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Summary. Let φ,ψ : R→ R be given functions, such that φ is continuous and |ψ(1)| 6= 1. We
solve the functional equation

f(xφ[f(y)] + yψ[f(x)]) = f(x)f(y) for x, y ∈ R

in the class of continuous functions f : R→ R.
In particular we give the forms of φ, ψ for which the equation has non-constant solutions.
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1. Introduction

By R,Z and N we denote the sets of all real, integer and positive integer numbers,
respectively. Moreover R− := (−∞, 0] and R+ := [0,∞). Let φ, ψ : R → R be
given functions. Functional equations of the form

f (xφ (f(y)) + yψ (f(x))) = f(x)f(y) for x, y ∈ R, (1)

where the unknown function f maps R into itself, have been considered by many
authors in several cases.

If φ(x) = 1 and ψ(x) = x for x ∈ R, then (1) takes the form

f (x+ yf(x)) = f(x)f(y) for x, y ∈ R,
and is called the Go la̧b–Schinzel functional equation (for details see [1], [2], [10],
[11]). In the case φ(x) = xk and ψ(x) = xl for x ∈ R, where k, l ∈ N are arbitrarily
fixed, we obtain the so-called generalized Go la̧b–Schinzel equation

f
(
xf(y)k + yf(x)l

)
= f(x)f(y) for x, y ∈ R,

which has been considered among others in [4]–[8], [12], [14], where in particular
the continuous solutions f : R→ R of that equation have been determined. In [3]
it is proved that the cardinality of the set of discontinuous solutions f : R→ R of
this equation is 2ℵ, where ℵ = card R. Some applications of this type of functional
equations can be found for example in [2], [4], [6], [8] and [12].



64 J. Chudziak AEM

In this paper we present the general solution of (1) in the class of continuous
functions f : R → R, under the assumption that φ is continuous and |ψ(1)| 6= 1.
The case |ψ(1)| = 1 needs different methods and the results concerning it will be
published separately.

2. Preliminary results

Remark 1. The only constant solutions of (1) are f = 0 and f = 1.

Lemma 1. Let φ, ψ : R → R be given functions and let a function f : R → R
satisfy (1). Then

(i) f(0) ∈ {0, 1};
(ii) if f(0) = 0, then f = 0 or φ(0) = ψ(0) = 0;
(iii) if f(0) = 1 and f is continuous at 0, then f = 1 or |φ(1)| = |ψ(1)| = 1;
(iv) f (R) is a multiplicative subsemigroup of R.

Proof. (i) It is enough to put in (1) x = y = 0.
(ii) Let f(0) = 0 and suppose for example that φ(0) 6= 0. Setting in (1) y = 0,

we have f (xφ(0)) = 0 for x ∈ R. Thus f = 0.
(iii) Assume that f is continuous at 0 and f(0) = 1. Let us suppose that

|φ(1)| 6= 1. By taking in (1) y = 0, we obtain f (xφ(1)) = f(x) for x ∈ R. Hence
f (xφ(1)n) = f(x) for x ∈ R, n ∈ Z and by the continuity of f at 0, we have
f(x) = f(0) = 1 for x ∈ R. The proof in the case |ψ(1)| 6= 1 is analogous.

(iv) This follows at once from (1). �

Corollary 1. Let φ, ψ : R→ R be given functions such that φ is continuous and
|ψ(1)| 6= 1. If f : R→ R is a non-constant continuous solution of (1), then

(i) f(0) = 0,
(ii) φ(0) = ψ(0) = 0.

Lemma 2. Let φ, ψ : R → R be given functions such that φ is continuous and
|ψ(1)| 6= 1. If f : R→ R is a continuous solution of (1), then f is either unbounded
or constant.

Proof. Suppose that f is a non-constant bounded continuous solution of (1) and
let M := sup{|f(x)| : x ∈ R}. From Lemma 1(iv) it follows that M ∈ (0, 1]. We
consider three cases:

1) ψ ◦ f = 0. Since f is non-constant, in view of (1) φ ◦ f cannot be constant.
Then there exists an x1 ∈ R such that φ (f(x1)) 6= 0 and |f(x1)| 6= 1. Otherwise
φ ◦ f would take at most three values 0, φ(1) and φ(−1), which is not possible.
Setting in (1) y = x1, we obtain f(xφ (f(x1))) = f(x)f(x1) for x ∈ R. Then
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{xφ (f(x1)) : x ∈ R} = R and we get

M = sup{|f(xφ(f(x1)))| : x ∈ R} = sup{|f(x)f(x1)| : x ∈ R} = |f(x1)|M,

which gives a contradiction.
2) ψ (f(x2)) 6= 0 for some x2 ∈ R \ f−1({−1, 1}). Putting in (1) x = x2, we

have
f(x2φ (f(y)) + yψ (f(x2))) = f(x2)f(y)

for y ∈ R. Moreover, the continuity of φ implies that φ ◦ f is a bounded function.
Hence {x2φ(f(y)) + yψ(f(x2)) : y ∈ R} = R and as above we obtain that M =
|f(x2)|M , which is impossible.

