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Summary. Let ¢,1 : R — R be given functions, such that ¢ is continuous and |i(1)] # 1. We
solve the functional equation

FelfW)] +yolf (@)]) = f(2)f(y) forz,y €R

in the class of continuous functions f : R — R.
In particular we give the forms of ¢, for which the equation has non-constant solutions.
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1. Introduction

By R,Z and N we denote the sets of all real, integer and positive integer numbers,
respectively. Moreover R_ := (—00,0] and R} := [0,00). Let ¢,% : R — R be
given functions. Functional equations of the form

o (f(y) +yo (f(2)) = f(x)f(y)  for z,y €R, (1)

where the unknown function f maps R into itself, have been considered by many
authors in several cases.

If p(z) =1 and ¢(x) = x for x € R, then (1) takes the form

fle+yf() = f@)f(y) for z,y eR,

and is called the Golab—Schinzel functional equation (for details see [1], [2], [10],
[11]). In the case ¢(z) = 2* and ¢(z) = 2! for x € R, where k, [ € N are arbitrarily
fixed, we obtain the so-called generalized Golab—Schinzel equation

F(2f@)" +yf@)) = f(@)fy) for z,y €R,
which has been considered among others in [4]-[8], [12], [14], where in particular
the continuous solutions f : R — R of that equation have been determined. In [3]
it is proved that the cardinality of the set of discontinuous solutions f : R — R of
this equation is 2%, where X = card R. Some applications of this type of functional
equations can be found for example in [2], [4], [6], [8] and [12].
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In this paper we present the general solution of (1) in the class of continuous
functions f : R — R, under the assumption that ¢ is continuous and |¢(1)| # 1.
The case |¢(1)| = 1 needs different methods and the results concerning it will be
published separately.

2. Preliminary results
Remark 1. The only constant solutions of (1) are f =0 and f = 1.

Lemma 1. Let ¢, : R — R be given functions and let a function f : R — R
satisfy (1). Then

(i) f(0) €{0,1};

(ii) 4f f(0) =0, then f =0 or ¢(0) = ¥(0) =0;

(iii) #f f(0) =1 and f is continuous at 0, then f =1 or|p(1)| = |p(1)| = 1;
)

(iv)  f(R) is a multiplicative subsemigroup of R.

Proof. (i) It is enough to put in (1) z =y = 0.

(ii) Let £(0) = 0 and suppose for example that ¢(0) # 0. Setting in (1) y =0,
we have f (z¢(0)) =0 for x € R. Thus f =0.

(iii) Assume that f is continuous at 0 and f(0) = 1. Let us suppose that
|p(1)] # 1. By taking in (1) y = 0, we obtain f (x¢(1)) = f(x) for z € R. Hence
fxp(1)™) = f(z) for x € R,n € Z and by the continuity of f at 0, we have
f(z) = f(0) =1 for x € R. The proof in the case [)(1)| # 1 is analogous.

(iv) This follows at once from (1). O

Corollary 1. Let ¢,9 : R — R be given functions such that ¢ is continuous and
[v(1)| #1. If f : R — R is a non-constant continuous solution of (1), then

(i) f(0)=0,
(if) ¢(0) =(0) = 0.

Lemma 2. Let ¢, : R — R be given functions such that ¢ is continuous and
[w(1)| £ 1. If f : R — R is a continuous solution of (1), then f is either unbounded
or constant.

Proof. Suppose that f is a non-constant bounded continuous solution of (1) and
let M := sup{|f(x)| : « € R}. From Lemma 1(iv) it follows that M € (0,1]. We
consider three cases:

1) ¢ o f = 0. Since f is non-constant, in view of (1) ¢ o f cannot be constant.
Then there exists an x; € R such that ¢ (f(z1)) # 0 and |f(z1)| # 1. Otherwise
¢ o f would take at most three values 0,¢(1) and ¢(—1), which is not possible.
Setting in (1) y = x1, we obtain f(z¢ (f(z1))) = f(x)f(xz1) for x € R. Then
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{z¢ (f(z1)) : z € R} =R and we get
M = sup{[f(z¢(f(21)))] : & € R} = sup{|f () f(z1)

which gives a contradiction.
2) ¥ (f(z2)) # 0 for some 7o € R\ f~1({—1,1}). Putting in (1) z = x2, we
have

e R} = [f(21)|M,

f(x20 (F(y)) + v (f(22))) = fl22)f(y)

for y € R. Moreover, the continuity of ¢ implies that ¢ o f is a bounded function.
Hence {z20(f(y)) + y(f(2z2)) : y € R} = R and as above we obtain that M =
| f(xz2)| M, which is impossible.

