ‘master switch’, responsible
for the transition from acute inflammation to fibrosis.

Expression of chemokines after a brief non-lethal
ischemic insult. Implications for the pathogenesis 
of ischemic cardiomyopathy

Reperfused infarction is accompanied by cellular necrosis
and results in robust expression of chemokines and inflam-
matory leukocyte recruitment. In order to better understand
the response of the heart to injurious stimuli, we asked
whether brief ischemic insults that do not result in cardiomy-
ocyte necrosis are sufficient to induce chemokine upregula-
tion in the myocardium. We have recently demonstrated that
a single episode of brief non-lethal myocardial ischemia (15
min) followed by reperfusion induces chemokine synthesis in
a canine [34] and a murine model [43]. However, in this sit-
uation, the modest and transient chemokine upregulation is
not accompanied by significant inflammatory cell infiltra-
tion. In both the canine and murine model of brief myocar-
dial ischemia, chemokine upregulation is dependent on reac-
tive oxygen generation. Because patients with chronic
ischemic heart disease often exhibit recurrent brief ischemic
episodes in the absence of myocardial infarction, we exam-
ined the effects of repetitive brief ischemia in the murine
model. After 3–5 days of repetitive brief ischemia and reper-
fusion the mouse myocardium demonstrated significant
MCP-1 upregulation and macrophage infiltration. Chemo-
kine expression decreases after 7 days of repetitive occlusion,
and suppression of the inflammatory response is followed by
extensive interstitial fibrosis and left ventricular dysfunction
in the absence of a completed infarction [121]. Antibody

neutralization experiments indicated that MCP-1 is critical
for development of fibrosis in this model [122]. The mecha-
nism responsible for chemokine repression and transition
from inflammation to fibrosis is an area of active investiga-
tion in our laboratory. It is tempting to hypothesize that TGF-
b may be activated in the myocardium suppressing
chemokine synthesis and inflammatory leukocyte infiltra-
tion. Because of the pro-fibrotic effects of TGF-b, suppres-
sion of inflammation may also result in development of
fibrosis and dysfunction. These concepts may be relevant to
the pathogenesis of chronic ischemic cardiomyopathy. We
have recently demonstrated that in patients with chronic
ischemic cardiomyopathy, dysfunctional myocardial seg-
ments with recovery of function following surgical revascu-
larization had increased inflammatory leukocyte recruitment
and MCP-1 expression, compared with irreversibly dysfunc-
tional segments [35]. These findings suggest that chronic
ischemic cardiomyopathy is a continuous process [123]. At
an early stage induction of inflammatory mediators leads to
recruitment of leukocytes in the myocardium. However,
acute inflammation may activate endogenous inhibitory fac-
tors, such as TGF-b, which may suppress the inflammatory
process, but also stimulate fibrosis-associated genes, leading
to fibrous tissue deposition and irreversible dysfunction. In
contrast to infarction, where chemokine expression may play
an important role in granulation tissue formation and heal-
ing, the cardiomyopathic process is associated with a mal-
adaptive inflammatory response that results in fibrosis of
non-lethally injured myocardium.  

Conclusions

Faulty healing and adverse post-infarction remodeling is the
leading cause of heart failure and death in patients surviving
acute myocardial infarction. Left ventricular remodeling after
myocardial infarction in part reflects the magnitude of the ini-
tial ischemic change, but is also dependent on the efficiency
of the healing process. Chemokines may have a crucial role in
infarct healing through effects on both hematopoietic and res-
ident cells. In addition, suppression of the chemokine
response is important for the transition to fibrous tissue depo-
sition. Understanding the mechanisms responsible for
chemokine downregulation and resolution of the inflammato-
ry infiltrate is important in order to select specific therapeutic
targets to optimize healing and cardiac repair.

MCP-1 appears to be an important mediator in the patho-
genesis of ischemic cardiomyopathy in both human myocardial
tissue and a murine model of brief repetitive ischemia and
reperfusion associated with interstitial fibrotic cardiomyopathy.
In this situation, a chemokine-driven inflammatory response is
triggered in the absence of cellular necrosis, and may play a sig-
nificant role in the pathogenesis and progression of fibrosis.
Hence, MCP-1 inhibition may be an interesting approach in the
treatment of chronic ischemic cardiomyopathy. 
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Fig. 2. Resolution of the inflammatory infiltrate is followed by fibrous
tissue deposition in murine myocardial infarcts. A–C. Immunohisto-
chemical staining with the antibody F4/80 identifies monocyte/
macrophages in reperfused mouse infarcts. Mononuclear cell density
peaks after 24 h of reperfusion (A),  but decreases significantly after 72
h (B). After 7 days of reperfusion a relatively small number of mono-
cytic cells (arrows) is found in the mouse infarct. Inflammatory leuko-
cyte infiltration is preceded by transient chemokine mRNA induction,
that peaks after 6h of reperfusion (Ref. 90).  D–F Staining with sirius
red identifies collagen fibers in the infarct. After 24 h of reperfusion
inflammatory leukocytes (arrows) infiltrate the infarcted area (D). After
72 h highly cellular granulation tissue is formed (arrows) replacing dead
cardiomyocytes, however little collagen staining is noted (E). After 7
days of reperfusion, there is extensive deposition of collagen in the heal-
ing infarct (F- arrows). Note that reperfused mouse infarcts exhibit an
accelerated time course of healing compared with large animal models.  
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