3) ψ ◦ f 6= 0 and ψ (f(x)) = 0 for x ∈ R \ f−1({−1, 1}). Then from (1) it
follows that

f (xφ (f(y))) = f(x)f(y) (2)

for x ∈ R \ f−1({−1, 1}), y ∈ R. We divide the proof in this case into three steps.
Step 1. We prove that R \ f−1({−1, 1}) is an interval. From the assumptions

of this case it follows that there is a z ∈ R such that |f(z)| = 1. In particular
M = 1. Assume that z > 0 and let z1 := min{x > 0 : |f(x)| = 1}. We show
that |f(x)| = 1 for x ≥ z1. Suppose that |f(x0)| < 1 for some x0 > z1. Since
f(0) = 0, in view of the continuity of f , there exists an x1 ∈ (0, z1) such that
|f(x1)| > |f(x0)|. Moreover φ(f(R)) is an interval and by Corollary 1, 0 ∈ φ(f(R)).
Thus x1φ(f(R)) ⊂ x0φ(f(R)) and in virtue of (2), we get

|f(x1)| = sup{|f(x1)f(y)| : y ∈ R} = sup{|f(x1φ(f(y)))| : y ∈ R}
≤ sup{|f(x0φ(f(y)))| : y ∈ R} = sup{|f(x0)f(y)| : y ∈ R} = |f(x0)|,

which cannot occur. Similarly, if there is a z < 0 such that |f(z)| = 1, then
|f(x)| = 1 for x ≤ max{x < 0 : |f(x)| = 1}. Therefore we have proved that
R\f−1({−1, 1}) is an interval. Moreover if−1 ∈ f(R), then in view of Lemma 1(iv),
we get that 1 ∈ f(R) and, using the continuity of f , one can easily deduce that
R \ f−1({−1, 1}) is a bounded interval.

Step 2. We consider the case, when R \ f−1({−1, 1}) is an unbounded interval.
Then f(R) ⊂ (−1, 1]. Suppose that R \ f−1({−1, 1}) = (−∞, c), where c > 0 is a
real constant. If R \ f−1({−1, 1}) = (b,∞) for some b < 0, the proof is analogous.
Thus f(x) = 1 for x ≥ c and according to (1), we have

f(xφ (f(y))) = f(x)f(y) for x < c, y ∈ R (3)

and
f(xφ (f(y)) + yψ(1)) = f(y) for x ≥ c, y ∈ R. (4)

Since f is non-constant, in view of (3) φ◦f is non-constant, too. Then φ◦f is non-
constant on (−∞, c), so there exists a y0 6= 0 with φ(f(y0)) 6= 0 and |f(y0)| < 1.
Setting in (3) and (4) y = y0, we obtain

|f(xφ (f(y0)))| = |f(x)f(y0)| < |f(x)| for x < c (5)
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and
|f(xφ (f(y0)) + y0ψ(1))| = |f(y0)| < 1 for x ≥ c, (6)

respectively. If φ (f(y0)) < 0, then c
φ(f(y0)) < c and putting in (5) x := c

φ(f(y0)) ,

we have 1 = |f(c)| < |f
(

c
φ(f(y0))

)
|, which is not possible. If φ (f(y0)) > 0, then

there is a c1 ≥ c such that c1φ (f(y0)) + y0ψ(1) ≥ c. Taking in (6) x = c1, we get
1 = |f(c1φ (f(y0)) + y0ψ(1))| = |f(y0)| < 1, which gives a contradiction.

Step 3. Assume that R \ f−1({−1, 1}) = (b, c) is a bounded interval with
b < 0 < c. Since 1 ∈ f(R), we may suppose f−1({1}) = [c,∞). The argument
is analogous if f−1({1}) = (−∞, b]. We have (6) for x ≥ c. If φ (f(y0)) > 0,
for x > c big enough, we have xφ (f(y0)) + y0ψ(1) > c, which with (6) leads to a
contradiction. If φ (f(y0)) < 0, for x > c big enough, we have xφ (f(y0))+y0ψ(1) <
b, which again leads with (6) to a contradiction. �

Since by Lemma 1(iv) a non-zero continuous solution f of (1) satisfies
f(R) ∩ (0,∞) 6= ∅, we get

Corollary 2. Let φ, ψ : R→ R be given functions such that φ is continuous and
|ψ(1)| 6= 1. If f : R → R is a non-constant continuous solution of (1), then
f(R) ∈ {R+,R}.

The following result will be very useful in our considerations ([9], Chapter 6
(Section 6.2), cf. also [13])

Proposition 1. The general solution in the class of continuous functions h :R→R
of the functional equation

h (h(x)) = (γ + 1)h(x) − γx for x ∈ R,
where γ 6= −1 is a fixed real number, is given by:
(A) if γ > 0 :

(i)

h(x) =

 γx+ (1− γ)a for x ≤ a
x for a < x < b
γx+ (1− γ)b for x ≥ b

with −∞ ≤ a < b ≤∞,
(ii) h(x) = γx+ δ with δ ∈ R;

(B) if γ = 0 :
(i) h(x) = x for x ∈ h (R),
(ii) h(x) = δ with δ ∈ R;