3)Yof#0and ¢(f(z)) =0forz e R\ f1({-1,1}). Then from (1) it

follows that
[ (o (F(y) = f(2)f(y) (2)
forz e R\ f~1({—1,1}),y € R. We divide the proof in this case into three steps.
Step 1. We prove that R\ f~!({—1,1}) is an interval. From the assumptions
of this case it follows that there is a z € R such that |f(z)| = 1. In particular
M = 1. Assume that z > 0 and let z; := min{z > 0 : |f(x)] = 1}. We show
that |f(xz)] = 1 for ¢ > z;. Suppose that |f(zo)| < 1 for some zg > 2. Since
f(0) = 0, in view of the continuity of f, there exists an 1 € (0, z1) such that
|f(z1)] > | f(z0)]- Moreover ¢(f(R)) is an interval and by Corollary 1, 0 € ¢(f(R)).
Thus z16(f(R)) C xod(f(R)) and in virtue of (2), we get

[f(@1)| = sup{[f(21) f(y)] : y € R} = sup{[f(z10(f (y)))| : y € R}
< sup{[f(zo¢(f ()| : y € R} = sup{|f(z0) f(y)] : y € R} = |f(z0)],

which cannot occur. Similarly, if there is a z < 0 such that |f(z)] = 1, then
[f(z)] = 1 for ¢ < max{x < 0 : |f(z)] = 1}. Therefore we have proved that
R\ f~1({—1,1})is an interval. Moreoverif —1 € f(R), then in view of Lemma 1(iv),
we get that 1 € f(R) and, using the continuity of f, one can easily deduce that
R\ f~1({—1,1}) is a bounded interval.

Step 2. We consider the case, when R\ f~({—1,1}) is an unbounded interval.
Then f(R) C (—1,1]. Suppose that R\ f~1({—1,1}) = (—o0, ¢), where ¢ > 0 is a
real constant. If R\ f~1({—1,1}) = (b, 00) for some b < 0, the proof is analogous.
Thus f(x) =1 for x > ¢ and according to (1), we have

fxo(f() = f(x)f(y) for z<cyeR 3)

and

f@o (f(y) +yp(1) = fly)  for z=2cyeR (4)

Since f is non-constant, in view of (3) ¢o f is non-constant, too. Then ¢o f is non-
constant on (—o0,¢), so there exists a yo # 0 with ¢(f(yo)) # 0 and |f(yo)| < 1.
Setting in (3) and (4) y = yo, we obtain

[f (@ (f (wo))| = [f (@) f(wo)| < |f(z)]  for z<ec (5)
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and
|f(z (f(yo)) + yor()| = [f(yo)| <1 for z>¢, (6)

respectively. If ¢ (f(yo)) < 0, then m < ¢ and putting in (5) x := m,

we have 1 = |f(c)| < |f (m) |, which is not possible. If ¢ (f(yo)) > 0, then
there is a ¢; > ¢ such that ¢1¢ (f(yo)) + yoo(1) > ¢. Taking in (6) z = ¢1, we get
1=1f(c1¢ (f(yo)) +vov(1))| = |f(yo)| < 1, which gives a contradiction.

Step 3. Assume that R\ f~'({=1,1}) = (b,c) is a bounded interval with
b <0 <ec Sincele€ f(R), we may suppose f~1({1}) = [¢,0). The argument
is analogous if f~*({1}) = (—o0,b]. We have (6) for z > c¢. If ¢ (f(yo)) > 0,
for & > ¢ big enough, we have x¢ (f(yo)) + yot»(1) > ¢, which with (6) leads to a
contradiction. If ¢ (f(yo)) < 0, for z > ¢ big enough, we have ¢ (f(y0))+yoro(1) <
b, which again leads with (6) to a contradiction.

Since by Lemma 1(iv) a non-zero continuous solution f of (1) satisfies

FR)N(0,00) # 0, we get

Corollary 2. Let ¢,9 : R — R be given functions such that ¢ is continuous and
[v(1)] # 1. If f : R — R is a non-constant continuous solution of (1), then

f(R) € {Ry,R}.

The following result will be very useful in our considerations ([9], Chapter 6
(Section 6.2), cf. also [13])

Proposition 1. The general solution in the class of continuous functions h:R—R
of the functional equation

h(h(z)) = (y+ 1)h(z) — vz for z € R,
where v # —1 is a fixed real number, is given by:
(A) ify>0:
(i)

hz)=<¢ for a<xz<b

v+ (1 —v)a for x<a
x4+ (1 —~)b for x>1b

with —oo < a < b < o0,
(ii) h(x)=~vx+d withd € R;

(B) ify=0:
(i) h(z) =z forxeh(R),
(ii) h(z) =0 withd e R;

)
(€) va <0:
i )= 773—1—5 with 0 € R,

)
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Lemma 3. Let ¢, : R — R be given functions such that ¢ is continuous and
[¥(1)| # 1. Let f : R — R be a non-constant continuous solution of (1). Then the
following properties hold:

1) fH{1h #0.
(i) if zo € F7H({1}) and h(y) == 206 (f(y)) + y¥(1) for y € R, then h(0) =0,

h(R) is an unbounded interval (containing 0) and
h(h(y)) = @)+ h(y) —¢(l)y  for yeR,
(iii) if o € f1({1}) and (1) # 0, then

(L= %)L for a<a
¢qu»:{ufwm»% for a<w<b (7)
(L= $(1)L for 220

with —oo < a < b < oo,
(iv) ifzo € f7Y({1}) and ¥(1) = 0, then xop(f(R)) is an unbounded interval
containing 0 and

¢uw»=% for @ € zod(f(R)). (8)

Moreover ¢(f(R)) € {R_,R1,R}, and ¢(f(R)) = R if and only if f(R) = R.

Proof. (i) It results immediately from Corollary 2.
(ii) Let zo € f~1({1}) and h(y) := zo¢ (f(y)) + y¥(1) for y € R. From Corol-
lary 1 it follows that z¢ # 0 and h(0) = 0. Putting in (1) = xg, we have

f(h(y)) = fly) for yeR. 9)

In view of Lemma 2, f is an unbounded continuous function, so by (9), h(R) is an
unbounded interval (containing 0). Further we have ¢(f(y)) = z—lo(h(y) —¥(1)y)
for y € R. Thus on account of (9), we obtain

= (h (h(9)) — HDAW)) = 6(f (h(w)) = (£ W) = — (h(y) — (1)y)

Lo Lo

for y € R, and so
h(h(y)) = (¥(1) + 1) h(y) —v(1)y for y eR.

(iii) Let mp € f~1({1}) and ¥(1) # 0. Since h(z) = zod(f(x)) + 2¢(1) and
h(0)=0, from Proposition 1(A),(C) it can be easily deduced that either ¢(f(z))=0
for x € R or (7) holds. We show that the first possibility cannot occur. In fact,
if ¢(f(x)) =0 for z € R, then putting in (1) x = xo, we obtain f(y¥ (1)) = f(y)
for y € R. Thus the continuity of f and |1(1)] # 1 imply that f is a constant
function, which gives a contradiction.

(iv) Let 2o € f~1({1}) and 9 (1) = 0.The first part of the statement follows
immediately from (ii) and Proposition 1(B).
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Now we show that ¢(f(R)) = R if and only if f(R) = R. Assume that
#(f(R)) = R. Then by (8) f is one-to-one on R and since f(0) = 0 (cf. Corol-
lary 1(i)), so f(R) N (—00,0) # @. Thus, on account of Corollary 2, we have
f(R) =R.

Conversely, if f(R) = R then from (1) it follows that

f(@og (f(R)) = f(R) = R.

Since f is continuous on R and one-to-one on zod(f(R)), we get zop(f(R)) =R
(because otherwise f would be bounded, above or below, on the topological closure
of 06 (f(R))). Thus ¢(f(R)) = R

Now we will prove that ¢(f(R)) € {R_,R;,R}. We have that ¢(f(R)) is an
unbounded interval containing 0. Hence either Ry C ¢(f(R)) or R_ C ¢(f(R)).
Suppose for example that Ry C ¢(f(R)) and ¢(f(R))\R+ # 0. Since f is a contin-
uous function, one-to-one on zo@(f(R)) and £(0) = 0, we have f(R)N(—o00,0) # 0.
Hence, according to Corollary 2, f(R) = R and consequently ¢(f(R)) = R. O

Lemma 4. Let A € {R_, R, R} and a be an arbitrary non-zero real constant.
The general solution of the equation

flazy) = f()f(y) for z€ Ay eR, (10)

in the class of non-constant continuous functions f : R — R is given by

(ax)”  for z€a 'Ry

flz) = {b(—am)" for zcea R_, (11)

where 1 is an arbitrary positive real constant and:
|b| = 1, whenever a € —A;
b is an arbitrary real constant, otherwise.