(C) if γ < 0 :
(i) h(x) = γx+ δ with δ ∈ R,
(ii) h(x) = x.
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Lemma 3. Let φ, ψ : R → R be given functions such that φ is continuous and
|ψ(1)| 6= 1. Let f : R→ R be a non-constant continuous solution of (1). Then the
following properties hold:

(i) f−1({1}) 6= ∅,
(ii) if x0 ∈ f−1({1}) and h(y) := x0φ (f(y)) + yψ(1) for y ∈ R, then h(0) = 0,

h(R) is an unbounded interval (containing 0) and

h (h(y)) = (ψ(1) + 1)h(y)− ψ(1)y for y ∈ R,

(iii) if x0 ∈ f−1({1}) and ψ(1) 6= 0, then

φ (f(x)) =


(1− ψ(1)) ax0

for x ≤ a
(1− ψ(1)) xx0

for a < x < b

(1− ψ(1)) b
x0

for x ≥ b
(7)

with −∞ ≤ a < b ≤ ∞,
(iv) if x0 ∈ f−1({1}) and ψ(1) = 0, then x0φ(f(R)) is an unbounded interval

containing 0 and

φ (f(x)) =
x

x0
for x ∈ x0φ(f(R)). (8)

Moreover φ(f(R)) ∈ {R−,R+,R}, and φ(f(R)) = R if and only if f(R) = R.

Proof. (i) It results immediately from Corollary 2.
(ii) Let x0 ∈ f−1({1}) and h(y) := x0φ (f(y)) + yψ(1) for y ∈ R. From Corol-

lary 1 it follows that x0 6= 0 and h(0) = 0. Putting in (1) x = x0, we have

f(h(y)) = f(y) for y ∈ R. (9)

In view of Lemma 2, f is an unbounded continuous function, so by (9), h(R) is an
unbounded interval (containing 0). Further we have φ(f(y)) = 1

x0
(h(y) − ψ(1)y)

for y ∈ R. Thus on account of (9), we obtain

1
x0

(h (h(y))− ψ(1)h(y)) = φ(f(h(y))) = φ(f(y)) =
1
x0

(h(y)− ψ(1)y)

for y ∈ R, and so

h (h(y)) = (ψ(1) + 1)h(y)− ψ(1)y for y ∈ R.

(iii) Let x0 ∈ f−1({1}) and ψ(1) 6= 0. Since h(x) = x0φ(f(x)) + xψ(1) and
h(0)=0, from Proposition 1(A),(C) it can be easily deduced that either φ(f(x))=0
for x ∈ R or (7) holds. We show that the first possibility cannot occur. In fact,
if φ(f(x)) = 0 for x ∈ R, then putting in (1) x = x0, we obtain f(yψ(1)) = f(y)
for y ∈ R. Thus the continuity of f and |ψ(1)| 6= 1 imply that f is a constant
function, which gives a contradiction.

(iv) Let x0 ∈ f−1({1}) and ψ(1) = 0.The first part of the statement follows
immediately from (ii) and Proposition 1(B).
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Now we show that φ(f(R)) = R if and only if f(R) = R. Assume that
φ(f(R)) = R. Then by (8) f is one-to-one on R and since f(0) = 0 (cf. Corol-
lary 1(i)), so f(R) ∩ (−∞, 0) 6= ∅. Thus, on account of Corollary 2, we have
f(R) = R.

Conversely, if f(R) = R then from (1) it follows that

f (x0φ (f(R))) = f(R) = R.

Since f is continuous on R and one-to-one on x0φ(f(R)), we get x0φ(f(R)) = R
(because otherwise f would be bounded, above or below, on the topological closure
of x0φ (f(R))). Thus φ(f(R)) = R.

Now we will prove that φ(f(R)) ∈ {R−,R+,R}. We have that φ(f(R)) is an
unbounded interval containing 0. Hence either R+ ⊂ φ(f(R)) or R− ⊂ φ(f(R)).
Suppose for example that R+ ⊂ φ(f(R)) and φ(f(R))\R+ 6= ∅. Since f is a contin-
uous function, one-to-one on x0φ(f(R)) and f(0) = 0, we have f(R)∩(−∞, 0) 6= ∅.
Hence, according to Corollary 2, f(R) = R and consequently φ(f(R)) = R. �

Lemma 4. Let A ∈ {R−,R+,R} and α be an arbitrary non-zero real constant.
The general solution of the equation

f(αxy) = f(x)f(y) for x ∈ A, y ∈ R, (10)

in the class of non-constant continuous functions f : R→ R is given by

f(x) =
{

(αx)r for x ∈ α−1R+
b(−αx)r for x ∈ α−1R−,

(11)

where r is an arbitrary positive real constant and:
|b| = 1, whenever α ∈ −A;
b is an arbitrary real constant, otherwise.