Proof. A straightforward calculation shows that each function of the form (11)
satisfies (10). Assume that f : R — R is a non-constant continuous solution
of (10). Inserting into (10) za~! and ya~! in place of x and vy, respectively, we
obtain

g(zy) = g(x)g(y) for x € ad,y €R, (12)

where g(z) := f(za™!) for z € R.

Suppose that a € —A. Then either €A =R or ¢4 = R_. If @A = R, then in
view of (12), we have that either g(x) = |z|" for z € R or g(z) = |z|"sgn () for
x € R, where r is some positive real constant. Hence we get (11) with |b| = 1. If
aA = R_, then inserting into (12) —x in place of x, we obtain

G(zy) = G(x)g(y) for x € R4,y € R, (13)

where G(z) := g(—x) for x € R. Actually (13) may be treated as a multiplicative
Pexider equation on Ry. Thus g(z) = 2" for z € Ry and g(—z) = G(x) = ba" for
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x € R4, where r is a positive real constant and b is a real constant. Therefore

ar)”  for z€a 'R
@) =glax) = { l(J(—zm)T for z € OFIRJ:.
In particular f(a~!) =1 and f(—a~1) = b. Then, setting in (10) z =y = —a"1 €
A=a 'R_, we obtain 1 = f(a™1) = f(a=!)? = b2. Hence |b| = 1.

Now, suppose that @ ¢ —A. Then oA = Ry and in virtue of (12), we get
g(x) = a” for x € Ry, where r is a positive real constant. Moreover, setting in
(12) y = —1 we obtain g(—z) = g(—1)(z)" for x € R;. Thus g(x) = g(=1)(—z)"
for x € R_ and so we have (11) with b := g(—1). O

3. Main results

Proposition 2. Let ¢ : R — R be a given continuous function. The equation

e (FW) = f(@)f(y)  for x,y eR (14)

has non-constant continuous solutions if and only if ¢ has one of the following
forms:

(1)

for zeRy

o) = { _fx) for x e R_| (15)
(i) )
40 ={ ) for 1R, )

where T is an arbitrary positive real constant and ¢1 : R_ — R is an arbitrary
continuous function with ¢1(0) = 0.

Furthermore, whenever ¢ is of the form (15) or (16), then the general solution
of (14) in the class of non-constant continuous functions f : R — R is given,
respectively, by:

(i)

f(z) =laz|”  for z €R, (17)

where « is an arbitrary non-zero real constant;

(i)

| (ax)" for z€a 1R
fla) = { b(—ax)" for z € oflRir (18)
or
f(z) =d|z|"sgn (x) for xz € R, (19)

where a and d are arbitrary non-zero real constants and b is an arbitrary non-
. . 1

negative real constant, in the case when ¢1(x) = —(—z)+ for z € R_; and by

(18), otherwise.
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Proof. One can check that if ¢ has the form (15) or (16), then every function of
the form (17), (18) or (19) satisfies (14) in the corresponding case. Assume that
f : R — R is a non-constant continuous function satisfying (14). On account of
Corollary 1 and Lemma 3(i),(iv), there exists an zy € R\ {0} such that f(x¢) =1,
o(f(R)) € {R_,R4,R} and (8) holds. In particular f is one-to-one on zod(f(R)).
We consider three cases.

Case 1) ¢(f(R)) = R. Then in view of Lemma 3(iv), we get f(R) = R. From
(8) and (14) it follows that f(3!) = f(2)f(y) for 2,y € R. Hence, on account

of Lemma 4, f(z) = |;=["sgn (%) for x € R, so f has the form (19) with d :=

|xo| "sgn (xal). Therefore in view of (14), we have |p(f(y))|"sgn (6(f(y))) = f(y)
for y € R. Thus |¢(x)|"sgn (¢p(z)) = = for z € f(R) = R and an easy calculation
shows that ¢ is of the form (16) with ¢;(z) = —(—z)* for z € R_.

Case 2) ¢(f(R)) = R_. Thus, in view of (8) and (14), f($£) = f(z)f(y) for
z € Rand y € 20¢(f(R)) = zoR_. According to Corollary 2 and Lemma 3(iv),
f(R) = Ry. Moreover xio € 25 'Ry = 2oR = —20¢(f(R)). Hence, in virtue of
Lemma 4 (with a = 25 ' and A = 29¢(f(R))), we get f(z) = | 2=|" for 2 € R, where
r is some positive real constant. Therefore by (14), we have |¢(f(y))|" = f(y) for
y € R. Then ¢(x) = —z~ for z € f(R) = R, and we have obtained (15) and (17)
with a := 25"