Proof. A straightforward calculation shows that each function of the form (11)
satisfies (10). Assume that f : R → R is a non-constant continuous solution
of (10). Inserting into (10) xα−1 and yα−1 in place of x and y, respectively, we
obtain

g(xy) = g(x)g(y) for x ∈ αA, y ∈ R, (12)

where g(x) := f(xα−1) for x ∈ R.
Suppose that α ∈ −A. Then either αA = R or αA = R−. If αA = R, then in

view of (12), we have that either g(x) = |x|r for x ∈ R or g(x) = |x|rsgn (x) for
x ∈ R, where r is some positive real constant. Hence we get (11) with |b| = 1. If
αA = R−, then inserting into (12) −x in place of x, we obtain

G(xy) = G(x)g(y) for x ∈ R+, y ∈ R, (13)

where G(x) := g(−x) for x ∈ R. Actually (13) may be treated as a multiplicative
Pexider equation on R+. Thus g(x) = xr for x ∈ R+ and g(−x) = G(x) = bxr for
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x ∈ R+, where r is a positive real constant and b is a real constant. Therefore

f(x) = g(αx) =
{

(αx)r for x ∈ α−1R+
b(−αx)r for x ∈ α−1R−.

In particular f(α−1) = 1 and f(−α−1) = b. Then, setting in (10) x = y = −α−1 ∈
A = α−1R−, we obtain 1 = f(α−1) = f(α−1)2 = b2. Hence |b| = 1.

Now, suppose that α /∈ −A. Then αA = R+ and in virtue of (12), we get
g(x) = xr for x ∈ R+, where r is a positive real constant. Moreover, setting in
(12) y = −1 we obtain g(−x) = g(−1)(x)r for x ∈ R+. Thus g(x) = g(−1)(−x)r

for x ∈ R− and so we have (11) with b := g(−1). �

3. Main results

Proposition 2. Let φ : R→ R be a given continuous function. The equation

f (xφ (f(y))) = f(x)f(y) for x, y ∈ R (14)

has non-constant continuous solutions if and only if φ has one of the following
forms:

(i)

φ(x) =
{
−x 1

r for x ∈ R+
φ1(x) for x ∈ R−,

(15)

(ii)

φ(x) =
{
x

1
r for x ∈ R+

φ1(x) for x ∈ R−,
(16)

where r is an arbitrary positive real constant and φ1 : R− → R is an arbitrary
continuous function with φ1(0) = 0.

Furthermore, whenever φ is of the form (15) or (16), then the general solution
of (14) in the class of non-constant continuous functions f : R → R is given,
respectively, by:

(i)
f(x) = |αx|r for x ∈ R, (17)

where α is an arbitrary non-zero real constant;
(ii)

f(x) =
{

(αx)r for x ∈ α−1R+
b(−αx)r for x ∈ α−1R−

(18)

or
f(x) = d|x|rsgn (x) for x ∈ R, (19)

where α and d are arbitrary non-zero real constants and b is an arbitrary non-
negative real constant, in the case when φ1(x) = −(−x)

1
r for x ∈ R−; and by

(18), otherwise.
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Proof. One can check that if φ has the form (15) or (16), then every function of
the form (17), (18) or (19) satisfies (14) in the corresponding case. Assume that
f : R → R is a non-constant continuous function satisfying (14). On account of
Corollary 1 and Lemma 3(i),(iv), there exists an x0 ∈ R\{0} such that f(x0) = 1,
φ(f(R)) ∈ {R−,R+,R} and (8) holds. In particular f is one-to-one on x0φ(f(R)).
We consider three cases.

Case 1) φ(f(R)) = R. Then in view of Lemma 3(iv), we get f(R) = R. From
(8) and (14) it follows that f(xyx0

) = f(x)f(y) for x, y ∈ R. Hence, on account

of Lemma 4, f(x) = | xx0
|rsgn

(
x
x0

)
for x ∈ R, so f has the form (19) with d :=

|x0|−rsgn
(
x−1

0

)
. Therefore in view of (14), we have |φ(f(y))|rsgn (φ(f(y))) = f(y)

for y ∈ R. Thus |φ(x)|rsgn (φ(x)) = x for x ∈ f(R) = R and an easy calculation
shows that φ is of the form (16) with φ1(x) = −(−x)

1
r for x ∈ R−.

Case 2) φ(f(R)) = R−. Thus, in view of (8) and (14), f(xyx0
) = f(x)f(y) for

x ∈ R and y ∈ x0φ(f(R)) = x0R−. According to Corollary 2 and Lemma 3(iv),
f(R) = R+. Moreover 1

x0
∈ x−1

0 R+ = x0R+ = −x0φ(f(R)). Hence, in virtue of
Lemma 4 (with α = x−1

0 and A = x0φ(f(R))), we get f(x) = | xx0
|r for x ∈ R, where

r is some positive real constant. Therefore by (14), we have |φ(f(y))|r = f(y) for
y ∈ R. Then φ(x) = −x 1

r for x ∈ f(R) = R+ and we have obtained (15) and (17)
with α := x−1

0 .
Case 3) φ(f(R)) = R+.In view of (8) the equation (14) becomes f(xyx0

) =
f(x)f(y) for x ∈ R and y ∈ x0φf(R). Furthermore, in view of Corollary 2 and
Lemma 3(iv), f(R) = R+ and it is easy to see that 1

x0
/∈ −x0φ(f(R)). Using

Lemma 4, similarly to the previous case, one can obtain (16) and (18) with α :=
x−1

0 and some b ∈ R. Moreover f(R) = R+ implies that b ≥ 0. �

Proposition 3. Let φ, ψ : R → R be given functions such that φ is continuous
and |ψ(1)| 6= 1. If the equation (1) has non-constant continuous solutions, then
one of the following conditions holds:

(i) φ(1) = −1 and ψ(1) = 0;
(ii) φ(1) + ψ(1) = 1.