Case 3) ¢(f(R)) = Ry.In view of (8) the equation (14) becomes f(3%) =
f(@)f(y) for z € R and y € zo¢f(R). Furthermore, in view of Corollary 2 and
Lemma 3(iv), f(R) = R4 and it is easy to see that xio ¢ —xzoo(f(R)). Using
Lemma 4, similarly to the previous case, one can obtain (16) and (18) with « :=
x5! and some b € R. Moreover f(R) = R, implies that b > 0. O

Proposition 3. Let ¢,v : R — R be given functions such that ¢ is continuous
and |¢(1)| # 1. If the equation (1) has non-constant continuous solutions, then
one of the following conditions holds:

() (1) = —1 and ¥(1) = 0;
(i) $(1)+ (1) =1.

Proof. Let f : R — R be a non-constant continuous solution of (1). In view
of Lemma 3(i) and Corollary 1(i), we get that f(x¢) = 1 for some x¢ € R\ {0}.
Assume that (1) # 0. From Lemma 3(iii) it follows (7). Setting in (1) x = y = zo,
we have f(z1) =1, where 21 := xo(¢(1) + (1)). Moreover from Corollary 1(i) it
follows that z; # 0. Putting in (1) = 1 one obtains

o(f(z10(f(y) +¥(1)y)) = o(f(y))

for y € R. Hence, in view of (7), we get

S(F((1— (1) E2 +w(1)y)) = 6(£(y)) (20)

o
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for y € (a,b). Furthermore notice that

{(1 NI g1y e (a,b>} C (a,b). (21)

In fact, suppose for example that (1 —¢(1))Z2 + ¥(1)z < a for some z € (a,b).
Then in virtue of (7) and (20), we have
) :

(1= (1) 1 = S (= (1) +9(1)2) = 9(f(2)) = (1= (1))
Since (1) # 1, this is impossible. Now from (7), (20) and (21) it follows that
— (1)) ¥z 1
(v vy

To o

(1—9(1))

for y € (a,b). Thus xg = 21 and so ¢(1) + (1) = 1.

Suppose now that (1) = 0. Then according to Lemma 3(iv), we have (8).
Setting in (1) x = y = xo, we obtain f(zo¢(1l)) = 1. Next, putting in (1) z =
z0¢(1) and y = g, we have f(zo¢(1)?) = 1, which in view of Lemma 3(iv) gives

x
)= —— 22
o) = s (22)

for z € zo¢(1)?¢(f(R)). Furthermore zop(f(R)) and zo¢(1)2¢(f(R)) are un-
bounded intervals. Since zozop(1)? > 0, so zod(f(R)) N zop(1)?A(f(R)) is an
unbounded interval, too. Then from (8) and (22) it follows that

r__r

zo  wod(1)?
for z € zod(f(R)) Nwop(1)?4(f(R)). Hence ¢(1)? = 1, which gives either (i) or
(ii)- O

Proposition 4. Let ¢,9 : R — R be given functions such that ¢ is continuous,
@(1) =1 and (1) = 0. Then (1) has non-constant continuous solutions if and
only if ¢ is of the form (16) and

0 for xeR
Y(w) = {1/)1(25) for xéR:

where 1 : R_ — R is an arbitrary function.

Furthermore, whenever ¢ and v are of the form (16) and (23), respectively,
then the general solution of (1) in the class of non-constant continuous functions
f:R — R is given by (18) or (19) in the case when ¢ (z) = —(—z)7 forz € R_,
P1(x) =0 for x € R_; and by (18), otherwise.

(23)

Proof. It is easy to check that if ¢ and v are of the form (16) and (23), respec-
tively, then f given by (18) or (19) is a solution of (1) in the corresponding case.
Assume that f : R — R is a non-constant continuous function satisfying (1). Ac-
cording to Proposition 2, it is enough to prove that ¢(f(z)) = 0 for z € R. In



72 J. CHUDZIAK AEM

virtue of Corollary 2 and Lemma 3(iv), there exists an zp € R\ {0} such that
fxo) =1, zoop(f(R)) € {R_,R4+,R} and (8) holds. In particular f is one-to-one
on zo@(f(R)). Setting in (1) y = xg, we obtain

f@+zop(f(2) = f(x)  for zeR. (24)
From (24) it follows by induction that
flx+nzop(f(x))) = f(z) for z€R,neN. (25)

If f(R) = R, then on account of Lemma 3(iv), zo¢(f(R)) = R and so f is
one-to-one on R. Then from (24) it follows immediately that ¢ (f(z)) = 0 for
z € R.

Next, assume that f(R) = R;. According to Lemma 3(iv), we get that
zo@(f(R)) € {R_,R4}. The following two cases are possible now:

1) There exists an 1 € zoR_ such that f(r;) = 1. From Corollary 1(i) it
follows that x1 # 0. Setting in (1) z = z1, we obtain f(z16(f(y))) = f(y)
for y € R. Hence, according to Lemma 3(iv), we get that ¢(f(z)) = = for
r € 210(f(R)) = —x00(f(R)). Thus, in virtue of (8), flp and th+ are one-to-

one functions. Putting in (1) y = x1, we have

o+ 210(f(@) = f(@)  for x€R. (26)

Let us fix an = € R. Since at least two of the following numbers: x, a+zo(f(z)), 2+
x19(f(x)) have the same sign, zo # 1 and f|Rp , f|R+ are one-to-one, so in view
of (24) and (26), we get ¥(f(x)) = 0;

2) f(z) # 1 for x € 2oR_. Since f(0) =0 and f(R) = R, we have f(zoR_) C
[0,1). Moreover, setting in (1) = x, one obtains that f(zod(f(R))) = f(R) =
Ry. Then zod(f(R)) = zoR;. Fix an x € R. If z € f~1({0}), then according
to Corollary 1, ¥(f(x)) = 0. If z € f~!([1,00)), then on account of (24), we get
that z, z + zo(f(z)) € xoR4. By (8) f is one-to-one on zod(f(R)), so using (24)
again, we have that ¢ (f(x)) = 0.

Assume now, that * € f71((0,1)) and suppose that ¥(f(z))) # 0. If
¥(f(z))) > 0, then for n € N sufficiently big, we have z+nzoy(f(z)) € voR+
and © + (n+ 1)xoy(f(z)) € xoR4. Thus, in view of (25), we obtain

[+ nzop(f(2))) = f(@ + (n+ Dworp(f(2))).

Since f is one-to-one on zoRy, we get ¥ (f(z)) = 0, which gives a contradiction.
If ¥(f(z))) <0, then there exists m € N such that z := z + mzop(f(x)) € zoR_.
Thus f(z) € [0,1). Moreover, on account of (25), ¥(f(z)) = ¥(f(z)) < 0. Then
by Corollary 1, f(z) # 0 and according to Corollary 2, there exists a y € R4 =
zo¢(f(R)) with f(2)f(y)=1. In virtue of (1) and (8), we have f(ZL+yi(f(2)))=1.
Then ;—g + y(f(2)) € zoR; and using again the invertibility of f on zgRy, we
obtain =¥ +y1(f(2)) = wo. Hence ¢(f(2)) = =2 >0 Thisisa Contradictiorg
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Proposition 5. Let ¢,9 : R — R be given functions such that ¢ is continuous,
#(1) = =1 and (1) = 0. Then (1) has non-constant continuous solutions if and
only if ¢ and i have the form (15) and (23), respectively.

Furthermore, whenever ¢ and 1 have the form (15) and (23), respectively,
then the general solution of (1) in the class of non-constant continuous functions
f:R— R is given by (17).

Proof. Notice at first that if ¢ and ¢ are of the form (15) and (23), respectively,
then each function of the form (17) is a solution (1). Assume that f is a non-
constant continuous function satisfying (1). On account of Proposition 2, it is
enough to prove that (f(z)) = 0 for x € R. According to Lemma 3(i) and
Corollary 1(i), there is an zg # 0 such that f(x¢) = 1. Putting in (1) z =y = xo,
we obtain f(—xp) = 1. Hence, in view of Lemma 3(iv), we get

_ % for y € zop(f(R))
o(f(y)) = { —2L for ye —zop(f(R)).

Zo

(27)

Putting in (1) y = x¢ and then y = —xy, it is easy to obtain

¢ (f(=z +2op(f(2)))) = ¢ (f (=2 — 2oo(f(2)))) = ¢ (f(2)) (28)

for x € R. Fix z € R. According to (27) and (28), we have that either —x +

2o (f(z)) = —x —zoy(f(z)) or —z+ 209 (f(x)) = —(—x — zot(f(z))). Hence, in
virtue of Corollary 1, we get ¢(f(z)) = 0. O

Proposition 6. Let ¢,7 : R — R be given functions such that ¢ is continuous
and |p(1)| # 1. If ¢(1) + (1) = 1 and (1) # 0, then (1) has non-constant
continuous solutions if and only if

o cxr for zeR
() = { o1(x) for x € RJ_F

[ —-¢zr for zeR
wiw) = {wl(x) for x € }Rt,

where r is an arbitrary positive real constant, and

(C1) ¢ € R\ {0,1,2}, ¢1(z) = —c(—x)7 for x € R_ and iy (x) = —(1 — ¢)(—xz)7
forx e R_

or

(C2) ¢ € (0,1) and ¢1,v¥1 : R — R are arbitrary functions such that ¢ is
continuous and ¢1(0) = 0.