Proof. Let f : R → R be a non-constant continuous solution of (1). In view
of Lemma 3(i) and Corollary 1(i), we get that f(x0) = 1 for some x0 ∈ R \ {0}.
Assume that ψ(1) 6= 0. From Lemma 3(iii) it follows (7). Setting in (1) x = y = x0,
we have f(x1) = 1, where x1 := x0(φ(1) + ψ(1)). Moreover from Corollary 1(i) it
follows that x1 6= 0. Putting in (1) x = x1 one obtains

φ(f(x1φ(f(y)) + ψ(1)y)) = φ(f(y))

for y ∈ R. Hence, in view of (7), we get

φ(f((1− ψ(1))
yx1

x0
+ ψ(1)y)) = φ(f(y)) (20)



Vol. 61 (2001) Continuous solutions of the Go la̧b–Schinzel equation 71

for y ∈ (a, b). Furthermore notice that{
(1− ψ(1))

yx1

x0
+ ψ(1)y : y ∈ (a, b)

}
⊂ (a, b). (21)

In fact, suppose for example that (1 − ψ(1)) zx1
x0

+ ψ(1)z < a for some z ∈ (a, b).
Then in virtue of (7) and (20), we have

(1− ψ(1))
a

x0
= φ(f((1− ψ(1))

zx1

x0
+ ψ(1)z)) = φ(f(z)) = (1− ψ(1))

z

x0
.

Since ψ(1) 6= 1, this is impossible. Now from (7), (20) and (21) it follows that

(1− ψ(1))
(1− ψ(1))yx1

x0
+ ψ(1)y

x0
= (1− ψ(1))

y

x0

for y ∈ (a, b). Thus x0 = x1 and so φ(1) + ψ(1) = 1.
Suppose now that ψ(1) = 0. Then according to Lemma 3(iv), we have (8).

Setting in (1) x = y = x0, we obtain f(x0φ(1)) = 1. Next, putting in (1) x =
x0φ(1) and y = x0, we have f(x0φ(1)2) = 1, which in view of Lemma 3(iv) gives

φ(f(x)) =
x

x0φ(1)2 (22)

for x ∈ x0φ(1)2φ(f(R)). Furthermore x0φ(f(R)) and x0φ(1)2φ(f(R)) are un-
bounded intervals. Since x0x0φ(1)2 > 0, so x0φ(f(R)) ∩ x0φ(1)2φ(f(R)) is an
unbounded interval, too. Then from (8) and (22) it follows that

x

x0
=

x

x0φ(1)2

for x ∈ x0φ(f(R)) ∩ x0φ(1)2φ(f(R)). Hence φ(1)2 = 1, which gives either (i) or
(ii). �

Proposition 4. Let φ, ψ : R → R be given functions such that φ is continuous,
φ(1) = 1 and ψ(1) = 0. Then (1) has non-constant continuous solutions if and
only if φ is of the form (16) and

ψ(x) =
{

0 for x ∈ R+
ψ1(x) for x ∈ R−,

(23)

where ψ1 : R− → R is an arbitrary function.
Furthermore, whenever φ and ψ are of the form (16) and (23), respectively,

then the general solution of (1) in the class of non-constant continuous functions
f : R→ R is given by (18) or (19) in the case when φ1(x) = −(−x)

1
r for x ∈ R−,

ψ1(x) = 0 for x ∈ R−; and by (18), otherwise.

Proof. It is easy to check that if φ and ψ are of the form (16) and (23), respec-
tively, then f given by (18) or (19) is a solution of (1) in the corresponding case.
Assume that f : R→ R is a non-constant continuous function satisfying (1). Ac-
cording to Proposition 2, it is enough to prove that ψ(f(x)) = 0 for x ∈ R. In
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virtue of Corollary 2 and Lemma 3(iv), there exists an x0 ∈ R \ {0} such that
f(x0) = 1, x0φ(f(R)) ∈ {R−,R+,R} and (8) holds. In particular f is one-to-one
on x0φ(f(R)). Setting in (1) y = x0, we obtain

f(x+ x0ψ(f(x))) = f(x) for x ∈ R. (24)

From (24) it follows by induction that

f(x+ nx0ψ(f(x))) = f(x) for x ∈ R, n ∈ N. (25)

If f(R) = R, then on account of Lemma 3(iv), x0φ(f(R)) = R and so f is
one-to-one on R. Then from (24) it follows immediately that ψ(f(x)) = 0 for
x ∈ R.