Furthermore, whenever ¢ and ¢ have the form (29), then the general solution of

(1) in the class of non-constant continuous functions f : R — R is given by (19)

or

(29)

[ plz|” for €D
f(x)_{O for z € R\ D,

where p is an arbitrary positive real constant and D € {R_, R}, in the case when

(30)
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(C1) and (C2) hold; by (19) when (Ci) holds and (Cs) does not hold; and by (30)
when (C2) holds and (C1) does not hold.

Proof. Notice that if ¢ and ¢ have the form (29), then every function of the form
(19) or (30) satisfies (1) in the corresponding cases. Let f : R — R be a non-
constant continuous solution of (1). According to Corollary 1(i) and Lemma 3(i),
there is an xg # 0 such that f(z¢) = 1. Assume that ¢(1)+(1) =1 and ¢(1) # 0.
Then, in view of Lemma 3(iii), we have

(1) for z<a
¢ (f(z)) = {

€T

p(1) L for z>b

Zo

¢(1)5> for a<z<b (31)

Step 1. We show that a > —oo implies f(y) = f(a) for y < a. Assume that
a > —oo. Setting in (1) z = xo, in view of (31) we obtain

flad(1) +v(M)y) = f(y)  for y <a. (32)

Let us fix a y < a and consider the following cases:

1) (1) > 1. Then L= a(d1>§ ) < @ and inserting into (32) Y= a(dfgl) in place of y,

we get f(y) = f(LE55H wa(%l)) Hence, by easy induction we obtain

fly) = f(?ﬂ/) " —ag(1 Zﬂ) ) for n e N

and using the continuity of f, we have

fly)=1 ( lim yip(1)7" — ag(1) Zwu)—i) _

n— 00
i=1
1

(a0 = ) =

2) ¢(1) € (0,1). Then ag(1)+yi(1) = a(l—9(1))+yp(1) = a+y(1)(y—a) < a.
Inserting into (32) a¢(1) + y1(1) in place of y, one obtains

fy) = £ (ag()(1 +¢(1) +yu(1)?) .
Thus by induction, we get

fly)=f <a¢(1) iw(l)i + yw(l)"> for n € N.
Hence

n—00

£(6) = £ {6() S w(1) + Jim yw(m) _
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3) ¥(1) < 0. Then ¢(1) > 1, yfd)a(lf)(l) < a and as above we have

ﬂwzf<wawng&w0war"—WﬂV§}mrﬁ

1
zf(agol —aw127):fa.
(1) = ab(V 55— ) = fl@)
Furthermore, one can analogously show that if b < oo, then f(z) = f(b) for x > b.
In particular, since f is unbounded, so a and b cannot be both finite.

Step 2. We distinguish three cases.

Case 1) a = —oco and b = co. Then on account of (31), we have that ¢(f(x)) =
¢(1) ;= for z € R. Moreover ¢(1) + (1) = 1 and [¢)(1)| # 1 imply that ¢(1) #
0. Then by (31), f is one-to-one on R and putting in (1) y = xo, we obtain
z¢(1) + zop(f(z)) = . Hence ¥(f(x)) = ¢ (1) for x € R and the equation (1)
becomes f(‘;—g) = f(z)f(y) for z,y € R. According to Lemma 4, there exists a

positive real constant r such that f(z) = [;=["sgn (—0> for x € R. Let u € Ry

x
x

and z := zour. Then in view of (31), we get

st =0 = o050 =0 (| L] s (2)) =0 ((£) ) = o0
Now, let u < 0 and & := —2o(—u)*. Then

oz @) -+ (2))-0

Thus ¢(z) = ¢(1)|x|sgn (z) for 2 € R. Similarly one can prove that h(z) =
¢(1)|z| rsgn (z) for z € R. Moreover since ¢(1)+4(1) = 1, |1h(1)] # 1 and (1) # 0,
so ¢(1) ¢ {0,1,2}. Then ¢ and 1 have the form (29) with ¢ := ¢(1), (C1) holds
and f is of the form (19) with d := |zo| "sgn (acal).