Next, assume that f(R) = R+. According to Lemma 3(iv), we get that
x0φ(f(R)) ∈ {R−,R+}. The following two cases are possible now:

1) There exists an x1 ∈ x0R− such that f(x1) = 1. From Corollary 1(i) it
follows that x1 6= 0. Setting in (1) x = x1, we obtain f(x1φ(f(y))) = f(y)
for y ∈ R. Hence, according to Lemma 3(iv), we get that φ(f(x)) = x

x1
for

x ∈ x1φ(f(R)) = −x0φ(f(R)). Thus, in virtue of (8), f |R− and f |R+
are one-to-

one functions. Putting in (1) y = x1, we have

f(x+ x1ψ(f(x))) = f(x) for x ∈ R. (26)

Let us fix an x ∈ R. Since at least two of the following numbers: x, x+x0ψ(f(x)), x+
x1ψ(f(x)) have the same sign, x0 6= x1 and f |R− , f |R+

are one-to-one, so in view
of (24) and (26), we get ψ(f(x)) = 0;

2) f(x) 6= 1 for x ∈ x0R−. Since f(0) = 0 and f(R) = R+, we have f(x0R−) ⊂
[0, 1). Moreover, setting in (1) x = x0, one obtains that f(x0φ(f(R))) = f(R) =
R+. Then x0φ(f(R)) = x0R+. Fix an x ∈ R. If x ∈ f−1({0}), then according
to Corollary 1, ψ(f(x)) = 0. If x ∈ f−1([1,∞)), then on account of (24), we get
that x, x+x0ψ(f(x)) ∈ x0R+. By (8) f is one-to-one on x0φ(f(R)), so using (24)
again, we have that ψ(f(x)) = 0.

Assume now, that x ∈ f−1((0, 1)) and suppose that ψ(f(x))) 6= 0. If
ψ(f(x))) > 0, then for n ∈ N sufficiently big, we have x+nx0ψ(f(x)) ∈ x0R+
and x+ (n+ 1)x0ψ(f(x)) ∈ x0R+. Thus, in view of (25), we obtain

f(x+ nx0ψ(f(x))) = f(x+ (n+ 1)x0ψ(f(x))).

Since f is one-to-one on x0R+, we get ψ(f(x)) = 0, which gives a contradiction.
If ψ(f(x))) < 0, then there exists m ∈ N such that z := x+mx0ψ(f(x)) ∈ x0R−.
Thus f(z) ∈ [0, 1). Moreover, on account of (25), ψ(f(z)) = ψ(f(x)) < 0. Then
by Corollary 1, f(z) 6= 0 and according to Corollary 2, there exists a y ∈ x0R+ =
x0φ(f(R)) with f(z)f(y)=1. In virtue of (1) and (8), we have f( zyx0

+yψ(f(z)))=1.
Then zy

x0
+ yψ(f(z)) ∈ x0R+ and using again the invertibility of f on x0R+, we

obtain zy
x0

+yψ(f(z)) = x0. Hence ψ(f(z)) = x0
y −

z
x0
> 0. This is a contradiction.

�
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Proposition 5. Let φ, ψ : R → R be given functions such that φ is continuous,
φ(1) = −1 and ψ(1) = 0. Then (1) has non-constant continuous solutions if and
only if φ and ψ have the form (15) and (23), respectively.

Furthermore, whenever φ and ψ have the form (15) and (23), respectively,
then the general solution of (1) in the class of non-constant continuous functions
f : R→ R is given by (17).

Proof. Notice at first that if φ and ψ are of the form (15) and (23), respectively,
then each function of the form (17) is a solution (1). Assume that f is a non-
constant continuous function satisfying (1). On account of Proposition 2, it is
enough to prove that ψ(f(x)) = 0 for x ∈ R. According to Lemma 3(i) and
Corollary 1(i), there is an x0 6= 0 such that f(x0) = 1. Putting in (1) x = y = x0,
we obtain f(−x0) = 1. Hence, in view of Lemma 3(iv), we get

φ(f(y)) =
{ y

x0
for y ∈ x0φ(f(R))

− y
x0

for y ∈ −x0φ(f(R)). (27)

Putting in (1) y = x0 and then y = −x0, it is easy to obtain

φ (f(−x+ x0ψ(f(x)))) = φ (f(−x− x0ψ(f(x)))) = φ (f(x)) (28)

for x ∈ R. Fix x ∈ R. According to (27) and (28), we have that either −x +
x0ψ(f(x)) = −x−x0ψ(f(x)) or −x+x0ψ(f(x)) = −(−x−x0ψ(f(x))). Hence, in
virtue of Corollary 1, we get ψ(f(x)) = 0. �

Proposition 6. Let φ, ψ : R → R be given functions such that φ is continuous
and |ψ(1)| 6= 1. If φ(1) + ψ(1) = 1 and ψ(1) 6= 0, then (1) has non-constant
continuous solutions if and only if

φ(x) =
{
cx

1
r for x ∈ R+

φ1(x) for x ∈ R−

ψ(x) =
{

(1− c)x 1
r for x ∈ R+

ψ1(x) for x ∈ R−,

(29)

where r is an arbitrary positive real constant, and
(C1) c ∈ R \ {0, 1, 2}, φ1(x) = −c(−x)

1
r for x ∈ R− and ψ1(x) = −(1 − c)(−x)

1
r

for x ∈ R−
or
(C2) c ∈ (0, 1) and φ1, ψ1 : R− → R are arbitrary functions such that φ1 is

continuous and φ1(0) = 0.
Furthermore, whenever φ and ψ have the form (29), then the general solution of
(1) in the class of non-constant continuous functions f : R → R is given by (19)
or

f(x) =
{
p|x|r for x ∈ D
0 for x ∈ R \D, (30)

where p is an arbitrary positive real constant and D ∈ {R−,R+}, in the case when
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(C1) and (C2) hold; by (19) when (C1) holds and (C2) does not hold; and by (30)
when (C2) holds and (C1) does not hold.

Proof. Notice that if φ and ψ have the form (29), then every function of the form
(19) or (30) satisfies (1) in the corresponding cases. Let f : R → R be a non-
constant continuous solution of (1). According to Corollary 1(i) and Lemma 3(i),
there is an x0 6= 0 such that f(x0) = 1. Assume that φ(1)+ψ(1) = 1 and ψ(1) 6= 0.
Then, in view of Lemma 3(iii), we have

φ (f(x)) =


φ(1) ax0

for x ≤ a
φ(1) xx0

for a < x < b

φ(1) b
x0

for x ≥ b
(31)

Step 1. We show that a > −∞ implies f(y) = f(a) for y ≤ a. Assume that
a > −∞. Setting in (1) x = x0, in view of (31) we obtain

f(aφ(1) + ψ(1)y) = f(y) for y ≤ a. (32)

Let us fix a y ≤ a and consider the following cases:
1) ψ(1) > 1. Then y−aφ(1)

ψ(1) ≤ a and inserting into (32) y−aφ(1)
ψ(1) in place of y,

we get f(y) = f(y−aφ(1)
ψ(1) ). Hence, by easy induction we obtain

f(y) = f

(
yψ(1)−n − aφ(1)

n∑
i=1

ψ(1)−i
)

for n ∈ N

and using the continuity of f , we have

f(y) = f

(
lim
n→∞

yψ(1)−n − aφ(1)
∞∑
i=1

ψ(1)−i
)

=

f

(
−aφ(1)

1
ψ(1)− 1

)
= f(a);

2) ψ(1) ∈ (0, 1). Then aφ(1)+yψ(1) = a(1−ψ(1))+yψ(1) = a+ψ(1)(y−a) ≤ a.
Inserting into (32) aφ(1) + yψ(1) in place of y, one obtains

f(y) = f
(
aφ(1)(1 + ψ(1)) + yψ(1)2) .

Thus by induction, we get

f(y) = f

(
aφ(1)

n−1∑
i=0

ψ(1)i + yψ(1)n
)

for n ∈ N.

Hence

f(y) = f

(
aφ(1)

∞∑
i=0

ψ(1)i + lim
n→∞

yψ(1)n
)

=

f

(
aφ(1)

1
1− ψ(1)

)
= f(a);
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3) ψ(1) < 0. Then φ(1) > 1, y−aψ(1)
φ(1) ≤ a and as above we have

f(y) = f

(
aϕ(1) + lim

n→∞
yψ(1)φ(1)−n − aψ(1)2

∞∑
i=1

φ(1)−i
)

= f

(
aϕ(1)− aψ(1)2 1

φ(1)− 1

)
= f(a).

Furthermore, one can analogously show that if b <∞, then f(x) = f(b) for x ≥ b.
In particular, since f is unbounded, so a and b cannot be both finite.

Step 2. We distinguish three cases.
Case 1) a = −∞ and b =∞. Then on account of (31), we have that φ(f(x)) =

φ(1) xx0
for x ∈ R. Moreover φ(1) + ψ(1) = 1 and |ψ(1)| 6= 1 imply that φ(1) 6=

0. Then by (31), f is one-to-one on R and putting in (1) y = x0, we obtain
xφ(1) + x0ψ(f(x)) = x. Hence ψ(f(x)) = ψ(1) xx0

for x ∈ R and the equation (1)
becomes f(xyx0

) = f(x)f(y) for x, y ∈ R. According to Lemma 4, there exists a

positive real constant r such that f(x) = | xx0
|rsgn

(
x
x0

)
for x ∈ R. Let u ∈ R+

and x := x0u
1
r . Then in view of (31), we get

φ(1)u
1
r = φ(1)

x

x0
= φ(f(x)) = φ

(∣∣∣∣ xx0

∣∣∣∣r sgn
(
x
x0

))
= φ

((
x

x0

)r)
= φ(u).

Now, let u < 0 and x := −x0(−u)
1
r . Then

−φ(1)(−u)
1
r = φ(1)

x

x0
= φ(f(x))

= φ

(∣∣∣∣ xx0

∣∣∣∣r sgn
(
x
x0

))
= φ

(
−
(
− x

x0

)r)
= φ(u).

Thus φ(x) = φ(1)|x| 1r sgn (x) for x ∈ R. Similarly one can prove that ψ(x) =
ψ(1)|x| 1r sgn (x) for x ∈ R. Moreover since φ(1)+ψ(1) = 1, |ψ(1)| 6= 1 and ψ(1) 6= 0,
so φ(1) /∈ {0, 1, 2}. Then φ and ψ have the form (29) with c := φ(1), (C1) holds
and f is of the form (19) with d := |x0|−rsgn

(
x−1

0

)
.