Case 2) a > —oo and b = oo. Then on account of (31), we have that f(x) =
f(a) for £ < a and f is one-to-one on [a,00). Thus either f(R) = [f(a),o0) or
f(R) = (—o0, f(a)]. From Corollary 2 it follows that Ry = f(R) = [f(a), o0).
Hence f(a) = 0 = f(0) and so a > 0. Suppose that a > 0. Then by (31),
¢(f(0)) = ¢(1)5- # 0, which contradicts Corollary 1. Therefore a = 0 and
f71({0}) = R_. In particular xy > 0. Furthermore, as in the previous case we
have

o(f(@) = 6(1)—  for v e Ry (33)

and
B(f@) = b= for ze Ry, (34)
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so in virtue of (1), we get f(3%) = f(2)f(y) for 2,y € Ry. Then there exists a
positive real constant r such that f(z) = (;-)" for x € Ry. Fix a u € Ry and let

z := zour. Hence f(z) = u and by(31), we have
Bu) = 0(f(2)) = 6(1) 1~ = o(1)u*

and
1

9() = 9(f(@) = (1) = = v (ur = (1= 4(1))u’.
Moreover let a < 0 and 8 > 0 be fixed. Setting in (1) = o,y = 3 and then
x = 3,y = «, we obtain

flap(f(B)) + B(0)) =0
and

f(B86(0) + a(£(8))) = 0,

respectively. Thus, according to (33), (34) and Corollary 1, we get

(o) =1 (o) <o

Further z—f < 0and f71({0}) = R_, so ¢(1) € (0,1). Then ¢ and * have the

form (29) with ¢ := ¢(1), (C2) holds and f is of the form (30) with p := z5" and
D :=Ry;

Case 3) a = —oo and b < oco. Similarly to the previous case one can obtain
that ¢ and v are of the form (29) with ¢ := ¢(1), (C2) holds and f has the form
(30) with p :=|zo|~" and D :=R_. O

Let us summarize our consideration in the following

Theorem 1. Let ¢,9 : R — R be given functions such that ¢ is continuous and
[(1)] # 1. Then f: R — R is a continuous solution of (1) if and only if one of
the following conditions holds:

1) f=0orf=1,
2) ¢ and ¥ have one of the forms:
(i)
. —x7 for zeR
lz) = {¢1($) for z € ]RJ_F

_J0 for e R
w(x)_{wl(x) for xERt,

where v is an arbitrary positive real constant and ¢1,9%1 : R — R are
arbitrary functions such that ¢1 is continuous and ¢1(0) = 0,
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(i)
. zr for zeR
(@) = { ¢1(x) for x € Rir
0 for z€R
Y(x) = {wl(ac) for x € R:

where v is an arbitrary positive real constant and ¢1,9%1 : R — R are
arbitrary functions such that ¢1 is continuous and ¢1(0) =0,

(i)

1
_ Joexr  for xeRy
@) = { ¢1(x) for xeR_
(@ —=¢ezr for zeRy
Vo) = {w:c) for TER.,
where r is an arbitrary positive real constant and at least one of (C1), (C2)
holds.

Furthermore, whenever ¢ and i have the form (i), (ii) or (iii), then the gen-
eral solution of (1) in the class of mon-constant continuous functions is given,
respectively, by:

() (17); 1

(ii) (18) or (19) whenever ¢1(z) = —(—x)* for x € R_ and tp1(x) = 0 for
reR_,
(18), otherwise.
(19) whenever (Cy) holds and (C2) does not hold,
(30) whenever (C3) holds and (Cy) does not hold,
(19) or (30) whenever (Cy) and (C3) hold.

(iii)

Remark 2. Determining the algebraic substructure of a generalization of the Clif-
ford group, N. Brillouét-Belluot and J. Dhombres have considered the functional
equation (cf. [6] p. 281)

9(xg(y) +yg(z)) = tg(z)g(y) for z,y € R, (35)

where t is a non-zero real constant and g : R — R is an unknown function. Some
generalizations of (35) have been studied in [5], [6] and [8]. Notice that the equation

9(zd(g(y)) + yv(g(x))) = tg(x)g(y) for z,y € R, (36)

where t is a non-zero real constant and ¢, : R — R are given functions, is
equivalent to (1), with f(z) := tg(x) for z € R, ¢(z) := $(%) for z € R and
Y(x) == p(7) for x € R.

Thus, if ¢ is a continuous function and [¢)(1)| # 1, then the general solution of
(36) in the class of continuous functions may be easily deduced from Theorem 1.

Remark 3. The results of this paper are obtained under the assumption |¢(1)|#1,
so they include neither the results of [5]-[9], nor the results concerning the Golab—
Schinzel functional equation.
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