Case 2) a > −∞ and b = ∞. Then on account of (31), we have that f(x) =
f(a) for x ≤ a and f is one-to-one on [a,∞). Thus either f(R) = [f(a),∞) or
f(R) = (−∞, f(a)]. From Corollary 2 it follows that R+ = f(R) = [f(a),∞).
Hence f(a) = 0 = f(0) and so a ≥ 0. Suppose that a > 0. Then by (31),
φ(f(0)) = φ(1) ax0

6= 0, which contradicts Corollary 1. Therefore a = 0 and
f−1({0}) = R−. In particular x0 > 0. Furthermore, as in the previous case we
have

φ(f(x)) = φ(1)
x

x0
for x ∈ R+ (33)

and
ψ(f(x)) = ψ(1)

x

x0
for x ∈ R+, (34)



76 J. Chudziak AEM

so in virtue of (1), we get f(xyx0
) = f(x)f(y) for x, y ∈ R+. Then there exists a

positive real constant r such that f(x) = ( xx0
)r for x ∈ R+. Fix a u ∈ R+ and let

x := x0u
1
r . Hence f(x) = u and by(31), we have

φ(u) = φ(f(x)) = φ(1)
x

x0
= φ(1)u

1
r

and
ψ(u) = ψ(f(x)) = ψ(1)

x

x0
= ψ(1)u

1
r = (1− φ(1))u

1
r .

Moreover let α < 0 and β > 0 be fixed. Setting in (1) x = α, y = β and then
x = β, y = α, we obtain

f(αφ(f(β)) + βψ(0)) = 0

and
f(βφ(0) + αψ(f(β))) = 0,

respectively. Thus, according to (33), (34) and Corollary 1, we get

f

(
φ(1)

αβ

x0

)
= f

(
(1− φ(1))

αβ

x0

)
= 0.

Further αβ
x0

< 0 and f−1({0}) = R−, so φ(1) ∈ (0, 1). Then φ and ψ have the
form (29) with c := φ(1), (C2) holds and f is of the form (30) with p := x−r0 and
D := R+;

Case 3) a = −∞ and b < ∞. Similarly to the previous case one can obtain
that φ and ψ are of the form (29) with c := φ(1), (C2) holds and f has the form
(30) with p := |x0|−r and D := R−. �

Let us summarize our consideration in the following

Theorem 1. Let φ, ψ : R → R be given functions such that φ is continuous and
|ψ(1)| 6= 1. Then f : R → R is a continuous solution of (1) if and only if one of
the following conditions holds:

1) f = 0 or f = 1,
2) φ and ψ have one of the forms:

(i)

φ(x) =
{
−x 1

r for x ∈ R+
φ1(x) for x ∈ R−

ψ(x) =
{

0 for x ∈ R+
ψ1(x) for x ∈ R−,

where r is an arbitrary positive real constant and φ1, ψ1 : R− → R are
arbitrary functions such that φ1 is continuous and φ1(0) = 0,
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(ii)

φ(x) =
{
x

1
r for x ∈ R+

φ1(x) for x ∈ R−

ψ(x) =
{

0 for x ∈ R+
ψ1(x) for x ∈ R−,

where r is an arbitrary positive real constant and φ1, ψ1 : R− → R are
arbitrary functions such that φ1 is continuous and φ1(0) = 0,

(iii)

φ(x) =
{
cx

1
r for x ∈ R+

φ1(x) for x ∈ R−
ψ(x) =

{
(1− c)x 1

r for x ∈ R+
ψ1(x) for x ∈ R−,

where r is an arbitrary positive real constant and at least one of (C1), (C2)
holds.

Furthermore, whenever φ and ψ have the form (i), (ii) or (iii), then the gen-
eral solution of (1) in the class of non-constant continuous functions is given,
respectively, by:

(i) (17);
(ii) (18) or (19) whenever φ1(x) = −(−x)

1
r for x ∈ R− and ψ1(x) = 0 for

x ∈ R−,
(18), otherwise.

(iii) (19) whenever (C1) holds and (C2) does not hold,
(30) whenever (C2) holds and (C1) does not hold,
(19) or (30) whenever (C1) and (C2) hold.

Remark 2. Determining the algebraic substructure of a generalization of the Clif-
ford group, N. Brillouët-Belluot and J. Dhombres have considered the functional
equation (cf. [6] p. 281)

g(xg(y) + yg(x)) = tg(x)g(y) for x, y ∈ R, (35)

where t is a non-zero real constant and g : R→ R is an unknown function. Some
generalizations of (35) have been studied in [5], [6] and [8]. Notice that the equation

g(xφ̄(g(y)) + yψ̄(g(x))) = tg(x)g(y) for x, y ∈ R, (36)

where t is a non-zero real constant and φ̄, ψ̄ : R → R are given functions, is
equivalent to (1), with f(x) := tg(x) for x ∈ R, φ(x) := φ̄(xt ) for x ∈ R and
ψ(x) := ψ̄(xt ) for x ∈ R.

Thus, if φ̄ is a continuous function and |ψ̄(1
t )| 6= 1, then the general solution of

(36) in the class of continuous functions may be easily deduced from Theorem 1.

Remark 3. The results of this paper are obtained under the assumption |ψ(1)| 6=1,
so they include neither the results of [5]–[9], nor the results concerning the Go la̧b–
Schinzel functional equation.
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